投影与视图复习(超经典)

合集下载

专题25投影与视图(10个高频考点)(举一反三)(原卷版)

专题25投影与视图(10个高频考点)(举一反三)(原卷版)

专题25 投影与视图(10个高频考点)(举一反三)【题型1 判断几何体的三视图】 (1)【题型2 根据三视图确定几何体】 (2)【题型3 在格点中作几何体的三视图】 (3)【题型4 根据三视图确定小立方体的个数】 (5)【题型5 根据三视图确定最多或最少的小立方体的个数】 (6)【题型6 根据俯视图中的小正方形中的数字确定其他视图】 (7)【题型7 去掉或移动小立方体确定视图是否改变】 (8)【题型8 平行投影的概念及特点】 (9)【题型9 中心投影的概念及特点】 (10)【题型10 正投影的概念及特点】 (11)【题型1 判断几何体的三视图】【例1】(2022·河南南阳·三模)下列几何体均是由若干个大小相同的小正方体搭建而成的,其三视图都相同的是()A.B.C.D.【变式11】(2022·福建省龙岩市永定区第二初级中学一模)如图所示空心圆柱体,则该几何体的主视图是()A.B.C.D.【变式12】(2022·辽宁阜新·中考真题)在如图所示的几何体中,俯视图和左视图相同的是()A.B.C.D.【变式13】(2022·河北·育华中学三模)如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是()A.B.C.D.【题型2 根据三视图确定几何体】【例2】(2022·浙江台州·一模)如图是某几何体的三视图,则该几何体是()A.B.C.D.【变式21】(2022·陕西咸阳·一模)如图是某个几何体的三视图,该几何体是()主视图左视图俯视图A.B.C.D.【变式22】(2022·甘肃酒泉·一模)下面的三视图所对应的物体是().A.B.C.D.【变式23】(2022·云南·盈江县教育体育局教育科研中心模拟预测)如图,图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的等腰三角形.若主视图腰长为6,俯视图是直径等于4的圆,则这个几何体的体积为_____.【题型3 在格点中作几何体的三视图】【例3】(2022·山东青岛·二模)如图是由一些棱长均为1个单位长度的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图:(2)若给该几何体露在外面的面(不含底图)都喷上红漆,则需要喷漆的面积是;(3)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,则最多可以再添加块小正方体.【变式31】(2022·江西吉安·一模)(1)如图是由10个同样大小的小正方体搭成的几何体,请分别画出它的主视图和左视图;(2)在不改变主视图和左视图的情况下,你认为最多..还可以添加________个小正方体.【变式32】(2022·江苏南京·一模)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件.(1)这个零件的表面积是.(2)请按要求在边长为1网格图里画出这个零件的视图.【变式33】(2022·河南安阳一模)如图,学校3D打印小组制作了1个棱长为4的正方体模型(图中阴影部分是分别按三个方向垂直打通的通道).(1)画图:按从前往后的顺序,依次画出每一层从正面看到的图形,通道部分用阴影表示;(2)求这个正方体模型的体积.【题型4 根据三视图确定小立方体的个数】【例4】(2022·河南·三模)某几何体是由若干个大小相同的小正方体组合而成,下面是该几何体的三视图,则组成该几何体的小正方体的个数为()A.3B.4C.5D.6【变式41】(2022·河南安阳一模)如图是由若干个相同的正方体组成的一个立体图形从三个不同方向看到的形状图,根据形状图回答下列问题:(1)原立体图形共有几层?(2)立体图形中共有多少个小正方体?【变式42】(2022·河南安阳一模)用若干个大小相同,棱长为1的小正方体搭成一个几何体,其三视图如图所示,则搭成这个几何体所用的小正方体的个数是()A.3B.4C.5D.6【变式43】(2022·宁夏·银川北塔中学一模)一个几何体是由若干个棱长为2cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.【题型5 根据三视图确定最多或最少的小立方体的个数】【例5】(2022·黑龙江·齐齐哈尔市富拉尔基区教师进修学校二模)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,下列正确的是()A.m=5,n=13B.m=8,n=10C.m=10,n=13D.m=5,n=10【变式51】(2022·安徽合肥一模)用小立方块搭一个几何体,主视图与左视图如下图,它最少要多少个立方块?最多要多少个立方块?画出这个几何体最多、最少两种情况下的俯视图,并用数字表示在该位置的小立方体的个数.【变式52】(2022·山东省枣庄市第四十一中学一模)用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示.(1)它最多需要多少个小立方体?它最少需要多少个小立方体?(2)请你画出这两种情况下的从左面看到的形状图.【变式53】(2022·河南安阳一模)如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图.(1)当组成这个几何体的小正方体的个数为8个时,几何体有多种形状.请画出其中两种几何体的左视图;(2)若组成这个几何体的小正方体的个数为n,请写出n的最小值和最大值;(3)主视图和俯视图为下面两图的几何体有若干个,请你画出其中一个几何体.【题型6 根据俯视图中的小正方形中的数字确定其他视图】【例6】(2022·河南安阳一模)如图,是由几个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的左视图是()A.B.C.D.【变式61】(2022·广西贵港·三模)如图是由大小相同的小正方体搭成的几何体从上向下看得到的平面图形,小正方形中的数字表示该位置上小正方体的个数,则从左向右看得到的平面图形是()A.B.C.D.【变式62】(2022·四川资阳·中考真题)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.【变式63】(2022·内蒙古包头·模拟预测)如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【题型7 去掉或移动小立方体确定视图是否改变】【例7】(2022·江苏· 二模)如图是由6个大小相同的小正方体拼成的几何体,当去掉某一个小正方体时,与原几何体比较,则下列说法正确的是()A.去掉①,主视图不变B.去掉②,俯视图不变C.去掉③,左视图不变D.去掉④, 俯视图不变【变式71】(2022·山东济南·二模)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.俯视图B.主视图和俯视图C.主视图和左视图D.左视图和俯视图【变式72】(2022·江西·一模)如图是由6个相同的小正方体搭成的几何体,若去掉上层的1个小正方体,则下列说法正确的是()A.主视图一定变化B.左视图一定变化C.俯视图一定变化D.三种视图都不变化【变式73】(2022·山东淄博·二模)如图是由5个同样大小的小正方体摆成的几何体,现将第6个小正方体摆放在①、②、③哪个正方体前面,新几何体从正面看到的形状不发生变化()A.放在①前面,从正面看到的形状图不变B.放在②前面,从正面看到的形状图不变C.放在③前面,从正面看到的形状图不变D.放在①、②、③前面,从正面看到的形状图都不变【题型8 平行投影的概念及特点】【例8】(2022·北京朝阳·二模)在太阳光的照射下,一个矩形框在水平地面上形成的投影不可能是()A.B.C.D.【变式81】(2022·浙江杭州·九年级二模)小明在操场上练习双杠时,发现两横杠在地上的影子().A.相交B.平行C.垂直D.无法确定【变式82】(2022·河南·平顶山市第四十二中学一模)下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.【变式83】(2022·浙江杭州·九年级二模)如图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),可判断形成该影子的光线为()A.该影子实际不可能存在B.可能是太阳光线也可能是灯光光线C.太阳光线D.灯光光线【题型9 中心投影的概念及特点】【例9】(2022·浙江杭州·九年级二模)人从路灯下走过时,影子的变化是().A.长→短→长B.短→长→短C.长→长→短D.短→短→长【变式91】(2022·浙江杭州·九年级二模)下列属于中心投影的有()①中午用来乘凉的树影;②灯光下小明读书的影子;③上午10点时,走在路上的人的影子;④升国旗时,地上旗杆的影子;⑤在空中低飞的燕子在地上的影子.A.1个B.2个C.3个D.4个【变式92】(2022·浙江杭州·九年级二模)如图所示是两根标杆在地面上的影子,根据这些投影,在灯光下形成的影子是()A.①和②B.②和④C.③和④D.②和③【变式93】(2022·江苏·东海实验中学三模)三根等长的木杆竖直地立在平地的同一个圆周上,圆心处有一盏灯光,其俯视图如图所示,图中画出了其中一根木杆在灯光下的影子.下列四幅图中正确画出另两根木杆在同一灯光下的影子的是()A.B.C.D.【题型10 正投影的概念及特点】【例10】(2022·浙江杭州·九年级二模)当投影线由上到下照射水杯时,如图所示,那么水杯的正投影是()A.B.C.D.【变式101】(2022·浙江杭州·九年级二模)当棱长为20的正方体的某个面平行于投影面时,这个面的正投影的面积为()A.20B.300C.400D.600【变式102】(2022·浙江杭州·九年级二模)一张矩形纸板(不考虑厚度,不折叠)的正投影可能是()①矩形;②平行四边形;③线段;④三角形;⑤任意四边形;⑥点A.②③④B.①③⑥C.①②⑤D.①②③【变式103】(2022·安徽合肥一模)把一个正五棱柱按如图所示的方式摆放,则投射线由正前方射到后方时所形成的影子是()A.B.C.D.。

杭州市春蕾中学九年级数学下册第二十九章《投影与视图》经典复习题(含答案解析)

杭州市春蕾中学九年级数学下册第二十九章《投影与视图》经典复习题(含答案解析)

一、选择题1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图2.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.3.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()A.23B.24C.26D.284.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个5.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个6.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个7.如图所示立体图形,从上面看到的图形是()A.B.C.D.8.如图所示几何体的主视图是()A.B.C.D.9.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.13.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()A.0个B.1个C.4个D.3个14.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.15.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.二、填空题16.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.17.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.18.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.19.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.20.如图是某几何体的三视图,则该几何体左视图的面积为_________.AB CD,21.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,//=,点P到CD的距离为2.7m,则AB与CD间的距离是CD m1.5AB m=, 4.5________m.22.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。

29章投影与视图复习

29章投影与视图复习
A
C 2题图
B
A.
B.
C.
D.
3.(2010· 广东 )左下图为主视方向的几何体,它的俯视图是(
)
4.(2010· 连云港)如图所示的几何体的左视图是(
)
5.(2012年甘肃庆阳)一位美术老师在课 堂上进行立体模型素描教学时,把由圆锥 与圆柱组成的几何体(如图所示,圆锥在 圆柱上底面正中间放置)摆在讲桌上,请 你在指定的方框内分别画出这个几何体的 三视图(6号上板)
学习目标
1. 掌握中心投影与平行投影的区别与联系, 能找出中心投影的点光源. (重点) 2.能画出基本几何体的三视图,根据三视 图描述基本几何体.(重点) 3.根据三视图求相关几何体的表面积和体 积(难点)
基础知识
知识点1 投影
(1)投影:一般地,用光线照射物体,在某个平面 (地面、墙壁等)上得到的影子叫做物体的投影,其中 照射光线叫做投影线,投影所在的平面叫做投影面.
主视图
左视图
A
6
B C 4 单位:厘米 俯视图
课堂小结
点光源 中心投影 物体 (立体图形) 光照 投影 平行光线 平行投影 想
光线垂直
由前向后看 主视图 由上向下看 投影面 正投影

三视图
俯视图
(视图) 由左向右看
左视图
作业布置
P125 2题 P126 6题 P126 7(1至3号附加)
正投影性质:
不同 位置 物体平行于投
物体
影面
形状、大小不变(全等)
物体倾斜于 物体垂直于 投影面 投影面
大小变化 形状、大小均变化 点
线段 面
形状、大小不变(全等)
线段
当物体的某个面(或最大截面)平行于投影面时,这个面的正投影与这个面的 形状、大小完全相同。(全等)

(完整版)投影与视图知识点总结

(完整版)投影与视图知识点总结

投影与视图知识点总结知识点一:中心投影有关概念1. 投影现象:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面。

2. 手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影n知识点三:平行投影及应用1.平行投影的定义太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影当平行光线与投影面垂直,这种投影称为正投影2.平行投影的应用:(1)等高的物体垂直地面放置时,太阳光下的影长相等。

(2)等长的物体平行于地面放置时,太阳下的影长相等。

3.作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子。

例1:如图,小华(线段CD)在观察某建筑物AB(1)请你根据小华在阳关下的影长(线段DF),画出此时建筑物AB在阳光下的影子。

(2)已知小华身高1.65m,在同一时刻,测得小华和建筑物AB的影长分别为1.2m 和8m,求建筑物AB的高。

例2:小明在公园游玩,想利用太阳光下的影子测量一颗大树AB的高,他发现大树的影子恰好落在假山坡面CD和地面BC上,如图所示,经测量CD=4m,BC=10m,CD与地面成30度的角,此时量得1m标杆的影长为2m,请你帮助小明求出大树AB的高度?知识点四:视图1.常见几何体的三视图2.三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。

注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。

在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高.因此,在画三视图时,对应部分的长要相等。

例1:如图是几个相同的小正方体组成的一个几何体,请画出它的三视图。

章复习 第29章 投影与视图

章复习  第29章  投影与视图

章复习第29章投影与视图一、投影1、投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.其中,照射光线叫做投影线,投影所在的平面叫做投影面.2、平行投影:由平行光线形成的投影是平行投影.如物体在太阳光的照射下形成的影子(也叫日影).3、中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影,如灯泡发出的光照射下形成的影子.4、正投影的性质:⑴正投影:投影线垂直于投影面产生的投影,叫做正投影;⑵性质:当线段平行于投影面时,它的正投影长短不变,当线段倾斜于投影面时,它的正投影线段变短,当线段垂直于投影面时,它的正投影缩为1个点.注:正投影的画法是过图形的关键点作投影面的垂线,再依次连接各垂足,得图形的正投影.二、视图1、视图:当我们从某一角度观察一个物体时,所看到的图象,叫做物体的一个视图.视图也可以看作物体在某一个角度的光线下的投影.2、三视图:⑴主视图:在正面内得到的由前向后观察物体的视图叫做主视图.⑵俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图,⑶左视图:在侧面得到的由左向右观察物体的视图,叫做左视图.3、三视图的位置规定:主视图要在左上边,它下方是俯视图,左视图放在右边.如下:主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等.4、三视图的画法:①确定主视图的位置,画出主视图,②在主视图正下方画出俯视图,注意与主视图“长对正”;③在主视图的正右方画出左视图,注意与主视图“高平齐”与俯视图“宽相等”.注:在画三视图时,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.5、由三视图想象立体图形:要先分别想象立体图形的前面、上面和左侧面,然后再综合起来考虑整个图形.6、求立体图形表面积,一般先将立体图形展开成平面图形,再按平面图形计算.三、典型问题1、常见立体图形的三视图圆柱体:主视图、左视图都是矩形,俯视图是圆,如图(1).圆锥体:主视图、左视图都是三角形,俯视图是圆加一圆心,如图(2).球体:主视图、俯视图、左视图都是圆,如图(3).2、物体在太阳光下形成的影子变化物体在太阳光下的不同时刻,不仅影子的大小在变,而且影子的方向也在改变,就地球北半球而言,从早晨到傍晚,物体的影子的指向是西一西北一北一东北一东,影子的大小变化是大一小一大(太阳垂直照射,影子缩为一点).【例3】(江西中考)桌面上放着1个长方体和1个柱体,按如图24 -3所示的方式摆放在一起,其左视是( ).【例4】(河北中考)下图中几何体的主视图是( ).。

上高二中九年级数学下册第二十九章《投影与视图》综合知识点复习

上高二中九年级数学下册第二十九章《投影与视图》综合知识点复习

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图3.如图所示的几何体的俯视图是()A.B.C.D.4.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.55.如图,在平整的地面上,有若干个完全相同的边长为 2cm 的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是( )A.30cm2B.32cm2C.120cm2D.128cm26.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.9.下面的三视图对应的物体是()A.B.C.D.10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个11.如图所示的几何体的左视图是()A.B.C.D.12.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.13.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).16.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.17.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.19.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.20.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x+y =________.21.由n个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的个数是________.22.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.23.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要_____块正方体木块,至多需要_____块正方体木块.24.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.25.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.26.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.三、解答题27.将6个棱长为2cm 的小正方体在地面上堆叠成如图所示的几何体,然后将露出的表面部分染成红色.(1)画出这个的几何体的三视图:(2)该几何体被染成红色部分的面积为________.28.如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.29.画出如图所示的几何体的主视图、左视图和俯视图.30.如图是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)在小亮由B 沿OB 所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB 处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m【参考答案】一、选择题1.A2.C3.B4.A5.D6.A7.B8.D9.D10.B11.B12.A13.D14.D二、填空题15.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周16.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得17.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB18.左视图【分析】根据立体图形作出三视图求出面积即可【详解】解:如图该几何体正视图是由5个小正方形组成左视图是由3个小正方形组成俯视图是由5个小正方形组成故三种视图面积最小的是左视图故答案为左视图【点睛19.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个20.-4【解析】【分析】根据正方体相对面上的两个数互为相反数可得xy的值继而可得x+y的值【详解】由题意得x与1相对y与3相对则可得x=-1y=-3∴x+y=-4故答案为:-4【点睛】本题考查了正方体的21.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体;22.6【解析】符合条件的最多情况为:即最多为2+2+2=623.616【解析】试题分析:由物体的主视图和左视图易得第一层最少有4块正方体最多有12块正方体;第二层最少有2块正方体最多有4块正方体故总共至少有6块正方体至多有16块正方体考点:几何体的三视图24.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为1325.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R26.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.3.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.4.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.5.D解析:D【分析】根据露出的小正方体的面数,可得几何体的表面积.【详解】解:露出表面的面一共有32个,则这个几何体喷漆的面积为32×4=128cm2,故答案为:D.【点睛】本题考查了几何体的表面积,关键是观察出小正方体露出表面的面的个数.6.A解析:A【解析】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质.【分析】延长AC交BF延长线于E点,则∠CFE=30°.作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°=23,在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4.∴BD=BF+EF+ED=12+23.∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt△ABD中,AB=BD=.故选A.7.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.8.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点.故选D.点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.10.B解析:B【解析】试题根据俯视图而得出,第一行第一列有2个正方形,第二列有1个正方体,第二行第二列有1个正方体,共需正方体2+1+1=4.故选B.11.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.13.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm,高是6cm,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.16.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.17.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.18.左视图【分析】根据立体图形作出三视图求出面积即可【详解】解:如图该几何体正视图是由5个小正方形组成左视图是由3个小正方形组成俯视图是由5个小正方形组成故三种视图面积最小的是左视图故答案为左视图【点睛解析:左视图【分析】根据立体图形作出三视图,求出面积即可.【详解】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为左视图【点睛】本题考查了图形的三视图,属于简单题,画出三视图是解题关键.19.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个解析:6 8【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为6,8.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.20.-4【解析】【分析】根据正方体相对面上的两个数互为相反数可得xy的值继而可得x+y的值【详解】由题意得x与1相对y与3相对则可得x=-1y=-3∴x+y=-4故答案为:-4【点睛】本题考查了正方体的解析:-4【解析】【分析】根据正方体相对面上的两个数互为相反数,可得x、y的值,继而可得x+y的值.【详解】由题意得,x与1相对,y与3相对,则可得x=-1,y=-3,∴x+y=-4.故答案为:-4.【点睛】本题考查了正方体的展开,注意正方体的空间图形,从相对面入手,分析及解答问题.21.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体;解析:5【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】综合三视图,我们可得出,这个几何体的底层应该有2+1=3个小正方体;第二层应该有1个小正方体;第三层应有1个小正方体;因此搭成这个几何体的小正方体的个数是3+1+1=5个.故答案为5.【点睛】本题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.22.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=623.616【解析】试题分析:由物体的主视图和左视图易得第一层最少有4块正方体最多有12块正方体;第二层最少有2块正方体最多有4块正方体故总共至少有6块正方体至多有16块正方体考点:几何体的三视图解析:6 16【解析】试题分析:由物体的主视图和左视图易得,第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.考点:几何体的三视图.24.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为13解析:13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.25.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R解析:6【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD=;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD=,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.26.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则解析:1823+ 【分析】 先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可. 【详解】 解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 1823+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.三、解答题27.(1)见解析;(2)284cm【分析】(1)由已知条件可知,主视图有三列,每列小正方形个数分别为2、1、1,左视图有三列,每列小正方形个数分别为1、2、1,,俯视图有三列,每列小正方形个数分别为3、1、1,据此可画出三视图;(2)分别从前面、后面、左面、右面和上面数出被染成红色的正方形的个数,再乘以一个面的面积即可求解.【详解】解:(1)这个的几何体的三视图为:主视图 左视图 俯视图(2)()4444522++++⨯⨯214=⨯84=答:该几何体被染成红色部分的面积为284cm .故答案是:(1)见解析(2)284cm【点睛】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.28.见解析【分析】根据主视图,左视图的定义画出图形即可.【详解】如图,主视图,左视图如图所示.【点睛】本题考查三视图,解题的关键是理解三视图的定义.29.见解析【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【详解】解:如图所示:.【点睛】此题主要考查化三视图,解题的关键是熟知三视图的定义.30.(1)逐渐变短;(2)详见解析;(3)167【解析】【分析】 (1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度的变化情况为变短(2)连接PA 并延长交直线BO 于点E,则线段BE 即为小亮站在AB 处的影子 (3)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可【详解】(1)因为光是沿直线传播的,所以当小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE 即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米, ∴ 1.6 1.6, 4.2 1.6AB BE OP OE x ==+即 ∴x=5.8米当OD=6米时,设小亮的影长是y 米,∴DF CD DF OD OP =+ ∴1.66 5.8y y =+ y=167(米) 即小亮的影长是167米。

投影与视图经典测试题含答案

投影与视图经典测试题含答案
A. B. C. D.
【答案】B
【解析】
【分析】
【详解】
解:正六棱柱的俯视图为正六边形.
故选B.
考点:简单几何体的三视图.
10.一个几何体的三视图如图所示,其中主视图与左视图都是边长为 的等边三角形,则这个几何体的侧面展开图的面积为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
A. B. C. D.
【答案】A
【解析】
【分析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是: .
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
18.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为( )
从上面看从左往右3列正方形的个数依次为1,1,2,
∴C是该物体的俯视图;
没有出现的是选项B.
故选B.
13.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )
A. B. C. D.
【答案】B
【解析】
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中
【详解】
从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,
D、主视图为 ,俯视图为 ,故此选项错误;
故选:B.
【点睛】

视图与投影专题复习

视图与投影专题复习

视图与展开图专题复习基础知识思维导图第一节投影与视图核心考点1 投影1.中心投影:由同一点(点光源)发出的光线所形成的投影.2.平行投影:平行光线所形成的投影.正投影:与投影面垂直的投影光线所形成的投影.核心考点2 三视图视图:从某一个角度观察一个物体时,所看到的图像叫做物体的一个视图. 主视图:在正面内得到的由前向后观察物体的视图.左视图:在侧面内得到的由左向右观察物体的视图.俯视图:在水平面内得到的由上到下观察物体的视图.常见几何体的三视图:核心母题1 投影1. 如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.2. 下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是()思路方法1.根据中心投影的特点确定投影光线,正确理解中心投影的变换规律,抓住点B的运动轨迹,以A为圆心,AB为半径的圆上的一段弧,影长就是光源与弧上点连线与地面交点到点A的距离,明白这些,解答就顺利了.2.抓住平行投影的特点,投影光线是平行的,动手画一画即可.母题解析1.木杆绕点A按逆时针方向旋转时,影长逐渐变长,当AB与光线BC垂直时,影长最大,因为m最大,所以m>AC,所以①成立,②不成立;当影长取到最大值后,继续运动,影长开始变短,当AB与地面重合时,影长最短,此时影长为AB,所以n=AB,所以③成立;由上可知,影子的长度先增大后减小,所以④成立.故正确的结论是①③④.2.同一时刻,平行投影形成的影子在物体的同侧,所以B,C错误;同一时刻,平行投影的影子满足物高与影长成正比,所以D错误.故选A.知识链接1.(1)过影子末端和物体顶端作射线;(2)影长就是物体底端与顶端投影点的距离.2.平行投影有如下特点:(1)同一时刻,影子在物体的同侧;(2)同一时刻,影子与物高成正比;(3)投影光线一定是平行的.核心练习11.如图,某校数学兴趣小组利用标杆BE测量学校旗杆CD的高度,标杆BE高1.5m,测得AB=2m,BC=14m,则旗杆CD高度是 ( )A. 9m B.10.5m C.12m D.16m2.在某一时刻,测得一根高为1.2m的竹竿的影长为3m,同时测得一栋楼的影长为45m,那么这栋楼的高度为 m.3.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,已知亮区DE到窗口下的墙角距离CE=5米,窗口高AB=2米,那么窗口底边离地面的高BC=__________米.核心母题2 三视图类型1 根据几何体确定视图1.下列四个几何体中,主视图为圆的是()2.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( )思路方法1.根据常见几何体的三视图可以直接判断.2.对于几何体视图的判断要严格按照视图的定义去故ui饭画出,后对照选择.母题解析1.解:球的主视图是圆,所以选B..2. 解:几何体有两列,所以俯视图的基础是水平的两个正方形,又左边列前面有一个几何体,所以在左边列正方形前面再画一个正方形,所以选A.规律总结熟记常见几何体的三视图是提高判断准确率和解题效率的关键.对于有正方形构成几何体的俯视图画法有如下技巧:(1)从前面看,按照自左到右顺序标出列数的序号:1.2.3等;(2)画基础图有几列就按照自左到右顺序依次画几何小正方形,这表示基础;(3)完善画仔细观察几何体的各列特点,是前伸还是后展,前伸的,在对应小正方形的前面接着画正方形,后展的,在对应小正方形的后面接着画正方形;(4)这列上有几个几何体,该列就有几个正方形.类型2 根据视图确定几何体1.右图是某几何体的三视图,那么这个几何体是()A.三菱锥 B.圆柱 C.球D.圆锥2.右图是某几何体的三视图,该几何体是()A.三棱柱 B.三棱锥 C.圆柱D.圆锥思路方法1.根据常见几何体的三视图可以直接判断.2.熟记不同几何体的三视图是提高判断准确率的关键.母题解析1.解:主视图是三角形,左视图是三角形,俯视图是圆,所以这个几何体是圆锥,所以选D.2. 解:主视图是两个长方形,左视图是长方形一定是棱柱,俯视图是三角形,所以这个几何体是三棱柱,所以选A.规律总结几何体是棱柱,判定方法:主视图、左视图都是长方形,确定是棱柱;俯视图的边数确定棱柱的棱数;几何体是棱锥,判定方法:主视图、左视图都是三角形,确定是棱锥;俯视图的边数确定棱锥的棱数.核心练习21.若右图是某几何体的三视图,则这个几何体是()A.球B.圆柱C. 圆锥D. 三棱柱2. 如图是几何体的三视图,该几何体是()A.正三棱柱B.正三棱锥C.圆柱D.圆锥3. 下列几何体中,俯视..图.为三角形的是( )4.如图,两个等直径圆柱构成的T形管道,则其俯视图正确的是()5.如图,左图是由4个大小相同的正方体组合而成的几何体,其左视图是()族手鼓的轮廓图,其俯视图是()7. 下列四个几何体中,主视图为圆的是()第二节展开图核心考点展开图展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开可以展成平面图形,这个平面图形就叫做这个立体图形的展开图.核心母题展开图1.右图是某个几何题的展开图,该几何体是()A.三棱柱 B.圆锥 C.四棱柱 D.圆柱2.如图是一个正方体的表面展开图,那么原正方体中与“祝”字所在的面相对的面上标的字是()A.考 B.试 C.顺D.利3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚..到第1格,第2格,第 3格,第4格,此时正方体朝上一面的文字为()A.富 B.强 C.文 D.民4.)如图,是一个几何体的三视图,则该几何体的展开图为()5. 下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()思路方法1.展开图的侧面都是长方形,意味着该几何体是一个柱体,且为棱柱;上下两底面的展开图是三角形,意味着棱柱的底面是三角形,综上所述,该几何体是三棱柱.2. 根据识记的展开图确定对面,也可以逆向思维,把该处的展开图折叠成几何体,后确定对面,时间允许的话,可以动手一试,确保不丢分.3. 理解滚动过程中,立方体的变化,从而确定答案,此题也可以动手制作一个模型演示.4. 先根据三视图确定几何体,再根据几何体确定展开图.5. 看准展开图的形状,看准展开图中对应形状的个数,只有形状相符,个数相同才正确.母题解析1.∵三个侧面都是长方形,且底面展开时三角形,∴该几何体是三棱柱.故选A.2. 以考为底,将展开图折叠成几何体,不难发现,左右相对的是“你”,“试”,上下相对的“考”,“顺”,前后相对的“祝”,“利”,∴选D.3. 根据展开图知道:富与文相对,民与明相对,强与主相对,第一次翻滚,“民”沉底,上为“明”,前面为“富”;第二次翻滚,“富”沉底,上为“文”,,此时前面是“强”;第三次翻滚,“强”沉底,前面是“文”,第四次翻滚,“文”沉底,所以上面是“富”,故选A.4. 根据题意知,这个几何体是圆柱,圆柱的展开图侧面是长方形,两个底面是圆,所以选A.5. 因为四棱锥的侧面是四个三角形,底面是正方形,所以它的展开图有四个三角形和一个正方形组成,A项错误;圆锥由侧面和底面两部分组成,侧面展开图是扇形,底面是一个圆,故D项错误;正方体的平面展开图中没有“7”字形,故C项错误,故选B.规律总结1.解答此类问题,把握两个方向,看侧面展开图的形状,判断几何体是锥体,柱体还是球;看底面展开图的形状,判断几何体是圆锥,圆柱,球,几棱柱,几棱锥.2.解答这类问题,不需要死记硬背,动手制作模型几何体是最好解决方法,特殊展开图也有一定的规律,如本题,它的规律有两条:异侧相对;同线时,隔一相对.自己归纳其它展开图的规律.3. 抓住翻滚的特点,确定谁是底面,谁是前面,问题解答就比较顺利,也可以动手制作一个模型,实际操作,得到答案.4. 看准展开图的形状,看准展开图中对应形状的个数,只有形状相符,个数相同才正确. 核心练习1.下图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥2. 右图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱3.如图所示的立方体,如果把它展开,可以是下列图形中的()4.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是 ( )A.义B.仁 C.智D.信5.右图是一个正方体的平面展开图,那么这个正方体“美”字的对面所标的字是 ( ) A.让B.更 C.活 D.生6. (如图是一个正方体的展开图,把展开图折叠成正方体后,“你”字一面相对的面上的字是 ( )A.梦 B.我 C.中 D.国7. 若正方形网格中的每个小正方形的边长都是1,则把每个小格的顶点叫做格点.现有一个表面积为12的正方体,沿着一些棱将它剪开,展成以格点为顶点的平面图形,下列四个图形中,能满足题意的是()参考答案核心练习11. 答案:C解析:标杆的物高为1.5米,影长为2米,旗杆的物高为CD,影长为16米,利用同一时刻,物高与影长成正比,可得1.5216CD=,所以1.5(214)2BE ACCDAB⋅⨯+===12.所以选C.2.答案:18.解析:利用同一时刻物高与影长成正比,1.2345=楼高,解得,楼高=18.3. 答案:52.解析:BC的物高为x米,影长为5米,物高AC为(x+2)米,其影长为DC=9米,利用同一时刻物高与影长成正比,x x+2=54+5,解得x=52.核心练习21.答案:C解析:圆锥的俯视图是圆,从上面向下看,能看到圆锥的顶点,所以俯视图的圆是带圆心的圆锥的主视图和左视图都是三角形,故选C.2.答案:A解析:圆柱、圆锥的三视图中有圆,故排除C、D项,正三棱锥的侧面是三角形,所以排除B项,故选A项.3.答案:D解析:用排除法,圆柱的俯视图是圆,长方体的俯视图是长方形,圆锥的俯视图是圆,三棱柱的俯视图是三角形.故选D.4.答案:B解析:横向圆柱的俯视图是长方形;竖向圆柱的俯视图是圆,且圆在长方形内部,故选B.5.答案:A解析:左视图的画法:(1).由里到外,按照1,,2,3,…顺序标出几何体的列数;(2).将上述列数转90度水平抒写即按照自左到右的顺序依次写1,,2,3,…(3).数出该列中最高的正方形数,(4).在(2)中相应列上方依次添加小正方形,个数等于(3)中的数目.(5).知道结束。

《易错题》九年级数学下册第二十九章《投影与视图》综合经典复习题(含解析)

《易错题》九年级数学下册第二十九章《投影与视图》综合经典复习题(含解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.2.如图,下面是由一些相同的小正方体构成的立体图形的三视图,这些相同的正方体的个数是()A.6 B.7 C.8 D.93.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个6.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥9.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.10.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:911.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A .B .C .D . 12.如图所示的几何体的左视图是( )A .B .C .D . 13.路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A .6.75米B .7.75米C .8.25米D .10.75米 14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A .6个B .7个C .8个D .9个第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题15.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.16.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.17.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.19.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.20.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.21.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.22.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______23.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_____.24.如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于__.25.一个几何体由若干大小相同的小正方体搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小正方体的个数.在不破坏原几何体的前提下,再添加一些小正方体,使其搭成一个大正方体,则至少还需要添加______个这样的小正方体.26.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.三、解答题27.如图是某几何体从三个不同方向看到的形状图.(1)这个几何体的名称是;(2)若从正面看到的图形的宽为4cm,长为6cm,从左面看到的图为3cm,从上面看到的图形是直角三角形,其中斜边长为5m,求这个几何体的表面积为多少;它的体积为多少.28.如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=34,tan37°=34)29.(1)2tan602sin30cos453︒︒-︒+;(2)已知一个几何体的三视图如图所示,求该几何体的体积.30.画出下图几何体的三视图【参考答案】一、选择题1.C2.B3.C4.B5.B6.A7.D8.D9.B10.B11.A12.B13.C14.D二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(16.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的17.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多18.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛19.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分20.34【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最少或最多的正方体的个数相加即可【详解】搭这样的几何体最少需要6+2+1=9个小正方体最多需要6+5+2=121.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个22.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭23.12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体两个扇形和一个矩形的组合体该组合体的表面积为:S=2×2×3+×2+×3=12+15π故答案为12+15π24.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π25.110【分析】根据题意可知最小的大正方体为边长是5个小正方体组成从而可求得大正方体总共需要多少小正方体进而得出需要添加多少小正方体【详解】∵立体图形中有一处是由5个小正方体组成∴最小的大正方体为边长26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.2.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【详解】由左视图知该立体图形有两层,由俯视图知,最底层有5个小正方体,结合三视图知,最上面一层有2个小正方体,故这些相同的小正方体共有7个,故选B.【点睛】本题主要考查由三视图判断几何体,利用三视图的定义得出几何体的形状是解题关键.3.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.B解析:B【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【详解】解:根据主视图和左视图可得:搭这样的几何体最少需要4个小正方体;故选:B.【点睛】此题考查三视图,解题关键在于掌握其定义.6.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.7.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.8.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D.9.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.10.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.11.A解析:A【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.12.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.13.C解析:C【解析】【分析】延长AG交DE于N,则四边形GNEF为平行四边形,所以NE=GF=2,BN=11米,然后根据实际高度和影长成正比例列式求解即可.【详解】如图,延长AG 交BE 于N 点,则四边形GNEF 是平行四边形,故NE=GF=2,BN=5+4+4-2=11米, ∴AB DF BE DE =, ∴3114AB =, ∴AB=8.25米.故选C.【点睛】此题考查的平行投影及平行四边形的判定与性质,是较简单题目.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D .点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 16.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的 解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.17.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多 解析:14 10【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.18.09m 【分析】根据AB ∥CD 易得△PAB ∽△PCD 根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB ∥CD ∴△PAB ∽△PCD ∴假设P 到AB 距离为x 则=x=09故答案为09m 【点睛解析:0.9m【分析】根据AB ∥CD ,易得,△PAB ∽△PCD ,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB ∥CD ,∴△PAB ∽△PCD ,∴ 2.7AB x CD= , 假设P 到AB 距离为x ,则2.7x = 26, x=0.9. 故答案为0.9m .【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA ,SAS ,SSS ;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).19.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.20.34【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最少或最多的正方体的个数相加即可【详解】搭这样的几何体最少需要6+2+1=9个小正方体最多需要6+5+2=1解析:34【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】搭这样的几何体最少需要6+2+1=9个小正方体,最多需要6+5+2=13个小正方体;故最多需要13个小正方体,最少需要9个小正方体.最少的小正方体搭成几何体的表面积是(6+6+5)×2=34.故答案为34;【点睛】本题考查由三视图判断几何体,做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.21.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个解析:6 8【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为6,8.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.22.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.23.12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体两个扇形和一个矩形的组合体该组合体的表面积为:S=2×2×3+×2+×3=12+15π故答案为12+15π解析:12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体、两个扇形和一个矩形的组合体,该组合体的表面积为:S=2×2×3+22702360π⨯×2+2702180π⨯×3=12+15π,故答案为12+15π.24.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π解析:【解析】易得此几何体为圆柱,底面直径为1,高为2.圆柱侧面积=底面周长×高,代入相应数值求解即可.解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×1×2=2π.故答案为2π.25.110【分析】根据题意可知最小的大正方体为边长是5个小正方体组成从而可求得大正方体总共需要多少小正方体进而得出需要添加多少小正方体【详解】∵立体图形中有一处是由5个小正方体组成∴最小的大正方体为边长解析:110【分析】根据题意可知,最小的大正方体为边长是5个小正方体组成,从而可求得大正方体总共需要多少小正方体,进而得出需要添加多少小正方体.【详解】∵立体图形中,有一处是由5个小正方体组成∴最小的大正方体为边长是5个小正方体组成则大正方体需要小正方体的个数为:5×5×5=125个现有小正方体:1+2+3+4+5=15个∴还需要添加:125-15=110个故答案为:110.【点睛】本题考查空间想象能力,解题关键是得出大正方体的边长.26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小 解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个 故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.三、解答题27.(1)直三棱柱;(2)284cm ;336cm .【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出表面积和体积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的表面积为:()21234463656842cm ⎛⎫⨯⨯⨯+⨯+⨯+⨯= ⎪⎝⎭, 它的体积为:()31346362cm ⨯⨯⨯=. 【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键. 28.(1)平行,3;(2)V 液=24(dm 3);(3)α=37°.。

【单元练】杭州市春蕾中学九年级数学下册第二十九章《投影与视图》经典复习题(含答案解析)

【单元练】杭州市春蕾中学九年级数学下册第二十九章《投影与视图》经典复习题(含答案解析)

一、选择题1.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.4.如图所示立体图形,从上面看到的图形是()A.B.C.D.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.5.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图C 解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.6.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 7.下面的三视图对应的物体是()A.B.C.D.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点.故选D.点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.8.如图所示的几何体的左视图是()A.B.C.D.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.9.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.A解析:A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.10.路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A .6.75米B .7.75米C .8.25米D .10.75米C解析:C【解析】【分析】 延长AG 交DE 于N ,则四边形GNEF 为平行四边形,所以NE=GF=2,BN=11米,然后根据实际高度和影长成正比例列式求解即可.【详解】如图,延长AG 交BE 于N 点,则四边形GNEF 是平行四边形,故NE=GF=2,BN=5+4+4-2=11米, ∴AB DF BE DE =, ∴3114AB =, ∴AB=8.25米.故选C.【点睛】此题考查的平行投影及平行四边形的判定与性质,是较简单题目.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.二、填空题11.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x 时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.12.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.13.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=614.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体15.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要_____块正方体木块,至多需要_____块正方体木块.616【解析】试题分析:由物体的主视图和左视图易得第一层最少有4块正方体最多有12块正方体;第二层最少有2块正方体最多有4块正方体故总共至少有6块正方体至多有16块正方体考点:几何体的三视图解析:6 16【解析】试题分析:由物体的主视图和左视图易得,第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.考点:几何体的三视图.16.张三和李四并排站立在阳光下,张三身高1.80米,他的影长2.0米,李四比张三矮9厘米,此时李四的影长是___米.19【分析】设李四的影长是x米利用同一时刻影长与物体的高度成正比得到然后解方程即可【详解】解:设李四的影长是x米根据题意得解得x=19答:李四的影长是19米故答案为:19【点睛】此题主要考查了平行投解析:1.9【分析】设李四的影长是x米,利用同一时刻影长与物体的高度成正比得到2.01.800.09 1.80x=-,然后解方程即可.【详解】解:设李四的影长是x米,根据题意得2.0 1.800.09 1.80x=-,解得x=1.9.答:李四的影长是1.9米.故答案为:1.9【点睛】此题主要考查了平行投影,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长,体现了方程的思想.17.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF解析:3【分析】如图,由题意证明AB=EB,AB=BF,推出DB=AB﹣1.7,BN=AB﹣1.5,根据DN=2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt△CDE中,CD=DE=1.7m,在Rt△MNF中,MN=NF=1.5m,∵∠CDE=∠MNF=90°,∴∠E=∠F=45°,∵AB⊥EF,∴AB=EB=BF,∴DB=AB﹣1.7,BN=AB﹣1.5,∵DN=2.8m,∴2AB﹣1.7﹣1.5=2.8,∴AB=3(m),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.18.如图为一个长方体,则该几何体主视图的面积为______cm2.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知解析:20【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.19.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆___g.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表解析:66【分析】分别求出各层的总面积,进而可得答案【详解】最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,∴露出的表面总面积为5+11+17=33,∴33×2=66(g).答:共需用漆66g.故答案为:66【点睛】此题考查的知识点是几何体的表面积,关键是明确各个面上喷漆的小正方体的面的总个数.20.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.6【解析】【分析】根据题意画出示意图易得:Rt△EDC∽Rt△CDF进而可得代入数据可得答案【详解】如图在中米米易得即米故答案为:6【点睛】本题通过投影的知识结合三角形的相似求解高的大小是平行投影性解析:6【解析】【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得ED CDCD FD,代入数据可得答案.【详解】如图,在EFC ∆中,90,9ECF ED ︒∠==米,4FD =米,易得~ EDC Rt CDF ∆∆, ED CD CD FD ∴=,即94CD CD =, 6CD ∴=米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.三、解答题21.由几个相同的边长为1的小立方块搭成的几何体如图所示,排放在桌面上.(1)请在下面方格纸中分别画出这个几何体从三个不同的方向(上面、正面和左面)看到的视图;(2)根据三个视图,请你求出这个几何体的表面积(不包括底面积).解析:(1)见解析;(2)18【分析】(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,1,1,从左面看有2列,每列小正方形数目分别为2,1,从上面看有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.(2)将正面看的图形、左面看的图形的面积相加乘以2再加上从上面看的图形面积即可得.【详解】(1)如图所示:(2)从正面看,有4个面,从后面看有4个面,从上面看,有4个面,从左面看,有3个面,从右面看,有3个面,∵不包括底面积∴这个几何体的表面积为:(43)2418+⨯+=.【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,考察空间想象能力,在计算表面积时要与从三个方向看所得图形联系起来.22.(1)2tan 602sin 30cos 453︒︒-︒+; (2)已知一个几何体的三视图如图所示,求该几何体的体积.解析:(1)32; (2)几何体的体积是60. 【分析】 (1)化简各项的三角函数,再把各项相加;(2)原几何体是正方体截掉一个底面边长为1,高为4的长方体,由此可求几何体的体积.【详解】(1)原式=21232(223⨯- =1112-+ =32(2)由三视图知,原几何体是正方体截掉一个底面边长为1,高为4的长方体. ∴444114V =⨯⨯-⨯⨯=60∴几何体的体积是60.【点睛】本题考查了三角函数的混合运算以及几何体的体积问题,掌握特殊三角函数的值以及几何体的体积计算方法是解题的关键.23.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).(1)王乐站在P处时,在路灯B下的影子是哪条线段?(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.解析:(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【详解】解:(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD,∴1.8292 6.5QD=++,解得:QD=1.5m.所以王乐站在Q处时,在路灯A下的影长为1.5m (3)由题意得Rt△QDF∽Rt△CDA,∴FQ QDAC DC=,∴1.8 1.510 AC=,解得:AC=12m.所以路灯A的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.24.如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;cm;(2)该几何体的表面积为___________2(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以添加___________个小正方体.解析:(1)详见解析;(2)26;(3)2【分析】(1)左视图有三列,小正方形的个数分别是1,,2,1;俯视图有3列,小正方形的个数分别是3,1,1;(2)分别数出前后左右上下6个方向的正方形的个数,再乘以1个面的面积即可求解;(3)保持俯视图和左视图不变,可以在第2排的左边和中间这两个上面空余位置各放一个,即共添加2个小正方体.【详解】解:(1)如图所示:(2)(5×2+ 4×2+ 4×2)×(1×1)=26;(3)若保持这个几何体的左视图和俯视图不变,那么最多可以添加2个小正方体.【点睛】本题考查画三视图,解题关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.25.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.解析:(1)如图所示. 见解析;(2)5.【分析】(1)由已知条件可知,主视图有4列,每列小正方体数目分别为1,2,3,1左视图有2列,每列小正方形数目分别为3,1;俯视图有4列,每列小正方数形数目分别为2,1,1,1据此可画出图形.(2)根据三视图投影间的关系确定即可.【详解】(1)如图所示.(2)可在最底层第一列第一行加2个,第二列第一行加1个,第四列第一行加2个,共5个.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.解决本题的关键是熟练掌握三视图的投影规律.26.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)直接写出a,b,c的值;(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;(3)当d=1,e=2,f=1时画出这个几何体的左视图.解析:(1)a=3,b=1,c=1;(2)最少9个,最多11个;(3)见解析.【分析】(1)由主视图可得,俯视图中最右边一个正方形处有3个小立方体,中间一列两个正方形处各有1个小立方体;(2)依据d,e,f处,有一处为2个小立方体,其余两处各有1个小立方体,则该几何体最少有9个小立方体搭成;d,e,f处,各有2个小立方体,则该几何体最多有11个小立方体搭成;(3)依据d=1,e=2,f=1,以及a=3,b=1,c=1,即可得到几何体的左视图.【详解】解:(1)由主视图可得,俯视图中最右边一正方形处有3个小立方体,中间一列两个正方形处各有1个小立方体,∴a=3,b=1,c=1;(2)若d,e,f处,有一处为2个小立方体,其余两处各有1个小立方体,则该几何体最少有9个小立方体搭成;若d,e,f处,各有2个小立方体,则该几何体最多有11个小立方体搭成;(3)当d=1,e=2,f=1时,几何体的左视图为:【点睛】此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.27.如图是由几个小立方体所搭几何体的俯视图,小正方体的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的图形.(在所提供的方格内涂上相应的阴影即可)解析:见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,3,1;从左面看有4列,每列小正方形数目分别为3,1,3,1.据此可画出图形.【详解】解:【点睛】本题考查几何体的三视图画法.由几何体的从上面看得到的图形及小正方形内的数字,可知从正面看的列数与从上面看的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.从左面看的列数与从上面看的行数相同,且每列小正方形数目为从上面看中相应行中正方形数字中的最大数字.28.如图所示的几何体是由若干个相同的小正方体组成的.(1)填空:这个几何体由个小正方体组成;(2)画出它的三个视图.(作图必须用黑色水笔描黑)解析:(1)7个,(2)图形见详解【分析】(1)前排有2个,后排有5个,据此解题,(2)主视图要将几何体从前往后压缩,使看到的面全部落在一个竖立的平面内;左视图要从正面的左面看,要正对着几何体,视线要与放置几何体的平面平行,并合理想象;俯视图要从正上方往下看,每一竖列的图形最顶的一个面,它们无高低之分使看到的面都落在同一个平面内.【详解】解:(1)前排有2个,后排有5个,∴这个几何体由7个小正方体组成,(2)如图【点睛】本题考查了图形的三视图,属于简单题,熟悉三视图的画法是解题关键.。

投影与视图经典测试题及答案

投影与视图经典测试题及答案

投影与视图经典测试题及答案一、选择题1.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.2.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3C.2D.2【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为1222,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.4.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.5.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.6.如图所示的几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.如图所示的几何体的俯视图为()A.B.C.D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.8.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】C【解析】【分析】由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是3个三角形组成的大三角形,∴该物体的形状是三棱锥.故选:C.【点睛】本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.12.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.13.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.14.如图所示的几何体的俯视图为( )A.B.C.D.【答案】C【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.16.如图所示的几何体,从左面看到的形状图是()A.B.C.D.【答案】A【解析】【分析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】如图所示的几何体,从左面看到的形状图是。

北师大版九年级上册数学 第五章 投影与视图 复习 (共29张PPT)

北师大版九年级上册数学 第五章 投影与视图 复习 (共29张PPT)
第五章 投影与视图
回顾与思考
课前准备 构建知识框架
一、选择题: 1.下列命题正确的是【 C 】 A、三视图是中心投影 B、正方体的主视图一定是正方形 C、球的三视图均是半径相等的圆 D、阳光从矩形窗子里照射到地面上得到的光
区仍是矩形
2.平行投影中的光线是【 A 】
A、平行的
B、聚成一点的
C、不平行的 D、向四面八方发散的
A组:1、如图是一个几何体的实物图,则其主视图是 ()
A
B
C
D
2、小华为了测量所住楼房的高度,他请来同学帮忙, 测量了同一时刻他自己的影长和楼房的影长分别是 0.5米和15米,已知小华的身高为1.6米,那么他所住 的楼房的高度为______米
B组:3、画出下列几何体的三种视图。
C组:4、如图所示,这是圆桌正上方的灯泡(看 作一个点)发出的光线照射桌面后,在地面上 形成阴影(圆形)的示意图.
9、与一盏路灯相对,有一玻璃幕墙,幕墙 前面的地面上有一盆花和一棵树。 晚上,幕墙反射路灯灯光形成了那盆花的
影子(如图所示),树影 P是路灯灯光形成
的。你能确定此时路灯光源的位置吗?
10、如图,粗线表示嵌在玻璃正方体内的一根 铁丝,请画出该正方体的三视图:
主视图 左视图
俯视图
11、下面是一天中四个不同时刻两座建筑物的影子, 将它们按时间先后顺序进行排列为
7、小亮在上午8时、9时30分、10时、12时四次
到室外的阳光下观察向日葵的头茎随太阳转动
的情况,无意之中,他发现这四个时刻向日葵
影子的长度各不相同,那么影子最长的时刻为
【】
A.上午12时
B.上午10时
C.上午9时30分 D.上午8时
8、对同一建筑物,相同时刻在太阳光下的影子 冬天比夏天【 】 A.短 B.长 C.看具体时间 D.无法比较

投影与视图复习(超经典)

投影与视图复习(超经典)

投影分析:分析组合体的投影 理解其结构
识图:根据投影图识别组合体 的结构
组合体的识图方法与步骤
观察组合体的 整体形状和结

分析组合体的 各个组成部分 及其相互关系
识别组合体的 投影图包括主 视图、俯视图、
侧视图等
根据投影图想 象组合体的立 体形状和结构
结合实际理解 组合体的功能
和用途
总结组合体的 识图方法和步 骤提高识图能
确定轴测投影的比例:根据实际需要选择合适的比例如 1:1或1:2
绘制轴测投影的轮廓:根据物体的形状和尺寸绘制出轴测 投影的轮廓线
绘制轴测投影的细节:根据物体的细节和特征绘制出轴测 投影的细节线
标注轴测投影的尺寸:根据物体的尺寸和比例标注出轴测 投影的尺寸线
检查轴测投影的准确性:检查轴测投影的准确性确保与实 际物体相符合
正等轴测图的画法
确定轴测投影的方向:正面、侧面、 顶面
确定轴测投影的比例:1:1、1:2、 1:3等
确定轴测投影的尺寸:长、宽、高
确定轴测投影的视角:正视、侧视、 俯视等
确定轴测投影的线条:直线、曲线、 折线等
确定轴测投影的阴影:明暗、深浅、 虚实等
斜二轴测图的画法
确定轴测投影的方向:选择合适的角度如45度或60度
的交点 ● 画出物体在视平面上的透视线与物体的交点与视平面的交点与视平面的交点与视平面的交点与视平面的交点与视平面的交点与视平面的交点与视平面的交点与视平面
透视图的辅助线与辅助点
辅助线:用于确定透视图中物体的位置和形状
辅助点:用于确定透视图中物体的透视关系
辅助线与辅助点的关系:辅助线与辅助点共同构成了透视图的基本框架 辅助线与辅助点的应用:在绘制透视图时需要根据辅助线与辅助点的位置 和关系确定物体的位置和透视关系。

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。

(4)正投影:投影线垂直于投影面产生的投影叫做正投影。

注:物体正投影的形状、大小与它相对于投影面的位置有关。

2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。

(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。

投影与视图(知识点+题型分类练习+答案)

投影与视图(知识点+题型分类练习+答案)

投影与视图知识梳理【知识网络】【考点梳理】一、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.(1)平行投影:平行光线照射形成的投影(如太阳光线)。

当平行光线垂直投影面时叫正投影。

投影三视图都是正投影。

(2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯)3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.二、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线。

三个图的位置展示:要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.(1)主视图:三视图(2)左视图:(3)俯视图:投影与视图专题练习类型一:平行投影1.有两根木棒AB、CD在同一平面上竖着,其中AB这根木棒在太阳光下的影子BE如图(1)所示,则CD这根木棒的影子DF应如何画?2.如图所示,某居民小区内A、B两楼之间的距离MN=30米,两楼的高都是20米,A楼在B楼正南,B 楼窗户朝南.B楼内一楼住户的窗台离小区地面的距离DN=2米,窗户高CD=1.8米.当正午时刻太阳光线与地面成30°角时,A楼的影子是否影响B楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2≈1.414,3≈1.732,5≈2.236)3.如图所示,在一天的某一时刻,李明同学站在旗杆附近某一位置,其头部的影子正好落在旗杆脚处,那么你能在图中画出此时的太阳光线及旗杆的影子吗?4.已知,如图所示,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下时投影长为6m.请你计算DE的长.类型二:中心投影1.如图所示,小明在广场上乘凉,图中线段AB表示站在广场上的小明,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小明在照明灯P照射下的影子.(2)如果灯杆高PO=12m,小明身高AB=1.6m,小明与灯杆的距离BO=13m,请求出小明影子的长度.2.确定图中路灯灯泡所在的位置。

2024中考数学一轮复习核心知识点精讲—投影与视图

2024中考数学一轮复习核心知识点精讲—投影与视图

2024中考数学一轮复习核心知识点精讲—投影与视图1.掌握平行投影和中心投影的区别和性质;2.根据简单几何体或简单组合几何体判断其三视图;3.掌握立体图形的展开与折叠。

考点1:投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.考点2:视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.【题型1:平行投影与中心投影】【典例1】(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【答案】A【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.【变式1-1】(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【答案】D【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,灯在纸板上方,∴上面两条边离点光源近,在同一投影面上的影子就长于下方离点光源远的两条边,∴上方投影比下方投影要长,故选:D.【变式1-2】(2020•贵阳)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【答案】C【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【题型2:三视图】【典例2】(2023•德州)如图所示几何体的俯视图为()A.B.C.D.【答案】C【解答】解:从上面看,是一个矩形,矩形的两边与矩形内部的圆相切.故选:C.【变式2-1】(2023•沈阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解答】解:此几何体的主视图从左往右分3列,小正方形的个数分别是1,2,1.故选:A.【变式2-2】(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【答案】C【解答】解:如图所示的几何体的主视图如下:.故选:C.【变式2-3】(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.【答案】D【解答】解:A、选项不符合三种视图,不符合题意;B、选项是主视图,不符合题意;C、选项是右视图,不符合题意;D、选项是左视图,符合题意;故选:D.【变式2-4】(2023•金华)某物体如图所示,其俯视图是()A.B.C.D.【答案】B【解答】解:该物体的俯视图是:B.故选:B.【题型3:由三视图还原几何体】【典例3】(2023•淮安)如图是一个几何体的三视图,则该几何体的侧面积是()A.12πB.15πC.18πD.24π【答案】B【解答】解:由三视图可知此几何体为圆锥,∵d=6,h=4,∴圆锥的母线长为=5,∴圆锥的侧面积为:×6π×5=15π,故选:B.【典例3-1】(2023•河北)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解答】解:平台上至少还需再放这样的正方体2个,故选:B.【变式3-2】(2023•呼和浩特)如图是某几何体的三视图,则这个几何体是()A.B.C.D.【答案】C【解答】解:根据主视图可知,这个组合体是上、下两个部分组成且上下两个部分的高度相当,上面是长方形,可能是圆柱体或长方体,由左视图可知,上下两个部分的宽度相等,且高度相当,由俯视图可知,上面是圆柱体,下面是长方体,综上所述,这个组合体上面是圆柱体,下面是长方体,且宽度相等,高度相当,所以选项C中的组合体符合题意,故选:C.【变式3-3】(2023•湖北)如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥【答案】D【解答】解:根据三视图的知识,正视图和左视图都为一个三角形,而俯视图为一个圆,故可得出这个图形为一个圆锥.故选:D.一.选择题(共8小题)1.用3个同样的小正方体摆出的几何体,从正面看到的形状图如图所示,则这个几何体可能是()A.B.C.D.【答案】A【解答】解:A.从正面看到,底层是两个小正方形,上层的右边是一个小正方形,故本选项符合题意;B.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意;C.从正面看到,底层是两个小正方形,上层的左边是一个小正方形,故本选项不符合题意;D.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意.故选:A.2.下列四个几何体中,从正面看和从上面看都是圆的是()A.B.C.D.【答案】D【解答】解:A、圆柱的主视图是矩形、俯视图是圆,不符合题意;B、圆台主视图是等腰梯形,俯视图是圆环,不符合题意;C、圆锥主视图是等腰三角形,俯视图是圆和圆中间一点,不符合题意;D、球的主视图、俯视图都是圆,符合题意.故选:D.3.从正面、左面、上面观察某个立体图形,得到如图所示的平面图形,那么这个立体图形是()A.B.C.D.【答案】C【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选:C.4.日晷是我国古代利用日影测定时刻的一种计时仪器,它由“晷面”和“晷针”组成.当太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是()A.中心投影B.平行投影C.既是平行投影又是中心投影D.不能确定【答案】B【解答】解:晷针在晷面上形成的投影是平行投影.故选:B.5.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()A.B.C.D.【答案】A【解答】解:两棵小树在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等,所以A选项满足条件.故选:A.6.如图,在一间黑屋子的地面A处有一盏探照灯,当人从灯向墙运动时,他在墙上的影子的大小变化情况是()A.变大B.变小C.不变D.不能确定【答案】B【解答】解:如图所示:当人从灯向墙运动时,他在墙上的影子的大小变化情况是变小.故选:B.7.如图是小红在一天中四个时刻看到的一棵树的影子的图,请你将它们按时间先后顺序进行排列()A.①②③④B.①③④②C.②①④③D.④②①③【答案】D【解答】解:西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为:④②①③.故选:D.8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC =1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m【答案】A【解答】解:∵BE∥AD,∴△BCE∽△ACD,∴即=且BC=1,DE=1.8,EC=1.2∴=∴1.2AB=1.8,∴AB=1.5m.故选:A.二.填空题(共1小题)9.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是图2.(填“图1”或“图2”)【答案】图2.【解答】解:图1中的人的影子比较长,所以图1中反映的时间比图2中反映的时间要晚,所以小红参加200m比赛的照片为图2.故答案为图2.三.解答题(共1小题)10.如图,是由若干个完全相同的小正方体组成的一个几何体.从正面、左面、上面观察该几何体,在方格图中画出你所看到的几何体的形状图.(用阴影表示)【答案】见解答.【解答】解:如图所示.一.选择题(共7小题)1.如图是一个正六棱柱的主视图和左视图,则图中a的值为()A.B.4C.2D.【答案】D【解答】解:正六棱柱的底面如图所示,过点A作AH⊥BC于H.由题意得,2AH+BD=4,∵∠BAC=120°,AC=AB,∴∠CAH=∠BAH=60°,∴∠ABH=30°,∴AB=2AH,∴4AH=4,∴AH=1,∴BH=AH=,∴a的值为,故选:D.2.如图所示的是由两个长方体组成的几何体,这两个长方体的底面都是正方形,则该几何体的俯视图是()A.B.C.D.【答案】C【解答】解:该几何体的俯视图是.故选:C.3.如图所示是一个由若干个相同的正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是()A.5个B.6个C.11个D.13个【答案】A【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.4.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2【答案】C【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴=,而OD=3,CD=1,∴OC=OD﹣CD=3﹣1=2,BC=×1.6=0.8,∴=,∴AD=1.2,=π×1.22=1.44πm2,∴S⊙D即地面上阴影部分的面积为1.44πm2.故选:C.5.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A.320cm B.395.2cm C.297.9cm D.480cm【答案】C【解答】解:根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边.则AC=40÷2=20(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=10(cm),所以AD=2AB=20(cm),胶带的长至少=20×6+15×6≈297.8(cm).所以至少需要297.9cm的胶带故选:C.6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D.7.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.9πB.6πC.3πD.(3+)π【答案】A【解答】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.∴正三角形的边长==2,∴圆锥的底面圆半径是,母线长是2,∴底面周长为2π∴侧面积为×2π×2=6π,∵底面积为πr2=3π,∴这个物体的表面积是9π.故选:A.二.填空题(共3小题)8.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为12.【答案】见试题解答内容【解答】解:过P作PE⊥x轴于E,交AB于M,如图,∵P(4,4),A(0,2),B(6,2).∴PM=2,PE=4,AB=6,∵AB∥CD,∴=.∴=,∴CD=12,故答案为:12.9.如图,在直角坐标系中,点P(3,2)是一个点光源.木杆AB两端的坐标分别为(2,1),(5,1).则木杆AB在x轴上的投影长为6.【答案】6.【解答】解:如图,延长PAPB交x轴分别于点A′、点B′,过点P作PN⊥x轴,交AB于点M,垂足为N,∵点A(2,1),点B(5,1),∴AB=|2﹣5|=3,AB∥x轴,∴PN⊥AB,又∵点P(3,2),∴PN=2,PM=MN=1,∵AB∥x轴,∴△PAB∽△PA′B′,∴==,∴A′B′=2AB=6,即AB在x轴上的影长为6,故答案为:6.10.航拍器拍出的照片会给我们视觉上带来震撼的体验,越来越受追捧.如图,航拍器在空中拍摄地面的区域是一个圆,且拍摄视角α固定:(1)现某型号航拍器飞行高度为36m,测得可拍摄区域半径为48m.若要使拍摄区域面积为现在的2倍,则该航拍器还要升高(36﹣36)m;(2)航拍器由遥控器控制,与(1)中同型号的航拍器最远飞行距离为距遥控器2000m,则该航拍器可拍摄区域的最大半径为m.(忽略遥控器所在高度)【答案】见试题解答内容【解答】解:(1)由题意:tan==,∵拍摄区域面积为现在的2倍,∴可拍摄区域半径为48m,设航拍器飞行高度为hm,则有tan==,∴h=36,该航拍器还要升高(36﹣36)m,故答案为(36﹣36).(2)如图,由题意航拍器在以O为圆心,2000m为半径的圆上运动.航拍器可拍摄区域的最大直径为EE′,此时PE⊥OP,PE′⊥OP′,则有=,∴OE=(m),故答案为.三.解答题(共1小题)11.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?【答案】17πcm3.【解答】解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π×12×1=17π(cm3).答:该工件的体积是17πcm3.1.(2023•大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看,是一个矩形.故选:A.2.(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.【答案】D【解答】解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选:D.3.(2023•陕西)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm【答案】A【解答】解:∵是⊙O的一部分,D是的中点,AB=24cm,∴OD⊥AB,AC=BC=AB=12cm.设⊙O的半径OA为R cm,则OC=OD﹣CD=(R﹣8)cm.在Rt△OAC中,∵∠OCA=90°,∴OA2=AC2+OC2,∴R2=122+(R﹣8)2,∴R=13,即⊙O的半径OA为13cm.故选:A.4.(2023•牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.9【答案】B【解答】解:根据主视图和左视图可得:这个几何体有2层,3列,最底层最多有3×2=6个正方体,第二层有1个正方体,则搭成这个几何体的小正方体的个数最多是6+1=7个;5.(2023•贵州)如图所示的几何体,从正面看,得到的平面图形是()A.B.C.D.【答案】A【解答】解:从正面看到的平面图形为等腰梯形.故选:A.6.(2023•自贡)如图中六棱柱的左视图是()A.B.C.D.【答案】A【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:.7.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.【答案】见试题解答内容【解答】解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.8.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【答案】9.88.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.9.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.【答案】(170+60)cm.【解答】解:延长AD交BN于点E,过点D作DF⊥BN于点F,在Rt△CDF中,∠CFD=90°,∠DCF=30°,则DF=CD=90(cm),CF=CD•cos∠DCF=180×=90(cm),由题意得:=,即=,解得:EF=135,∴BE=BC+CF+EF=(255+90)cm,则=,解得:AB=170+60,答:立柱AB的高度为(170+60)cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影子的长度各不相同,那么影子最长的时刻为
【】
A.上午12时
B.上午10时
C.上午9时30分 D.上午8时
10、对同一建筑物,相同时刻在太阳光下的影 子冬天比夏天【 】 A.短 B.长 C.看具体时间 D.无法比较
11、 如图是一根电线杆在一天中不同时刻
的影长图,试按其一天中发生的先后顺序
排列,正确的是【 】
ADEF垂直于投影面P.
A*
D*
B*
C*
A
D
B
C
P
从正面看
F* A* D*
E
F A H
G
B
G*
C* B*
D
P C
从正面看
内容回顾
圆柱、圆锥、球、直三棱柱、直

视图 四棱柱等简单几何体的三视图



平行投影

投影
中心投影
灯光与影子,视 点、视线和盲区
如图,小明在点O能看见站在幕布后面的点C的小华吗?
B.4 个或 5 个 D.6 个或 7 个
主视图
俯视图
6
4 主视图
6
4 左视图
4 俯视图
是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为 A. 24π B. 32π C. 36π D. 48π
课堂练习
3.下面的四组图形中,如图所示的圆 柱体的三视图的是—B———
主视图 左视图
A
俯视图
当你乘车沿一条平坦的大道向前行驶时,你会发现, 前方那些高一些的建筑物好像“沉”到了位于它们前 面那些矮一些的建筑物后面去了,这是因为( C )
A.汽车开得快 B.盲区减小 C.盲区增大 D.无法确定
你能指出这些图形分别从哪个角度观察得到的吗?
多角度的反映飞机的形状
从侧面看
从正面看
从上面看
例1 画出图所示一些基本几何体的三视图.
E 2
21
A. ①②③④
B. ④①③②
C. ④②③①
D. ④③②①
12 . 有 一 实 物 如 图 , 那 么 它 的
主视图
()
A
B
C
D
13、与一盏路灯相对,有一玻璃幕墙,幕 墙前面的地面上有一盆花和一棵树。 晚上,幕墙反射路灯灯光形成了那盆花的
影子(如图所示),树影 P是路灯灯光形成
的。你能确定此时路灯光源的位置吗?
俯视图
如图,我们用三个互相垂直的平面(例如墙角处的三面墙 壁)作为投影面.
其中正对着我们的叫做正面, 正面下方的叫做水平面, 右边的叫做侧面.
一个物体(例如一个长方体)在三个投影面内同时进行正投影,
在正面内得到的由前向后观察物体 的视图,叫做主视图(从前面看);
主视图
投影面
在水平面内得到的由上向下观察物体 的视图,叫做俯视图(从上面看) ;
分析:画这些基本几何体的三视图时,要注 意从三个方面观察它们,具体画法为:
1.确定主视图的位置,画出主视图; 2. 在主视图正下方画出俯视图,注意与主视图 “长对正”; 3. 在主视图正右方画出左视图,注意与主视图 “高平齐”,与俯视图“宽相等”.
圆 柱
主视图 左视图
正 三 棱 柱
主视图 左视图
俯视图
俯视图
球 主视图 左视图 俯视图
例2 画出图所示的支架(一 种小零件)的三视图.
分析:支架的现状:由两个大小不等的长方体构成的组 合体,画三视图时要注意这两个长方体的上下、前后位 置关系.
解:图是支架的三视图.









例3 图是一根钢管的直观图,画出它的三视图.
分析:钢管有内外壁,从一定角度看它时,看不见 内壁,为全面地反映立体图形的现状,画图时规定:
如果小明的位置不变,小华应怎样移动自己的位置, 才能使小明看到自己?
例 如图,A,B表示教室的门框位置。小聪站在教室内 的点P位置,小慧、小红、张杰三位同学分别站在教室 外点C,D,E的位置。这三位同学中,小聪能看见谁? 看不见谁?请用盲区的意义给出解释。
P
AB
D
C
E
解:作射线PA,PB.图 中阴影部分表示小聪观 察教室外时的盲区.小 慧、小红、张杰三位同 学中,只有张杰在盲区 内,所以小聪能看见的 是小慧、小红,看不见 的是张杰.
正面
在侧面内得到由左向右观察物体的 视图,叫做左视图(从左面看) .
俯视图
左视图
侧面 水平面
从左面看
主视图
从上面看
正面
主视图
左视图 高


宽 俯视图
从正面看
将三个投影面展开在一个平面内,得到这一物体 的一张三视图.
三视图是主视图、俯视图、左视图的统称。它是 从三个方向分别表示物体形状的一种常用视图。
主视图与左视图的高平齐,
左视图与俯视图的宽相等.
主视图
投影面 左视图
俯视图
侧面 水平面
主 视 图
长 长

高高
视 图
宽相等
俯视图
主视图
正面
主视图
左视图




俯视图
主视图
高平齐
左视图 高
正方形


宽 正方形
俯视图
长对正
宽相等
主视图
P116 三视图(2)
正面
主视图
左视图 高


宽 俯视图
从左面看
三视图位置有规定, 主视图要在左上边, 它的下方应是俯视图, 左视图坐落在右边.
主视图
左视图 高


宽 俯视图
主视图与俯视图表示同一物体的长,主视图与左视图表示 同一物体的高,左视图与俯视图表示同一物体的宽,因此三 个视图的大小是互相联系的,画三视图时,三个视图要放在 正确的位置。 画视图时:
主视图与俯视图的长对正,
主视图
P116 三视图(1)
从上面看
正面
主视图
左视图 高


宽 俯视图
从正面看
主视图
P116 三视图(2)
正面
主视图
左视图




俯视图
主视图
P116 三视图(2)
正面
主视图
左视图




俯视图
主视图
高对齐
左视图 高
正方形


宽 正方形
俯视图
长对齐
宽相等
P125 由三视图描述实物形状,画出物体表面展开图(2)
A.
B.
C.
D.
在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒
送给灾区儿童.这个铅笔盒(右图)的左视图是( )
A.
B.
C.
D.
如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯
视图,则组成这个几何体的小正方体的个数是( )
A.3 个或 4 个
C.5 个或 6 个
3、画出下图中路灯光线下木桩的影子.
小结:发光点、物体上的点及其影子上的对应点 在一 条直线上.
4、确定图中路灯灯泡所在的位置.
O
怎样确定一个点?
解:过一根木杆的顶端作一条直线,再过另一 根木杆的顶端作一条直线,两直线交于一点O. 点O就是路灯灯泡所在的位置.
5、 同一时刻,两根木棒的影子如图,
14平地上立有三根等高等距的木杆,其俯视图如 图所示(图⑴⑵⑶表示三种不同的情况),图中画 出了其中一根木杆在路灯灯光下的影子,你能分 别在图中画出另外两根木杆在同一路灯灯光下的 影子的位置吗?能确定影子的长短吗?
15.为解决楼房之间的挡光问题,某地区规定:两幢楼房
间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一
看得见部分的轮廓线画成实线,因被其他部 分遮挡而看不见部分的轮廓线画成虚线.
解:图是钢管的三视图,其中的虚线表示钢
管的内壁.









1. 画出半球和圆锥的三视图.
练习
半 圆
主视图 左视图
圆 锥
主视图
左视图
俯视图
· 俯视图
2、画下例几何体的三视图
知识点回顾
(2)举例说明如何画直三棱柱,直四棱柱 的三种视图。
P125 由三视图描述实物形状,画出物体表面展开图(2)
几何体
三种视图
主视图 俯视图
左视图
几何体
三种视图
主视图 俯视图
左视图
P124 5题
P124 5
P124 6
P124 7
P124 7
P123 2
P123 2
P 123 2 画出图中的几何体的三视图:
2、画下例几何体的三视图
(1) 主





俯 视 图
课堂练习
2、如下图,是由一些相同的小正方 体构成的几何体的三视图,请问这几 何体小正方体中的个数是——A —。
A. 4
主视图
左视图
B. 5
俯视图
C. 6
D. 7
所示的 Rt△ABC 绕直角边 AB 旋转一周,所得几何体的主视图为( )
A
C
B
图7
A.
B.
C.
D.
如图是由 5 个大小相同的正方体摆成的立体图形,它的正.视.图.是( )
请画出图中另一根木棒的影子。
小结
平行投影
有时光线是一组互相平行的射线,例如 太阳光或探照灯光的一束光中的光线.由平行光 线形成的投影是平行投影.
相关文档
最新文档