常用计量经济学模型课件

合集下载

第3章 多元线性回归模型 《计量经济学》PPT课件

第3章 多元线性回归模型  《计量经济学》PPT课件

于是:
βˆ
ˆ1 ˆ 2
0.7226 0.0003
0.0003 1.35E 07
15674 39648400
01.0737.71072
⃟ 正规方程组 的另一种写法
对于正规方程组 XY XXβˆ
XXβˆ Xe XXβˆ
于是 Xe 0 (*)

ei 0
(**)
X jiei 0
i
(*) 或( ** )是多元线性回归模型正规方程 组的另一种写法。
第三章 经典单方程计量经济学模型: 多元线性回归模型
• 多元线性回归模型 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 回归模型的其他形式
§ 3. 1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
多元线性回归模型 : 表现在线性回归模型 中的解释变量有多个。
的秩 =k+1 ,即 X 满秩。
假设 2. 随机误差项零均值,同方差。
0
0
0
E

μ
)
E
1
n
1
n
E
12
n 1
1 n
2 n
var(1 ) cov(1, n ) 2 0
2I
cov(
n
,
1
)
var(n )
0
2
i E(i )
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟ 随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏 估计量为:
ˆ 2
ei2 n k 1
ee n k 1

计量经济学--几种常用的回归模型课件

计量经济学--几种常用的回归模型课件

计量经济学--几种常用的回归模型
18
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。
• P166例6.4
计量经济学--几种常用的回归模型
19
对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
20
Yi 1 2 ln X i i
计量经济学--几种常用的回归模型
9
半对数模型
• 只有一个变量以对数形式出现
计量经济学--几种常用的回归模型
10
2. 半对数模型
• 线性到对数模型(因变量对数形式) • 对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
11
• 线性到对数模型(因变量对数形式)
计量经济学--几种常用的回归模型
12
Yt Y0(1 r )t
ln Yi 2 ln X i i
计量经济学--几种常用的回归模型
4
2的含义?
• 其测度了Y对X的弹性,即X变动百分之一引起Y变 动的百分数。
• 例如,Y为某一商品的需求量,X为该商品的价格, 那么斜率系数为需求的价格弹性。
计量经济学--几种常用的回归模型
5
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
计量经济学--几种常用的回归模型
8
ห้องสมุดไป่ตู้意
• 是产出对资本投入的(偏)弹性,度量
在保持劳动力投入不变的情况下资本投入 变化1%时的产出变动百分比;
• 是产出对劳动投入的(偏)弹性,度量
在保持资本投入不变的情况下劳动力投入 变化1%时的产出变动百分比;
• 给出了规模报酬信息

计量经济学模型基础篇ppt课件

计量经济学模型基础篇ppt课件
2019 3
• 一般情况下,内生变量与随机项相关,即
Cov(Yi , i ) E ((Yi E (Yi ))( i E ( i )))
E ((Yi E (Yi )) i ) E (Yi i ) E (Yi ) E ( i ) E (Yi i ) 0
2019 12
1 11 12 1n 2 21 22 2 n g g1 g 2 gn
11 12 1g 22 2 g 21 g1 g 2 gg
1 1 1 1 Ct C1 C2 Cn X Y Y Y Y Y I t I1 I 2 I n n 1 t 1 0 1 G G G G Y Y Y Y n t 1 2 n t 1 2
• 在联立方程模型中,内生变量既作为被解释变量, 又可以在不同的方程中作为解释变量。
2019 4
⒉外生变量 (Exogenous Variables)
• 外生变量一般是确定性变量,或者是具有临界概 率分布的随机变量,其参数不是模型系统研究的 元素。 • 外生变量影响系统,但本身不受系统的影响。
• 外生变量一般是经济变量、条件变量、政策变量、 虚变量。 • 一般情况下,外生变量与随机项不相关。
2019 5
⒊ 先决变量(Predetermined Variables)
• 外生变量与滞后内生变量(Lagged Endogenous
Variables)统称为先决变量。 • 滞后内生变量是联立方程计量经济学模型中重 要的不可缺少的一部分变量,用以反映经济系 统的动态性与连续性。 • 先决变量只能作为解释变量。

经济模型的参数估计 计量经济学 EVIEWS建模课件

经济模型的参数估计 计量经济学 EVIEWS建模课件

⑵两个回归特例
①Y=β0+ε;这时Y的估计值为常数b0。
即min
∑e2;Foc: e2 0→
b0
Y - b0 2 0 b0
- 2 Y - b0 0 Y b0
②Y=β1X+ε;这时有:
Foc: e2 0 →
b1
Y - b1X2 0 b1
-
2
Y
-
b1XX=0
b1
XY X2
⒉ 为什么使用多元回归*
• 以一元与二元的比较进行分析
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
b1= ˆ1
xi yi 5769300 0.777 xi2 7425000
b0= ˆ0 Y ˆ0 X 1567 0.777 2150 103.172
因此,由该样本估计的回归方程为:
Yˆi 103.172 0.777 X i
估计模型为:Yˆi 103.172 0.777 X i ei
数据表见下页:
可支配收入X-消费支出Y的样本表数据处理见下表所示:
Xi
Yi
xi
1 2 3 4 5 6 7 8 9 10 求和 平均
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 21500 2150
594 638 1122 1155 1408 1595 1969 2078 2585 2530 15674 1567

常用计量经济模型ppt课件

常用计量经济模型ppt课件

k 1k 0
24
自相关函数
0 1
k
k 0
1k
1k1
➢ 这说明自回归过程具有无限记忆力。
➢ 过程当前值与过去所有时期的值相关,且时期越早, 相关性越弱。
25
四、移动平均(Moving Averages)模型
q阶移动平均模型MA (q): yt t 1 t1 2 t2 q tq
Granger, C. W. .J. (1969) Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.
Econometrica, 37, 424-438.
34
Granger Causality Test
ARMA (p , q): yt 1 yt1 p yt p t 1 t1 q tq
ARMA(1 , 1):
yt 1 yt1 t 1 t1
均值
1 1
29
ARMA (1,1)过程的自相关函数
方差 协方差
0
1
2 1
211
1 12
2
1
1
0
1
பைடு நூலகம்
2
2 1 1
若xt 和yt是随机游走,但变量zt =xt –λyt是平 稳的,则称xt 和yt是协整的,协整向量为(1 , –λ )。
38
[例] 考虑模型
y1t y2t u1t
y2t y2,t 1 u2t
其中u1t和u2t是不相关的白噪声。
yt
yt 1
0.5yt2 )
此时可大致认为 ~yt 已无季节和不规则波动,可看作
L C 的估计 9

计量经济学第五讲---模型函数形式

计量经济学第五讲---模型函数形式
t (8739 .399)(285.9826 ) p (0.0000 ) (0.0000 ) r 2 0.999658
32
第5章
33
第5章
34
第5章

35
第5章
Dependent Variable: Y Method: Least Squares Sample: 1970 1999 Included observations: 30 Variable Coefficient Std. Error t-Statistic Prob.
Akaike info criterion
Schwarz criterion F-statistic Prob(F-statistic)
6.816985
6.915724 8080.449 0.000000
44
第5章
45
第5章
半对数模型总结
1、对数—线性模型(增长率模型)
2、线性—对数模型
LOG(Z)
R-squared
Adjusted R-squared
0.845997
0.995080 0.994501
0.093352
9.062488
0.0000
12.22605 0.381497
-4.155221 -4.005861
Mean dependent var S.D. dependent var
每提高1个百分点,平均而言,数学S.A.T分数将增加0.13 个百分点。根据定义,如果弹性的绝对值小于1,则称缺 乏弹性。因此,在该例中,数学S.A.T分数是缺乏弹性的。 另外,r2=0.9, 表明logX解释了变量logY的90%的变 动。
13
第5章

计量经济学课件PPT线性模型概述

计量经济学课件PPT线性模型概述
第三章 线性回归模型概述
回归模型分为;线性和非线性 线性模型(按变量划分);变量以1次的形式出现 线性模型(按参数划分);参数以1次的形式出现 线性回归模型是线性模型的一种,参数以1次形式 出现,通常可以通过一些变换,将非1次的变量化 为1次。


线性回归模型的数学基础;回归分析,企图通过 回归模型的形式揭示变量之间的因果关系 线性回归模型是是一类最为普遍的计量经济模型
ˆ ˆ x ˆ y 用以估计E (Y / X ) ˆ y ˆ 用以估计
i 0 1 i i 0 0

ˆ
1
用以估计
0 1
1
ˆ、 ˆ 称为估计量 ˆ、 y
i
估计量(Estimator)



一个估计量又称统计量,是指一个规则、 公式或方法,是用已知的样本所提供的 信息去估计总体参数。 统计量是样本的函数,因为抽样是随机 的,统计量具有随机性;对一次已经实 现的抽样,统计量又是确定的。 在应用中,由估计量算出的数值称为估 计值。
样本回归函数的随机形式
ˆ ˆ x u y ˆ 样本的残差项 (Re sidual ) ˆ u 用以估计总体残差 ˆ u u ˆ ˆ u yy ˆ yy ˆ u
i 0 1 i i i i i i i i i i i



样本回归函数的随机形式准确地描述了样本 样本残差是可以计算出来的 残差=实际值-(模型确定的)拟合值
生产函数 Q AK

ln Q ln A ln K ln L
q
L

成本函数 C ab ln C ln a q ln b
3、级数展开

著名的CES——不变替代弹性生产函数,展 开泰勒级数,得到一个线性近似公式

计量经济学7经典计量经济学应用模型

计量经济学7经典计量经济学应用模型

四、几种主要生产函数模型旳参数估计措施 五、生产函数模型在技术进步分析中旳应用 六、建立生产函数模型中旳数据质量问题
一、几种主要概念
⒈ 生产函数 ⑴ 定义 • 描述生产过程中投入旳生产要素旳某种组协议
它可能旳最大产出量之间旳依存关系旳数学体 现式。
Y f ( A, K, L,)
• 投入旳生产要素 • 最大产出量
C-D生产函数 C-D生产函数旳改
C-D生产函数旳改
含体现型技术进步
1967年 Arrow等
两要素CES生产函数
1967年 Sato
二级CES生产函数
1968年 Sato, Hoffman VES生产函数
1968年 Aigner, Chu
边界生产函数
1971年 Revanker
VES生产函数
1973年 Christensen, Jorgenson 超越对数
• 退化为C-D生产函数。为何?
• 当a=1时,
1 bk
1
b
c
Y AK 1c ( L ( ) K) 1c
1 c
1 ( )m
b
c ( )m
Y AK 1c ( L ( ) K) 1c
1 c
为实际应用旳VES生产函数。
•为何是“变替代弹性”?
⒍ 超越对数生产函数模型 (Translog P.Fln K ln( L K)
生产函数
1980年
三级CES生产函数
⑶ 生产函数是经验旳产物 • 生产函数是在西方国家发展起来旳,作为西方经
济学理论体系旳一部分,与特定旳生产理论与环 境相联络。
• 西方国家发展旳生产函数模型能够被我们所应用 :
生产函数反应旳是生产中投入要素与产出量 之间旳技术关系;

计量经济学联立方程组模型课件

计量经济学联立方程组模型课件

Y X
2M Mt
21 1t
X u
2k k t
2t

Y
M1 1t
Y
MMMt
X
M1 1t
X u
MK k t
Mt
其中:ij 内生变量的参数 ij 前定变量的参数
矩阵形式: B Y X u
其中: 内生变量结构参数矩阵 、前定变量结构参数矩 阵分别为:
计量经济学联立方程组模型 课件
本章要解决的主要问题: 1、为什么要引入联立方程组模型(经济背景;计量经济问题);
2、联立方程组模型的识别问题;
3、联立方程组模型的估计。
前述的“单一方程模型”中只含一个被解释变量(如Y)和一个 (或多个)解释变量(如X)。
其特征:解释变量是被解释变量(如Y)变化的原因,是单向 的因果关系。
2 t1
2t
Ct =消费支出;YItt=投资Ct额;ItGt =G政t 府购买支出;Yt GDP;
解:先将模型写成一般 形式:
Ct 0 It 1Yt 0 0 Yt1 0 Gt u1t 0 Ct It 1Yt 0 2Yt1 0 Gt u2t
2)每个结构方程中的解释变量可以是前定变量(外生变量、滞 后的内生变量变量)、也可以是内生变量(当内生变量做解释变量 时,会造成解释变量与随机扰动项之间相关,违背了基本假定。此 时直接用OLS估计参数,参数估计是有偏、且不一致的(即:产生 了联立方程偏倚)) 稍后再证明。
3)结构参数表示解释变量对被解释变量的直接影响。
(它们之间的间接关系(影响)只能通过解方程才能取得)
前述 1中例 的方 1)程 中 1表 ( 的示 G: D ( Y P )每变动一 消费C支 t改 出 变 1个单位。

计量经济学ppt课件(完整版)

计量经济学ppt课件(完整版)
注意事项
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。

《计量经济学》ppt课件

《计量经济学》ppt课件

04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型

常用计量经济学模型

常用计量经济学模型

Box和Pierce的Q统计量
Q T
2 2 ˆ ( k ) ~ (K ) k 1
K
如果检验通过,则随机过程是白噪声。
自相关函数还可被用于检验一个序列是否平稳。
平稳时间序列的自相关函数随着滞后期k的增加而快速下降为0
(k )
(k )
k
k
平稳序列
非平稳序列
齐次非平稳过程
yt非平稳,但yt – yt-1平稳,称yt为一阶齐次非平稳过程 [例] 随机游走过程是一阶齐次非平稳过程
对于季度资料
~ 此时可大致认为 yt 已无季节和不规则波动,可看作 L C 的估计
1 ~ yt (0.5 yt 2 yt 1 yt yt 1 0.5 yt 2 ) 4
第二步 估计S×I

yt zt ~ yt
L S C I ( S I) LC
zt即为S×I的估计
第三步 消除不规则变动,得到S的估计
对S×I中同一季节的数据进行平均,从而消除掉I。
例如,对于月度数据,假定 y1是1月份的数据,
y2是1月份的数据,
y3是1月份的数据, 则 y4是1月份的数据,总共4年数据。
1 z1 ( z1 z13 z 25 z37 ) 4 1 z 2 ( z 2 z14 z 26 z38 ) 4
五、混合自回归-移动平均(ARMA)模型
ARMA (p , q):
yt 1 yt 1 p yt p t 1 t 1 q t q
ARMA(1 , 1):
yt 1 yt 1 t 1 t 1

美国商业部:1986年1月至1995年12月百货公司 的月零售额(亿元)

第一讲经典计量经济学模型

第一讲经典计量经济学模型
第一讲经典计量经济学模型
方差分析表
变差来源 归于回归模型 归于残差 总变差
平方和
自由度
方差
第一讲经典计量经济学模型
F检验
建立统计量:
给定a,查F分布表得临界值Fa(k,n-k-1)
▼如果F>Fa(k,n-k-1),则拒绝H0,说明回归模型有显著 意义,即所有解释变量联合起来对Y有显著影响。
▼如果F<Fa(k,n-k-1),则接受H0,说明回归模型没有显 著意义,即所有解释变量联合起来对Y没有显著影响。
多元线性回归模型的基本假定
假定1:零均值假定 假定2:同方差假定 假定3:无自相关假定 假定4:随机扰动项与解释变量不相关
第一讲经典计量经济学模型
假定5:无多重共线性假定 假定各解释变量之间不存在线性关系(线性无 关),亦即解释变量观测值矩阵X列满秩。
假定6:正态性假定
第一讲经典计量经济学模型
二、普通最小二乘法(OLS) 1、普通最小二乘法
修正的可决系数
修正的可决系数为
特点:
k越大, 越小。 综合了精度和变量数两个因素,兼 顾了精确性和简洁性。
R2必定非负,但 可能为负值。
第一讲经典计量经济学模型
信息准则
为了比较不同解释变量个数k的多元回归模型的拟合优度, 常用的标准还有: 赤池信息准则(Akaike information criterion, AIC)
第一讲经典计量经济学 模型
2020/12/5
第一讲经典计量经济学模型
专题一 经典计量经济学模型
第一节 经典多元线性回归模型 第二节 异方差性 第三节 序列相关性 第四节 多重共线性 第五节 虚拟变量模型 第六节 滞后变量模型
第一讲经典计量经济学模型

计量经济学课件全完整版

计量经济学课件全完整版
04
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折 线图或散点图,判断其 是否具有明显的趋势或 周期性变化。
自相关函数法
利用自相关函数描述时 间序列的自相关性,若 自相关函数迅速衰减, 则表明时间序列可能是 平稳的。
单位根检验法
通过检验时间序列是否 存在单位根来判断其平 稳性,常用的单位根检 验方法有ADF检验和PP 检验。
非线性模型定义
非线性模型指的是响应变量与解释变量 之间的关系无法用线性方程来描述的统 计模型。这类模型通常涉及到复杂的数 学函数和算法,用于拟合和预测非线性 关系的数据。
VS
非线性模型分类
根据模型的数学形式和特点,非线性模型 可分为多种类型,如多项式回归、神经网 络、支持向量机等。
广义线性与非线性模型比较
ARIMA模型
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
参数解释
β0为截距项,β1至βk为斜率项,ε为随机误差项
最小二乘法估计
通过最小化残差平方和来估计参数β0, β1, ..., βk
回归模型假设条件及检验方法
线性关系假设
自变量与因变量之间存在线性关系
误差项独立同分布假设
误差项之间相互独立且服从同一分布
回归模型假设条件及检验方法
• 无多重共线性假设:自变量之间不存在完 全线性关系
时间序列分析与预测
时间序列基本概念及性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档