高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)
高中数学立体几何——二面角求法
二面角求法1 .定义法即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.·例1 . 正方体ABCD-A 1B 1C 1D 1中,求 二面角A-BD-C 1解析:易知∠COC 1是二面角C-BD-C 1的平面角,且tan ∠COC 1例2.在锥体P-ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60︒,PA PD ==分别是BC,PC 的中点.求:二面角P-AD-B 的余弦值.&解:由(1)知PGB ∠为二面角P AD B --的平面角,在Rt PGA ∆中,2217()24PG =-=;在Rt BGA ∆中,222131()24BG =-=;在PGB ∆中,222cos 2PG BG PB PGB PG BG +-∠==⋅.2 三垂线法此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α 内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB ⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法.《例3.如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2, 求:二面角A 1-AB -B 1的正弦值.分析与略解:作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B.@—A图3αβP¥BlB 1 A *A 1l%EF@PCS| FGP ASBS;C DSF E,过E 作EF ⊥AB 交AB 于F ,连接A 1F ,则得A 1F ⊥AB , ∴∠A 1FE 就是所求二面角的平面角.依次可求得 AB 1=B 1B=2,A 1B=3,A 1E=22,A 1F=23, 则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1F =63 .·例4.如图所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD,点E 在线段PC 上,PC ⊥平面BDE.若PA=1,AD=2,求二面角B-PC-A 的正切值.】解:由(1)得BD ⊥平面PAC, ∴BD ⊥AC.又四边形ABCD 为矩形,∴四边形ABCD 是正方形.设AC 交BD 于O 点,∵PC ⊥平面BDE,∴∠BEO 即为二面角B-PC-A 的平面角. ∵PA=1,AD=2,∴AC=2,BO=OC=,∴PC==3,—又OE===在直角三角形BEO 中,tan ∠BEO===3,∴二面角B-PC-A 的正切值为3.例5. 如图, 四棱锥P-ABCD 中, 底面ABCD 为矩形, PA ⊥底面ABCD, PA=AB=, 点E 是棱PB 的中点.(1) 若AD=, 求二面角A-EC-D的平面角的余弦值.—(1) 过点D作DF⊥CE, 交CE于F, 过点F作FG⊥CE, 交AC于G, 则∠DFG为所求的二面角的平面角.由(Ⅰ) 知BC⊥平面PAB, 又AD∥BC, 得AD⊥平面PAB, 故AD⊥AE, 从而DE==. 在Rt△CBE中, CE==. 由CD=, 所以△CDE为等边三角形, 故F为CE的中点, 且DF=CD·sin=.因为AE⊥平面PBC, 故AE⊥CE, 又FG⊥CE, 知FG=AE, 从而FG=, 且G点为AC的中点. 连结DG, 则在Rt△ADG中, DG=AC==.,所以cos∠DFG==.、3、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。
立体几何二面角5种常见解法
立体几何二面角5种常见解法立体几何二面角大小的求法一、定义法:二面角的类型和求法可用框图展现如下:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、如图,已知二面角a - a - B等于120° ,PA丄a ,A €a ,PB丄B ,B .求/ APB的大小.例、在四棱锥P-ABCD中,ABCD是正方形,PA丄平面ABCD ,PA=AB=a,求二面角B-PC-D的大小二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD中,ABCD是平行四边形,PA丄平面ABCD,PA=AB=a,/ ABC=30,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-ABCD是长方体,侧棱AA长为1,底面为正方体且边长为2,E是棱BC勺中点,求面CD》面CD所成二面角的正切值.AB例、△ ABC中,/ A=90°, AB=4 AC=3 平面ABC外一点P在平面ABC内的射影是AB中点M二面角P—AC—B的大小为45°。
求(1)二面角P—BC—A的大小;(2)二面角C-PB-A的大小例、(2006年陕西试题)如图4,平面丄平面,A =l, A €, B € ,点A在直线I上的射影为A i,点B在I的射影为B i,已知AB=2 , AA i = 1, BB i二V2,求:二面角A i —AB —B i 的大小.例、空间的点P到二面角l 的面、及棱I的距离分别为4、3、◎,求二面角3 的大小.三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;四、射影法:(面积法)利用面积射影公式S射=S原cos ,其中为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD中,ABC[为正方形,PU平面ABCD PA =AB= a,求平面PBA与平面PDC所成二面角的大小。
立体几何——二面角问题方法归纳
二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就就是二面角的平面角。
例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I)证明:M 在侧棱SC 的中点 (II)求二面角S AMB --的大小。
练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别就是BC , PC 的中点、(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值、 二、三垂线法三垂线定理:在平面内的一条直线,如果与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别就是棱AD 、AA 1、AB 的中点。
(1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。
练习2(天津)如图,在四棱锥ABCD P -中,底面ABCD 就是矩形.已知ο60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.三.补棱法本法就是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。
立体几何二面角5种常见解法
立体几何二面角5种常见解法立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作 棱的 垂线‘得出平面角,用定义法时‘要认真观察图形的特T 生;例、如图,已知二面角a-a-p 等于120° ,PA 丄a ,A ea,PB 丄例、在四棱锥P-ABCD 中,ABCD 是正方形,PA 丄平面ABCD , 一、定义法: - —面角I可见楼型—不见棱型解法 垂线法 *垂面法积法十P ,Bep.求 z APB 的大"、.PA=AB=a,求二面角B-PC-D的大小二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD中,ABCD是平行四边形,PA丄平面ABCD,PA=AB=a,z ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-AiBiCiDi是长方体,侧棱AA】长为1, 底面为正方体且边长为2,E是棱BC的中点,求面GDE与面CDE所成二面角的正切值・DAB例、△ ABC 中,Z A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°。
求(1 )二面角P—BC—A的大小;(2)二面角C—PB—A的大小例、(2006年陕西试题)如图4,平面丄平面,n =h AG ,BG ,点A在直线I上的射影为Al,点B在I的射影为Bl,已知AB=2 ? AA 1=1,BBi=2,求:二面角Ai —AB — Bi 的大小.A三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半 平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的 平面与棱垂直;例、空间的点P 到二面角 I 的面、及棱I 的距离分别为四、射影法:(面积法)利用面积射影公式S 射=$原85 ,其中为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA 丄平面ABCD ,PA=AB= a ,求平面PBA 与平面PDC 所成二面角的大小。
立体几何二面角5种常见解法
立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC—B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.B 1AαA 1 LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PβαlCBA例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。
高中数学必修2立体几何专题二面角典型例题解法总结
二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。
在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
立体几何-二面角求解五法
立体几何-二面角求解五法一、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点(II )求二面角S AM B --的大小。
解证(I )略 (II ):利用二面角的定义。
在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB , ∴211423=+=BG FGFG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为6,求二面角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
人教版高中数学必修2立体几何题型归类总结材料
标准文档立体几何题型归类总结一、考点解析基本图形1.棱柱——有两个面互相平行,其他各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
斜棱柱① 棱柱底面是正多形正棱柱★棱垂直于底面直棱柱其他棱柱②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体E'D'F'C'侧面A'B'l底面侧棱高S极点侧面侧棱E D底面F C斜高AB D CO HA B2.棱锥棱锥——有一个面是多边形,其他各面是有一个公共极点的三角形,由这些面所围成的几何体叫做棱锥。
★正棱锥——若是有一个棱锥的底面是正多边形,并且极点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球球面球的性质:球心轴①球心与截面圆心的连线垂直于截面;半径★② r R2 d 2(其中,球心到截面的距离为d、O球的半径为R、截面的半径为 r)★球与多面体的组合体:球与正周围体,球与长方体,R d球与正方体等的内接与外切.D'C'A'C'A'B'rAO1BO OD CA BA c注:球的有关问题转变成圆的问题解决.球面积、体积公式: S球 4 R2 ,V球4R3(其中R为球的半径)平行垂直基础知识网络★★★平行与垂直关系可互相转变平行关系垂直关系1. a,b a // b2. a,a // b b平面几何知识平面几何知识3. a,a//4.//,a a5.//,线线平行线线垂直判断判断推论判断性质性质性质面面垂直定义判断判断线面平行面面平行线面垂直面面垂直异面直线所成的角,线面角,二面角的求法★★★1.求异面直线所成的角0 ,90:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其订交;( 2)可将两条一面直线同时平移至某一特别地址。
(完整版)二面角求解方法
二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。
下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。
2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。
斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。
3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。
4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。
尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。
分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=900∴二面角P-BC-A 的平面角为900。
例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。
[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。
解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。
重点高中数学必修2立体几何专题二面角典型例题解法总结
重点高中数学必修2立体几何专题二面角典型例题解法总结————————————————————————————————作者:————————————————————————————————日期:二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。
在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
高中数学必修2立体几何专题线面角典型例题求法总结
线面角的求法1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。
例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。
(2)SC 与平面ABC 所成的角。
BMHSCA解:(1) ∵SC ⊥SB,SC ⊥SA,图1∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。
(2) 连结SM,CM ,则SM ⊥AB,又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。
∠SCH 为SC 与平面ABC 所成的角。
sin ∠SCH=SH /SC∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
) 2. 利用公式sin θ=h /ι其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。
例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。
A 1C 1D 1H4C123BAD解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB,易得h=12/5 ,设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5,∴AB 与面AB 1C 1D 所成的角为arcsin0.8 3. 利用公式cos θ=cos θ1·cosθ2(如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角,B αOAC图3θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2,它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)1.平面的斜线和平面所成的角:已知,如图,AO 是平面α的斜线,A 是斜足,OB 垂直于平面α,B 为垂足,则直线AB 是 斜线在平面α内的射影。
高中立体几何中二面角经典求法
高中立体几何中二面角求法摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。
(一)、二面角定义的回顾:从一条直线出发的两个半平面所组成的图形就叫做二面角。
二面角的大小是用二面角的平面角来衡量的。
而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。
(二)1 23 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。
例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。
∵PA ⊥α, а⊂α ∴PA ⊥а同理PB ⊥а ∴а⊥平面PAB又∵OA ⊂平面PAB ∴а⊥OA 同理а⊥OB.∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60° 2、 三垂线定理(逆定理)法由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。
例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DEC 1D 1与面CDE 所成二面角的正切值.解:在长方体ABCD —A 1B 1C 1D 1中由三垂线定理可得: ∴ CD =2 CE=1, DE=53、找(作)公垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。
二面角题型归纳及解题方法
αβa O A B 二面角题型归纳及解题方法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,我们分为三类问题六种解题方法。
从而给出二面角的通性通法。
第一类:有棱二面角的平面角的方法方法1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1、(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点 (II )求二面角的余弦值。
证(I )略解(II ):利用二面角的定义。
在等边三角形中过点作交于点,则点为AM 的中点,过F 点在平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB ∠FG∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角的大小为)36arccos(-举一反三:空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B -PC -A 的大小。
专题:立体几何中二面角的求法
专题五立体几何中二面角的求法
★★★高考在考什么
二面角的求法是立体几何中的重点,也是立体几何的难点,从近几年的高考试题来看,几乎每年都涉及到二面角的求法。
二面角的常见求法:(1)定义法(2)垂线法(3)垂面法(4)延伸法(5)射影法
一、定义法:
例1:如图1,设正方形ABCD-A
1B
1
C
1
D
!
中,E为CC
1
中点,求截面A
1
BD和
EBD所成二面角的度数。
二、垂面法
例2如图3,设三棱锥V-ABC中,VA⊥底面ABC,AB⊥BC,DE垂直平分VC,且分别交AC、VC于D、E,又VA=AB,VB=BC,求二面角E-BD-C的度数。
三、三垂线法:
例3如图6,设正方体ABCD-A
1B
1
C
1
D
1
中,E、F分别是AB、C
1
D
1
的中点。
(1)求证:A
1
、E、C、F四点共面;
(2)求二面角A
1
-EC-D的大小。
四、延伸法
中点,
例4. 如图10,设正三棱柱ABC-A'B'C'各棱长均为α,D为CC
1
求平面A'BD与平面ABC所成二面角的度数。
五、射影法
例5如图12,设正方体ABCD-A1B1C1D1中,M为AA1上点,A1M:MA=3:1,求截面B1D1M与底面ABCD所成二面角。
二面角经典例题讲解
二面角求法归纳第一课时(用定义法和三垂线法解决问题)通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。
定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S—AM—B中半平面ABM 上的一已知点(B)向棱AM作垂线,得垂足(F);在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
-中,底面ABCD为矩形,SD⊥底面例1(2009全国卷Ⅰ理)如图,四棱锥S ABCDAD=ABCD,2==,点M在侧棱SC上,ABM2DC SD∠=60°(I)证明:M在侧棱SC的中点--的大小。
(II)求二面角S AM B例2. (2010全国I理,19题,12分)如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB//DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC .(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。
本定理亦提供了另一种添辅助线的一般规律。
如(例2)过二面角B-FC1-C中半平面BFC上的一已知点B作另一半平面FC1C的垂线,得垂足O;再过该垂足O作棱FC1的垂线,得垂足P,连结起点与终点得斜线段PB,便形成了三垂线定理的基本构图(斜线PB、垂线BO、射影OP)。
二面角题型归纳及解题方法
αβa O A B 二面角题型归纳及解题方法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,我们分为三类问题六种解题方法。
从而给出二面角的通性通法。
第一类:有棱二面角的平面角的方法方法1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1、(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点 (II )求二面角的余弦值。
证(I )略解(II ):利用二面角的定义。
在等边三角形中过点作交于点,则点为AM 的中点,过F 点在平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB ∠FG∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角的大小为)36arccos(-举一反三:空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B -PC -A 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AA 1 =2, E、E 1 、F 分别是棱 AD、AA 1 、AB 的中点。
D1
A1 (1) 证明:直线 EE 1 //平面 FCC 1 ;
C1 B1
(2) 求二面角 B-FC 1 -C 的余弦值。
E1
D
E
A
F
C B
证(1)略 解 ( 2) 因 为 AB=4, BC=CD=2, 、 F 是 棱 AB 的 中 点 ,所 以 A1 BF=BC=CF,△BCF 为正三角形,取 CF 的中点 O,则 OB⊥CF,又因
分析:本题是一道典型的利用三垂线定理求二面角问题,在证明 AD⊥平面 PAB 后,容易发现平面 PAB⊥ 平面 ABCD,点 P 就是二面角 P-BD-A 的半平面上的一个点,于是可过点 P 作棱 BD 的垂线,再作平面 ABCD
的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角 P BD A 的大
2 ,则 GF
2
,
2
又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 , ABM 600 ∴△ ABM 是等边三角形,∴
BF 3 。在△ GAB 中, AG 6 , AB 2 , GAB 900 ,∴ BG 3 4 11
2
2
2
cos BFG GF 2 FB 2 BG 2
6
,求二面角 E—AF—C 的余弦值.
2
分析:第 1 题容易发现,可通过证 AE⊥AD 后推出 AE⊥平面 APD,使命 题获证,而第 2 题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在 二面角的棱 AF 上找到可计算二面角的平面角的顶点 S,和两边 SE 与 SC,进而计算二面角的余弦值。(答
2
7
C 的余弦值为 .
7
练习 2 如图,在四棱锥 P ABCD 中,底面 ABCD 是矩形.已知
AB 3, AD 2, PA 2, PD 2 2, PAB 60 .
(Ⅰ)证明 AD 平面 PAB ; (Ⅱ)求异面直线 PC 与 AD 所成的角的大小; (Ⅲ)求二面角 P BD A 的大小.
1 3 11
2
2
2
6
2GF FB
2 2 3 6
3
2
G
∴二面角 S AM B 的大小为 arccos( 6 ) 3
练习 1 如图,已知四棱锥 P-ABCD,底面 ABCD 为菱形,PA⊥平面 ABCD, ABC 60 ,E,F 分别是 BC,PC
的中点. (Ⅰ)证明:AE⊥PD; (Ⅱ)若 H 为 PD 上的动点,EH 与平面 PAD 所成最大角的正切值为
例 1 如图,四棱锥 S ABCD 中,底面 ABCD 为矩形, SD 底面 ABCD , AD 2
DC SD 2 ,点 M 在侧棱 SC 上, ABM =60°
(I)证明:M 在侧棱 SC 的中点
(II)求二面角 S AM B 的大小。
证(I)略
解(II):利用二面角的定义。在等边三角形 ABM 中过点 B 作 BF AM 交 AM 于点 F ,则点 F
BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2.
为直四棱柱 ABCD-A 1 B 1 C 1 D 1 中,CC1⊥平面 ABCD,所以 CC1⊥ E1
BO,所以OB⊥平面CC1F,过O在平面CC1F 内作 OP⊥C1F,垂足为 P, A
连接 BP,则∠OPB 为二面角 B-FC 1 -C 的一个平面角, 在△BCF 为
D1 F1
C1 B1
P
D
C
E
小为 arctan
39
)
4
P
三.补棱法
本法是针对在解构成二面角的两个半平面没有明确交线的求二
面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补
棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确
的交线时,一般用补棱法解决
例 3 如图所示,四棱锥 P-ABCD 的底面 ABCD 是边长为 1 的菱形,∠
二面角的求法
一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫
做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角 的平面角。
本定义为解题提供了添辅助线的一种规律。如例 1 中从二面角 S—AM—B 中半平面 ABM 上的一已知 点(B)向棱 AM 作垂线,得垂足(F);在另一半平面 ASM 内过该垂足(F)作棱 AM 的垂线(如 GF), 这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助 直角三角函数、正弦定理与余弦定理解题。
案:二面角的余弦值为
15
)
5
二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂
直.通常当点 P 在一个半平面上则通常用三垂线定理法求二面角的大小。
本定理亦提供了另一种添辅助线的一般规律。如(例 2)过二面角 B-FC 1 -C 中半平面 BFC 上的一已
O
F
B
正 三 角 形 中 , OB
3 ,在 Rt△ CC1F 中 ,
△ OPF∽ △ CC1F,∵
OP CC1
OF C1F
∴
OP
1
2
2
,
22 22
2
在 Rt△OPF 中, BP
OP2 OB2
13 2
14 , cos OPB OP
2
BP
2
2 14
7 7 ,所以二面角 B-FC 1 -
为 AM 的中点,过 F 点在平面 ASM 内作 GF AM ,GF 交 AS 于 G,
连结 AC,∵△ADC≌△ADS,∴AS-AC,且 M 是 SC 的中点,
∴AM⊥SC, GF⊥AM,∴GF∥AS,又∵ F 为 AM 的中点,
∴GF 是△AMS 的中位线,点 G 是 AS 的中点。
G F
则 GFB 即为所求二面角. ∵ SM
知点 B 作另一半平面 FC1C 的垂线,得垂足 O;再过该垂足 O 作棱 FC1 的垂线,得垂足 P,连结起点与终 点得斜线段 PB,便形成了三垂线定理的基本构图(斜线 PB、垂线 BO、射影 OP)。再解直角三角形求二 面角的度数。
例 2.如图,在直四棱柱 ABCD-A 1 B 1 C 1 D 1 中,底面 ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2,