名-基因工程原理与基因工程药物学-名词解释
基因工程名词解释
名词解释:的分离、合成)插入载体分子,构成遗传物质的1.Gene Engineering基因工程:在体外把核酸分子(DNA),引入原先没有这类分子的受体细胞内,稳定地复制表达繁殖,培育符合人们需要的新组合(重组DNA 新品种(品系),生产人类急需的药品、食品、工业品等。
人类基因组计划:是一项规模宏大,跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体2.HGP从而绘制人类基因组图谱,并且辨识其载有的亿个碱基对组成的核苷酸序列,(指单倍体)中所包含的30基因及其序列,达到破译人类遗传信息的最终目的。
3.Gene Therapy 基因治疗:是指将外源正常基因导入靶细胞,取代突变基因,补充缺失基因或关闭异常基因,达到从根本上治疗疾病的目的。
.基因诊断:是利用重组DNA 技术作为工具,直接从DNA水平监测人类遗传性疾病的基因缺陷。
Vector载体:是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增或表达的工具。
plasmid质粒:是生物细胞内固有的、能独立于宿主染色体而自主复制、并被稳定遗传的一类核酸分子。
shuttle vector穿梭载体:是指含有两个亲缘关系不同的复制子,能在两种不同的生物中复制的。
质粒不相容性;同种的或亲缘关系相近的两种质粒不能同时稳定地保持在一个细胞内的现象,称为质粒不相容性. multiple cloning sites,MCS多克隆位点:DNA载体序列上人工合成的一段序列,含有多个限制内切酶识别位点。
能为外源DNA提供多种可插入的位置或插入方案。
α-互补:LacZ'基因的互补:lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶基因的突变体之间实现互补。
粘性末端:指DNA分子的两端具有彼此互补的一段突出的单链部分, 这一小段单链部分和同一分子的另一端或其它分子末端的单链部分如果互补的话,则能通过互补碱基之间的配对, 形成双链。
并在DNA连接酶的作用下, 使同一DNA 分子的两端连接成环状,或使两个分子连成一大的线状分子。
基因工程名词解释
名词解释【基因工程】:在体外对不同生物的遗传物质(基因)进行剪切、重组、连接,然后插入到载体分子中(细菌质粒、病毒或噬菌体DNA),转入微生物,植物或动物细胞内进行无性繁殖,并表达出基因产物。
【限制性核酸内切酶】:是一类能够识别双链DNA分子中的某种特定核苷酸序列(4-8bp),并由此处切割DNA双链结构的核酸内切酶。
【识别序列】:限制性核酸内切酶在双链DNA上能够识别的特殊核苷酸序列被称为识别序列。
【酶切位点】:DNA在限制性核酸内切酶的作用下,使多聚核苷酸链上磷酸二酯键点开的位置被称为切割位点。
【粘性末端】:是指含有几个核苷酸单链的末端,可通过这种末端的碱基互补,使不同的 DNA片段发生退火。
【平末端】:限制酶在它识别序列的中心轴线处切开时产生的平齐的末端。
【同裂酶】:一些来源不同的但能识别位点的序列相同的限制性内切酶。
【同尾酶】:一些来源不同且识别序列不同,但能产生相同粘性末端的限制性内切酶。
【DNA的甲基化程度】:DNA被甲基化酶甲基化,识别序列中的核苷酸一旦被甲基化,就会影响内切酶的切割效率。
【位点偏爱】:对不同位置的同一个识别序列表现出不同的切割效率的现象【内切酶的star活性】:某种限制性核酸内切酶在特定条件下,可在不是原来的识别序列处切割DNA,这种现象称为star活性。
【末端转移酶】:一种能将脱氧核苷酸三磷酸(dNTP)加到某DNA片段上3’-OH基上的酶。
【DNA连接酶】:借助ATP或NAD水解提供的能量催化DNA双链,DNA片段紧靠在一起的3’-OH末端与5’-PO4末端之间形成磷酸二酯键,使两末端连接【DNA聚合酶】:以DNA为复制模板,使DNA由5'端点开始复制到3'端的酶。
【反转录酶】:与DNA聚合酶作用方式相似:5’→3’聚合,模版是mRNA,合成DNA【碱性磷酸酶】:能够催化核酸分子脱掉5’磷酸基团,从而使DNA(或RNA)片段的5’-P 末端转换成5’-OH末端。
基因工程原理题库-名词解释
基因工程原理题库-名称解释1.基因:DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。
2.假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。
3.重叠基因: 是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列为两个或两个以上基因的组成部分。
4.结构基因:指受调控的编码特定生物合成和代谢过程中的酶/蛋白质的基因。
5.调节基因(regulator gene): 是编码合成那些参与基因表达调控的RNA和蛋白质的特异DNA序列。
6.基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。
7.基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。
8.基因组:该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。
9.基因工程:是指在分子水平上,根据分子生物学和遗传学原理,在体外将一个生物体中有用的目的DNA(或基因)核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,并使之掺入到原先没有这类分子的寄主细胞中内,而能持续稳定的繁殖。
使后者获得所需的新遗传性状或表达所需产物,最终实现该技术的商业价值。
10.操纵子:是原核生物中一组功能上相关,受同一调控区控制的基因组成的一个遗传单位。
11.mRNA (messenger RNA):由DNA的一条链作为模板转录而来的、携带遗传信息并指导蛋白质合成的一类单链核糖核酸。
12.启动子:在DNA 转录起始时RNA聚合酶识别并与其结合的一段DNA 片段,一般不编码蛋白,具有与RNA 聚合酶结合位点,并引导转录的起始。
13.增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。
它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。
基因工程名词解释
基因工程名词解释1、基因工程:对不同的遗传物质在体外进行剪切、组合和拼接,使遗传物质重新组合,然后通过载体转入微生物、植物和动物细胞内,进行无性繁殖,并使所需的基因在细胞中表达,产生人类所需的产物或新生物类型。
2、重组DNA技术:是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后再转入另一个生物体(受体)内,按照人们的意愿稳定遗传并表达新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
3、基因xx:经无性繁殖获得基因许多相同拷贝的过程。
通常是将单个基因导入宿主细胞中复制而成。
(包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组的DNA,然后送入受体生物中去表达。
从而产生遗传物质和状态的转移和重新组合。
)4、限制性内切核酸酶:一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸水解酶。
5、修饰酶:体内有些酶可在其他酶的作用下,将酶的结构进行共价修饰,使该酶活性发生改变,这种调节称为共价修饰调节(covalentmodificationregulation),这类酶称为修饰酶(prosessing enzyme)。
6、同裂酶:识别相同序列的限制酶称同裂酶,但它们的切割位点可能不同。
(同序同切酶、同序异切酶、“同功多位”等)7、同尾酶:切割不同的DNA片段但产生相同的粘性末端的一类限制性内切酶。
8、位点偏爱:某些限制酶对同一底物中的有些位点表现出偏爱性切割,即对不同位置的同一个识别序列表现出不同切割效率。
9、星星活性:极端非标准反应条件下,限制酶能够切割与识别序列相似的序列,这个改变的特殊性称星星活性。
10、甲基化酶:原核生物甲基化酶是作为限制与修饰系统中的一员,用于保护宿主DNA不被相应的限制酶所切割。
11、DNA聚合酶:以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。
DNA聚合酶的主要活性是催化DNA的合成(在具备模板、引物、dNTP等的情况下)及其相辅的活性。
基因工程名词解释
基因工程是要按人们的意愿去有目的地改造,创建生物遗传性,因此最基本的工程就是得到目的基因或核酸序列的克隆。
分离或改建的基因和核酸序列不能自身繁殖,需要载体携带它们到合适的细胞中复制和表现功能。
基因工程( genetic engineering ):狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。
又称DNA重组技术(DNA recombination)广义上讲,基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。
供体、受体、载体构成了基因工程的三要素基因工程的工具酶(instrumental enzyme of gene engineering)是应用于基因工程各种酶的总称,包括核酸序列分析、标记探针制备、载体构建、目的基因制取、重组体DNA制备等所需要的酶类。
R-M系统是细菌安内御外的积极措施。
细菌R-M系统的限制酶可以降解DNA,为避免自身DNA的降解,细菌可以修饰(甲基化酶)自身DNA,未被修饰的外来DNA则会被降解。
限制性核酸内切酶(限制酶):在细胞内能够识别双链DNA分子中的特定核苷酸序列,并对DNA分子进行切割的一种酶。
同裂酶:来源不同的限制酶识别相同的核苷酸靶序列。
产生同样的切割,形成同样的末端。
同尾酶:来源不同,识别的核苷酸靶序列也不相同,但切割后DNA分子产生的粘性末端EcoRⅠ在正常情况下识别GAATTC序列发生切割,但如果缓冲液中甘油浓度超过5%,其识别位点发生松动,可在AATT处发生切割,EcoRⅠ这种特殊的识别能力叫做星活性,用EcoR Ⅰ*表示。
星活性可造成位点切割机率不等,降解不完全。
甲基化酶也称修饰酶(modification enzyme),用来修饰限制酶的识别序列,在该序列位点的胞嘧啶(C)5-氨基上加一个甲基,使得该序列可以被限制性内切酶识别而免于切割。
基因工程名词解释
基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。
两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。
BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。
平末端(blunt ends): DNA片段的末端是平齐的。
星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
易产生星活性的内切酶用*标记。
如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。
连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。
基因工程名词解释
基因工程名词解释1.基因工程:指将一种或多种生物体(供体)的基因或基因组提取出来,或者人工合成的基因,按照人们的愿望进行严密的设计,经过体外加工重组,转移到另一种生物体(受体)的细胞内,使之能在受体细胞遗传并获得新的遗传性状的技术。
2.复制子:DNA复制时从一个DNA复制起点开始最终由这个起点起始的复制叉完成的片段。
DNA中发生复制的独立单位称为复制子。
3.半保留复制:即DNA复制时亲代DNA的两条链解开,每条链作为新链的模板,从而形成两个子代DNA分子,每一个子代DNA分子包含一条亲代链和一条新合成的链。
4.一个单位的限制性核酸内切酶:在合适的温度和缓冲液中,在50ul反应体系中,1h完全降解1ug底物DNA所需要的酶量。
5.星号活性:指限制性内切酶的识别位点测定时,当改变测定条件时,有些酶的识别位点也随之改变,可能切割一些与特异识别序列相类似序列的现象。
6.一个韦氏单位:指在37度,20分钟内催化1nmol 32P从磷酸根置换到y,B-32P-ATP所需要的酶量。
7.载体:指基因工程中携带外源基因进入受体细胞的“运载工具”。
8.质粒的不亲和性:也称不相容性,是指在没有选择压力的情况下,两种不同质粒不能够在同一个宿主细胞系中稳定地共存的现象。
9.多克隆位点(MCS):指载体上人工合成的含有紧密排列的多种限制性和酸内切酶酶切位点的DNA片段。
10.阅读框架:指RNA或DNA中,一组连续且不重复的3核苷酸密码子11.T-DNA:能转移到植物细胞内的DNA片段质粒拷贝数:是指生长在标准的培养基下每个细菌细胞中所含有的质粒DNA分子的数目。
12.探针:是指经放射性或非放射性等物质标记的已知或特定的DNA或RNA序列。
13.DNA的变性:通过加热或变性作用可使DNA双螺旋的氢键断裂,双链解离,形成单链DNA。
14.DNA复性:解除变性条件之后,变性的单链可以重新结合起来,形成双链。
15.平台效应:是指PCR循环的后期,合成的产物到达0.3~1pmol的水平,由于产物积累,使原来以指数增加的速率变成平坦曲线,扩曾产物不在循环次数而明显上升。
基因工程名词解释
★基因工程概念(狭义)是在分子生物学和分子遗传学等学科综合发展的基础上,于上世纪70年代诞生的一门崭新的生物技术科学。
应用基因工程技术完全打破生物界物种的界限,在体外对大分子DNA进行剪切、加工、重组后引入细胞中表达,使其具有新的遗传特性,从而定向改造生物。
广义:指DNA重组技术的产业化设计与应用,包括上下游技术。
上游技术指外源基因重组、克隆和表达载体构建;下游技术则涉及含有重组外源基因的生物细胞的大规模培养以及外源基因表达产物的分离、纯化过程。
★基因: 是一个含有特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。
基因特点:基因是实体:DNA或RNA(如烟草花叶病毒);基因是具有一定遗传效应的DNA分子中特定的核苷酸序列;基因是遗传信息传递和性状分化发育的依据;基因是可分的,根据其编码产物的功能,可分为编码蛋白质基因、tRNA和rRNA,以及不转录却有特定功能的DNA区段(如启动子、操作子基因等)。
★两个实验:首先用肺炎双球菌实验证明基因的化学本质DNA分子的是美国著名微生物学家O.T. Avery于1944年发表;1952美国冷泉港喀内基遗传学实验室的A.D.Hershey用35S和32P分别标记噬菌体外壳蛋白质与DNA,感染大肠杆菌,证明了Avery的结论。
★顺反子:在现代的遗传学文献中,顺反子和基因这两个术语是相互通用的,一般说来,一个顺反子就是一个基因,大约含有1500个核苷酸对,是由一群突变单位和重组单位组成的线性结构。
因此,基因不是最小单位,它仍然是可分的;并非所有的DNA序列都是编码基因,而只有其中某一特定的多核苷酸区段才是基因的编码区。
★基因家族是真核生物基因组中来源相同,结构相似,功能相关的一组基因。
★假基因:具有与功能基因相似的核苷酸序列,但由于有许多突变以致失去了原有的功能,所以是没有功能的基因,常以ψ表示。
现已在大多数真核生物中发现了假基因。
★基因工程诞生:核酸限制性内切酶:1972年H. Y. Boyer发现EcoRI位点GAATTC。
《基因工程》名词解释
名词解释:1.Gene Engineering基因工程:在体外把核酸分子(DNA的分离、合成)插入载体分子,构成遗传物质的新组合(重组DNA),引入原先没有这类分子的受体细胞内,稳定地复制表达繁殖,培育符合人们需要的新品种(品系),生产人类急需的药品、食品、工业品等。
2.HGP人类基因组计划:是一项规模宏大,跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。
3.Gene Therapy 基因治疗:是指将外源正常基因导入靶细胞,取代突变基因,补充缺失基因或关闭异常基因,达到从根本上治疗疾病的目的。
.基因诊断:是利用重组DNA 技术作为工具,直接从DNA水平监测人类遗传性疾病的基因缺陷。
Vector载体:是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增或表达的工具。
plasmid质粒:是生物细胞内固有的、能独立于宿主染色体而自主复制、并被稳定遗传的一类核酸分子。
shuttle vector穿梭载体:是指含有两个亲缘关系不同的复制子,能在两种不同的生物中复制的。
质粒不相容性;同种的或亲缘关系相近的两种质粒不能同时稳定地保持在一个细胞内的现象,称为质粒不相容性.multiple cloning sites,MCS多克隆位点:DNA载体序列上人工合成的一段序列,含有多个限制内切酶识别位点。
能为外源DNA提供多种可插入的位置或插入方案。
α-互补:LacZ’基因的互补:lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶基因的突变体之间实现互补。
粘性末端:指DNA分子的两端具有彼此互补的一段突出的单链部分, 这一小段单链部分和同一分子的另一端或其它分子末端的单链部分如果互补的话,则能通过互补碱基之间的配对, 形成双链。
并在DNA连接酶的作用下, 使同一DNA分子的两端连接成环状,或使两个分子连成一大的线状分子。
关于基因工程的名词解释
关于基因工程的名词解释引言:基因工程,作为现代生命科学的一个重要分支,旨在通过改变生物体的遗传信息,实现对生物特性的调控和改良。
下面将解释一些与基因工程相关的常见名词,以便更好地理解这个领域的重要概念。
一、基因工程基因工程,又称遗传工程,是一种通过人工方法对生物体的基因进行操作和改造的技术。
它包括对DNA序列的修改、插入和删除,以达到改变生物的表型特征或增强其产物能力的目的。
二、DNADNA(脱氧核糖核酸)是生物体内存储遗传信息的主要分子,它由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳟嘧啶)组成,通过特定的序列排列形成基因。
基因工程的核心工作就是对DNA进行修饰和操作。
三、基因基因是DNA中编码一个特定蛋白质或遗传特征的单位。
每个生物体都由大量基因组成,这些基因决定了生物体的特性和遗传信息的传递方式。
基因工程中的目标之一就是对特定基因进行改造,以期望在生物体中产生特定的效果。
四、基因组基因组是一个生物体中包含的所有基因的集合。
它可以分为染色体基因组和质粒基因组。
染色体基因组是生物体核内DNA组成的基因集合,而质粒基因组则存在于质粒中,通常被用于外源基因的插入和传递。
五、重组DNA技术重组DNA技术是基因工程中一项重要的技术手段,它通过将源自不同生物体的DNA片段在体外进行精确拼接,创造出新的重组DNA。
这种技术可以用于插入外源基因、制备重组蛋白质等。
六、基因表达调控基因表达调控是指细胞对特定基因的调控机制,包括转录因子的结合、启动子区域的调控和DNA甲基化等。
通过基因表达调控,科学家可以改变基因的表达水平,进而改变生物的性状和功能。
七、转基因转基因是指将外源基因导入目标生物体中的过程。
通过转基因技术,科学家可以将具有特定功能的基因导入到其他生物体中,从而改变目标生物体的遗传特性。
八、克隆技术克隆技术是基因工程中的一项重要技术,它可以复制生物体的DNA或细胞。
克隆技术主要包括体细胞核移植和DNA克隆。
基因工程名词解释
基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。
两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。
BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。
平末端(blunt ends): DNA片段的末端是平齐的。
星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
易产生星活性的内切酶用*标记。
如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。
连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。
基因工程制药名词解释
基因工程制药名词解释基因工程制药是指利用基因工程技术生产药物的过程。
以下是基因工程制药常见名词的解释:1. 基因工程:基因工程是一种利用生物技术改变生物体遗传物质的方法。
通过人为选择和转移与特定功能相关的基因,可以改良生物体的性状或让其产生特定的产物。
2. 表达载体:表达载体是指一种DNA分子,用于传递外源基因到宿主细胞中,并使外源基因能够表达出目标蛋白质。
表达载体通常包括启动子、转录终止信号、选择性标记基因等元素。
3. 重组蛋白质:重组蛋白质是通过基因工程技术在外源表达系统中合成的蛋白质。
这些蛋白质通常是具有特定功能或药理学活性的,例如抗体、生长因子和酶等。
4. 重组DNA技术:重组DNA技术是指将不同来源的DNA片段组装到一起,形成新的DNA序列。
这项技术是进行基因工程研究和制药生产的关键步骤之一。
5. 基因转导:基因转导是将外源基因转移到宿主细胞中的过程。
通常通过病毒载体或非病毒载体传递外源基因到宿主细胞中,从而使宿主细胞表达目标蛋白质。
6. 选择标记基因:选择标记基因是用于筛选宿主细胞是否成功转导外源基因的标志性基因。
常见的选择标记基因包括抗生素抗性基因或含有发光标记的基因。
7. 纯化:纯化是将合成的重组蛋白质从杂质中分离出来的过程。
常见的纯化方法包括亲和纯化、离子交换层析和凝胶过滤。
8. 质量控制:质量控制是对基因工程制药产品的开发、生产和分析过程进行监控,以确保产品的质量符合国际质量标准。
质量控制包括产品的物理、化学和生物学测试等。
9. 免疫学制剂:免疫学制剂是一种通过基因工程技术生产的用于治疗疾病的药物。
免疫学制剂包括疫苗、单克隆抗体等,可通过调节和加强免疫系统来预防和治疗疾病。
10. 基因治疗:基因治疗是一种利用基因工程技术修复或替代患者缺陷基因的治疗方法。
通过将正常的基因导入患者体内,可修复或恢复患者体内缺少或异常的基因功能,从而治疗疾病。
基因工程药物名词解释
基因工程药物名词解释基因工程药物是指通过基因工程技术获得的药物。
基因工程是一种利用生物工程技术,通过改变或修饰生物体的遗传物质来实现对生物体的改造和利用的方法。
而基因工程药物就是通过对遗传物质的修改和改变来获得的药物。
基因工程药物包括基因治疗药物、重组蛋白药物和抗体药物等。
基因治疗药物是通过将修饰后的基因导入到患者体内,以达到治疗疾病的目的。
这种药物的作用机制是通过修复或改善患者的异常基因表达或功能,从而恢复或改善患者的疾病状态。
基因治疗药物的应用领域包括遗传性疾病、癌症等。
重组蛋白药物是通过基因工程技术获得的蛋白质药物。
这种药物的制备过程是将目标基因导入到表达系统中,经过表达、纯化和制剂等步骤获得纯化的蛋白质药物。
重组蛋白药物的应用领域非常广泛,包括生长因子、激素、抗凝血药物等。
抗体药物是利用鉴定具有特异性结合能力的抗体获得的药物,也可以通过基因工程技术获得。
这种药物的作用机制是通过与靶标物质结合,阻断其功能,以达到治疗疾病的目的。
抗体药物的应用领域包括肿瘤、免疫性疾病等。
基因工程药物的研发和生产过程需要依靠多种技术手段,包括基因克隆、原核/真核表达、蛋白质纯化和药物制剂技术等。
与传统药物相比,基因工程药物具有更高的特异性、更低的毒副作用和更好的疗效,成为了现代药物研发的重要突破口。
尽管基因工程药物具有诸多优势,但其研发和生产过程需要严格的控制和监管。
在研发和临床应用过程中,需考虑到基因的安全性、治疗效果的验证和临床试验等问题。
基因工程药物的成功开发和应用,不仅需要融合多学科知识和技术,还需要加强监管和规范,以确保其安全、有效地应用于临床。
一.名词解释(100个)
一.名词解释(100个)1.基因工程:指将一种或多种生物体(供体)的基因或基因组提取出来,或人工合成基因,按照人们的的愿望,进行严密的设计,经体外加工重组,转移到另一种生物体(受体)的细胞内,使之能在受体细胞遗传并获得新的遗传性状的技术。
2.遗传工程:凡是人工改造生物遗传性的技术如物理化学诱变、细胞融合、花粉培育、常规育种、有性杂交等,还包括基因工程在内,统称遗传工程。
3.重组DNA技术:它是基因工程的核心内容,指用人工手段对DNA进行改造和重新组合的技术。
4.生物工程:改造生物并生产生物产品的工程技术,是现代生物学中一切工程技术的总称,它包括遗传工程、基因工程外,酶学工程,细胞工程、发酵工程、农业工程等。
5.克隆:是指从一个祖先通过无性繁殖方式产生的后代,或具有相同遗传性状的DNA分子、细胞或个体所组成的特殊的生命群体。
或是指从同一祖先生产这类同一的DNA分子群或细胞群的过程。
6.基因:是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。
7.基因组:指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。
8.限制性核酸内切酶:是一类能识别双链DNA 分子中特异性核苷酸序列并由此特异切割DNA双链结构的水解酶。
9.限制作用:是指一定类型的细菌可以通过限制性酶的作用,破坏入侵的外源DNA(如噬菌体DNA等),使得外源DNA对生物细胞的入侵受到限制.10. 修饰作用:生物细胞(如宿主)自身的DNA分子合成后,通过修饰酶的作用:在碱基中特定的位置上发生了甲基化而得到了修饰,可免遭自身限制性酶的破坏,这就是限制修饰系统中的含义。
11.粘性末端:是指DNA分子在限制酶的作用之下形成的具有互补碱基的单链延伸末端结构,它们能够通过互补碱基间的配对而重新环化起来。
12.同裂酶(isoschizomers):有一些来源不同的限制酶识别的是同样的核苷酸靶序列,这类酶特称为。
基因工程名词解释和问答
基因工程名词解释和问答基因工程复习试题(名词解释和问答仅供参考)名词解释:1、基因工程(genetic engineering): 就是在分子水平上,提取(或合成)不同生物的遗传物质(基因),在体外切割,再和一定的载体拼接重组,然后把重组的DNA 分子引入细胞或生物体内,使这种外源DNA(基因)在受体细胞中进行复制与表达,按人们的需要繁殖扩增基因或生产不同的产物或定向地创造生物的新性状,并能稳定地遗传给下代。
2、载体(vector):基因工程中,携带目的基因进入宿主细胞进行扩增和表达的工具。
3、限制性核酸内切酶(restriction endonuclease):定义:是一类能识别双链DNA分子中的特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。
主要从原核生物中分离纯化出来。
4、1)同裂酶(isoschizomers): 来源不同,识别位点和切割位点均相同的限制性内切酶。
即同裂酶产生同样的切割,形成同样的末端。
同裂酶对识别序列的甲基化状态有不同的限制性反应。
2)同尾酶(isocaudamer):来源不同,识别序列也不相同,但切出的DNA片段具有相同的末端序列。
3)同位酶:识别序列相同,但切割位点不同。
5、酶活性单位:1个酶活性单位就是指1min能转化1mmol底物的酶量。
6、DNA连接酶:能催化双链DNA片段靠在一起的3′羟基末端和5′端磷酸基团末端之间形成的磷酸二酯键,使两末端连接的一种核酸酶。
7、DNA聚合酶:作用是指在引物和模板的存在下,把脱氧核糖核苷酸(dNTP)连续地加到引物链的3’ –OH 末端,催化核苷酸的聚合作用。
8、DNA连接酶能够封闭双螺旋DNA骨架上的缺口,但不能封闭裂口。
缺口(nick):即在双链DNA的某一条链上两个相邻核苷酸之间失去一个磷酸二酯键所出现的单链断裂; 9、常用连接酶:E.coli DNA 连接酶、T4 DNA 连接酶(常用)。
既能进行粘性末端的连接,又能进行平末端的连接,但E.coli DNA 连接酶进行平末端连接的效率低。
基因工程名词解释笔记
1. 基因:基因是一种具有遗传功能的DNA序列,编码功能性多肽或DNA分子。
基因工程的定义:通过或者不通过载体,无论生物体是否独立,外源基因被转移到其他活细胞或有机体,创造出新的物种并克隆出很大数量的过程。
启动子:DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域。
2. 增强子:增强基因启动子工作效率的顺式作用序列,能够在相对于启动子的任何方向和任何位置(上游或下游)上都发挥作用。
3. 操纵子:转录的功能单位。
很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA序列。
4. 基因工程的应用:a增强生物天然存在的功能b改变生物的基因型c特异性增强生物没有的功能d增强生物对外部伤害的抵抗能力e提供作研究材料生物的DNA和RNA序列f给人类和用于研究的生物体的基因组作用。
5. 基因工程中常用的酶:核酸酶(内切酶和外切酶)、连接酶、聚合酶、修饰酶、DNA结合蛋白6. 星号活力:在极端环境下,如高PH或低离子浓度下,限制性内切酶特异性降低,会造成对许多位点的识别,产生许多不想得到的片段。
7. a同位酶:识别相同序列,但在不同位点切割。
b同裂酶:识别序列及酶切位点均相同,但来源不同。
C同尾酶:识别序列不同,但产生相同末端。
8. RE的特点:a在大多数细菌中发现b其基本作用是当破坏入侵DNA时作为一种保护机制的酶来保护自身的DNA c限制性修饰系统中的修饰能力,通过在识别位点进行修饰防止RE切割反射d在对称序列中进行切割e只能识别一小段序列,通常为4-6bps。
F切割产生粘性末端g在DNA内部切割。
9. DNA pol I:5’-3’聚合酶活性、5’-3’外切酶活性(切除引物)、3’-5’外切酶活性(校正)10. Taq:无3’-5’外切酶活性,用此错配率高,逆转录。
11. klenow fragment:无5’-3’外切酶活性。
修饰酶:常用的有碱性磷酸酶、末端转移酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1基因工程定义:是将一种生物细胞的基因分离出来,在体外进行酶切和连接并插入载体分子,构成遗传物质的新组合,引入另一种宿主细胞后使目的基因得以复制和表达的技术。
2.融合蛋白:指蛋白质的N末端由原核DNA序列编码,C端由真核DNA的完整序列编码,这样的蛋白由一条短的原核多肽和真核蛋白质结合在一起,故称为融合蛋白。
3.悬浮细胞:生长不依赖支持物表面,在培养液中呈悬浮状态生长。
4.二倍体细胞系:原代细胞经过传代筛选克隆,从多种细胞成分的组织中,挑选并纯化出某种具有一定特征的细胞株。
5.转化细胞系:通过某个转化过程形成的,常由于染色体断裂变成异倍体,失去正常细胞特点,而获得无限增殖能力。
6.基因文库:将特定生物个体的全部DNA片段连接入载体DNA分子上,并导入受体细菌或细胞中,经扩增产生的包含该生物全部基因组序列的克隆群体。
7.基因组文库:是包含有某物种全部基因随机片段的重组DNA克隆的集合体。
8. cDNA文库:是指通过克隆的方法保存在宿主中的一群混合分子,这些分子中的插入片段的总和可代表某种生物的全
9.mRNA序列9..补料分批培养:将种子接入发酵反应器中进行培养,经过一段时间后,间歇或连续地补加新鲜培养基,使菌体进一步生长的培养方式。
10.连续培养:将种子接入发酵反应器中,搅拌培养至一定浓度后,开动进料和出料的蠕动泵,以控制一定稀释率进行不间断的培养。
11.分批培养:将溶氧控制和流加补料措施结合起来,使糖的流加速率不超过氧化容量。
12.透析培养:利用膜的半透性原理使代谢产物和培养基分离,通过去除培养液中的代谢产物来解除其对生产菌的不利影响。
13.星号(*)活性:如果改变反应条件就会影响限制酶的专一性和切割效率
14.强启动子:是DNA链上一段能与RNA聚合酶结合并起始RNA合成的特定序列15.转录终止子:在一个基因或是一个操纵子的3’末端提供转录终止信号的一段特定DNA序列15.逆转录法:先分离纯化目的基因的mRNA,再反转录成cDNA,后进行cDNA的克隆表达。
16. RT-PCR:是指以mRNA在反转录酶作用下合成的cDNA第一链为模板的PCR。
17.同裂酶:能识别相同序列,切割位点可以相同也可以不同,来源不同的酶。
18.同尾酶:识别的序列不同,但能切出相同的粘性末端。
19.穿梭质粒载体:人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的质粒载体。
20.可溶性受体:一般指细胞膜受体的胞外与配基结合的膜外区,由于多种原因自胞膜脱落但仍保留和配基结合能力的受体。
21.反义技术:是采用反义核酸分子抑制、封闭或破坏靶基因的技术。
22.反义核酸:是根据碱基互补原理结合并调节靶基因活性的核酸分子。
23.细胞因子概念:在机体内由多种细胞分泌的,在体内含量极低但具有多种生物学活性的小分子蛋白多肽或糖蛋白
24..基因诊断:是一种新的临床诊断方法,是通过基因检测寻找内源基因异常变化,以及发现与鉴定病原性外源基因的存在,从而达到对有关疾病特异、敏感和快速的诊断。
25.基因治疗:是指对缺陷基因进行原位修复或以正常基因替代缺陷基因(或)。
26..in vivo法:通过载体将目的基因直接转入靶细胞、组织,使其在体内表达
27.受体介导的基因转移:是利用能与细胞表面特异性受体结合的相应的配体或抗体,以多价阳离子辅助物为连桥,与DNA形成一种特殊的蛋白- 核酸复合物
28.靶向逆转录病毒载体:逆转录病毒的宿主性决定于病毒外壳糖蛋白env,所以,通过改变或修饰env蛋白可以实现逆转录病毒载体的靶向转移。
29.细胞因子:在机体内由多种细胞分泌的,在体内含量极低但具有多种生物学活性的小分子蛋白多肽或糖蛋白。