细胞骨架与细胞运动
细胞骨架与细胞运动
不同的方式与肌动蛋白相结合,严格地调控着微
丝的组织与行为,形成了多种不同的亚细胞结构,
执行不同的功能。
细胞骨架与细胞运动
l 微丝的体外组装过程可分为成核期、延长期和稳定期。 l 成核期:限速,二聚体不稳定,需形成三聚体核心; l 生长期:球状肌动蛋白在核心两端的正快负慢聚合; l 稳定期:掺入速度等于解离速度;延长长度等于缩短长度。
细胞骨架与细胞运动
细胞骨架与细胞运动
l γ-微管蛋白环状复合物( γ-TuRC):由α 微管蛋白、β微管蛋白、γ微管蛋白和其他四种蛋 白质组成。非微管蛋白决定螺旋形支架,13个γ 微管蛋白和1-2个α、β微管蛋白异二聚体结合到支 架上。 γ-TuRC的作用是促进微管核心的形成, 即成核作用。
细胞骨架与细胞运动
肌原纤维{
肌动蛋白
细肌丝{原肌球蛋白
肌钙蛋白 l 肌肉收缩的滑动丝模型。
细胞骨架与细胞运动
中间丝(intermediate filament, IF)
中间丝是直径10nm纤维状蛋白,因其介于粗 肌丝和细肌丝以及微丝和微管之间, 故被命名为中 间纤维。中间丝是最稳定的细胞骨架成分,也是 三类细胞骨架纤维中化学成分最为复杂的一种。
细胞骨架与细胞运动
微丝的主要功能是参与细胞运动、分裂和信号转导 l 微丝构成细胞的支架并维持细胞的形态,如细胞
皮层、应力纤维及微绒毛(microvilli)等;
细胞骨架与细胞运动
l 微丝参与细胞的运动,如伪 足等细胞的变形运动;
l 微丝在肌球蛋白(mioisin)参 与下作为运输轨道参与细胞 内物质运输,有点类似于微 管的轨道作用;
广义的细胞骨架包括细胞质骨架(微管、微 丝和中间纤维)、细胞核骨架(核基质、核纤层 和核孔复合体)、细胞膜骨架和细胞外基质。
细胞骨架与细胞运动
细胞骨架与细胞运动细胞骨架是细胞内一种动态的构造,由微丝、微管和中间纤维组成。
它在维持细胞形态、参与细胞分裂、细胞内物质的运输以及细胞运动等方面起着重要的作用。
本文将详细探讨细胞骨架与细胞运动的关系及其机制。
一、微丝(微纤丝)与细胞运动微丝是由肌动蛋白组成的细胞骨架的一种形式,直径约为7纳米。
它在细胞内充当细胞骨架的支架,对细胞形态维持具有重要作用。
而且,在细胞运动过程中,微丝也发挥着重要的作用。
首先,微丝在细胞分裂中起到关键作用。
在有丝分裂过程中,微丝通过与运动蛋白的相互作用,参与了染色体的分离和定位,进而推动细胞的分裂。
此外,在无丝分裂中,微丝也参与了细胞膜的收缩和细胞质的分裂过程。
其次,微丝在细胞内物质运输中起到桥梁作用。
细胞内的许多物质需要通过微丝的导向运输到达目的地。
通过微丝与运动蛋白(如肌动蛋白)的相互作用,细胞内物质的运输可以在细胞膜下、细胞质内等区域进行。
最后,微丝参与细胞的运动过程。
细胞运动可以分为两种类型:细胞迁移和细胞运动。
在细胞迁移中,微丝特别重要。
它通过细胞前缘的伸长和收缩,推动细胞向特定方向运动。
在细胞运动中,微丝通过与运动蛋白的结合,使细胞形成伪足并向前蠕动。
二、微管与细胞运动微管通常由α-和β-微管蛋白两种亚基组成,直径约为25纳米。
与微丝一样,微管也参与了多个细胞过程,尤其是细胞运动。
首先,微管在细胞分裂中起到了重要作用。
在有丝分裂过程中,微管通过与中心体的相互作用,且由于微管的动态可塑性和极性有区别的特点,推动染色体的分离和排列,最终实现细胞分裂。
在无丝分裂中,微管也参与了细胞膜的收缩和分离。
其次,微管在细胞内物质运输过程中起到了关键作用。
携带运输囊泡的微管通过与运动蛋白(如动力蛋白)的相互作用,使物质能够沿着微管方向进行快速运输。
特别是在神经元等特化细胞中,微管的功能尤为重要。
最后,微管也参与了细胞的运动过程。
细胞中的纤毛和鞭毛都是由微管构成的,通过微管的伸长和收缩来实现纤毛和鞭毛的摆动。
细胞骨架与细胞运动讲解
二、微管的组装
1.微管的体外组装受多种因素影响
微管的体外组装过程与踏车现象模式图
二、微管的组装
2.微管的体内装配受到严格的时间和空间控制
微管组织中心(microtubule organizing center,MTOC)
在空间上为微管装配提供始发区域,控制着细胞质中
微管的数量、位置及方向。
包括:中心体、纤毛和鞭毛的基体
微管长度相对恒定。
二、微管的组装
1.微管的体外组装受多种因素影响
b.极性装配 :
装配快的一端(β微管蛋白)为(+)极,
装配慢或去组装的一端(α微管蛋白)为 (-)极
c.踏车现象:微管的一端发生GTP和微管蛋 白的添加,是微管不断延长;另一端具有 GDP的微管蛋白发生解聚而使微管缩短, 组装和去组装达到平衡
二、微管的组装 4.作用于微管的特异性药物 秋水仙素:与β管蛋白结合,抑制微管的组装,细胞在 分裂中期停止分裂 紫衫醇:阻止微管的去组装,增强微管稳定性,细胞在 分裂中期停止分裂
秋水仙素与紫衫醇的分子结构
三、微管的功能
•RBC双凹盘形
1.细胞内的网状支架,支持和维持细胞的形态
•神经元细胞的轴突
微管围绕细胞核向外呈放射 状分布,维持细胞的形态
二、微管的组装
微管在中心体上的聚合
A.中心体的无定形蛋白基质中含有γ微管蛋白环,它是微管生长 的起始部位;B.中心体上的γ微管蛋白环;C.中心体与附着其上的 微管,负端被包围在中心体中,正端游离在细胞非稳态动力学模型
该模型认为,微管组装过程不停地在增长和缩短两
三、微管的功能
3.形成纺锤体,调节细胞分裂。 4. 形成鞭毛和纤毛 结构:由基体和鞭杆两部分构成;鞭毛中的微管为 9+2结构;二联微管A管由13条原纤维组成,B管由 10条原纤维组成;A管向相邻B管伸出两条动力蛋白
生物体内的细胞骨架与细胞运动
生物体内的细胞骨架与细胞运动细胞是生物体的基本结构和功能单位,它们在体内进行各种生物化学反应和物质运输。
细胞骨架是细胞内部的一种支持结构,它通过调整细胞形状和维持细胞稳定性,对细胞运动起至关重要的作用。
一、细胞骨架的概述细胞骨架是由微丝、中间丝和微管组成的复杂网络。
微丝主要由肌动蛋白组成,中间丝主要由角蛋白组成,而微管则由纤维蛋白组成。
这些组分相互作用,并形成网络结构,使细胞内各种物质能够有效地运输,并且参与细胞分裂和运动等重要生理过程。
二、细胞骨架与细胞形状的关系细胞骨架通过维持细胞的形状,使细胞能够保持特定的结构和功能。
微丝可以通过在细胞质中形成支架的方式,使细胞膜稳定,并决定细胞的形状。
中间丝则通过形成细丝状结构,维持细胞的机械强度和稳定性。
细胞形状的改变会引发相关代谢过程的调控,从而影响细胞的功能。
三、细胞骨架与细胞运动的关系细胞骨架在细胞运动中起到重要的作用。
比如,微丝通过与肌动蛋白的相互作用,支持细胞的蠕动运动和伸缩变形。
中间丝则可以通过与细胞外基质相连,实现胶原蛋白的拉伸和收缩,从而推动细胞移动。
微管则参与细胞内物质的运输,包括蛋白质、RNA等重要生物分子的传递和分布。
四、细胞骨架的动态调节细胞骨架的形成和解聚是一个动态平衡的过程,受到各种信号调控。
细胞骨架的重要组分,如肌动蛋白和纤维蛋白,可以通过磷酸化和去磷酸化等方式进行结构和活性的调节。
此外,细胞运动相关的信号通路,包括细胞外信号和胞内信号,也会对细胞骨架的形成和运动产生重要影响。
总之,细胞骨架是生物体内细胞运动和形状维持的重要结构。
细胞骨架的组成和动态调节对于细胞的正常功能发挥至关重要。
进一步研究细胞骨架的特性和功能机制,对于理解生物体内细胞运动和形态调控具有重要的意义。
细胞生物学-1第十章:细胞骨架与细胞运动
10. 细胞骨架与细胞运动细胞除了含有各种细胞器外, 在细胞质中还有一个三维的网络结构系统,这个系统被称为细胞骨架(图10-1)。
图10-1 细胞骨架系统10.1 细胞骨架(cytoskeleton)的组成和功能细胞除了具有遗传和代谢两个主要特性之外, 还有两个特性, 就是它的运动性和维持一定的形态。
细胞骨架是细胞运动的轨道,也是细胞形态的维持和变化的支架。
10.1.1 细胞骨架的组成和分布¦ 组成细胞骨架是细胞内以蛋白质纤维为主要成分的网络结构,由主要的三类蛋白纤丝(filamemt)构成,包括微管、微丝(肌动蛋白纤维)和中间纤维。
¦分布微管主要分布在核周围, 并呈放射状向胞质四周扩散。
微丝主要分布在细胞质膜的内侧。
而中间纤维则分布在整个细胞中(图10-2)。
12图10-2 细胞骨架的三类主要成分及其分布10.1.2 细胞骨架的功能什么是细胞骨架?在细胞内的主要功能是什么?细胞骨架对于维持细胞的形态结构及内部结构的有序性,以及在细胞运动、物质运输、能量转换、信息传递和细胞分化等一系列方面起重要作用。
¦作为支架(scaffold),为维持细胞的形态提供支持结构,如红细胞质膜膜骨架结构维持。
¦在细胞内形成一个框架(framework)结构,为细胞内的各种细胞器提供附着位点。
细胞骨架是胞质溶胶的组织者,将细胞内的各种细胞器组成各种不同的体系和区域的网络结构。
¦为细胞器的运动和细胞内物质运输提供机械支持。
细胞骨架作为细胞内物质运输的轨道;在有丝分裂和减数分裂过程中染色体向两极的移动,以及含有神经细胞产生的神经递质的小泡向神经细胞末端的运输都要依靠细胞骨架的机械支持。
¦为细胞从一个位置向另一位置移动提供力。
一些细胞的运动结构, 如伪足的形成也是由细胞骨架提供机械支持。
纤毛和鞭毛等运动器官主要是由细胞骨架构成的。
¦为信使RNA提供锚定位点,促进mRNA翻译成多肽。
细胞的运动与细胞骨架
细胞的运动与细胞骨架细胞是生命体的基本单位,其内部结构和功能的维持离不开细胞运动和细胞骨架。
细胞运动是指细胞内各组分之间的动态运动过程,它的实现依赖于细胞骨架的支持和调控。
细胞骨架是由细胞内的蛋白质纤维网络组成,对细胞形态的维持、胞吞作用、细胞分裂等起着重要的调节作用。
本文将探讨细胞运动与细胞骨架之间的关系及其在细胞生物学中的意义。
一、细胞运动的类型细胞运动通常可分为两种类型:主动性运动和被动性运动。
主动性运动是指细胞自身主动产生的运动,如细胞的收缩和伸展等。
被动性运动是指细胞在外部力的作用下产生的运动,如细胞的滑动和扭曲等。
这两种运动类型在细胞内具有不同的调控机制和表现形式。
二、细胞骨架的组成细胞骨架是由多种蛋白质组成的纤维网络结构,主要包括微丝、中间丝和微管三种类型。
微丝由肌动蛋白构成,参与了细胞的收缩和伸展过程。
中间丝由多种表皮细胞特异蛋白(keratin)构成,对于细胞的力学支撑和形态维持至关重要。
微管由α-和β-微管蛋白构成,参与了细胞的分裂、内质网和高尔基体的组装等过程。
三、细胞运动与细胞骨架的相互关系细胞运动和细胞骨架之间存在紧密的联系。
细胞骨架提供了细胞内各组分之间的支撑网络,使细胞能够具有特定的形态和结构。
同时,细胞骨架的动态重组也是细胞运动的基础。
例如,细胞分裂时,微管会在细胞中形成一个纺锤体结构,将染色体进行分离;在细胞迁移过程中,微丝通过重组和伸缩来推动细胞进行移动。
四、细胞运动与细胞骨架的调控机制细胞运动和细胞骨架的行为受到多种调控机制的控制。
细胞内的信号分子、细胞外的基质和细胞膜等均可以对细胞运动和细胞骨架的重组进行调控。
以微丝为例,细胞骨架剂和解聚剂可以影响微丝的重组动力学,进而影响细胞的运动;细胞外基质的化学性质和机械性质也可以通过细胞外基质-细胞内骨架的相互作用来改变细胞的运动行为。
五、细胞运动与细胞骨架的意义细胞运动与细胞骨架在细胞生物学中具有广泛的意义。
首先,细胞运动和细胞骨架能够调节细胞形态和结构的变化,从而影响细胞的功能和命运。
细胞运动与细胞骨架
细胞运动与细胞骨架细胞是生物体的基本结构单位,它们能够通过细胞运动来实现自身的定位、迁移和形态改变。
而细胞运动的基础是细胞骨架,也称作细胞支架,在细胞的内部提供了结构支持和蛋白质运输的网络系统。
本文将探讨细胞运动与细胞骨架的关系,以及细胞骨架的组成和功能。
一、细胞运动的类型细胞运动包括主动运动和被动运动。
在主动运动中,细胞通过细胞骨架的重塑和细胞质流动的驱动,实现细胞的自发定向运动,如细胞迁移和细胞轴向改变。
而被动运动是指细胞受外力作用而发生运动,如血液中的白细胞在血管内的顺行滚动。
二、细胞骨架的组成细胞骨架主要由三种纤维蛋白组成,分别是微丝、中间丝和微管。
1. 微丝(Actin Filaments):微丝是由肌动蛋白蛋白链聚合而成的螺旋形纤维,直径约为7纳米。
它们广泛存在于细胞的边缘区域,起到细胞的支持、形态维持和细胞运动的作用。
2. 中间丝(Intermediate Filaments):中间丝是由多种蛋白亚单位聚合而成的纤维,直径约为10纳米。
它们主要存在于细胞核和细胞质中,提供细胞的结构支持和机械强度。
3. 微管(Microtubules):微管是由α-β二聚体聚合而成的管状结构,直径约为25纳米。
它们主要分布在细胞的中心区域,并参与细胞质内物质的输送和细胞有丝分裂的过程。
细胞骨架的形成和维持离不开各类细胞骨架相关蛋白的参与,如微丝相关蛋白(actin-binding proteins)、中间丝相关蛋白和微管相关蛋白。
这些蛋白在细胞骨架的稳定性、动态性和功能调控中起到重要的作用。
三、细胞骨架与细胞运动的关系细胞骨架通过对细胞形态的调控参与了细胞的运动过程。
细胞骨架对于细胞的变形和移动提供了力学支撑,并且在细胞运动的各个步骤中发挥重要作用。
1. 细胞定位和定向运动:细胞骨架通过微丝的再组装和重塑来影响细胞的定位和定向运动。
细胞通过调控微丝的聚合和解聚,以及使用微丝相关蛋白的定位,能够实现细胞向特定方向的迁移和定位。
细胞生物学中的细胞运动与细胞骨架
细胞生物学中的细胞运动与细胞骨架细胞是生命的基本单位,它们通过细胞运动与细胞骨架的相互作用来实现各种生物学过程。
细胞运动是指细胞内部的有序移动,而细胞骨架则是支撑和维持细胞形态的重要组织。
在细胞生物学领域,对于细胞运动和细胞骨架的研究已经取得了重要的进展,为我们深入理解生命活动提供了重要的线索。
I. 细胞运动细胞运动是细胞在空间上发生的有序移动,包括细胞间的移动和细胞内的运动。
细胞间的移动主要包括细胞的迁移和细胞间的相互作用。
细胞迁移是指细胞在组织或器官内的移动,它在胚胎发育、伤口修复、免疫反应等过程中起着关键作用。
细胞间的相互作用包括细胞-细胞识别、细胞-胞外基质相互作用等,继续推动着细胞社群的发展和细胞功能的实现。
细胞内的运动则是指细胞内各种细胞器和生物分子之间的移动。
细胞器内的运动主要由分子马达蛋白和细胞骨架的相互作用驱动,包括动力蛋白驱动的微管动力学和肌动蛋白驱动的微丝动力学。
这些运动不仅维持了细胞内物质的运输和分布平衡,还在细胞分裂、内吞作用等生理过程中发挥了重要作用。
II. 细胞骨架细胞骨架是细胞内存在的一种纤维状结构,由微管、微丝和中间丝三种主要成分组成。
微管是细胞骨架的一种,由αβ二聚体形成的管状结构。
微丝是另一种细胞骨架,由肌动蛋白形成的螺旋状结构。
中间丝则是较粗的纤维状结构,由多种中间丝蛋白构成。
细胞骨架不仅是维持细胞形态和细胞内结构稳定的重要组织,还是细胞内各种运动的关键组成部分。
微管和微丝的动力蛋白通过与其相互作用,推动了细胞内物质的运输和分布。
此外,细胞骨架还参与了细胞间的黏附和细胞与胞外基质的相互作用,影响了细胞的迁移和组织形成。
III. 细胞运动与细胞骨架的相互作用细胞运动与细胞骨架之间存在着密切的相互作用。
细胞运动的驱动力主要来自于肌动蛋白和微管动力蛋白的收缩和延伸。
肌动蛋白通过与微丝的结合和相互滑动推动细胞的迁移和内吞作用。
微管动力蛋白则通过将微管延伸和收缩,推动细胞器和细胞内物质的运输和定位。
细胞生物学细胞骨架与细胞运动
微管组织中心(microtubule organizing center, MTOCs)
阿尔茨海默氏病——大量损伤的神经元纤维(微管蛋白聚集缺陷 信号传递紊乱)
三.细胞骨架与遗传性疾病
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅地阐述观点。
感谢各位的观看
单击此处添加副标题
中间纤维增强细胞的强度
汇报人姓名
(五)参与染色体的运动,调节细胞分裂
参与细胞内信号传导
第二节 微 丝 microfilament , MF
存在方式: 球状肌动蛋白(globular actin, G-actin) 纤维状肌动蛋白(filamentous actin, F- actin)
形态结构:中空圆柱状结构,13根原纤维围成一周, α和β微管蛋白首尾相接,具有极性。
有三种存在形式: 单管、二联管和三联管。
三.微管结合蛋白:(microtubule-associated protein, MAP) 结合在微管表面的辅助蛋白 结构区域 功能: 碱性的微管结合区域 加速微管成核作用; 酸性的突出区域 与其他骨架纤维联系 主要类型: MAP-1(轴突和树突中) MAP-2(胞体和树突中) tau (只存在 于轴突中) MAP-4(大多数细胞中)
参与细胞连接 参与细胞内的信息传递与物质运输 维持细胞核膜稳定,与DNA的复制有关 与细胞的分化
胞质骨架三种组分的比较*
(二)微管和微丝与肿瘤化疗
长春新碱、秋水仙素(与纺锤体微管蛋白结合)— 抑制细胞增殖
细胞生物学之笔记--第7章 细胞骨架与细胞运动
第七章细胞骨架与细胞运动细胞骨架cytoskeleton==真核细胞质中的蛋白质纤维网架体系。
细菌体内不存在细胞骨架。
该体系是高度动态结构,由微管、微丝、中间纤维组成,既分散地存在于细胞中,又相互联系形成一个完整的细胞骨架。
作用:①动态网络,支持②定位各种细胞器③引导胞内物质运输④产力结构,负责细胞运动⑤细胞有丝分裂器组分。
广义的核骨架nucleoskeleton,核纤层nuclear lamina和细胞外基质extracellular matrix第一节微管microtubule微管是真核细胞中普遍存在的细胞骨架成分之一,以脊椎动物的脑组织最多。
它是由微管蛋白和微管结合蛋白组成的中控圆柱状结构,在不同类型细胞中有相似结构。
一.微管蛋白与微管的结构□尺寸:直径24~26nm 内径15nm壁厚5n。
□基本构建:微管蛋白α、β异二聚体,各有一个GTP结合位点□动态性:α-微管蛋白的GTP不进行水解也不交换;β-微管蛋白的GTP可水解成GDP,而此GDP也可换成GTP,这一变换对微管的动态性有重要作用□形成:α、β异二聚体头尾相接→原纤维;侧面13条原纤维合拢→微管□极性分布走向:微管具有极性,两端增长速度不同;增长快的一端为正端,另一端为负端。
微管的极性分布走向跟细胞器定位、物质运输方向有关□三种微管蛋白:微管由三种微管蛋白组成:α管蛋白、β管蛋白(前二者占微管蛋白总量80-95%);γ管蛋白定位于微管组织中心microtubule organizing center, MTOC(对微管的形成、数量、位置、极性、细胞分裂有重要作用)□三种存在形式:真核生物微管有三种存在形式:单管(13)、二联管(23纤毛&鞭毛)、三联管(33中心粒、鞭毛和纤毛的基体中)二.微管结合蛋白microtubule associated protein,MAP∆MAP==与微管结合的辅助蛋白,总是与微管共存,参与微管的装配。
细胞骨架与细胞运动
细胞骨架与细胞运动细胞是构成生物体的基本单位,其内部结构复杂而精密。
细胞骨架是细胞内的一种支撑网络结构,起到维持细胞形态、参与细胞分裂和细胞运动等重要功能。
本文将以细胞骨架与细胞运动为题,探讨细胞骨架的组成、细胞运动的机制以及细胞骨架与细胞运动的关系。
一、细胞骨架的组成细胞骨架由微丝、中间丝和微管三种主要蛋白纤维组成。
微丝主要由肌动蛋白组成,是直径最细的纤维,其在细胞内形成一种丝状结构。
中间丝由多种不同种类的蛋白组成,直径介于微丝和微管之间。
微管由α-和β-微管蛋白组成,是直径最大的纤维。
二、细胞运动的机制细胞运动是指细胞自身或其内部结构在细胞骨架的支撑下产生的有目的的运动。
细胞运动可以分为细胞内运动和细胞外运动两种形式。
1.细胞内运动细胞内运动是指细胞内部各成分的相对运动。
其中,最常见的是细胞器的移动。
细胞骨架通过与细胞器相互作用来实现细胞内运动。
例如,肌动蛋白在细胞质中形成肌动蛋白纤维,通过与细胞器结合,推动细胞器在细胞内进行定向运动。
2.细胞外运动细胞外运动是指细胞整体或其部分对外界刺激做出的有力回应。
这种运动形式包括细胞的迁移、伸展和收缩等。
细胞外运动是细胞骨架的重要作用之一。
以肌动蛋白为主要成分的微丝,在细胞边缘形成环状结构,通过微丝的伸缩运动,使细胞的前缘伸出,从而实现细胞的迁移。
三、细胞骨架与细胞运动的关系细胞骨架是细胞运动的重要基础和动力源泉。
细胞骨架通过与其他细胞结构的相互作用,为细胞运动提供了支撑和动力。
1.细胞骨架与细胞内运动细胞内运动是细胞对细胞器的定向运动。
细胞骨架通过与细胞器的相互作用,推动细胞器在细胞内进行有目的的运动。
例如,肌动蛋白纤维在细胞质中形成网状结构,与细胞器结合后,可以推动细胞器在细胞中定向运动,参与细胞分裂等重要生理过程。
2.细胞骨架与细胞外运动细胞外运动是细胞对外界刺激做出的有力回应。
细胞骨架通过微丝的伸缩运动,推动细胞前缘的伸出,实现细胞的迁移、伸展和收缩等运动形式。
细胞骨架与细胞运动
细胞骨架与细胞运动细胞是生命活动的基本单位,而其中最基本的组成结构就是细胞骨架。
细胞骨架是由微纤维网络、微管和中间纤维等多种有机物质组成的综合体,不仅可以保持细胞的形态,还能实现细胞的运动。
细胞骨架的微纤维网络是由微丝组成的,微丝主要是由一种名为肌动蛋白的蛋白质构成的。
肌动蛋白分子间的相互作用可以让微丝缩短或伸长,从而驱动细胞的运动。
比如,当细胞需要移动时,微丝可以在细胞内部形成一个网状结构,让细胞以这个结构为基础逐渐移动。
除了微丝之外,还有一种很重要的细胞骨架组成结构是微管。
微管的主要组成是一种名为α-β淀粉样蛋白的蛋白质。
与微丝不同的是,微管是中空的管状结构。
通过微管,细胞可以通过像旋转一样的运动方式完成细胞分裂。
中间纤维则是另一种组成细胞骨架的重要有机物质。
与微丝不同的是,中间纤维没有方向性,而是在各个方向上均匀排列。
它的作用是支撑细胞的核膜和细胞壁,从而为细胞提供良好的机械支撑。
细胞骨架不仅可以支撑细胞的形态和保护细胞内部器官,还可以让细胞进行不同的运动。
其中最著名的就是细胞骨架和微丝的协同作用。
微丝可以让细胞结构形成网状结构,微丝在网状结构中的移动可以凝结位于微丝上的配体,从而让细胞做出复杂的变形运动。
此外,微管的存在也为细胞的运动提供了重要的支持。
微管的特殊结构,让它具有很强的韧性和稳定性,从而可以在细胞运动时承担重要作用。
比如,在细胞的游动过程中,微管可以被利用作为细胞壁的运动轴,从而实现细胞的前进和转向。
总之,细胞骨架是形成细胞形态和支撑细胞内部器官运动的关键结构。
其中微丝、微管和中间纤维三种物质相互作用,共同实现了细胞的各种形态和运动。
研究细胞骨架与细胞运动的机制和病变,对于进一步了解生命活动的本质和疾病的发病机理具有重要意义。
细胞骨架与细胞运动
细胞骨架与细胞运动细胞是构成生物体的最基本的结构单位,它具有众多的功能,其中之一就是细胞运动。
细胞运动是细胞向特定方向移动的过程,它在生物体内起着至关重要的作用。
而细胞骨架则是细胞运动的关键支持结构,它给予细胞以稳定性和力量。
在本文中,我们将探讨细胞骨架与细胞运动之间的关系,并深入了解这一领域的研究成果。
1. 细胞骨架的组成细胞骨架是由细胞内的蛋白质组成的网络结构。
它由三种主要的蛋白质纤维组成:微丝、中间纤维和微管。
微丝是由肌动蛋白蛋白质组成的细长纤维,它在细胞内形成了一个稳定的支撑骨架。
中间纤维由多种不同类型的蛋白质组成,它提供了细胞内的机械强度和稳定性。
微管是由蛋白质分子聚合形成的管状结构,它负责细胞内的物质输送和细胞分裂。
这三种蛋白质纤维相互作用,形成了一个复杂的细胞骨架网络。
2. 细胞骨架与细胞运动的关系细胞骨架对细胞运动具有重要的影响。
首先,细胞骨架提供了细胞内的支撑和稳定性,使细胞能够保持形状,并对外界环境的力量做出相应的响应。
其次,细胞骨架通过与细胞膜的相互作用,参与了细胞的黏附和迁移过程。
细胞黏附是细胞与周围环境发生物理连接的过程,它通过细胞骨架与细胞外基质中的蛋白质相互作用来实现。
细胞迁移是细胞在组织和器官中移动的过程,它依赖于细胞骨架的动态重组。
此外,细胞骨架还参与了细胞内的肌肉收缩和胞吐等重要生物学过程。
3. 细胞运动的机制细胞运动的机制非常复杂,它涉及到细胞内的多种生物学过程和分子机制。
其中一个重要的机制是细胞骨架的重组和动态调节。
细胞骨架的重组能够改变细胞的形状和力学性质,在细胞运动过程中发挥重要作用。
另一个重要的机制是细胞膜的运动和变形。
细胞膜的运动与细胞骨架密切相关,它通过与细胞骨架的相互作用来实现。
此外,细胞运动还涉及到细胞内的信号传导和调控,它通过细胞间的相互作用和分子信号来实现。
4. 细胞骨架与疾病的关系细胞骨架在疾病发生和发展中起着重要作用。
一些疾病与细胞骨架的异常有关,例如肌肉萎缩症和结节性硬化症等。
生物学中的细胞骨架与细胞运动
生物学中的细胞骨架与细胞运动细胞是生物体最基本的结构单位,具有各种各样的功能。
在细胞内部,细胞骨架是支撑和维持细胞形态的重要组成部分,并参与细胞的运动过程。
本文将介绍细胞骨架的结构和功能,并探讨其在细胞运动中的作用。
一、细胞骨架的结构细胞骨架由微丝、中间丝和微管三种结构组成。
微丝是由肌动蛋白蛋白链聚合而成的薄丝状结构,长度约为5-10纳米。
中间丝是由多种类型的中间丝蛋白组成的中等直径结构,长度约为8-12纳米。
微管是由α-和β- 场宾蛋白组成的管状结构,直径约为25纳米。
二、细胞骨架的功能1. 细胞形态维持:细胞骨架通过结构的支撑和形态的稳定性,使细胞获得特定的形态。
细胞骨架的重要组成部分微丝和中间丝可以通过对细胞膜的收缩或伸长而改变细胞形状。
2. 细胞内运输:细胞骨架参与细胞内物质的运输。
微管作为细胞内物质的导管,能够通过动力蛋白的驱动将细胞器、蛋白质和其他物质快速运送到目标位置。
微丝和中间丝也可以通过与驱动蛋白的相互作用来参与细胞内运输。
3. 细胞分裂:细胞骨架在细胞分裂过程中起到重要的作用。
微管能够形成纺锤体,参与染色体的分离;微丝和中间丝则参与细胞膜的收缩和胞质的分离。
三、细胞运动与细胞骨架细胞运动指的是细胞在细胞骨架的参与下,通过改变形态或移动细胞结构实现的运动过程。
细胞运动的主要方式包括细胞内运动、细胞外运动和细胞迁移。
1. 细胞内运动:在细胞内部,细胞骨架通过与驱动蛋白的相互作用,使细胞器和蛋白质在细胞内快速运动。
这种运动能够有效地调控细胞内物质的分布,维持细胞内环境的稳定性。
2. 细胞外运动:细胞外运动指的是细胞通过改变形态或合作运动来产生细胞级别的运动。
微丝和中间丝的动态重组和收缩使细胞能够改变外形、伸展和收缩,从而实现细胞外运动。
3. 细胞迁移:细胞迁移是细胞通过细胞骨架的参与,在细胞膜的推动下向目标方向移动的过程。
细胞迁移在胚胎发育、组织再生和免疫响应等过程中起着关键作用。
细胞骨架与细胞运动
细胞骨架与细胞运动细胞是构成生物体的基本单位,它们通过运动与周围环境进行相互作用和交流。
细胞运动是维持生命活动的重要过程之一,其中涉及到细胞骨架的重要作用。
本文将探讨细胞骨架与细胞运动之间的关系,并介绍相关的研究成果和应用前景。
一、细胞骨架的概述细胞骨架是一种由蛋白质纤维组成的复杂网络结构,它存在于细胞内,为细胞提供结构支持并参与细胞的运动和形变。
细胞骨架主要由微丝、微管和中间纤维三种类型的蛋白质组成。
1. 微丝微丝是由肌动蛋白蛋白质组成的细丝,直径约为7纳米。
微丝在细胞内组织形成了一个网状结构,参与细胞的收缩和形变过程。
微丝广泛存在于动物细胞中,特别是肌肉细胞和细胞移动时的走向有微丝的投射。
2. 微管微管是由β-微管蛋白组成的管状结构,直径约为25纳米。
微管存在于细胞内的各个部位,主要参与细胞的分裂、运输和形态维持。
微管的动力学形态变化是由微管相关蛋白的调控和调整完成的。
3. 中间纤维中间纤维是由多种中间纤维蛋白组成的纤维状结构,直径约为10纳米。
中间纤维主要存在于细胞核周围的细胞质内,参与细胞形态的稳定、细胞内器官的定位和细胞的机械强度维持等重要生物学功能。
二、细胞运动的机制细胞运动是指细胞在生命过程中发生的位置变化或形态改变。
细胞运动可以分为两种类型:运动和形变。
1. 细胞运动细胞运动是指细胞在外力作用下的主动移动过程,包括细胞的迁移、聚集和分散等。
细胞运动的过程中,细胞骨架发挥着重要的作用,通过微丝、微管和中间纤维的协同作用,使细胞能够向特定方向移动。
例如,白细胞的趋化运动和神经元的突触形成都需要细胞骨架的参与。
2. 细胞形变细胞形变是指细胞整体或部分的形态发生变化,包括细胞的伸展、收缩和形状的变化等。
细胞形变的过程中,细胞骨架通过微丝和中间纤维的重组和调节,使细胞能够改变形状以适应外界环境的变化。
例如,细胞在渗透压变化下的膨胀和收缩,都需要细胞骨架的支持。
三、细胞骨架在疾病和生物技术中的应用细胞骨架的研究不仅在基础生物学领域具有重要价值,还在疾病和生物技术研究中有着广阔的应用前景。
细胞骨架和细胞运动机制
细胞骨架和细胞运动机制细胞是生物体内的最小构成单位,在完成生长、分裂、移动等生命活动中起到至关重要的作用。
细胞骨架和细胞运动机制是细胞的重要组成部分,相互协作完成细胞运动、形态维持和信号传递等多种生命过程。
一、细胞骨架的组成和功能细胞骨架是细胞内一种由细胞骨架蛋白构成的纤维状结构,具有形态稳定性和可塑性。
根据其主要成分不同,可以将细胞骨架分为微丝、中间丝和微管三种类型。
微丝是由肌动蛋白聚合形成的,可以在细胞内形成纤维束、纽带状、网状等不同形态的结构。
微丝的主要作用是在细胞运动、细胞分裂、内在运动和细胞信号传递中发挥调节作用。
中间丝主要由角蛋白聚合形成,形成类似韧带的结构,主要维持细胞形态的稳定性和机械强度。
微管是由α-及β-微管蛋白聚合形成的管状结构,可以在细胞内形成像高速公路一样的骨架网络,主要参与细胞内物质运输、细胞分裂和细胞极性的形成等生理功能。
二、细胞运动机制细胞可通过膜质微观结构变化和细胞骨架的调控而进行形态变化和移动。
细胞内能进行自身定向、维持内部稳态,以及与周围环境相互作用,实现生命活动的动态过程,称为细胞运动。
细胞运动的方式主要有细胞蠕动、胞吞作用、细胞游动等。
细胞蠕动是细胞在平坦表面上的移动,其运动机制主要是通过细胞前缘的伸出和细胞后缘的回缩完成的。
细胞前缘的伸出是由于膜发生局部扩散而引起的,而细胞后缘的收缩则由于微丝等细胞骨架组织发生激活而引起的。
胞吞作用是细胞摄取外界物质的过程,通过细胞膜表面的吞噬囊泡向内侵入外界物质并在细胞内形成胞吞泡,胞吞泡则在细胞内移动,最终与溶酶体融合。
细胞游动则是细胞主动向某一方向移动,在移动过程中会形成伪足、球足等运动结构,并发生相应的细胞骨架的重构。
细胞游动过程中的细胞骨架重构主要是由微管和微丝的互相调节所驱动的。
三、细胞骨架和细胞运动的相互调控细胞骨架和细胞运动之间存在密切的相互作用和调控关系。
细胞骨架可以参与细胞运动的调节和控制,而细胞运动也可以影响细胞骨架的组织和运动状态。
细胞骨架与细胞运动
细胞骨架与细胞运动细胞骨架是指真核细胞中存在的蛋白纤维网架系统,包括微管、微丝和中间丝一、微管1、微管分布在核周围,并呈现放射状像胞质四周扩散,确定膜性细胞器的位置,和作为膜泡运输的导轨2、形态结构:由微管蛋白组成的中空管状结构,长度变化不一3、组成:α微管蛋白,β微管蛋白,γ微管蛋白4、微管的三种存在形式:单管,二联管,三联管5、微管结合蛋白参与微管的装配,是维持微观结构和功能的必需成分6、微管的装配a.分为成核期,聚合期,稳定期成核期:先由α和β微管蛋白聚合成一个短的寡聚体结构,即核心形成聚合期;微管蛋白聚合速度大于解聚速度,微管延长稳定期:游离微管蛋白浓度下降,达到临界浓度,微管的组装与去组装速度相等,微管长度相对恒定b.微管的体外装配◆组装条件 :微管蛋白异二聚体达到临界浓度、有Mg2+存在,(无Ca2+)、pH6.9、37℃、异二聚体即组装成微管,同时需要由GTP提供能量◆极性装配 : 装配快的一端(β微管蛋白)为(+)极,装配慢的一端(α微管蛋白)为(-)极◆踏车现象:组装和去组装达到平衡c.微管的体内组装◆微管组织中心在空间上为微管装配提供始发区域,控制着细胞质中微管的数量、位置及方向(包括中心体、纤毛和鞭毛的基体)d.微管组装的动态调节◆非稳态动力学模型◆微管在体外组装微管蛋白的浓度和GTP水解成GDP的速度决定微管的稳定性◆影响细胞内微管的组成和去组成的特异性药物:秋水仙碱(抑制)、长春化碱(抑制)、紫杉醇(增强)7、主要功能a.支持和维持细胞形态b.参与细胞内物质的运输(马达蛋白)c.维持细胞器的空间定位和分布d.与细胞运动关系密切e.参与细胞分裂f.参与细胞内信号传递二、微丝1、结构组成:由肌动蛋白亚单位组成的实心螺旋状纤维;有双股肌动蛋白丝以右手螺旋排列形成的纤维;有极性;正负端具有不同生长速度2、装配:当溶液中含有ATP、Mg2+以及较高浓度的K+或Na+时,G-肌动蛋白可自组装成F-肌动蛋白;当溶液中含有适当浓度的Ca2+以及低浓度的Na+、K+时,肌动蛋白纤维趋向于解聚成肌动蛋白单体体外装配的三个阶段:成核期 延长期 稳定期 成核因子通过成核作用加速肌动蛋白的聚合3、影响微丝组装的药物:细胞松弛素抑制组装 鬼笔环肽促进微丝聚合4、功能:构成细胞支架,维持细胞形态(支撑)细胞整体移动和位置改变主要在微丝的作用微丝参与细胞内物资运输活动参与细胞质的分裂参与肌肉收缩参与受精作用参与细胞内信息传递三、中间丝中间纤维蛋白是长的线性蛋白,有头部、杆状区和尾部组成1、装配:两个平行排列的中间纤维蛋白分子形成螺旋状的二聚体;由两个二聚体反向-平行排列成一个四聚体;两个四聚体组装成一个八聚体;八个四聚体组装成中间纤维(中间纤维两端是对称的,不具有极性)3、中间丝的功能a、参与构成细胞完整的支撑网架系统b、参与细胞连接c、为细胞提供机械强度支持d、参与细胞的分化e、参与细胞内信息传递及物资运输f、维持核膜稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 作用:保护正极,formin二聚体结合在快速生长的正
端,在延伸过程中不受加帽蛋白的影响直接与抑制蛋
白的结合提高延伸速度。
二、微丝的装配
2.微丝的体内组装的调节 ③cofilin /ADF蛋白家族与肌动蛋白纤维的解聚 •增加肌动蛋白单体从纤维末端的解离速度; •剪切肌动蛋白纤维,使之片段化。 ④多种药物影响微丝组装
①肌动蛋白的聚合形成伪足 ②伪足与基质之间行成新的 锚定点; ③以附着点为支点向前移动
(肌动蛋白纤维的解聚)。
三、微丝的功能
2、微丝以多种形式参与细胞的运动。
三、微丝的功能
2、微丝以多种形式参与细胞的运动。
白细胞追踪细菌的过程 箭头:细菌
Figure 16-4 Molecular Biology of the Cell (© Garland Science 2008)
二、微管的组装
成核期 聚合期 稳定期
二、微管的组装
1.微管的体外组装受多种因素影响
a.组装过程分三个时期:成核期、聚合期和稳定期 成核期:先由α和β微管蛋白聚合成一个短的寡
聚体结构,即核心形成;
聚合期:微管蛋白聚合速度大于解聚速度,微管 延长; 稳定期:游离微管蛋白浓度下降,达到临界浓 度,微管的组装与去组装速度相等,
三、微丝的功能
5.微丝参与肌肉收缩
粗肌丝由肌球蛋白组成, 细 肌丝由三种蛋白组成,
肌肉收缩是粗肌丝和细肌丝相 互滑动的结果
三、微丝的功能
5、参与肌肉的收缩
肌钙蛋白复合物 原肌球蛋白
细肌丝的分子结构示意图
Figure 16-78a Molecular Biology of the Cell (© Garland Science 2008)
Introduction
The three types of protein
Microbubules
Microfilamemts
Intermediate filaments
第一节 微管(Microtubule,MT)
定义: 由微管蛋白和微管结合蛋白组成的中空圆柱状
结构,在不同细胞类型中有相似结构。参与形成纤毛、 鞭毛、基体、中心体、纺锤体等特定结构。
极性:ATP-actin加到(+)极的速度要比加到(-)极的
速度快5-10倍。
踏车行为:单体可同时在(+)端添加,在(-)端分离。
二、微丝的装配
1.微丝的体外组装过程分三个阶段:
①成核期
② 延长期
③稳定期
成核因子通过成核作用来加速肌动蛋白的聚合
二、微丝的装配
1.微丝的体外组装过程分三个阶段:
三、微丝的功能
3、微丝作为运输轨道参与细胞内的物质运输 肌球蛋白(myosin)的马达蛋白家族以微丝作 为运输轨道参与物质运输活动。
Ⅱ型肌球蛋白分子结构
三、微丝的功能
4、微丝参与细胞质的分裂
胞质分裂通过质膜下由微丝束形成的收缩环完成
三、微丝的功能
5、参与肌肉的收缩
肌肉由肌原纤维组成,肌原纤维的粗肌丝主要成
A.微绒毛低温电镜图象;
B.微绒毛结构示意图
1、构成细胞的支架并维持细胞的形态
三、微丝的功能
激动蛋白 结合蛋白 细丝蛋白
应力纤维(stress fiber):结构类似肌原纤维,使 细胞具有抗剪切力。
三、微丝的功能
2、微丝以多种形式参与细胞的运动。 参与细胞的多种运动形式: 变形运动、胞质环流、
细胞的内吞和外吐等 细胞变形运动 :
6.维持细胞内细胞器的定位和空间分布
微管 结构:微管蛋白 (二聚体) 结合蛋白:MAP1, MAP2, tau, MAP4 GTP水解 组装:成核期— 寡聚体(限速期) 临界浓度 聚合期— 聚合﹥解聚 稳定期— 聚合 = 解聚 功能:维持细胞形态 参与细胞运动 纤 毛 二联管 9+2 鞭 毛 基 体 —三联管 9+0 中心粒 参与物质运输 微管依赖马达蛋白 调节细胞分裂 动力微管、极微管 细胞器的定位与空间分布 细胞内信号转导
一、微丝的结构
1.微丝是肌动蛋白亚单位构成的纤维状结构
肌动蛋白和微丝的结构模式图
A. G-肌动蛋白三维结构; B. F-肌动蛋白分子模型; C. F-肌动蛋白电镜照片
一、微丝的结构 2.微丝的组织与行为由肌动蛋白结合蛋白严格调控 肌动蛋白结合蛋白是细胞内存在的一大类能与肌
动蛋白单体或肌动蛋白纤维结合的、能改变其特性的
功能: 膜性细胞器的定位、物质运输、细胞运动、细
胞分裂等。
一、微管的结构
1.微管是由微管蛋白组成的不分支的中空小管
A.微管结构模式图 B.微管横切面 C.电镜图像
一、微管的结构
2.γ微管蛋白环状复合物(γ-TuRC)
由γ微管蛋白和一些其他相关蛋白构成,是微管的一种
高效的集结结构,在中心体中是微管装配的起始结构。
微管围绕细胞核向外呈放射 状分布,维持细胞的形态
神经细胞轴突的骨架结构
三、微管的功能
2. 细胞内物质运输 • 是胞内物质运输的路轨。
• 涉及2类马达蛋白:驱动蛋白kinesin、动力蛋白 dyenin,需ATP供能。
负 端
正 端
胞质动力蛋白与膜泡的附着
三、微管的功能
2. 细胞内物质运输
细胞中微管介导的物质运输
臂,并向鞭毛中央发出一条辐;基体的微管组成为
9+0的三联管构成。
三、微管的功能
4. 形成鞭毛和纤毛
三、微管的功能
4. 形成鞭毛和纤毛
纤毛和鞭毛动力微管的滑动模型
三、微管的功能
5.微管参与细胞内信号传递 Hedgehog信号通路 JNK信号通路 Wnt信号通路 ERK信号通路
PAK蛋白激酶信号通路
性,参与微管的装配,是维持微管结构和功能的必需成份。
酸性区域 : 与其他骨架结合 碱性结合区: 与微管结合
一、微管的结构
a.微管相关蛋白的种类和特点 •MAP-1、MAP-2、Tau 主要存在于神经元中; •MAP-4广泛存在于各种细胞中,具有保守性 ; •MAP的活性-主要通过蛋白激酶和磷酸酶控制。 b .微管相关蛋白的功能 •调节微管装配 •增加微管的稳定性和强度 •在细胞内沿微管转运囊泡和颗粒 •作为细胞外信号的靶位点参与信号转导
二、微管的组装
1.微管的体外组装受多种因素影响
微管的体外组装过程与踏车现象模式图
二、微管的组装
2.微管的体内装配受到严格的时间和空间控制
微管组织中心(microtubule organizing center,MTOC)
在空间上为微管装配提供始发区域,控制着细胞质中
微管的数量、位置及方向。
包括:中心体、纤毛和鞭毛的基体
-
+
微丝装配过程中ATP的水解
二、微丝的装配
2.微丝的体内组装的调节 微丝体内组装受一系列肌动蛋白结合蛋白的调节
①Arp2/3复合物:促使形成微丝网络结构,由Arp2、 Arp3和其他5种附属蛋白组成,具有与微管成核时 γ-TuRC相似的作用,是微丝组装的起始复合物。
二、微丝的装配
2.微丝的体内组装的调节
三、微管的功能
驱动蛋白:介导沿微管的(-)极向(+)极的运输 动力蛋白:介导从微管的(+)极向(-)极的运输
三、微管的功能
3.形成纺锤体,调节细胞分裂。 4. 形成鞭毛和纤毛 结构:由基体和鞭杆两部分构成;鞭毛中的微管为 9+2结构;二联微管A管由13条原纤维组成,B管由 10条原纤维组成;A管向相邻B管伸出两条动力蛋白
第二节 微丝(microfilament,MF)
细胞的肌肉
小肠上皮细胞横切图 (微绒毛的中轴是由微丝构成)
小肠上皮细胞纵切图
一、微丝的结构
1.微丝是肌动蛋白亚单位构成的纤维状结构 定义:主要由肌动蛋白构成(actin filament),是由两 条线性排列的肌动蛋白链形成的螺旋,形状如双线 捻成的绳子,直径为5-7nm。
分是肌球蛋白,细肌丝主要成分是肌动蛋白、原
肌球蛋白和肌钙蛋白。
肌肉收缩的基本单位是肌小节(sarcomere)。
肌小节是相邻两Z线间的单位。主要结构有:
A带(暗带):为粗肌丝所在。
H区:A带中央色浅部份,此处只有粗肌丝。
I带(明带):只含细肌丝部分。 Z线:细肌丝一端游离,一端附于Z线 。
二、微管的组装 4.作用于微管的特异性药物 秋水仙素:与β管蛋白结合,抑制微管的组装,细胞在 分裂中期停止分裂 紫衫醇:阻止微管的去组装,增强微管稳定性,细胞在 分裂中期停止分裂
秋水仙素与紫衫醇的分子结构
三、微管的功能
1.细胞内的网状支架,支持和维持细胞的形态
•神经元细胞的轴突 •RBC双凹盘形
微丝装配的成核作用及微丝网络的形成 A.纤丝状肌动蛋白纤维的成核作用; B.微丝成网过程
二、微丝的装配
2.微丝的体内组装的调节
②成核蛋白formin :启动细胞内不分支微丝的形成,
• 共有15种,共同特征是都含有FH1和FH2同源结构域 ,
FH1结构域可与抑制蛋白(profilin)结合,FH2结构域
•细胞松弛素(cytochalasin)可切断微丝纤维,并结合在微 丝末端抑制肌动蛋白加合到微丝纤维上。
•鬼笔环肽(phalloidin)与微丝能够特异性的结合,使微丝
纤维稳定而抑制其功能。荧光标记的鬼笔环肽可特异性的显
示微丝。
三、微丝的功能
1、构成细胞的支架并维持细胞的形态(例如:细胞皮层、
应力纤维、微绒毛 等)
一、微管的结构
微管三种类型横断面示意图 单管:胞质微管,不稳定 影响因素:低温、 Ca2+、秋水仙素 二联管:纤毛和鞭毛的杆状部分,稳定 三联管:中心粒及纤毛和鞭毛的基体中,稳定