全国高中物理竞赛-历年赛题分析电学+力学
高中物理竞赛专题之电学专题(共15张PPT)
uc
exp(
t) RC
i exp( t )
R
RC
i exp( t )
R
RC
一、有关电路的计算
1、电阻的计算
例1:一电缆的芯线是半径为 r1的铜线,在铜线外包一层同轴的
绝缘层,绝缘层的外径为r2,电阻率为ρ,在绝缘层外又用铅层
保护起来。当电缆在工作时,芯线与铅层之间存在着径向漏电 电流。试求长为l 的这种缆线的径向漏电电阻。 分析:由于漏电电流沿径向通过不同截面的圆柱,因此绝缘层 的电阻可视为无数圆柱薄层的电阻串联而成。
dl dR ρ πr 2
Ldr (r2 r1 )r 2
R
dR
r2
Ldr
r1 (r2 r1 )r 2
L r1r2
当r1 r2 r时
R
L
r 2
L S
r1
r
r2
O
l dl
几何关系:r r1 r2 r1
l
L
Ldr dl
r2 r1
电压U,求两球壳间的电流。
解:在两金属球壳间取半径为r的球面,则穿过此面的电流为
I j4r 2 j E KE 2
E I / 4K
r
而两金属球壳间的电势差
b
2d I / 4K
Ib
U a Edr d
dr
ln
r
4K a
I [ U ]2 4K
ln(b / a)
一、有关电路的计算
流由接触点流入地内,高地面水平,土地的电阻率为ρ,当人走
近输电线接地端,左右两脚(间距为l)间的电压称为跨步电压.
第24-28届全国中学生物理竞赛决赛试题及详细解答
从地球表面发射宇宙飞船时,必须给飞船以足够大的动能,使它在克服地球引力作用后,仍具有合适的速度进入绕太阳运行的椭圆轨道.此时,飞船离地球已足够远,但到太阳的距离可视为不变,仍为日地距离.飞船在地球绕太阳运动的轨道上进入它的椭圆轨道,用E表示两轨道的交点,如图1所示.图中半径为rse的圆A是地球绕太阳运行的轨道,太阳S位于圆心.设椭圆B是飞船绕日运行的轨道,P为椭圆轨道的近日点.
因为碰撞过程中线不可伸长,B,C两球沿BC方向的速度分量相等,A,B两球沿AB方向的速度分量相等,有
v2cosθ=v1,(4)
v2cos[π-(α+θ) ]=v3.(5)
将α=π/ 3代入,由以上各式可解得v1 Nhomakorabeav0,(6)
v2=v0,(7)
v3=v0,(8)
v=v0.(9)
3.确定刚碰完后,A,B,C三球组成的系统质心的位置和速度.由于碰撞时间极短,刚碰后A,B,C三球组成的系统,其质心位置就是碰撞前质心的位置,以(xc,yc)表示此时质心的坐标,根据质心的定义,有
1.已知绝缘子导体球壳的内半径R2=4.6 cm,陶瓷介质的击穿强度Ek= 135 kV / cm.当介质中任一点的场强E>Ek时,介质即被击穿,失去绝缘性能.为使绝缘子所能承受的电压(即加在绝缘子的导体球和导体球壳间的电压)为最大,导体球的半径R1应取什么数值?此时,对应的交流电压的有效值是多少?
二、
为了近距离探测太阳并让探测器能回到地球附近,可发射一艘以椭圆轨道绕太阳运行的携带探测器的宇宙飞船,要求其轨道与地球绕太阳的运动轨道在同一平面内,轨道的近日点到太阳的距离为0.01AU(AU为距离的天文单位,表示太阳和地球之间的平均距离:1AU = 1.495×1011m),并与地球具有相同的绕日运行周期(为简单计,设地球以圆轨道绕太阳运动).试问从地球表面应以多大的相对于地球的发射速度u0(发射速度是指在关闭火箭发动机,停止对飞船加速时飞船的速度)发射此飞船,才能使飞船在克服地球引力作用后仍在地球绕太阳运行轨道附近(也就是说克服了地球引力作用的飞船仍可看做在地球轨道上)进入符合要求的椭圆轨道绕日运行?已知地球半径Re= 6.37×106m,地面处的重力加速度g=9.80 m/ s2,不考虑空气的阻力.
高中物理竞赛(力学)试题解
高中物理竞赛(力学)试题解————————————————————————————————作者:————————————————————————————————日期:1、(本题20分)如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R 。
当飞船运行到P点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。
因α很小,所以飞船新轨道不会与火星表面交会。
飞船喷气质量可以不计。
(1)试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远;(2)设飞船原来的运动速度为v0 ,试计算新轨道的运行周期T 。
2,(20分)有一个摆长为l的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x处(x<l)的C点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l一定而x取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O点),然后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x的最小值.3,(20分)如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和b,它们的质量分别为ma和m b. 杆可绕距a球为L/4处的水平定轴O在竖直平面内转动.初始时杆处于竖直位置.小球b几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面的截面.现用一水平恒力F作用于a球上,使之绕O轴逆时针转动,求当a转过 角时小球b速度的大小.设在此过程中立方体物块没有发生转动,且小球b与立方体物块始终接触没有分离.不计一切摩擦.4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中,当管的A端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变)5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出).aOb AB CDF6、(13分) 一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.7.在两端封闭、内径均匀的直玻璃管内,有一段水银柱将两种理想气体a 和b 隔开.将管竖立着,达到平衡时,若温度为T,气柱a 和b 的长度分别为l a 和l b ;若温度为T ',长度分别为l 抋和l 抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为l 攁和l 攂.已知T 、T 挕8.如图所示,质量为Kg M9=的小车放在光滑的水平面上,其中AB 部分为半径R=0.5m的光滑41圆弧,BC 部分水平且不光滑,长为L=2m ,一小物块质量m=6Kg ,由A 点静止释放,刚好滑到C 点静止(取g=102s m ),求:①物块与BC 间的动摩擦因数②物块从A 滑到C 过程中,小车获得的最大速度9..如图所示,在光滑水平面上放一质量为M 、边长为l 的正方体木块,木块上搁有一长为L 的轻质光滑棒,棒的一端用光滑铰链连接于地面上O 点,棒可绕O 点在竖直平面内自由转动,另一端固定一质量为m 的均质金属小球.开始时,棒与木块均静止,棒与水平面夹角为α角.当棒绕O 点向垂直于木块接触边方向转动到棒与水平面间夹角变为β的瞬时,求木块速度的大小.10 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.11如图所示,一木块从斜面AC 的顶端A 点自静止起滑下,经过水平面CD 后,又滑上另一个斜面DF ,到达顶端F 点时速度减为零。
物理竞赛难题及答案
物理竞赛辅导---电学(二)★电学解题的方法:(1)等效法(3)电荷守恒和节点电位(势)法(2)极值法 例题:1、正方形薄片电阻片所示接在电路中,电路中电流为I ;若在该电阻片正中挖去一小正方形,挖去的正方形边长为原电阻片边长的三分之一,然后将带有正方形小孔的电阻片接在同一电源上,保持电阻片两端电压不变,电路中的电流I′变为6/7I.由于薄片两边嵌金属片,将正方形薄片的电阻可等效为图3所示.设每小块的电阻为R ,则薄片总电阻是3个3R 电阻的并联值,其值也是R .现从中挖出一块,此时薄片等效电阻如图4所示.显然其阻值是(7R/6),故I′=U/(7R/6)=(6/7)I.图3 图42、某一网络电路中的部分电路如图所示,已知I =3A ,I 1=2A ,R 1=10Ω,R 2=5Ω,R 3=30Ω,则下列结论正确的是( B )A .通过R 3的电流为0.5A ,方向从a →bB .通过R 3的电流为0.5A ,方向从b →aC .通过电流表的电流为0.5A ,电流表“+”接线柱在右边D .通过电流表的电流为1.5A ,电流表“+”接线柱在左边3、如图所示电路,电源电压恒定,R 1=10Ω, R 2=8Ω,R 3不知道为多少。
当开关k 扳到位置1时,电压表V 读数为2.0V ,当开关扳到位置2时,电压表读数可能是( BC )A 、2.2VB 、1.9VC 、1.7VD 、1.4V 学以致用1、图所示电路是由十二个不同的电阻组成的,已知R 1=12欧,其余电阻阻值未知,测得A 、B 间总电阻为6欧。
今将R 1换成6欧的电阻,则A 、B 间的总电阻为( B ) (A)6欧。
(B)4欧。
(C)3欧。
a R 1 AR 2 R 3b II 1(D)2欧。
2、把一根电阻为R的均匀电阻丝弯折成一个等边三角形abc(如图所示),d为底边ab的中点,如cd间的电阻R1为9欧,则ab间的电阻R2的阻值应该是( C )A.36欧B.12欧C.8欧D.4欧3、如图所示电路中,电源电压保持不变。
全国物理竞赛题目
全国物理竞赛题目一、力学与运动学题目:一质量为m的物体以速度v0向右运动,现对其施加一个力F,该力的垂直速度方向的分量为F1,水平分量F2。
问在多少时间后,物体以速度v0/2向右运动,同时速度方向与F的夹角为45°二、热力学与热传递题目:在一个封闭的容器内有一定质量的气体,气体初始温度为T1。
经过加热后,气体的温度升高到T2。
在此过程中,气体吸收的热量为Q,问该过程中气体对外做功是多少?三、电磁学题目:在真空中,一电荷量为q的点电荷产生的电场中,某一点的电场强度E与q的距离r的关系为E=k*q/r^2,其中k为常数。
现有一试探电荷q'从无穷远处移到点电荷q的附近,其电势能的变化量为ΔE,则ΔE与试探电荷电量q'、点电荷电量q、试探电荷与点电荷的距离r之间的关系为?四、光学题目:光线经过一个直径为d的细圆环,环上均匀分布着厚度为t的光学介质。
求光线经过环上介质后的偏折角。
五、原子物理与量子力学题目:一氢原子从基态跃迁到激发态,其辐射光子的波长为100 nm。
已知氢原子的半径为5.29×10^-11 m,求这个跃迁的能量差是多少电子伏特?六、物理实验与实验设计题目:设计一个实验方案,测量一个未知电阻Rx的值。
要求使用尽可能少的器材和步骤,并给出测量结果的误差分析。
七、相对论简介题目:一列火车以速度v相对于地面运动,地面上的观察者测得火车上的一盏灯发出的光的波长比标准波长要短,求火车相对于地面的速度。
八、非线性物理与混沌理论题目:一质量为m的弹性小球在光滑水平面上做周期为T的简谐振动,其振动幅度为A。
现让小球的振幅突然增大到4A,并观察到此后小球的运动变得杂乱无章。
求该过程中小球所做的总功。
九、物理与其他科学的交叉题目:在生物学中,细胞膜可以被看作是一个半透膜。
当细胞内外溶液的浓度不同时,细胞膜可以允许水分子通过而阻止其他大分子物质通过。
请解释这一现象并用物理原理进行建模分析。
全国中学生高中物理竞赛第16届—22届预赛电学试题集锦(含答案)
全国中学生高中物理竞赛第16届—22届预赛电学试题集锦(含答案)一、第16届预赛题. (20分)位于竖直平面内的矩形平面导线框abcd 。
ab 长为1l ,是水平的,bc 长为2l ,线框的质量为m ,电阻为R .。
其下方有一匀强磁场区域,该区域的上、下边界'PP 和'QQ 均与ab 平行,两边界间的距离为H ,2H l >,磁场的磁感应强度为B ,方向与线框平面垂直,如图预16-4所示。
令线框的dc 边从离磁场区域上边界'PP 的距离为h 处自由下落,已知在线框的dc 边进入磁场后,ab 边到达边界'PP 之前的某一时刻线框的速度已达到这一阶段的最大值。
问从线框开始下落到dc 边刚刚到达磁场区域下边界'QQ 的过程中,磁场作用于线框的安培力做的总功为多少?参考解答设线框的dc 边刚到达磁场区域上边界'PP 时的速度为1v ,则有 2112mv mgh = (1) dc 边进入磁场后,按题意线框虽然受安培力阻力作用,但依然加速下落.设dc 边下落到离'PP 的距离为1h ∆时,速度达到最大值,以0v 表示这个最大速度,这时线框中的感应电动势为10Bl v =E线框中的电流 10Bl v I R R==E 作用于线框的安培力为 22101B l F Bl I Rv == (2) 速度达到最大的条件是安培力F mg =由此得 0221mgR v B l = (3) 在dc 边向下运动距离1h ∆的过程中,重力做功1G W mg h =∆,安培力做功F W ,由动能定理得 22011122F G W W mv mv +=- 将(1)、(3)式代入得安培力做的功 32214412F m g R W mg h mgh B l =-∆+- (4) 线框速度达到0v 后,做匀速运动.当dc 边匀速向下运动的距离为221h l h ∆=-∆时,ab边到达磁场的边界'PP ,整个线框进入磁场.在线框dc 边向下移动2h ∆的过程中,重力做功G W ',安培力做功F W ',但线框速度未变化,由动能定理0F G W W ''+=221()F G W W mg h mg l h ''=-=-∆=--∆ (5)整个线框进入磁场后,直至dc 边到达磁场区的下边界'QQ ,作用于整个线框的安培力为零,安培力做的功也为零,线框只在重力作用下做加速运动。
第31届全国中学生物理竞赛决赛试题与解答(word版)
第 31 届全国中学生物理竞赛决赛理论考试试题一、(12 分)一转速测量和控制装置的原理如图所示. 在 O 点有电量为 Q 的正电荷,内壁光滑的轻质绝缘细管可绕通过 O 点的竖直轴在水平面内转动, 在管内距离 O 为 L 处有一光电触发控制开关 A ,在 O 端固定有一自由长度为 L/4的轻质绝缘弹簧,弹簧另一端与一质量为 m 、带有正电荷 q 的小球相连 接.开始时,系统处于静态平衡. 细管在外力矩作用下,作定轴转动,小球可在细管内运动.当细管转速ω逐渐变大时,小球到达细管的 A 处刚好相对于细管径向平衡,并触发控制开关, 外力矩瞬时变为零,从而限制转速过大;同时 O 点的电荷变为等量负电荷-Q.通过测量此后小球相对于细管径向平衡点的位置 B ,可测定转速. 若测得 OB 的距离为 L/2,求(1)弹簧系数0k 及小球在 B 处时细管的转速;(2)试问小球在平衡点 B 附近是否存在相对于细管的径向微振动?如果存在,求出该微振 动的周期.二、(14 分)多弹头攻击系统是破解导弹防御体系的有效手段. 如图所示,假设沿某海岸有两个军事目标 W 和 N , 两者相距 L ,一艘潜艇沿平行于该海岸线的航线游弋,并 监视这两个目标,其航线离海岸线的距离为 d . 潜艇接到攻击命令后浮出海面发射一颗可分裂成多弹头的母弹,发射 速度为0v (其大小远大于潜艇在海里游弋速度的大小),假设母弹到达最高点时分裂成三个分弹头,每个分弹头的质量相等,分裂时相对原母弹的速度大小均为 v ,且分布在同一水平面内,分弹头 1、2 为实弹,分弹头 3 迷惑对方雷达探测的假弹头. 如果两个实弹能够分别击中军事目标 W 和 N ,试求潜艇发射母弹时的位置与发射方向,并给出相应的实现条件.三、(14 分)如图所示,某绝热熔器被两块装有阀门 K 1 和 K 2 的固定绝热隔板分割成相等体积0V 的三室 A 、B 、C ,0A B C V V V V ===.容器左端用绝热活塞 H 封闭,左侧 A 室装有11ν=摩尔单原子分子气体,处在压强为 P 0、温度为 T 0 的平衡态;中段 B 室为真空;右侧 C 室装 有ν2 = 2 摩尔双原子分子气体,测得其平衡态温度为 Tc = 0.50 T 0.初始时刻K 1 和 K 2 都处在关闭状态.然后系统依次经历如下与外界无热量交换的热力学过程:(1)打开 K 1,让 V A 中的气体自由膨胀到中段真空 V B 中;等待气体达到平衡态时,缓慢推动活塞 H 压缩气体,使得 A 室体积减小了 30%(AV ' = 0.70 V 0).求压缩过程前后,该部分气体的平衡态温度及压强;(2)保持 K 1 开放,打开 K 2,让容器中的两种气体自由混合后共同达到平衡态. 求此时混合气体的温度和压强;(3)保持 K 1 和 K 2 同时处在开放状态,缓慢拉动活塞 H ,使得 A 室体积恢复到初始体积 AV ''=V 0. 求此时混合气体的温度和压强.提示:上述所有过程中,气体均可视为理想气体,计算结果可含数值的指数式或分式;根据热力学第二定律,当一种理想气体构成的热力学系统从初态(p i ,T i ,V i )经过一个绝热可 逆过程(准静态绝热过程)到达终态(p f ,T f ,V f )时,其状态参数满足方程:?111()ln()ln()0f f if V i i T T S C R T T νν∆=+= (Ⅰ)其中,ν1 为该气体的摩尔数,C V1 为它的定容摩尔热容量,R 为普适气体常量. 当热力学系统由两种理想气体组成,则方程(I )需修改为12()()0if if S S ∆+∆= (Ⅱ)四、(20 分)光纤光栅是一种介质折射率周期性变化的光学器件. 设一光纤光栅的纤芯基体材料折射率为 n 1 =1.51;在光纤中周期性地改变纤芯材料的折射率,其改变了的部分的材料 折射率为 n 2 = 1.55;折射率分别为 n 2 和 n 1、厚度分别为 d 2 和 d 1 的介质层相间排布,总层数为 N ,其纵向剖面图如图 (a) 所示. 在该器件设计过程中,一般只考虑每层界面的单次反射,忽略光在介质传播过程中的吸收损耗. 假设入射光在真空中的波长为λ=1.06μm ,当反射光相干叠加加强时,则每层的厚度 d 1 和 d 2 最小应分别为多少?若要求器件反射率达到 8%,则总层数 N 至少为多少?提示:如图(b)所示,当光从折射率 n 1介质垂直入射到 n 2 介质时,界面上产生反射和透射,有:1212n n n n -=+反射光电场强度入射光电场强度,1122n n n =+透射光电场强度入射光电场强度,2=反射光电场强度反射率入射光电场强度, 五、(20 分)中性粒子分析器(Neutral-ParticleAnalyser )是核聚变研究中测量快离子温度及其能量分布的重要设备.其基本原理如图所示,通过对高能量(200eV~30KeV )中性原子(它们容易穿透探测区中的电磁区域)的能量和动量的测量,可诊断曾与这些中性原子充分 碰撞过的粒子的性质. 为了测量中性原子的 能量分布,首先让中性原子电离然后让离子束以 θ 角入射到间距为 d 、电压为 V 的平行板电极组成的区域,经电场偏转后离开电场区域,在保证所测量离子不碰到上极板的前提下,通过测量入射孔 A和 出射孔 B 间平行于极板方 向 的距 离 l 来 决定 离 子的能量.设 A 与下极板的距离为 h 1,B 与下极板的距离为 h 2,已知离子所带电荷为 q .(1)推导离子能量 E 与 l 的关系,并给出离子在极板内垂直于极板方向的最大飞行距离.(2)被测离子束一般具有发散角Δα(Δα<<θ).为了提高测量的精度,要求具有相同能量 E ,但入射方向在Δα范围内变化的离子在同一小孔 B 处射出,求 h 2 的表达式;并给出此时能量E 与 l 的关系.(3)为了提高离子能量的分辨率,要求具有量程上限能量的离子刚好落在设备允许的 l 的最大值 l max 处,同时为了减小设备的体积,在满足测量要求的基础上,要求极板间距 d 尽可 能小,利用上述第(2)问的结果,求 d 的表达式;若θ = 30°,结果如何?(4)为了区分这些离子的质量,请设计后续装置,给出相应的原理图和离子质量表达式.六、(20 分)超导体的一个重要应用是绕制强磁场磁体,其使用的超导线材属于第二类超导体.如果将这类超导体置于磁感应强度为 a B 的外磁场中,其磁力线将以磁通量子(或称为磁通漩涡线)的形式穿透超导体,从而在超导体中形成正三角形的磁通格子,如图 1 所示. 所谓的磁通量子,如图 2 所示,其中心是半径为ξ的正常态(电阻不为零)区域,而其周围处于超导态(电阻为零),存在超导电流,所携带的磁通量为150 2.07102h Wb e φ-==⨯(磁通量的最小单位)(1)若2510T a B -=⨯,求此时磁通涡旋线之间距离 a .(2)随着 a B 的增大,磁通漩涡线密度不断增加,当 a B 达到某一临界值 B c2 时,整块超导体 都变为正常态, 假设磁通漩涡线芯的半径为ξ = 5×10-9 m ,求所对应的临界磁场 B c2;(3)对于理想的第二类超导体,当有电流 I 通过超导带材时,在安培力的驱动下,磁通漩涡线将会粘滞流动,在超导带内产生电阻(也称为磁通流阻),从而产生焦耳损耗,不利于超导磁体的运行. 磁通漩涡线稳定粘滞流动的速度 v 与单位体积磁通漩涡线所受到的驱动力f A 和a B 的关系为0aA B f v ηφ=, 其中η为比例系数. 外加磁场、电流方向,以及超导带材的尺寸如图 3 所示, 请指出磁通漩涡线流动的方向,并求出磁通漩涡线流动所产生的电阻率(用a B ,Φ0,η,超导体尺寸 b ,c ,d )表示;(4)要使超导材料真正实用化,消除这种磁通流阻成了技术的关键,请给出你的解决方案.七、(20 分)如图,两个质量均为 m 的小球 A 和 B (均可视为质点)固定在中心位于C 、长为 2l 的刚性轻质细杆的两端,构成一质点系. 在竖直面内建立Oxy 坐标,Ox 方向沿水平向右,Oy 方向竖直向上. 初始时质点系中心 C 位于原点 O ,并以初速度 v 0 竖直上抛,上抛过程中,A 、C 、B 三点连线始终水平. 风速大小恒定为 u 、方向沿 x 轴正向,小球在运动中所受空气阻力 f 的大小与相对于空气运动速度v 的大小成正比,方向相反,即f kv =-, k 为正的常量.当C 点升至最高点时,恰好有一沿y 轴正向运动、质量为 m 1、速度大小为 u 1 的小石块(视为质点)与小球 A 发生竖直方向的碰撞,设碰撞是完全弹性的,时间极短. 此后 C 点回落到上抛开始时的同一水平高度,此时它在 Ox 方向上的位置记为 s ,将从上抛到落回的整个过程所用时间记为 T ,质点系旋转的圈数记为 n . 求质点系(1)转动的初始角速度ω0,以及回落到s 点时角速度ωs 与n 的关系;(2)从开始上抛到落回到s点为止的过程中,空气阻力做的功W f与n、s、T的关系. 八、(20 分)太阳是我们赖以生存的恒星. 它的主要成分是氢元素,在自身引力的作用下收缩而导致升温,当温度高到一定程度时,中性原子将电离成质子和电子组成的等离子体,并在其核心区域达到约1.05×107 K 的高温和 1.6×105kg/m3以上的高密度,产生热核聚变而放出巨大能量,从而抗衡自身的引力收缩达到平衡,而成为恒星.太阳内部主要核反应过程为1H+1H→D+e++ν(I)eD+1H→3He+x (II)3He+3He→4He+1H+1H (III)其中第一个反应的概率由弱相互作用主导,概率很低这恰好可以使得能量缓慢释放. 反应产物正电子e+会与电子e-湮灭为γ射线,即e++e-→γ+γ(IV)已知:质子(1H)、氘(D)、氦-3(3He)和电子的质量分别为938.27、1875.61、2808.38、3727.36 和0.51(MeV/c2)(误差为0.01 MeV/c2),c为真空中的光速,中微子νe的质量小于3eV/c2. 普朗克常量h = 6.626×10-34J·s,c =3.0×108 m/s,玻尔兹曼常量k=1.381×10-23J/K.电子电量e = 1.602×10-19 C.(1)试用理想气体模型估算处于热平衡状态的各种粒子的平均动能及太阳核心区的压强(请分别用eV 和atm 为单位);(2)反应式(II)中的x 是什么粒子(α、β、γ、p和n之一)?请计算该粒子的动能和动量的大小,是否可以找到一个参照系,使得x 粒子的动能为零?(3)给出反应式(I)中各反应产物的动能的范围;第一题第二题仅供个人参考第三题第四题第五题第六题第七题第八题仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
物理竞赛例题精析及训练
第I 部分 物理竞赛例题精析及训练第一章 静电场1、(选自北京市化罗庚学校高中物理课本第二册)如图所示,边长为a 的正方形4个顶点分别放置电量都是Q 的固定点电荷,在对角线的交点O 处放置一个质量为m 、电量为q 的自由点电荷,q 与Q 同号。
今把q 沿一条对角线移离O 点一个很小的距离至P 点。
求证:释放q 后,q 做简谐振动,并求其周期。
分析:q 在P 点释放后受到来自4个Q 的库仑斥力,库仑力位于电荷的瞬时连线上,其合力指向O 点,具有回复力的属性。
我们要推导的是:该回复力的大小跟q 到O 点的距离(设为x )成正比。
推导中要用到一个常用的数学公式:如果δ1,则(1+δ)n =1+n δ解:设正方形对角线的长为2r ,取AC 方向为x 轴正方向,O 点为坐标原点。
把A 和C 的两个Q 给q 的合力记为F 1,把B 和D 的两个Q 给q 的合力记为F 2,则122222()()11kQq kQq F r x r x kQq x x r r r --=-+-⎡⎤⎛⎫⎛⎫=+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 由于1,xr 利用①式可得12341212kQq x x kQq F x r r r r ⎡⎤⎛⎫⎛⎫=--+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦设OP 和DP 之间的夹角为ϕ,则32222222223/232222323222cos 21()23212kQqkQq kQq kQq x F x r x r x r x r r r x kQq x kQq x x r r r ϕ-⎛⎫====+ ⎪ ⎪++++⎝⎭⎛⎫=-= ⎪ ⎪⎝⎭上工最后的结果是由于2231,2x x x r rr ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭所以把整项略去。
12333422kQq kQq kQq F F F x x x r r r-=+=+=-合可见,F 合跟x 大小成正比,是线性回复力,这就证明了q 释放后做简谐振动。
其周期可由公式2m T K π=求出。
全国高中物理竞赛历年试题与详解答案汇编
全国⾼中物理竞赛历年试题与详解答案汇编全国⾼中物理竞赛历年试题与详解答案汇编———⼴东省鹤⼭市纪元中学 2014年5⽉全国中学⽣物理竞赛提要编者按:按照中国物理学会全国中学⽣物理竞赛委员会第九次全体会议的建议,由中国物理学会全国中学⽣物理竞赛委员会常务委员会根据《全国中学⽣物理竞赛章程》中关于命题原则的规定,结合我国⽬前中学⽣的实际情况,制定了《全国中学⽣物理竞赛内容提要》,作为今后物理竞赛预赛和决赛命题的依据,它包括理论基础、实验基础、其他⽅⾯等部分。
其中理论基础的绝⼤部分内容和国家教委制订的(全⽇制中学物理教学⼤纲》中的附录,即 1983年教育部发布的《⾼中物理教学纲要(草案)》的内容相同。
主要差别有两点:⼀是少数地⽅做了⼏点增补,⼆是去掉了教学纲要中的说明部分。
此外,在编排的次序上做了⼀些变动,内容表述上做了⼀些简化。
1991年2⽉20⽇经全国中学⽣物理竞赛委员会常务委员会扩⼤会议讨论通过并开始试⾏。
1991年9⽉11⽇在南宁由全国中学⽣物理竞赛委员会第10次全体会议正式通过,开始实施。
⼀、理论基础⼒学1、运动学参照系。
质点运动的位移和路程,速度,加速度。
相对速度。
⽮量和标量。
⽮量的合成和分解。
匀速及匀速直线运动及其图象。
运动的合成。
抛体运动。
圆周运动。
刚体的平动和绕定轴的转动。
2、⽜顿运动定律⼒学中常见的⼏种⼒⽜顿第⼀、⼆、三运动定律。
惯性参照系的概念。
摩擦⼒。
弹性⼒。
胡克定律。
万有引⼒定律。
均匀球壳对壳内和壳外质点的引⼒公式(不要求导出)。
开普勒定律。
⾏星和⼈造卫星的运动。
3、物体的平衡共点⼒作⽤下物体的平衡。
⼒矩。
刚体的平衡。
重⼼。
物体平衡的种类。
4、动量冲量。
动量。
动量定理。
动量守恒定律。
反冲运动及⽕箭。
5、机械能功和功率。
动能和动能定理。
重⼒势能。
引⼒势能。
质点及均匀球壳壳内和壳外的引⼒势能公式(不要求导出)。
弹簧的弹性势能。
功能原理。
机械能守恒定律。
碰撞。
6、流体静⼒学静⽌流体中的压强。
全国高中物理竞赛-历年赛题分析电学+力学
24届二、(25分)图中所示为用三角形刚性细杆AB、BC、CD连成的平面连杆结构图。
AB和CD杆可分别绕过A、D的垂直于纸面的固定轴转动,A、D两点位于同一水平线上。
BC杆的两端分别与AB杆和CD杆相连,可绕连接处转动(类似铰链)。
当AB杆绕A轴以恒定的角速度 转到图中所示的位置时,AB杆处于竖直位置。
BC杆与CD杆都与水平方向成45°角,a的大小和方向已知AB杆的长度为l,BC杆和CD杆的长度由图给定。
求此时C点加速度c(用与CD杆之间的夹角表示)27复28复二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦系数为μA,B、D两点与光滑竖直墙面接触,杆AB和CD接触处的静摩擦系数为μC,两杆的质量均为m,长度均为l。
1、已知系统平衡时AB杆与墙面夹角为θ,求CD杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA=1.00,μC=0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
26复二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。
已知桌腿受力后将产生弹性微小形变。
现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP=,求桌面对桌腿1的压力F 1。
25复 三、(22分)足球射到球门横梁上时,因速度方向不同、射在横梁上的位置有别,其落地点也是不同的。
已知球门的横梁为圆柱形,设足球以水平方向的速度沿垂直于横梁的方向射到横梁上,球与横梁间的滑动摩擦系数0.70μ=,球与横梁碰撞时的恢复系数e=0.70。
试问足球应射在横梁上什么位置才能使球心落在球门线内(含球门上)?足球射在横梁上的位置用球与横梁的撞击点到横梁轴线的垂线与水平方向(垂直于横梁的轴线)的夹角θ(小于90 )来表示。
全国高中物理力学竞赛试题卷(部分)百度文库整理
全国高中物理力学竞赛试题卷(部分)考生须知:时间150分钟,g取10m/s2(, 题号带△的题普通中学做)一. 单选题(每题5分)△1.如图所示,一物体以一定的初速度沿水平面由A 点滑到B 点,摩擦力做功为W 1;若该物体从M 点沿两斜面滑到N ,摩擦力做的总功为W 2。
已知物体与各接触面的动摩擦因数均相同,则:A .W 1=W 2B .W 1<W 2C .W 1>W 2D .无法确定△2.下面是一位科学家的墓志铭: 爵士安葬在这里。
他以超乎常人的智力第一个证明了行星的运动与形状、彗星的轨道和海洋的潮汐。
他孜孜不倦地研究光线的各种不同的折射角,颜色所产生的种种性质。
对于自然、历史和圣经,他是一个勤勉、敏锐的诠释者。
让人类欢呼,曾经存在过这样一位伟大的人类之光。
这位科学家是:A .开普勒B .牛顿C .伽利略D .卡文迪许3.2002年3月25日,北京时间22时15分,我国在酒泉卫星发射中心成功发射了一艘正样无人飞船,除航天员没有上之外,飞船技术状态与载人状态完全一致。
它标志着我国载人航天工程取得了新的重要进展,为不久的将来把中国航天员送上太空打下了坚实的基础。
这飞船是A .北斗导航卫星B .海洋一号C .风云一号D 星 D .神舟三号4.如图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平地面上做匀减速运动,不计其它外力及空气阻力,则中间一质量为m的土豆A 受到其它土豆对它的总作用力大小应是:A .μmgB .mg 21μ+C .mg 21μ-D .mg 12-μB 、C 、D 、E 、F 五个球并排放置在光滑的水平面上,B 、C 、D 、E 四个球质量相同,均为m=2kg ,A 球质量等于F 球质量,均为m=1kg ,现在A 球以速度v 0向B 球运动,所发生的碰撞均为弹性碰撞,则碰撞之后:A .五个球静止,一个球运动 B. 四个球静止,二个球运动 C .三个球静止,三个球运动 D .六个球都运动6.一物体原来静置于光滑的水平面上。
物理竞赛题电学部分(含答案)
应用物理知识竞赛试题三(电学部分)一、单选题(共33分,每小题3分)1.有二只灯泡,分别标有“220V15W”和“220V100W”的字样。
如将它们串联接在电压为380伏的动力电源上,则A.15W的灯泡烧坏,100W的灯泡完好 B.100W的灯泡烧坏,15W的灯泡完好C.二只灯泡均被烧坏 D.二只灯泡均完好2.在电学实验中遇到断路时,常常用伏特表来检测。
某同学连接如图所示的电路,电键闭合后,电灯不亮,安培表无指示。
这时用伏特表测得a、b两点间和b、c两点间的电压均为零,而a、d间和b、d间的电压均不为零,这说明A.电源接线柱接触不良 B.电键的触片或接线柱接触不良C.安培表接线柱接触不良 D.灯泡灯丝断了或灯座接触不良3.李军在检修一只1000瓦的电炉时,发现电炉丝断了一小截,他用一段较细一些但由同种材料制成的电炉丝将残缺部分补接至原长,这样再接入原电路中使用时,其实际发热功率将A.大于1000瓦B.等于1000瓦 C.小于1000瓦 D.无法判断4.小明做实验时把甲乙两只灯泡串联后通过开关接在电源上。
闭合开关后,甲灯发光,乙灯不发光,乙灯不发光的原因是A.它的电阻大小C.流过乙灯的电流比甲灯小B.它的电阻太大D.乙灯灯丝断了5.图2中四个灯泡的连接方式是A.四灯串联 B.四灯并联C.L2、L3、L4并联,再与L1串联 D.L1、L2、L3并联,再与L4串联6.标有“220V,40W”和“220V,60W”的两只灯泡L1、L2、串联在电路中时,两灯泡均发光,实际消耗的功率分别为W1和W2,则:A.W1>W2 B.W1=W2 C.W1<W2 D.无法确定7.某电度表盘上标有“3000R/kWh”,单独开动某一用电器时,电度表的转盘在100秒内转5转,由此可知,该用电器的功率为:A.40瓦 B.60瓦 C.20瓦 D.100瓦8.如图所示,甲灯为“6V,6W”,乙灯为“6V,4W”,用一个输出电压恒为12伏的电源对两灯供电,要使这两个灯能同时正常发光,则应选择电路:9.某人设计了下图所示电路,电路中变阻器的总阻值与电阻R的阻值相同,电源电压恒定,当他将滑片P从a端滑到b端的过程中,所看到的现象是A.安培表的示数逐渐变大 B.安培表的示数逐渐变小C.安培表的示数先增大,然后减小到原值D.安培表的示数先减小,然后增大到原值10.物理小组的同学们练习安装照明电路,接通电源之前,老师将火线上的保险丝取下,把一个额定电压为220伏的灯泡作为检验灯泡连接在原来安装保险丝的位置,同时要求同学将电路中所有开关都断开。
高中物理竞赛培训试题 电学计算题
电学1.如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m ,两板间距离 d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为 m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F .求(1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度v 0应为多少?(2) 以上述速度入射的带电粒子,最多能有多少落到下极板上?1.解析: (1)若第1个粒子落到O 点,由2L =v 01t 1,2d =21gt 12得v 01=2.5 m/s .若落到B 点,由L =v 02t 1,2d =21gt 22得v 02=5 m/s .故2.5 m/s≤v 0≤5 m/s . (2)由L =v 01t ,得t =4×10-2 s .2d =21at 2得a =2.5 m/s 2,有mg -qE=ma ,E=dcQ 得Q =6×10-6C .所以qQn =600个.2.如图所示,一绝缘细圆环半径为 r ,其环面固定在水平面上,方向水平向右、场强大小为E 的匀强电场与圆环平面平行,环上穿有一电荷量为+q 的小球,可沿圆环做无摩擦的圆周运动,若小球经A 点时速度方向恰与电场方向垂直,且圆环与小球间沿水平方向无力的作用。
小球沿顺时针方向运动,且qE =mg ,求小球运动到何处时,对环的作用力最大?最大作用力为多大?(若将题中环面改为固定在竖直平面上,则小球运动到何处时,对环的作用力最大?最大作用力为多大?)2.解析:在A 点有qE= mv 12/r ①,A 到B 过程由动能定理得qE ×2r =21mv 22-21mv 12 ②, 在B 点水平方向上有N 1-qE= mv 22/r ③,竖直方向上有N 2 = mg ④,在B 处对环的作用力最大,最大作用力为N = =qE .3. 如图(甲)所示,A 、B 是真空中平行放置的金属板,加上电压后,它们之间的电场可视为匀强电场,A 、B 两板间距离 d =15cm 。
全国高中物理奥林匹克竞赛试题及答案解析
高中物理竞赛试卷.一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.α B.α1/3 C.α3 D.3α2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为A.50HzB.60HzC.400HzD.410Hz4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分别为F1、F2和F3。
若环的重力可忽略,下列说法正确的是A. F1> F2> F3B. F2> F3> F1C. F3> F2> F1D. F1 = F2 = F35.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B 球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0. 5mm,丝杆螺距为0.5mm,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)历示,其值为______mm,测量时如图(b)所示,其值为_______mm,测得小球直径d=____________________mm.7.(10分)为了缓解城市交通拥堵问题,杭州交通部门在禁止行人步行的十字路口增设“直行待行区”(行人可从天桥或地下过道过马路),如图所示,当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1. 5t,汽车运动中受到的阻力恒为车重的0.1倍,则该汽车的行驶加速度为________;在这4s内汽车发动机所做的功为___________。
物理竞赛1-35届真题分类4(力学2)
真题分类--力学2(28届决赛)一、(15分)在竖直面内将一半圆形光滑导轨固定在A、B两点,导轨直径AB=2R,AB与竖直方向间的夹角为60°,在导轨上套一质量为m的光滑小圆环,一劲度系数为k的轻而细的光滑弹性绳穿过圆环,其两端系与A、B两点,如图28决—1所示。
当圆环位于A点正下方C点时,弹性绳刚好为原长。
现将圆环从C点无初速度释放,圆环在时刻t运动到C'点,C'O与半径OB的夹角为θ,重力加速度为g.试求分别对下述两种情形,求导轨对圆环的作用力的大小:(1)θ=90°(2)θ=30°(33届复赛)四、(20 分)蹦极是年轻人喜爱的运动。
为研究蹦极过程,现将一长为 L 、质量为 m 、当仅受到绳本身重力时几乎不可伸长的均匀弹性绳的一端系在桥沿b,绳的另一端系一质量为 M的小物块(模拟蹦极者);假设 M比 m 大很多,以至于均匀弹性绳受到绳本身重力和蹦极者的重力向下拉时会显著伸长,但仍在弹性限度内。
在蹦极者从静止下落直至蹦极者到达最下端、但未向下拉紧绳之前的下落过程中,不考虑水平运动和可能的能量损失。
重力加速度大小为g 。
(1)求蹦极者从静止下落距离y(y<L)时的速度和加速度的大小,蹦极者在所考虑的下落过程中的速度和加速度大小的上限。
(2)求蹦极者从静止下落距离 y ( y>L),在其左端悬点 b处张力的大小。
(34届复赛17年)三、(40分)一质量为M 的载重卡车A的水平车板上载有一质量为m 的重物B ,在水平直公路上以速度0v 做匀速直线运动,重物与车厢前壁间的距离为L (0L >)。
因发生紧急情况,卡车突然制动。
已知卡车车轮与地面间的动摩擦因数和最大静摩擦因数均为1μ,重物与车厢底板间的动摩擦因数和最大静摩擦因数均为2μ(21μμ<)。
若重物与车厢前壁发生碰撞,则假定碰撞时间极短,碰后重物与车厢前壁不分开。
重力加速度大小为g 。
高中物理竞赛真题及答案解析
高中物理竞赛真题及答案解析高中物理竞赛是一项能够考察学生物理功底和思维能力的重要比赛。
参与其中的学生将面对一系列的题目,需要通过思考和分析,找出正确答案。
本文将介绍一些典型的高中物理竞赛真题,并给出解析,希望能帮助读者更好地理解物理知识。
第一题:弹簧振子题目:一个质量为m的物体在无摩擦的水平面上,通过一根劲度系数为k的弹簧与固定支点连接,形成一个简谐振动系统。
当振子离开平衡位置时,弹簧的弹力恢复力与物体的位移之间存在什么样的关系?A. 弹力恢复力与位移成正比B. 弹力恢复力与位移成反比C. 弹力恢复力与位移之间存在平方关系D. 弹力恢复力与位移之间不存在简单的函数关系解析:对于弹簧振子的系统,恢复力(弹力)与位移之间存在线性关系。
当物体偏离平衡位置时,弹簧会产生与位移方向相反的恢复力,且恢复力的大小与位移的大小成正比。
因此,选择答案A。
第二题:电场强度计算题目:两个等电量的点电荷分别为q1和q2,离它们的距离分别为r1和r2。
两电荷间的电场强度关系为:A. E1 > E2B. E1 < E2C. E1 = E2D. 无法确定解析:根据电场强度计算公式E=k*q/r^2,我们可以看出,电场强度与电荷量成正比,与距离的平方成反比。
由于两个电荷的大小相等,所以根据距离的不同,我们可以得出E1与E2之间的关系:E1/E2 = (q1/q2)*(r2^2/r1^2)。
由于q1=q2,所以E1/E2 = (r2^2/r1^2)。
因此,当r2>r1时,E1<E2;当r2<r1时,E1>E2;当r2=r1时,E1=E2。
因此,选择答案D。
第三题:传声器和扬声器的区别题目:欣赏音乐时,我们通常会用到传声器和扬声器。
请问,传声器和扬声器有什么区别?解析:传声器和扬声器都是将电信号转换为机械振动来产生声音的装置。
它们的主要区别在于应用场景和功能。
传声器一般用于接收声音信号,并将其转换为电信号,例如我们使用的话筒,它将声音转换为电信号通过线路传输或记录。
物理竞赛试题-历届电场初赛试题与答案
电场模拟试卷(十)乌鲁木齐一中郭公礼整理一.(29)电荷量分别为q和Q的两个带异号电荷的小球A和B(均可视为点电荷),质量分别为m和M.初始时刻,B的速度为0,A在B的右方,且与B相距L0,A具有向右的初速度v0,并还受到一向右的作用力f使其保持匀速运动,某一时刻,两球之间可以达到一最大距离.i.求此最大距离.ii.求从开始到两球间距离达到最大的过程中f所做的功.二、第27届三、(25)有两块无限大的均匀带电平面,一块带正电,一块带负电,单位面积所带电荷量的数值相等。
现把两带电平面正交放置如图所示。
图中直线A1B1和A2B2分别为带正电的平面和带负电的平面与纸面正交的交线,O为两交线的交点。
(i)试根据每块无限大均匀带电平面产生的电场(场强和电势)具有对称性的特点,并取O点作为电势的零点,在右面给的整个图上画出电场(正、负电荷产生的总电场)中电势分别为0、1V、2V、3V、−1V、−2V和−3V的等势面与纸面的交线的示意图,并标出每个等势面的电势。
(ii)若每个带电平面单独产生的电场的场强是E0=1.0V/m,则可求出(i)中相邻两等势面间的距离d=________________________________。
四.(23)如图所示,电荷量为q1的正点电荷固定在坐标原点O处,电荷量为q2的正点电荷固定在x轴上,两电荷相距l.已知q2=2q1.(i)求在x轴上场强为零的P点的坐标.(ii)若把一电荷量为q0的点电荷放在P点,试讨论它的稳定性(只考虑q被限制在沿x轴运动和被限制在沿垂直于x轴方向运动这两种情况).2.有一静电场,其电势U随坐标x的改变而变化,变化的图线如图1所示.试在图2中画出该静电场的场强E随x变化的图线(设场强沿x轴正方向时取正值,场强沿x轴负方向时取负值)五、(21)测定电子荷质比(电荷q与质量m之比q/m)的实验装置如图所示。
真空玻璃管内,阴极K发出的电子,经阳极A与阴极K之间的高电压加速后,形成一束很细的电子流,电子流以平行于平板电容器极板的速度进入两极板C、D间的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24届二、(25分)图中所示为用三角形刚性细杆AB、BC、CD连成的平面连杆结构图。
AB和CD杆可分别绕过A、D的垂直于纸面的固定轴转动,A、D两点位于同一水平线上。
BC杆的两端分别与AB杆和CD杆相连,可绕连接处转动(类似铰链)。
当AB杆绕A轴以恒定的角速度 转到图中所示的位置时,AB杆处于竖直位置。
BC杆与CD杆都与水平方向成45°角,a的大小和方向已知AB杆的长度为l,BC杆和CD杆的长度由图给定。
求此时C点加速度c(用与CD杆之间的夹角表示)27复28复二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦系数为μA,B、D两点与光滑竖直墙面接触,杆AB和CD接触处的静摩擦系数为μC,两杆的质量均为m,长度均为l。
1、已知系统平衡时AB杆与墙面夹角为θ,求CD杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA=1.00,μC=0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
26复二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。
已知桌腿受力后将产生弹性微小形变。
现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP=,求桌面对桌腿1的压力F 1。
25复 三、(22分)足球射到球门横梁上时,因速度方向不同、射在横梁上的位置有别,其落地点也是不同的。
已知球门的横梁为圆柱形,设足球以水平方向的速度沿垂直于横梁的方向射到横梁上,球与横梁间的滑动摩擦系数0.70μ=,球与横梁碰撞时的恢复系数e=0.70。
试问足球应射在横梁上什么位置才能使球心落在球门线内(含球门上)?足球射在横梁上的位置用球与横梁的撞击点到横梁轴线的垂线与水平方向(垂直于横梁的轴线)的夹角θ(小于90 )来表示。
不计空气及重力的影响。
27复24届一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹A簧的下端与地面固定连接。
平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。
平板静止在其平衡位置。
水球B 与平板PQ 的质量相等。
现给小球一水平向右的速度0μ,使它从水平台面抛出。
已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。
要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2/8.9s m g =26届三、(15分)1.一质量为m 的小球与一劲度系数为k 的弹簧相连组成一体系,置于光滑水平桌面上,弹簧的另一端与固定墙面相连,小球做一维自由振动。
试问在一沿此弹簧长度方向以速度u 作匀速运动的参考系里观察,此体系的机械能是否守恒,并说明理由。
25复 1、(5分)蟹状星云脉冲星的辐射脉冲周期是0.033s 。
假设它是由均匀分布的物质构成的球体,脉冲周期是它的旋转周期,万有引力是唯一能阻止它离心分解的力,已知万有引力常量113126.6710G m kg s ---=⨯⋅⋅,由于脉冲星表面的物质未分离,故可估算出此脉冲星密度的下限是 3kg m -⋅。
28复一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
26复2.若不考虑太阳和其他星体的作用,则地球-月球系统可看成孤立系统。
若把地球和月球都看作是质量均匀分布的球体,它们的质量分别为M 和m ,月心-地心间的距离为R ,万有引力恒量为G 。
学生甲以地心为参考系,利用牛顿第二定律和万有引力定律,得到月球相对于地心参考系的加速度为2R MGa m =;学生乙以月心为参考系,同样利用牛顿第二定律和万有引力定律,得到地球相对于月心参考系的加速度为2RmG a e =。
这二位学生求出的地-月间的相对加速度明显矛盾,请指出其中的错误,并分别以地心参考系(以地心速度作平动的参考系)和月心参考系(以月心速度作平动的参考系)求出正确结果。
26届2.海尔-波普彗星轨道是长轴非常大的椭圆,近日点到太阳中心的距离为0.914天文单位(1天文单位等于地日间的平均距离),则其近日点速率的上限与地球公转(轨道可视为圆周)速率之比约为(保留2位有效数字) 。
28复 三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
若要使卫星减慢或者停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
当卫星转速逐渐减小到零时,立即使绳与卫星脱离,解除小球与卫星的联系,于是卫星转动停止。
已知此时绳与圆筒的相切点刚好在Q 、Q ′处。
1、 求当卫星角速度减至ω时绳拉直部分的长度l ;2、 求绳的总长度L ;3、 求卫星从ω0到停转所经历的时间t 。
25复二、(21分)嫦娥1号奔月卫星与长征3号火箭分离后,进入绕地运行的椭圆轨道,近地点离地面高22.0510n H km =⨯,远地点离地面高45.093010f H km =⨯,周期约为16小时,称为16小时轨道(如图中曲线1所示)。
随后,为了使卫星离地越来越远,星载发动机先在远地点点火,使卫星进入新轨道(如图中曲线2所示),以抬高近地点。
后来又连续三次在抬高以后的近地点点火,使卫星加速和变轨,抬高远地点,相继进入24小时轨道、48小时轨道和地月转移轨道(分别如图中曲线3、4、5所示)。
已知卫星质量32.35010m kg =⨯,地球半径36.37810R km =⨯,地面重力加速度29.81/g m s =,月球半径31.73810r km =⨯。
1、试计算16小时轨道的半长轴a 和半短轴b 的长度,以及椭圆偏心率e 。
2、在16小时轨道的远地点点火时,假设卫星所受推力的方向与卫星速度方向相同,而且点火时间很短,可以认为椭圆轨道长轴方向不变。
设推力大小F=490N ,要把近地点抬高到600km ,问点火时间应持续多长?3、试根据题给数据计算卫星在16小时轨道的实际运行周期。
4、卫星最后进入绕月圆形轨道,距月面高度H m 约为200km ,周期T m =127分钟,试据此估算月球质量与地球质量之比值。
25届 五、(20分)一很长、很细的圆柱形的电子束由速度为v 的匀速运动的低速电子组成,电子在电子束中均匀分布,沿电子束轴线每单位长度包含n 个电子,每个电子的电荷量为(0)e e ->,质量为m 。
该电子束从远处沿垂直于平行板电容器极板的方向射向电容器,其前端(即图中的右端)于t=0时刻刚好到达电容器的左极板。
电容器的两个极板上各开一个小孔,使电子束可以不受阻碍地穿过电容器。
两极板A 、B 之间加上了如图所示的周期性变化的电压AB V (AB A B V V V =-,图中只画出了一个周期的图线),电压的最大值和最小值分别为V 0和-V 0,周期为T 。
若以τ表示每个周期中电压处于最大值的时间间隔,则电压处于最小值的时间间隔为T -τ。
已知τ的值恰好使在V AB 变化的第一个周期内通过电容器到达电容器右边的所有的电子,能在某一时刻t b 形成均匀分布的一段电子束。
设电容器两极板间的距离很小,电子穿过电容器所需要的时间可以忽略,且206mv eV =,不计电子之间的相互作用及重力作用。
1、满足题给条件的τ和t b的值分别为τ= T,t b= T。
2、试在下图中画出t=2T那一时刻,在0-2T时间内通过电容器的电子在电容器右侧空间形成的电流I,随离开右极板距离x的变化图线,并在图上标出图线特征点的纵、横坐标(坐标的数字保留到小数点后第二位)。
取x正向为电流正方向。
图中x=0处为电容器的右极板B的小孔所在的位置,横坐标的单位s=。
(本题按画出的图评分,不须给出计算过程)27复26届5.如图,给静止在水平粗糙地面上的木块一初速度,使之开始运动。
一学生利用角动量定理来考察此木块以后的运动过程:“把参考点设于如图所示的地面上一点O,此时摩擦力f的力矩为0,从而地面木块的角动量将守恒,这样木块将不减速而作匀速运动。
”请指出上述推理的错误,并给出正确的解释:。
27复电 27复26届3.用测电笔接触市电相线,即使赤脚站在地上也不会触电,原因是 ;另一方面,即使穿绝缘性能良好的电工鞋操作,测电笔仍会发亮,原因是 。
26届4.在图示的复杂网络中,所有电源的电动势均为E 0,所有电阻器的电阻值均为R 0,所有电容器的电容均为C 0,则图示电容器A 极板上的电荷量为 。
28复 五、(15分)半导体pn 结太阳能电池是根据光生伏打效应工作的。
当有光照射pn 结时,pn 结两端会产生电势差,这就是光生伏打效应。
当pn 结两端接有负载时,光照使pn 结内部产生由负极指向正极的电流即光电流,照射光的强度恒定时,光电流是恒定的,已知该光电流为I L ;同时,pn 结又是一个二极管,当有电流流过负载时,负载两端的电压V 使二极管正向导通,其电流为)1(0-=VrV D eI I ,式中Vr 和I 0在一定条件下均为已知常数。
1、在照射光的强度不变时,通过负载的电流I 与负载两端的电压V 的关系是I=__________________。