华一寄宿2016~2017学年度下学期八年级3月月考数学参考答案

合集下载

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:10分)成绩一.选择题(本大题共有6小题,每小题3分,共18分)1.要使分式有意义,则x的取值应满足()A.x=﹣2B.x<﹣2.x>﹣2D.x≠﹣22.下列函数表达式中,不是x的反比例函数的是()A.= B.= .= D.x=3.如果=2﹣a,那么()A.a<2B.a≤2.a>2D.a≥24.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形B.对角线平分一组对角的平行四边形.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形.如图,在△AB中,∠AB=90°,∠A=40°,以为圆心,B为半径的圆交AB于点D,连接D,则∠AD=()A.10°B.1°.20°D.2°6.在同一平面直角坐标系中,函数=(x﹣1)与= 的大致图象是()A.B..D.二.填空题(本大题共10小题,每小题3分,共30分)7.+ =.8.如果最简二次根式与是同类二次根式,则a=.9.在式子、、、、+ 、9x+ 中,分式有个.10.已知反比例函数,当x<0时,随x的增大而减小,那么的取值范围是.11.如图,点A、B在函数= (x>0)的图象上,过点A、B分别向x、轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2=.12.如图,在⊙中,弦AB垂直平分半径,垂足为D,若⊙的半径为4,则弦AB的长为.13.如图,已知⊙的半径为,若AB=8,点P是线段AB上的任意一点,则P的取值范围是.14.如图,直角坐标系中一条圆弧经过格点A,B,,其中B点坐标为(3,4),则该弧所在圆心的坐标是.1.汛期临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原的2倍,结果共用10天便完成了全部任务.请求出施工单位原每天加固河堤多少米?设原每天加固河堤x米,根据题意可得方程.16.矩形ABD中,AB=4,B=6,点E是AB的中点,点F 是B上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则P的最小值是.三.解答题(本大题共10小题,共102分)17.(12分)⑴计算×﹣(2 )2 ;⑵已知x=2﹣,求x2﹣4x+1的值.18.(12分)解下列分式方程.⑴;⑵+1.19.(8分)先化简后求值:其中x=-4.20.(8分)如图,在以点为圆心的两个圆中,大圆的弦AB交小圆于点、D,求证:A=BD.21.(10分)如图,∠=90°,以A为半径的圆与AB相交于点D.若A=3,B=4,求BD长.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.⑴请你补全这个输水管道的圆形截面;⑵若这个输水管道有水部分的水面宽AB=16,水面最深地方的高度为4,求这个圆形截面的半径.23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高2%,原计划完成这项工程需要多少个月?24.(10分)如图,一次函数=1x+b与反比例函数= 的图象交于A(2,3),B(n,﹣2)两点.过点B作B⊥x轴,垂足为.⑴求一次函数与反比例函数的解析式;⑵求△AB的面积;⑶若P(p,1),Q(﹣2,2)是函数= 图象上的两点,且1≥2,求实数p的取值范围.2.(10分)在Rt△AB中,∠AB=90°,以点A为圆心,AB为半径,作⊙A交A于点F,交BA的延长线于点D,过点D作A的平行线交⊙A于点E,连接AE、E,EF.⑴求证:E⊥AE;⑵当∠AB等于多少度时,四边形ADEF为菱形,并给于证明.26.(12分)已知如图,正方形ABD在第一象限,边长为4,顶点A、B分别在轴与x轴正半轴上运动,点P为正方形ABD对角线A、BD 的交点.⑴当点A坐标为(0,2)时,求点坐标;⑵试说明点A、、B、P四点在同一个圆上;⑶正方形在运动过程中,直接写出线段的最大值四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:10分)成绩一.选择题(本大题共有6小题,每小题3分,共18分)1.要使分式有意义,则x的取值应满足(D)A.x=﹣2B.x<﹣2.x>﹣2D.x≠﹣22.下列函数表达式中,不是x的反比例函数的是(B)A.= B.= .= D.x=3.如果=2﹣a,那么(B)A.a<2B.a≤2.a>2D.a≥24.下列四边形中不一定为菱形的是(A)A.对角线相等的平行四边形B.对角线平分一组对角的平行四边形.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形.如图,在△AB中,∠AB=90°,∠A=40°,以为圆心,B为半径的圆交AB于点D,连接D,则∠AD=(A)A.10°B.1°.20°D.2°6.在同一平面直角坐标系中,函数=(x﹣1)与= 的大致图象是(B)A.B..D.二.填空题(本大题共10小题,每小题3分,共30分)7.+ = 3 .8.如果最简二次根式与是同类二次根式,则a= 1 .9.在式子、、、、+ 、9x+ 中,分式有 3 个.10.已知反比例函数,当x<0时,随x的增大而减小,那么的取值范围是>2 .11.如图,点A、B在函数= (x>0)的图象上,过点A、B分别向x、轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2= 4 .12.如图,在⊙中,弦AB垂直平分半径,垂足为D,若⊙的半径为4,则弦AB的长为 4 .13.如图,已知⊙的半径为,若AB=8,点P是线段AB上的任意一点,则P的取值范围是3≤P≤ .14.如图,直角坐标系中一条圆弧经过格点A,B,,其中B点坐标为(3,4),则该弧所在圆心的坐标是(1,1).1.汛期临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原的2倍,结果共用10天便完成了全部任务.请求出施工单位原每天加固河堤多少米?设原每天加固河堤x米,根据题意可得方程+ =10 .16.矩形ABD,AB=4,B=6,点E是AB的中点,点F 是B上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则P的最小值是2 -2 .三.解答题(共10小题)17.(12分)(1)计算×﹣(2 )2 (2)已知x=2﹣,求x2﹣4x+1的值.解:(1)原式= ﹣8 = ﹣8 = ﹣3;(2)∵x=2﹣,∴x﹣2=﹣,∴(x﹣2)2=3,∴x2﹣4x+1=0.18.(12分)解下列分式方程.(1) ;(2) +1.解:(1)x=3 (2) x=-1 (2)x=1是增根19.(8分)先化简后求值:其中x=-4.解:= = 120.(8分)如图,在以点为圆心的两个圆中,大圆的弦AB交小圆于点、D,求证:A=BD.证明:过圆心作E⊥AB于点E,在大圆中,E⊥AB,∴AE=BE.在小圆中,E⊥D,∴E=DE.∴AE﹣E=BE﹣DE.∴A=BD.21.(10分)如图,∠=90°,以A为半径的圆与AB相交于点D.若A=3,B=4,求BD长.(1)∵在三角形AB中,∠AB=90°,A=3,B=4,∴AB= = =,点作E⊥AB于点E,由三角形面积可求E=24AE=18,∴AD=2AE=2×18=36∴BD=AB﹣AD=﹣36=14.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16,水面最深地方的高度为4,求这个圆形截面的半径.解:(1)图略,(2)截面的半径=10.23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高2%,原计划完成这项工程需要多少个月?解:原计划完成这项工程需要30个月24.(10分)如图,一次函数=1x+b与反比例函数= 的图象交于A(2,3),B(n,﹣2)两点.过点B作B⊥x轴,垂足为.(1)求一次函数与反比例函数的解析式;(2)求△AB的面积;(3)若P(p,1),Q(﹣2,2)是函数= 图象上的两点,且1≥2,求实数p的取值范围.(1)反比例函数的解析式是= ;一次函数的解析式是=x+1;(2)(3)分为两种情况:当点P在第三象限时,要使1≥2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使1≥2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.2.(10分)在Rt△AB中∠AB=90°,以点A为圆心,AB为半径,作⊙A交A于点F,交BA的延长线于点D,过点D作A的平行线交⊙A于点E,连接AE、E,EF.(1)求证:E⊥AE;(2)当∠AB等于多少度时,四边形ADEF为菱形并给于证明.【解答】(1)证明:∵DE∥A,∴∠D=∠AB,∠DEA=∠EAF,∵∠D=∠DEA,∴∠FAE=∠AB,∴△AB≌△AE(SAS),∴∠AE=∠AB=90°,∴AE⊥E;(2)解:当∠AB=60°时,四边形ADFE为菱形.理由如下:∵∠AB=60°,∴∠FAB=∠AE=∠DAE=60°,∵AD=AE=AF ∴△ADE △AEF都是等边三角形∴AD=DE=EF=AF,∴四边形ADFE是菱形.26.(12分)已知如图:正方形ABD在第一象限,边长为4,顶点A、B分别在轴与x轴正半轴上运动,点P为正方形ABD对角线A、BD 的交点。

八年级(下)学期3月份月考检测数学试卷含解析

八年级(下)学期3月份月考检测数学试卷含解析

八年级(下)学期3月份月考检测数学试卷含解析一、选择题 1.若a 是最简二次根式,则a 的值可能是( ) A .2- B .2 C .32 D .82.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( )A .12B .10C .8D .63.下列等式正确的是( ) A .497-=- B .2(3)3-= C .2(5)5--=D .822-= 4.下列各式中,正确的是( )A .42=±B .822-=C .()233-=-D .342=5.下列各式是二次根式的是( )A .3B .1-C .35D .4π- 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x 7.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .101 8.下列各式计算正确的是( ) A .2+3=5B .43-33=1C .2333=63⨯D .123=2÷ 9.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .610.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .911.若a b >3a b - )A .ab --B .-abC .a abD .-ab12.下列计算正确的是( )A=B.2-= C.22= D3=二、填空题13.若mm 3﹣m 2﹣2017m +2015=_____. 14.==________.15.甲容器中装有浓度为a,乙容器中装有浓度为b,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.若6x ,小数部分为y,则(2x y 的值是___.17.化简二次根式_____. 18.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________ 19.已知:可用含x=_____. 20.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化. (3)利用所需知识判断:若a =,2b =a b ,的关系是 .(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.23.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)=31-2==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.24.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b aa ab a b-+⨯+-=()()()2·a b aa ab a b-+-=a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.计算(1))(121123-⎛⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦, (()1475452=⨯+---230=+28=-;(2)(1119,22x y ==, 1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-, 17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.29.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.30.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2.故选:B .此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.B解析:B【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得.【详解】由题意得:20,40m n -=-=,解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形,4a n ∴==,则ABC 的周长为24410++=,故选:B .【点睛】 本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.3.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB 3=,故本选项符合题意;C 、5=-,故本选项不符合题意;D 、=-,故本选项不符合题意;故选:B .【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项.A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】即:20x-≥,解得:2x,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 7.B解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+ =111+1n n -+, ∴=1111111+11122399100-++-+++- =199+1100- =100-1100, ∴不大于S 的最大整数为99.故选B.【点睛】 1111n n =+-+是解答本题的基础.8.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知4333-=3,故不正确;根据二次根式的性质,可知2333⨯=18,故不正确; 根据二次根式除法的性质,可知2733333÷=÷=,故正确.故选D.9.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1, 第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D10.A解析:A【解析】根据题意得:|x 2–4x 23x y --,所以|x 2–4x +4|=023x y --,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .11.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】3a b -∴-a 3b≥0∵a >b ,∴a >0,b <023=a b ab a a ab --=-,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.【详解】mm,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.14.3【解析】设,则可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m故答案为:5 【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键. 16.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 17.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==. 故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为18.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 19.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 20.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2017年3月八年级数学月考试卷及答案

2017年3月八年级数学月考试卷及答案

2016~2017学年度下学期三月月考八年级数学试题仁当X 是怎样的实数时,.x —2在实数范围内有意义?() A. x > 3 B. x > 2 C. x > 1 D. x > 42•下列二次根式中与 ,2是同类二次根式的是() 3•下列计算错误的是( )4 •下列命题的逆命题不正确的是() A •同旁内角互补,两直线平行 C .两个全等三角形的对应边相等宽2.7 m ;② 号木板长2.8 m,宽2.8 m ;③ 号木板长4 m,宽2.4 m .可以从这扇门通过的木板是( ) 9•如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边 AB 、BC 的长分别为3和4,那么 点P 到矩形的B •如果两个角是直角,那么它们相等D •如果两个实数的平方相等,那么它们相等 5 •在直角坐标系中,点 P (-2,3)到原点的距离是(A. 2B. -2C. 、2D. - 27 •如图,是一扇高为 2 m ,宽为1.5 m 的门框,童师傅有 3块薄木板,尺寸如下:① 号木板 长3 m ,A •②B •③C •②③D •都不能通过8.如图,在矩形ABCD 中,AB = 8,BC = 4,将矩形沿AC 折叠,点D 落在点D 处,则重叠部分 △ AFC 的面积为( ) C • 10D • 12 二(两条对角线AC和BD的距离之和是()10.在直角三角形中,自锐角顶点所引的两条中线长为二、填空题(每小题3分,共18 分)12. 在实数范围内因式分解: X 2 -2 = ____________________________ .13. 如图,正方形 A 、B 、C 的边长分别为直角三角形的三边长,若正方形A 、B 的边长分别为3和5,则正方形C 的面积为 ___________________ .14. 若.9-6a a 2「=3-a ,贝U a 与3的大小关系为15•已知,J 2—, J 3空=3j3 , J 4— =4^— ,请你用含 n \ 3 II 3 V 8 I! 8 \ 15 V15的式子将其中的规律表示岀来 _______________________________16.如图, ABC 中,.ACB =90 , BC =2 , AC = 4,将.ABC 绕 C 点旋转一个角度到 DEC ,直线AD 、EB 交于F 点,在旋转过程中,MBF 的面积的最大值是 ___________________ .三、解答题:(共72分)12 ~5D •不确定 边长为() A. 6 B. 7 C. 2.6 D. 2. 7 17. (8 分)计 算:(1)14 7 3 5 2.10 18. ( 8分)先化简,再求值: 19..(本题8分)如图,(1) AC 的长为■:( X x -2x 1 ..10和•. 35,那么这个直角三角形的斜 11•化简:⑵求证:AC 丄BC ⑶ 若以A 、B 、C 及点D 为顶点的四边形为 口ABCD ,画岀口ABCD ,并写岀D 点的坐标 ____________求CD 的值BD 21. (10分)如图,正方形 ABCD 中,E 、F 分别在 EF 的延长线交BC 的延长线于G 点,且/ AEB= /1(1 )求证:.ABE 二一.BGE ;2(2)若 AB =4, AE 求 S BEG •22. (本题10分)如图,在矩形 ABCD 中,AD = 12,分/ ADC ,AF 丄 EF ⑴求EF 长(2)在平面上是否存在点 Q ,使得QA = QD = QE = QF ?若存在,求岀 QA 的长;若不存在,说明理23. (本题 10 分)已知△ ABC 中,/ ACB = 90 ° AC = 2BC⑴ 如图1,若 AB = BD ,AB 丄BD ,求证:CD = 2 AB(2) 如图 2,若 AB = AD , AB 丄 AD , BC = 1,求 CD 的长(3) 如图 3,若 AD = BD , AD 丄 BD , AB = 2、一5,求 CD 的长(1)如图1,求点C 的坐标⑵如图2, E 、F 分别为OA 上的动点,且/ ECF = 45 °求证:EF 2= OE 2 + AF 2 ⑶ 如图3,点D 在y 轴正半轴上运动, 以AD 为腰向下作等腰 RT △ ADM , / DAM = 90 °为线段OA 的中点,连 DT 并延长至点 N,使DT=TN ,连MN ,求MN 的最小值. 20 ••如图,在等边三角形 △ ABC 中,射线 AD 四等分/ BAC 交 BC 于点 D ,其中/ BAD >/ CAD ,24.(本题12分)已知点A 、B 分别在x 轴和y 轴上, OA = OB ,点C 为 AB 的中点,AB = 12、2AB = 7, DF 平AD 、DC 上,BEG ;。

河北省邯郸市2016-2017学年八年级下第三次月考数学试题含答案

河北省邯郸市2016-2017学年八年级下第三次月考数学试题含答案

八年级下学期第三次月考数学试题一、 选择题(每题3分,共16题,共48分) 1、下列说法中,正确的是( )A. 一次函数也是正比例函数B. 正比例函数也是一次函数C. 一个函数不是正比例函数就不是一次函数D. y =kx +b 是一次函数2、若点A (-2,m )在正比例函数x y 21-=的图象上,则m 的值是( ) A.41 B. 41- C. 1 D. -1 3、关于x 的一元二次方程()01122=-++-a x x a 的一个根是0,则a 的值为( )A. 1B. -1C. 1或-1D. 0.54、已知一次函数b kx y +=,当x 增加5时,y 减少2,则k 的值是( )A. 52-B. 25- C. 52 D. 255、下列关于x 的一元二次方程中,有实数根的是( )A. 012=+-x xB. 0322=+-x xC. 012=-+x xD. 042=+x6、一组数据54321,,,,x x x x x 的平均数是a ,另一组数据521+x ,522+x ,523+x ,524+x ,525+x 的平均数是( )A. aB. 2aC. 2a +5D. 无法确定7、已知方程02=++a bx x 有一个跟是a (a ≠0),则下列代数式的值恒为常数的是( )A. abB.baC. a +bD. a -b 8、用配方法解下列方程时,配方正确的是( )A. 方程0562=--x x ,可化为()432=-x B. 方程0201522=--y y ,可化为()201512=-yC. 方程0982=++a a ,可化为()2542=+aD. 方程07622=--x x ,可化为423232=⎪⎭⎫ ⎝⎛-x9、函数11+=x y 与b ax y +=2的图象如图所示,这两个函数的交点在y 轴上,那么21,y y 的值都大于零的x 的取值范围是( ) A. x <-1 B. x >2 C. x <-1或x >2 D. -1<x <210、若关于x 的一元二次方程0122=++-kb x x 有两个不相等的实数根,则一次函数b kx y +=的大致图象可能是( )11、某校九年级(3)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了1980张相片,若全班有x 名学生,根据题意,列出方程为( )A. ()19801=-x xB. ()19801=+x xC. ()198012=+x xD.()198021=-x x12、已知一元二次方程0432=--x x 的两个根分别为21,x x ,则221221x x x x +的值为( )A. -12B. 12C. -6D. 613、若三角形ABC 两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )A. 24B. 58C. 48D. 24或58 14、如图,在平面直角坐标系中,直线3232-=x y 与矩形ABCD 的边OC 、BC 分别交于点E 、F ,已知OA =3,OC =4,则△CEF的面积是( )A. 6B. 3C. 12D.34 15、一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成,为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图②所示,则寻宝者的行进路线可能是( )A. C→B→OB. A→O→BC. B→A→CD. B→O→C 16、如图所示,已知直线l :x y 33=,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( ) A.(0,64) B.(0,128) C.(0,256) D.(0,512) 二、 填空题(每题3分,共12分)17、函数13-+=x x y 中自变量x 的取值范围是__________。

人教版八年级(下)学期3月份 自主检测数学试题含答案

人教版八年级(下)学期3月份 自主检测数学试题含答案

一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=3.下列计算正确的是( )A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-4.下列运算结果正确的是( )A 9=-B 3=C .(22= D 5=-5.下列根式中,最简二次根式是( )A B C D 6.下列各式计算正确的是( )A =B 6=C .3+=D 2=-7.1在3和4中x 的取值范围是1x ≥-;③3;④5=-58>.其中正确的个数为( ) A .1个B .2个C .3个D .4个8.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤49.若a ,b =,则a b 的值为( )A .12B .14C .321+D10.下列运算正确的是( )A =B 2=C =D 9=二、填空题11.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.12.当x =2+3时,式子x 2﹣4x +2017=________. 13.把1m m-根号外的因式移到根号内,得_____________. 14.若2x ﹣1=3,则x 2﹣x=_____.15.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____.16.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______. 17.计算:200820092+323⋅-=_________.18.20n n 的最小值为___ 19.2a ·8a (a ≥0)的结果是_________.20.12a 1-能合并成一项,则a =______.三、解答题21.计算及解方程组: (11324-2-1-26() (2)262-153-2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)72102)-3107;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11324126-()1+(11=1(22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩ ∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b+b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可; (2)根据二次根式及绝对值的非负性得到2a +6=0,b=0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+-=1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.24.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.25.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==26.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.27.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.28.一样的式子,其实我====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2)12.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n++++=.考点:分母有理化.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】|5|5x x==-=-,∴5-x≥0,解得:x≤5, 故选D . 【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.B解析:B 【分析】=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可. 【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误; 故选B . 【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.3.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .4.C解析:C 【分析】根据二次根式的性质及除法法则逐一判断即可得答案. 【详解】=,故该选项计算错误,不符合题意,9=C.(22=,故该选项计算正确,符合题意,=,故该选项计算错误,不符合题意,5故选:C.【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.5.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.6.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据=对D进行判断.a【详解】解:A不能合并,所以A选项错误;B6=,正确,所以B选项正确;C、3不能合并,所以C选项错误;D22=--=(),所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.7.A解析:A【分析】答.【详解】解:①3104<<,415∴<<,故①错误;x的取值范围是1x≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;58=,(229<,∴1528-<,即1528<,故⑤错误;综上所述:正确的有②,共1个,故选:A.【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.8.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.B解析:B【解析】【分析】将a可化简为关于b的式子,从而得到a和b的关系,继而能得出ab的值.【详解】a=b44=.∴14ab=.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.10.C解析:C【分析】根据二次根式的减法法则对A进行判断;根据二次根式的加法法则对B进行判断;根据二次根式的乘法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A=,所以A选项错误;B=B选项错误;C=C选项正确;D3=,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 12.2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017 =(x﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因. 13.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.14.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型. 15.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.16.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数: ∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.17.【解析】原式==18.5【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∵,且是整数,∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.19.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键. 20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

2016-2017学年度人教版八年级数学第三次月考试卷 含答案

2016-2017学年度人教版八年级数学第三次月考试卷 含答案

2016-2017学年度八年级第三次月考数学试卷1.若关于x 的方程222(1)0x k x k --+=有实数根m 和n ,则m n +的取值范围是( ) A .1m n +≥ B .1m n +≤ C .12m n +≥ D .12m n +≤ 2.下列一元二次方程中没有实数根的是A .2240x x +-=B .2440x x -+=C .2250x x --=D .2340x x ++=3.三角形两边长分别是8和6,第三边长是一元二次方程216600x x -+=一个实数根,则该三角形的面积是( )A .24B .48C .24或.4.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ).A .2144(1)100x -=B .2100(1)144x -=C .2144(1)100x +=D .2100(1)144x += 5.关于x 的方程(k +2)x 2-kx-2=0必有一个根为( ). A.x=1 B.x=-1 C.x=2 D.x=-26.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )A .3cmB .6cmC .3cm D .6cm7.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .B .25C .D .358.下列关于x 的方程:①20ax bx c ++=;②223(9)(1)1x x --+=;③13x x+=;④22(1)0a a x a ++-=1x =-.其中是一元二次方程有( )A.1个B.2个C.3个D.4个9.如图,每个小正方形的边长为1,A 、B 、C 是正方形的顶点,则∠ABC 的度数为( )A.30°B.45°C.60°D.90°10.定义:如果一元二次方程ax 2+bx +c =0(a≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a =cB .a =bC .b =cD .a =b =c 二、填空题(5分*4题=20分)11.已知关于x 的方程x 2+(1﹣m )x+24m =0有两个不相等的实数根,则m 的最大整数值是 .12.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m .一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行 m .13.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),2三、计算题(15) 15.(3分)1232127---16.(6分)(1)013212=-+x x (2)()()2234x x x ++=-17.(6分)已知关于x 的一元二次方程x 2-(2k+1)x+4k-3=0,(1)求证:无论k 取什么实数值,该方程总有两个不相等的实数根?(2)当Rt △ABC 的斜边b 和c 恰好是这个方程的两个根时,求k 的值.四、解答题(题型注释)18.(本题满分7分)已知关于x 的方程x 2﹣mx+m ﹣3=0, (1)若该方程的一个根为﹣1,求m 的值及该方程的另一根; (2)求证:不论m 取何实数,该方程都有两个不相等的实数根. 19.(本题满分8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 20.(10分)如图,在△ABC 中,∠B=90°,AB=6米,BC=8米,动点P 以2米/秒的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1米/秒的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止.设移动的时间为t 秒.(1)当t=2.5秒时,求△CPQ 的面积;(2)求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式; (3)在P ,Q 移动过程中,当△CPQ 为等腰三角形时,写出t 的值;21.(本题10分)如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在x 轴上,AB=25,顶点C 在y 轴的负半轴上,tan ∠ACO=34,点P 在线段OC 上,且PO 、PC 的长(PO<PC )是关于x 的方程x 2-12x+32=O 的两根. (1) 求P 点坐标求 (2) 求AC 、BC 的长;(3)在x 轴上是否存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形是梯形?若存在,请直接写出直线PQ 的解析式;若不存在,请说明理由. 22.(10分)某工程队在我城中村拆迁改造过程中承包了一项拆迁工程,原计划每天拆迁1250平方米,应准备工作不足,第一天少拆迁了20% 。

八年级数学下册第三次月考试卷及答案.doc

八年级数学下册第三次月考试卷及答案.doc

2019-2020 年八年级数学下册第三次月考试卷及答案一、选择题(每小题 3 分,共 30 分) 1.不等式x>3 的解集是()A x 3B x 3Cx 3 D x 32.如果把分式2x 中的 x 和 y 都扩大 2 倍,那么分式的值()x yA 扩大 2 倍B 不变C缩小 2 倍D扩大 4 倍3. 若反比例函数图像经过点( 1,6) ,则此函数图像也经过的点是()A (6,1)B(3,2) C (2,3)D( 3,2)4.在 △ ABC 和 △DEF 中, AB2DE ,AC2DF , AD ,如果 △ ABC 的周长是 16,面积是 12,那么 △DEF 的周长、面积依次为()A 8 , 3B 8 , 6C 4 , 3D 4, 65.为抢修一段 120 米的铁路,施工队每天比原计划多修 5 米,结果提前 4 天开通了列车,问原计划每天修多少米 ?若设原计划每天修 x 米,则所列方程正确的是()A 120 120 4 B120 120 4 C120 120 4 D 120 1204x x 5x 5 xx 5 xx x 56.如图是反比例函数yk1和 y k 2 (k 1<k 2) 在第一象限的图象,直xx线 AB//y 轴,并分别交两条曲线于 A 、 B 两点,若 S △AOB = 4,则k - k 1 的值是 ( )2A . 1B . 2 C. 4D.87、在菱形 ABCD 中, E 是 BC 边上的点,连接 AE 交BD 于点 F,若EC =2BE , 则 BF的值是( )FDA.1111ADB.C.D.2345FBEC8.如图 Rt △ ABC 中,∠ C = 90°, CD ⊥ AB ,垂足为 D , AD = 8, DB = 2,则 CD 的长为( )A . 4B. 16C. 2 5D . 4 59、在△ ABC 与△ A ’B ’C ’中,有下列条件:① ABBC ;⑵AC BC③∠ A =∠ A ;④∠ C =∠ C 。

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:150分)成绩一.选择题(本大题共有6小题,每小题3分,共18分) 1.要使分式有意义,则x的取值应满足() A.x=�2 B.x<�2 C.x>�2 D.x≠�2 2.下列函数表达式中,y不是x的反比例函数的是() A.y= B.y= C.y= D.xy= 3.如果 =2�a,那么() A.a<2 B.a≤2 C.a >2 D.a≥2 4.下列四边形中不一定为菱形的是() A.对角线相等的平行四边形 B.对角线平分一组对角的平行四边形 C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形5.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=() A.10° B.15° C.20° D.25° 6.在同一平面直角坐标系中,函数y=k(x�1)与y= 的大致图象是() A. B. C. D.二.填空题(本大题共10小题,每小题3分,共30分) 7. += . 8.如果最简二次根式与是同类二次根式,则a= . 9.在式子、、、、 + 、9x+ 中,分式有个. 10.已知反比例函数,当x<0时,y随x的增大而减小,那么k的取值范围是. 11.如图,点A、B在函数y= (x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2= . 12.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为. 13.如图,已知⊙O的半径为5,若AB=8,点P是线段AB上的任意一点,则OP的取值范围是.14.如图,直角坐标系中一条圆弧经过格点A,B,C,其中B点坐标为(3,4),则该弧所在圆心的坐标是. 15.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x米,根据题意可得方程. 16.矩形ABCD 中,AB=4,BC=6,点E是AB的中点,点F 是BC上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则PC的最小值是.三.解答题(本大题共10小题,共102分) 17.(12分)⑴计算× �(2 )2 ;⑵已知x=2�,求 x2�4x+1的值.18.(12分)解下列分式方程.⑴ ;⑵ +1.19.(8分)先化简后求值:其中x=-4.20.(8分)如图,在以点O为圆心的两个圆中,大圆的弦AB交小圆于点C、D,求证:AC=BD.21.(10分)如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.⑴请你补全这个输水管道的圆形截面;⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. 23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高25%,原计划完成这项工程需要多少个月?24.(10分)如图,一次函数y=k1x+b与反比例函数y= 的图象交于A(2,3),B(n,�2)两点.过点B作BC⊥x轴,垂足为C.⑴求一次函数与反比例函数的解析式;⑵求△ABC的面积;⑶若P(p,y1),Q(�2,y2)是函数y= 图象上的两点,且y1≥y2,求实数p 的取值范围.25.(10分)在Rt△ABC中,∠ABC=90°,以点A为圆心,AB为半径,作⊙A交AC于点F,交BA的延长线于点D,过点D作AC的平行线交⊙A于点E,连接AE、CE,EF.⑴求证:CE⊥AE; ⑵当∠CAB等于多少度时,四边形ADEF为菱形,并给于证明.26.(12分)已知如图,正方形ABCD在第一象限,边长为4,顶点A、B分别在y轴与x轴正半轴上运动,点P为正方形ABCD对角线AC、BD的交点.⑴当点A坐标为(0,2)时,求点C坐标;⑵试说明点A、O、B、P四点在同一个圆上;⑶正方形在运动过程中,直接写出线段OC的最大值四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:150分)成绩一.选择题(本大题共有6小题,每小题3分,共18分) 1.要使分式有意义,则x的取值应满足( D ) A.x=�2 B.x<�2 C.x >�2 D.x≠�2 2.下列函数表达式中,y不是x的反比例函数的是( B ) A.y= B.y= C.y= D.xy= 3.如果 =2�a,那么( B )A.a<2 B.a≤2 C.a>2 D.a≥2 4.下列四边形中不一定为菱形的是( A ) A.对角线相等的平行四边形 B.对角线平分一组对角的平行四边形 C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形 5.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=( A )A.10° B.15° C.20° D.25° 6.在同一平面直角坐标系中,函数y=k(x�1)与y= 的大致图象是( B ) A. B. C. D.二.填空题(本大题共10小题,每小题3分,共30分) 7. + =3 . 8.如果最简二次根式与是同类二次根式,则a=1 . 9.在式子、、、、 + 、9x+ 中,分式有 3 个. 10.已知反比例函数,当x<0时,y随x的增大而减小,那么k的取值范围是k>2 . 11.如图,点A、B在函数y= (x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2= 4 . 12.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为 4 . 13.如图,已知⊙O的半径为5,若AB=8,点P是线段AB上的任意一点,则OP的取值范围是3≤OP≤5 .14.如图,直角坐标系中一条圆弧经过格点A,B,C,其中B点坐标为(3,4),则该弧所在圆心的坐标是(1,1). 15.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x米,根据题意可得方程 +=10 . 16.矩形ABCD,AB=4,BC=6,点E是AB的中点,点F 是BC 上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则PC的最小值是 2 -2 .三.解答题(共10小题) 17.(12分)(1)计算× �(2 )2 (2)已知x=2�,求 x2�4x+1的值.解:(1)原式= �8 = 5�8 = �3;(2)∵x=2�,∴x�2=�,∴(x�2)2=3,∴x2�4x+1=0.18.(12分)解下列分式方程. (1) ; (2) +1.解:(1)x=3 (2) x=-1 (2)x=1是增根19.(8分)先化简后求值:其中x=-4.解:= = 1 20.(8分)如图,在以点O为圆心的两个圆中,大圆的弦AB交小圆于点C、D,求证:AC=BD.证明:过圆心O作OE⊥AB于点E,在大圆O中,OE⊥AB,∴AE=BE.在小圆O中,OE⊥CD,∴CE=DE.∴AE�CE=BE�DE.∴AC=BD.21.(10分)如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.(1)∵在三角形ABC中,∠ACB=90°,AC=3,BC=4,∴AB= = =5,点C作CE⊥AB于点E,由三角形面积可求CE=2.4 AE=1.8,∴AD=2AE=2×1.8=3.6 ∴BD=AB�AD=5�3.6=1.4.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.解:(1)图略,(2)截面的半径=10.23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高25%,原计划完成这项工程需要多少个月?解:原计划完成这项工程需要30个月24.(10分)如图,一次函数y=k1x+b与反比例函数y= 的图象交于A(2,3),B(n,�2)两点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)若P(p,y1),Q(�2,y2)是函数y= 图象上的两点,且y1≥y2,求实数p的取值范围.(1)反比例函数的解析式是y= ;一次函数的解析式是y=x+1;(2)5 (3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤�2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤�2或p>0.25.(10分)在Rt△ABC中∠ABC=90°,以点A为圆心,AB为半径,作⊙A交AC于点F,交BA的延长线于点D,过点D作AC的平行线交⊙A于点E,连接AE、CE,EF.(1)求证:CE⊥AE; (2)当∠CAB等于多少度时,四边形ADEF为菱形并给于证明.【解答】(1)证明:∵DE∥AC,∴∠D=∠CAB,∠DEA=∠EAF,∵∠D=∠DEA,∴∠FAE=∠CAB,∴△ABC≌△AEC(SAS),∴∠AEC=∠ABC=90°,∴AE⊥CE;(2)解:当∠CAB=60°时,四边形ADFE为菱形.理由如下:∵∠CAB=60°,∴∠FAB=∠CAE=∠DAE=60°,∵AD=AE=AF ∴△ADE △AE F都是等边三角形∴AD=DE=EF=AF,∴四边形ADFE是菱形. 26.(12分)已知如图:正方形ABCD在第一象限,边长为4,顶点A、B分别在y轴与x轴正半轴上运动,点P为正方形ABCD对角线AC、BD的交点。

2017华一八下3月月考

2017华一八下3月月考

华一寄宿2016~2017学年度下学期八年级3月月考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.使式子1-a 有意义的a 的取值范围是( ) A .a >1B .a ≥1C .a =1D .a ≤12.在下列以线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是( ) A .a =1.5,b =2,c =3 B .a =7,b =24,c =25 C .a ∶b ∶c =3∶4∶5D .a =9,b =12,c =153.下列二次根式是最简二次根式的是( ) A .8B .10C .12D .184.已知n 为正整数,且n 24是整数,则n 的最小值是( ) A .24B .4C .6D .2 5.在平行四边形ABCD 中,M 为CD 的中点.若CD =2AD ,则∠AMB 的大小为( ) A .30°B .45°C .60°D .90°6.如图,在四边形ABCD 中,AB =1,BC =1,CD =2,DA =6,且∠ABC =90°,则四边形ABCD 的面积为( ) A .2B .221+ C .21+ D .221+7.下列四个命题中,真命题的个数为( )① 一组对边平行,一组对边相等的四边形是平行四边形 ② 一组对边平行,一组对角线相等的四边形是平行四边形③ 一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形 ④ 一组对边相等,一组对角相等的四边形是平行四边形 A .1B .2C .3D .48.已知121121+=-=n m ,,则代数式mn n m 322-+的值为( )A .1B .±1C .3D .59.如图,将一个边长分别为3、9的矩形纸片ABCD 折叠,使点B 与点D 重合(AB =3,BC =9),则折痕EF 的长度为( )A .3B .32C .10D .2103 10.如图,△ABC 为等腰直角三角形,∠C =90°,点P 为△ABC 内一点,且AP =4,点D 、E分别是边AC 、AB 上的动点.在运动过程中,△PDE 的周长最小值是( ) A .4B .34C .8D .24二、填空题(本大题共6个小题,每小题3分,共18分) 11.已知15-=x ,则x 2+2x -6=__________12.平面直角坐标系中,点P (-3,2)到坐标原点的距离是__________ 13.命题:“对顶角相等”的逆命题是______________________ 14.如图,已知△ABC ,D 、E 分别为AB 、AC 上的点,且AD =41AB ,AE =41AC ,DE =1,则BC =____________15.如图,在矩形ABCD 中,AB =3,对角线AC 、BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________16.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为__________ 三、解答题(共8题,共72分) 17.(本题8分)计算:(1) 23218+- (2) a a aa a a 27814872+-18.(本题8分)已知-3<x <2,化简25204)3(|2|22+-+---x x x x19.(本题8分)如图,在平行四边形ABCD中,E、F分别为AD、BC的中点,对角线AC分别交BE、DF于点G、H,求证:AG=CH20.(本题8分)如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点E为AC中点,点F 为BD中点,求证:EF⊥BD21.(本题8分)如图,平行四边形ABCD中,∠B=60°,AE⊥BC于E,AF⊥CD于F,BE=2,DF=3,求平行四边形ABCD的周长22.(本题10分)如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边三角形△ABE、△ADF,连CE、CF、EF求证:(1) △CDF≌△EBC;(2) △ECF为等边三角形23.(本题10分)如图,矩形纸片ABCD 的四个角向内折叠,EF 、FG 、GH 、HE 为折痕,折叠后,点A 和点D 落在EG 上点P 的位置,点B 和点C 落在EG 上点Q 的位置 (1) 若EH =3,EF =4,求EG 的长 (2) 若21 EF EH ,求BCAB的值24.(本题12分)如图1,在平面直角坐标系中,等腰直角△ABO 的边OB 在x 轴负半轴上,A (-6,6)(1) 直接写出OA 中点坐标(2) 如图,△BQR 为等腰直角三角形,∠BRQ =90°,RB =RQ ,T 为OQ 中点,探求RT 与AQ 的数量关系并说明理由(3) △ODE 是△OBA 关于y 轴的对称三角形,P 为第一象限内一动点,且∠OPD =45°,F 点的坐标为(0,3),请直接写出PF 的最大值。

2016-2017学年广东省佛山市顺德区八年级(下)3月月考数学试卷和解析答案

2016-2017学年广东省佛山市顺德区八年级(下)3月月考数学试卷和解析答案

题8图2016学年度第二学期八年级数学科试卷说明:l .本卷共4页,考试用时90分钟,满分为100分.2.解答过程写在答题卡相应位置上,监考教师只收答题卡.3. 非选择题必须用黑色字迹的钢笔或签字笔作答;画图时用2B 铅笔并描清晰.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上. 1.已知b a >,下列关系式中一定正确的是( )A .22b a < B .b a 22< C .22+<+b a D .b a -<-2.如图,用不等式表示数轴上所示的解集,正确的是( )A .<x .3 D .31≤<-x 3.不等式812<+x 最大整数解是 ( )A .4B .3C .2D .14.一个等腰三角形的两边长分别为4,8,则它的周长为( ) A .12 B .16 C .20 D .16或205.等腰三角形一个底角为40°,则这个等腰三角形的顶角为( ) A .40° B .50° C .100° D .130° 6.到三角形三边距离相等的是( )A .三边高线的交点B .三条中线的交点C .三条垂直平分线的交点D .三条内角平分线的交点 7.一次函数323+-=x y 的图象如图所示,当0>y 时x 的取值范围是( ) A .x >2 B .x <2 C .x <0 D .2<x <4 8.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E , 垂足为D ,CE 平分∠ACB,若BE=2,则AE 的长为( )A题13图题14图题15图A.1B.2C.3D.29.已知关于x 的不等式2)1(>-x a 的解集为ax -<12,则a 的取值范围是( ) A .1>a B .1<a C .0≥a D .1≤a10.已知关于x 的方程x m x -=+42的解为负数,则m 的取值范围是( )A .34<m B .34>m C .4<m D .4>m 二、(本大题共6小题,每小题3分,共18分)请将下列各题的正确答案填写在答题卡相应的位置上.11.不等式143≥+x 的解集是______________________________. 12.命题“对顶角相等”的逆命题是______________________________.13.如图,若要用“HL ”证明Rt △ABC ≌Rt △ABD ,则需要添加的一个条件是__________. 14.如图,OP 平分∠AOB ,PC ⊥OB 于点C ,且PC=3,点P 到OA 的距离为__________.15.如图,直线b x y +=与直线6+=kx y 交于点P (3,5),则关于x 的不等式6+>+kx b x 的解集是__________.16.已知12+-=x y ,当x __________时,y 的值小于0.三、解答题(本大题共8小题,第17题8分,18、19题各5分,20、21题各6分,22、23题各7分,24题8分,共52分)请在答题卡相应位置上作答.17.解下列不等式(写出必要的文字步骤.........,每小题4分,共8分)(1) 4352+>-x x (2) 413532-≤-x x18.(5分)解不等式组:⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把解集在数轴上表示出.19.(5分)小颖准备用21元买笔和笔记本.已知每支笔3元,每个笔记本2.5元,她买了2个笔记本.请你帮她算一算,她还可能买几支笔?20.(6分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 边上的中点,DE 、DF 分别垂直AB 、AC 于点E 和F . 求证:DE=DF .21.(6分)已知甲村和乙村靠近两条公路a ,b ,为了发展经济,甲、乙两村准备合建一个工厂.经协商,工厂必须满足以下两个要求:(1)到两村的距离相等;(2)到两条公路的距离相等.题20图请你帮忙确定工厂的位置(用点P 表示). (尺规作图,保留作图痕迹,不写作法)22.(7分)某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为4000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%; 乙商场的优惠条件是:每台优惠20%.(1)(3分)设该学校所买的电脑台数是x 台,选择甲商场时,所需费用为1y 元,选择乙商场时,所需费用为2y 元,请分别写出1y ,2y 与x 之间的关系式;(2)(4分)该学校如何根据所买电脑的台数选择到哪间商场购买,所需费用较少?23.(7分)从①∠B=∠C ;②∠BAD=∠CDA ;③AB=DC ;④BE=CE 四个等式中选出两个作为条件,证明△AED 是等腰三角形(写出一种即可).已知:__________________(只填序号) (2分) 求证:△AED 是等腰三角形. (5分) 证明:题23图24.(8分)如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.AB ),若∠ABC的角平分线BD交(1)(2分)如图1,△ABC是等腰锐角三角形,AB=AC(BCAC于点D,且BD是△ABC的一条特异线,则∠BDC=______度;(2)(3分)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)(3分)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B 的度数(如有需要,可在答题卡相应位置另外画图).CB图 1 图 2 图 32016度第二学期八年级数学科试卷参考答案及评分标准一、选择题1—10题 DDBCC DBAAC二、填空题11. 1-≥x 12. 相等的两个角是对顶角. 13. BC=BD (或AC=AD ) 14. 3 15. x>3 16. x >12三、解答题 注:下列各题如有不同解法,正确的均可参照标准给分. 17.(1) 解 移项,得 5432+>-x x …………………2分合并同类项,得 9>-x ……………………3分 把x 的系数化为1,得 (或:不等式两边同时除以-1,得)x <-9 ……………………4分注:不写文字步骤合扣1分(2)解去分母,得(或:不等式两边同时乘以20,得))32(4-x ≤5(3x -1)……………1分去括号,得 128-x ≤15x -5 …………………2分 移项,得 x x 158-≤-5+12 …………………3分合并同类项,得 -7x ≤7把x 的系数化为1,得 (或:不等式两边同时除以-7,得)x ≥-1 ………………4分注:不写文字步骤合扣1分18.解①得x <2,解②得x ≥﹣1, (解①,解②全对给3分。

人教版八年级数学(下)学期3月份月考测试卷含解析

人教版八年级数学(下)学期3月份月考测试卷含解析

人教版八年级数学(下)学期3月份月考测试卷含解析一、选择题1.若2a <,化简()223a --=( )A .5a -B .5a -C .1a -D .1a --2.下列计算正确的是( ) A .42=±B .()233-=- C .()255-= D .()233-=-3.2的倒数是( ) A .2B .22C .2-D .22-4.下列计算正确的是( ) A .2510⨯=B .623÷=C .12315+=D .241-= 5.下列各式是二次根式的是( ) A .3B .1-C .35D .4π-6.设等式()()a x a a y a x a a y -+-=---在实数范围内成立,其中a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( ) A .3B .13C .2D .537.下列运算正确的是( )A .x + 2x =3xB .32﹣22=1C .2+5=25D .a x ﹣b x =(a ﹣b )x8.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定9.若a b >3a b - ) A .ab --B .-abC .a abD .-ab10.如果实数x ,y 23x y xy y =-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上11.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .19212.下列计算正确的是( ) A .234265= B 842C 2733=D 2(3)3-=-二、填空题13.设42 a,小数部分为 b.则1a b-= __________________________. 14.将2(3)(0)3a a a a-<-化简的结果是___________________.15.观察下列等式: 第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________ 16.若2x ﹣3x 2﹣x=_____. 17.化简二次根式2a 1a+-_____. 18.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 19.4102541025-+++=_______. 20.下列各式:2521+n 2b 0.1y 是最简二次根式的是:_____(填序号)三、解答题21.2-+1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】2-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.(112===;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,6,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.24.计算(a +b aba b-+)÷(ab b ++ab a --ab )(a ≠b ).【答案】-+a b 【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论. 试题解析:解:原式=a ab b ab a b++-+÷()()()()()()a aa b b ba b a b a b aba ba b--+-+-+-=a b+÷()()2222a a ab b ab b a b ab a b a b ----++-=a b +·()()()ab a b a b ab a b -+-+=-a b +.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.26.观察下列等式: 22121(21)(21)==++-;323232(32)(32)-==++-434343(43)(43)-==++- 回答下列问题:(12322+(2)计算:12+23+34+99100+ 【答案】(12322(2)9 【分析】(1)根据已知的3111n n n n=+-++n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】 解:(12322232223+2223+222322=-()()(2+1+22+33+499+100=21324310099++-=1001 =10-1 =9.27.计算:27812)6【答案】3243先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.计算(1+(2+-(3÷(4)(【答案】(1)234)7.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+=+22=;(2==;(3÷2b ==;(4)((22=-=7 【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.29.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++()211,11x x x x -+=⋅-+1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解. 【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a , 故选:D . 【点睛】||a =这个公式是解决本题的关键.2.C解析:C 【分析】直接利用二次根式的性质分别求解,即可得出答案. 【详解】解:A ,故A 选项错误;B ,故B 选项错误;C 选项:2=5,故C 选项正确;D 选项:2=3,故D 选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.3.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】,;2故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 4.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.5.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.6.B解析:B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a(y-a)≥0和a-y≥0可以得到a≤0,所以a只能等于0,代入等式得,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.7.D解析:D【解析】利用二次根式的加减法计算,可知:A、B、﹣C、D、﹣(a﹣b,此选项正确.故选:D.8.B解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.9.D解析:D【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】3-a b∴-a3b≥0∵a>b,∴a>0,b<03=2a b ab a a ab--=-,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.10.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】23=-x y xy y∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.11.A解析:A【分析】∆的面积;利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.12.C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、A错误;B=B错误;C3=,故选项C正确;D3=,故选项D错误;故选:C.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.二、填空题13.【分析】根据实数的估算求出a,b,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:1 【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=12-故填:12-. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.14..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.15.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题16.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.17.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+88=+=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,③4故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

人教版八年级第二学期3月份 自主检测数学试卷及答案

人教版八年级第二学期3月份 自主检测数学试卷及答案

人教版八年级第二学期3月份 自主检测数学试卷及答案一、选择题1.下列式子为最简二次根式的是( ) A .22a b +B .2aC .12aD .122.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D .()244-=-3.下列计算正确的为( ). A .2(5)5-=- B .257+=C .64322+=+D .3622=4.下列计算正确的是( ) A .2×3=6B .2+3=5C .8=42D .4﹣2=25.当0x =时,二次根式42x -的值是( ) A .4B .2C .2D .06.下列运算正确的是( ) A .235+=B .1823=C .3223-=D .1222÷= 7.下列计算正确的是( ) A .2510⨯=B .623÷=C .12315+=D .241-=8.下列式子一定是二次根式的是 ( ) A .2aB .-aC .3aD .a9.化简二次根式 22a a a +-的结果是( ) A .2a --B .-2a --C .2a -D .-2a -10.设,n k 为正整数,()()1314A n n =+-+,()2154A n A =++,()3274A n A =++,()4394A n A =++,…()1214k k A n k A -=+++,….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .401111.下列计算不正确的是 ( )A .35525-=B .236⨯=C .774=D .363693+=+==12.下列计算正确的是( ) A .235+=B .2332-= C .()222= D .393=二、填空题13.已知112a b +=,求535a ab ba ab b++=-+_____. 14.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.15.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 16.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =S=________________ (用含有n 的代数式表示,其中n 为正整数).17.观察下列等式:第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________18.()()22223310x y x y ++-+=,则222516x y +=______.19.函数y =2x -中,自变量x 的取值范围是____________.20.x 的取值范围是_____三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(2,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.25.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y xx y+ 【答案】(1) 72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xyxy+-,然后利用整体代入的方法计算.【详解】∵x =2,y =3∴xy=12, (1)22x xy y -+ =(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xy xy-⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.26.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积. 【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm2).考点:二次根式的应用27.计算:(1(2|a﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a,a﹣1=2﹣a+a﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.28.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.29.计算下列各题:(1(2)2-.【答案】(1)2)2-- 【分析】(1)根据二次根式的运算顺序和运算法则计算即可; (2)利用平方差、完全平方公式进行计算. 【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.30.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(23⨯⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣. 【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB |a |,可以化简,故不是最简二次根式;C =D =,可以化简,故不是最简二次根式; 故选:A . 【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .3.D解析:D【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可.【详解】A5=,故A选项错误;B B选项错误;C=,故C选项错误;=,正确,D2故选D.【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.4.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.5.B解析:B【分析】把x=0【详解】解:当x=0时,=2,故选:B.【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.6.D解析:D【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.【详解】解:A A选项错误;B=B选项错误;C、=C选项错误;=,所以D选项正确.D2故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.8.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;a<B错误;B、0C是三次根式,故C错误;a<D错误;D、0故选:A.【点睛】0a ≥)是二次根式,注意二次根式的被开方数是非负数.9.B解析:B【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】 2202a a aa a +-∴+<∴<-a ∴===故选B 【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.A解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A 1,A 2,A 3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n 2+2n-3+4=n 2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k =n+(2k-1)∴A 100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A1,A2,A3,从而找出规律写出规律的表达式是解题的关键.11.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;=根据二次根式的性质和化简,=,故正确;根据二次根式的加减,不是同类二次根式,故不正确.故选D.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 14.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x ,y 及a ,b 的关系.15.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

人教版八年级(下)学期3月份自主检测数学试卷含答案

人教版八年级(下)学期3月份自主检测数学试卷含答案

人教版八年级(下)学期3月份自主检测数学试卷含答案一、选择题1.下列式子中,属于最简二次根式的是( ) A .9B .13C .20D .72.下列运算错误的是( ) A .1832= B .322366⨯=C .()2516+=D .()()72723+-=3.已知x 1=3+2,x 2=3-2,则x₁²+x₂²等于( ) A .8 B .9C .10D .114.计算:()555+=( )A .55+B .555+C .525+D .1055.估计()123323+⨯的值应在 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 6.下列式子一定是二次根式的是 ( ) A .2a B .-aC .3aD .a7.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1018.已知实数x ,y 满足(x -22008x -)(y -2-2008y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008B .2008C .-1D .1 9.下列各式计算正确的是( )A .235+=B .2236=()C .824+=D .236⨯=10.已知0xy <,化简二次根式2yx x -的正确结果为( ) A .yB .y -C .y -D .y --11.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C 24D 0.312.若a =,2b =+a b 的值为( )A .12B .14CD二、填空题13.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.14.已知aa 3+5a 2﹣4a ﹣6的值为_____.15.已知实数m 、n 、p 满足等式,则p =__________.16.计算:20082009⋅-=_________.17.已知x =12,y =12,则x 2+xy +y 2的值为______.18.若a 、b 都是有理数,且2222480a ab b a -+++=.19.函数y 中,自变量x 的取值范围是____________.20.mn =________.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S =(2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(1)1142=52555-=,115636-=;(2)2111n n n --=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得, ④为:11-525=4=25,⑤11-636=56, (2)如果n 为正整数,用含n 的式子表示这个运算规律:211-n n =n -1, (3)证明:∵n 是正整数, ∴211-n n =2n -1n =n -1n. 即211-n n =n -1n. 故答案为(1)11-525=45=25,11-636=5;(2)211-n n = n -1n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.阅读下列材料,然后解答下列问题: 在进行代数式化简时,我们有时会碰上如3,31+这样的式子,其实我们还可以将其进一步化简: (一5353333⨯==⨯ (二231)3131(31)(31)-=++-(; (三22(3)(31)(33131313131===++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24.已知11881,2y x x=--22x y x yy x y x+++-.【答案】1【解析】【分析】根据已知和二次根式的性质求出x、y的值,把原式根据二次根式的性质进行化简,把x、y的值代入化简后的式子计算即可.【详解】1-8x≥0,x≤1 88x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.25.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.26.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.27.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.28.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4,a-b=±2.(2)12a===,12b===,2222()22312a b a b ab+=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.29.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.30.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.C解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.4.B解析:B 【分析】根据乘法分配律可以解答本题. 【详解】)5=5+ 故选:B . 【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.A解析:A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小. 【详解】(=, ∵4<6<9, ∵<3, ∴<5, 故选:A .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.6.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】AA 正确;B 、0a <B 错误;C是三次根式,故C 错误;D 、0a <D 错误;故选:A .【点睛】0a ≥)是二次根式,注意二次根式的被开方数是非负数.7.B解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+=111+1n n -+,∴ =1111111+11122399100-++-+++- =199+1100- =100-1100, ∴不大于S 的最大整数为99.故选B.【点睛】1111n n =+-+是解答本题的基础. 8.D解析:D【解析】由(x y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y 是方程的一个解由此可以解得,或者则3x 2-2y 2+3x -3y -2007=1,故选D. 9.D解析:D 【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.10.B解析:B【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可.【详解】解:0xy <,0x ∴>,0y <或0x <,0y >, 又2y x x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时, 故选B .【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x 、y 的取值. 11.B解析:B【详解】A 不是同类二次根式,故此选项错误;B 3C =不是同类二次根式,故此选项错误;D =10不是同类二次根式,故此选项错误; 故选B . 12.B解析:B【分析】将a 乘以 可化简为关于b 的式子, 从而得到a 和b 的关系, 继而能得出a b 的值【详解】解:4b a ==== 14a b ∴= 故选:B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.二、填空题13.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.故答案为:5 【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.14.-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可. 【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.15.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知30 30 m nm n-+≥⎧⎨--≥⎩,∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=, 解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.16.【解析】原式==17.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=21515151)2222=5-1=4. 18.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案. 【详解】解:由,得4-x≥0且x-2≠0. 解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案. 【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321. mn=⨯=故答案为21.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

人教版八年级第二学期3月份自主检测数学试卷含答案

人教版八年级第二学期3月份自主检测数学试卷含答案

一、选择题1.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DGQM的值为( )A .32B .53C .45D .31-2.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .2543.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A 2)2013B 2)2014C .(12)2013 D .(12)2014 4.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .5.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )A .6B .12C .62D .636.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10 B .a =41,b =4,c =5 C .a =3,b =2,c =5D .a =3,b =4,c =67.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为( ) A .北偏西15︒B .南偏西75°C .南偏东15︒或北偏西15︒D .南偏西15︒或北偏东15︒8.在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( ) A .34B .35C .45D .1259.长度分别为9cm 、12cm 、15cm 、36cm 、39cm 五根木棍首尾连接,最多可搭成直角三角形的个数为( ) A .1个B .2个C .3个D .4个10.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .6二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是_____.13.如图,在矩形ABCD中,AB=6,AD=8,矩形内一动点P使得S△PAD=13S矩形ABCD,则点P到点A、D的距离之和PA+PD的最小值为_____.14.如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=4,CD=43,则该四边形的面积是______.15.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)16.如图,在Rt△ABC中,∠ACB=90°,AB=7.5cm,AC=4.5cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为_____.17.如图,已知△DBC是等腰直角三角形,BE与CD交于点O,∠BDC=∠BEC=90°,BF=CF,若BC=8,OD=2,则OF=______.18.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=_____.19.如图,△ABC中,AB=AC=13,BC=10,AD是BAC∠的角平分线,E是AD上的动点,F 是AB边上的动点,则BE+EF的最小值为_____.20.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为1S,2S,3S,若12315S S S++=,则2S的值是__________.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?23.(1)计算:1312248233⎛÷ ⎝(2)已知a 、b 、c 满足2|2332(30)0a b c -+-=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.24.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)25.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.26.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).27.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.28.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.29.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,5AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.30.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,PQ =,所以QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DGQM的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠, ∴△EAB ≌△CAM (SAS ), ∴30EBA CMA ==︒∠∠, ∴60BPQ APM ==︒∠∠, ∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM =,1PB =,PQ =,∴13222QM QP PM +=+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BCAC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴1DGGM==. 故选D . 【点睛】本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.2.C【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD. 【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==, ∴△ABC 是直角三角形,且∠C=90°, ∵DE 垂直平分AB , ∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C.【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.3.C解析:C 【分析】根据等腰直角三角形的性质可得出S 2+S 2=S 1,写出部分S n 的值,根据数的变化找出变化规律“S n =(12)n−3”,依此规律即可得出结论. 【详解】解:在图中标上字母E ,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形, ∴DE 2+CE 2=CD 2,DE=CE , ∴S 2+S 2=S 1.观察,发现规律:S 1=22=4,S 2=12S 1=2,S 3=12S 2=1,S 4=12S 3=12,…, ∴S n =(12)n−3.当n=2016时,S 2016=(12)2016−3=(12)2013. 故选:C .【点睛】 本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n =(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n 的值,根据数值的变化找出变化规律是关键. 4.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A 中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确; B 中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C 中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D 中,根据A 可得,C 可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A 、B 、C 选项的等式中需理解等式的各个部分表示的几何意义,对于D 选项是由A 、C 选项联立得出的. 5.D解析:D【分析】根据直角三角形的性质求出BC ,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6, 由勾股定理得,2263AB BC =-故选:D .【点睛】 本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6.B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A 、∵72+82≠102,∴△ABC 不是直角三角形;B 、∵52+42=)2,∴△ABC 是直角三角形;C 、∵2222,∴△ABC 不是直角三角形;D 、∵32+42≠62,∴△ABC 不是直角三角形;故选:B .【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.7.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.8.D解析:D【解析】在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125,故选D. 9.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.10.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=,1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.二、填空题11.【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴AB =情况一:当AD AB ==AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即AE =,5DE =∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即455BE =,1455DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB ===∴95DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键.12.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况: ①当PB PQ =时,4=OA ,3OB =,∴22435BC AB ==+=,C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩,()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.13.【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A 关于直线l 的对称点E ,连接BE ,DE ,则DE 的长就是所求的最短距离.在Rt △ADE 中,∵AD =8,AE =4+4=8,DE 22228882AE AD ++=即PA +PD 的最小值为2 .故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.14.163【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴-=.在Rt DEC ∆中,30E ∠=︒,43CD =283CE CD ∴==2212DE CE CD ∴=-, ∴1443832ABE S ∆=⨯⨯= 143122432CDE S ∆=⨯= 24383=163CDE ABE ABDC S S S ∆∆∴=-=四边形. 故答案为:3【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.15.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),222021=29(尺).答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.16.75或6或9 4【分析】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.【详解】在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,∴BC=6(cm);①当AB=BP=7.5cm时,如图1,t=7.52=3.75(秒);②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);③当BP =AP 时,如图3,AP =BP =2tcm ,CP =(4.5﹣2t )cm ,AC =4.5cm , 在Rt △ACP 中,AP 2=AC 2+CP 2,所以4t 2=4.52+(4.5﹣2t )2,解得:t =94, 综上所述:当△ABP 为等腰三角形时,t =3.75或t =6或t =94. 故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解. 17.10【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC =∴422DC DB ===∵2OD =∴32OC DC OD =-=∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+∴OE =∴EC == ∵BF CF =,FG ⊥BE ,∠BEC=90°∴12FG EC ==∴BE BO OE =+=∴1217GO GE OE BE OE =-=-=∴OF =【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.18.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF2=AC2-AF2=172-(9+x)2,即102-x2=172-(9+x)2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.19.120 13【解析】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CF⊥AB于F,交AD于E,则CF=BE+FF的最小值,根据勾股定理得,AD=12,利用等面积法得:AB⋅CF=BC⋅AD,∴CF=BC ADAB⋅=101213⨯=12013故答案为120 13.点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF⊥AB时,CF有最小值是解题的关键.20.5【分析】根据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出1S,2S,3S,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.三、解答题21.(12)150°;(3【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD(2)在△ADE 中,∵2AD AE DE ===,∴DE 2+AE 2=2222+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP =22213-=,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12, ∴AG =()2222113322AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG =13.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.23.(1)423;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)⎛÷ ⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.24.(1)见解析;(2)CD AD +BD ,理由见解析;(3)CD +BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH32AD,∴DH =HE ,∴CD =DE +EC =2DH +BD +BD ,故答案为:CD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.25.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297;∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC =∠EAD =90°,∴∠EAB =∠DAC ,∵AE =AD ,AB =AC ,∴△EAB ≌△DAC (SAS ),∴∠ABE =∠C =∠ABC =45°,EB =CD =9-3=6,∴∠EBD =90°,∴DE 2=BE 2+BD 2=62+32=45,∴DE =35; ②当点D 在CB 的延长线上时,如图3中,连接BE .同理可证△DBE 是直角三角形,EB =CD =3+9=12,DB =3,∴DE 2=EB 2+BD 2=144+9=153,∴DE =317,综上所述,DE 的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.26.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°, 综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.27.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.28.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD,且∠EAD=α,∴∠AED=45°,∵点B与点D关于直线AP对称,即AP垂直平分BD,∴∠AED=∠AEB=45°,BE=DE,∴∠BED=90°,∴△BED是等腰直角三角形,∴22222BD BE DE DE=+=,∴2BD DE=.【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.29.(1)CD=8;(2)t=4;(3)12-=tvt(26t≤<)【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤<所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.30.(1)△AEF 是等边三角形,理由见解析;(2)见解析;(3)点F 到BC 的距离为3﹣.【解析】【分析】(1)连接AC ,证明△ABC 是等边三角形,得出AC =AB ,再证明△BAE ≌△DAF ,得出AE =AF ,即可得出结论;(2)连接AC ,同(1)得:△ABC 是等边三角形,得出∠BAC =∠ACB =60°,AB =AC ,再证明△BAE ≌△CAF ,即可得出结论;(3)同(1)得:△ABC 和△ACD 是等边三角形,得出AB =AC ,∠BAC =∠ACB =∠ACD =。

人教版八年级(下)学期3月份自主检测数学试卷含答案

人教版八年级(下)学期3月份自主检测数学试卷含答案

一、选择题1.下列计算正确的是( ) A .=1212⨯B .4-3=1C .63=2÷D .8=2±2.当0x =时,二次根式42x -的值是( ) A .4B .2C .2D .03.已知x 1=3+2,x 2=3-2,则x₁²+x₂²等于( ) A .8B .9C .10D .114.下列二次根式中,是最简二次根式的是( ) A .12 B .0.1C .12D .21a +5.若a =3235++,b =2+610-,则a b 的值为( )A .12 B .14C .321+D .610+6.若a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 7.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a8.下列计算正确的是( )A 235=B 623=C 23(3)86-=-D 321=9.12的下列说法中错误的是( ) A 1212的算术平方根 B .3124<< C 12不能化简 D 12是无理数10.已知:23-,23+,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.13.=___________. 14.化简并计算:...+=________.(结果中分母不含根式)15.3=,且01x <<=______.16.观察下列等式:第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________17.10=,则222516x y +=______.18.把_____________.19.若0xy >,则二次根式________. 20.有意义,则x 的取值范围是____. 三、解答题21.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式=9;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.24.阅读下列材料,然后回答问题:1== . 以上这种化简过程叫做分母有理化.1===. (1)请用其中一种方法化简;(2+99+【答案】(2) 3 1. 【分析】(1)运用了第二种方法求解,即将4(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.(1)计算:1153208105(2)先化简,再求值:(()228a a a a +--,其中134a =.【答案】(1)5-2)82-a ,3【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)1415320581054525545=5=-;(2)(()228a a a a +--2228a a a =--+82a =-,当134a =时,原式1832834⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.已知x²+2xy+y²的值. 【答案】16 【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算. 本题解析: ∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.28.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】2÷故选A.2.B解析:B 【分析】把x=0【详解】 解:当x=0时,=2,故选:B . 【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.3.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.4.D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】AB10不是最简二次根式,故本选项不符合题意;C2,不是最简二次根式,故本选项不符合题意;D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.5.B解析:B【解析】【分析】将a可化简为关于b的式子,从而得到a和b的关系,继而能得出ab的值.【详解】a=b44=.∴14ab=.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.6.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A解析:A 【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.8.B解析:B 【分析】根据二次根式加减运算和二次根式的性质逐项排除即可. 【详解】2与3A 选项错误; 6626322===B 选项正确; 23(3)8321-=-=,所以C 选项错误;2与3D 选项错误;故选答案为B . 【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.9.C解析:C 【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断. 【详解】A 1212的算术平方根,故该项正确;B 、3124<<,故该项正确;C 1223=D 1223=12是无理数,故该项正确; 故选:C . 【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.10.C解析:C 【解析】 因为12323a b ⨯==-+,故选C.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可. 【详解】将代入得: 故答案为: 【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可. 【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1xx =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键.12.1 【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设a=,b=,则x2−a2=y2−b2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x 2﹣2y 2+3x ﹣3y ﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x ,y 及a ,b 的关系.13.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.14.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观解析:220400x x x- 【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式===故答案为220400x x x -. 【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.15..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====.. 【点睛】 本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.16.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题17.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.18.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.19.-【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解析:【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 20.x≥0. 【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键. 解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0, 故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

上海市普陀区八年级(下)3月份月考卷答案

上海市普陀区八年级(下)3月份月考卷答案

2016-2017学年上海市普陀区八年级(下)第一次质检数学试卷参考答案与试题解析一、填空题(每题3分,第3、12题每空2分,满分38分)1.(3分)直线y=3x+2在y轴上的截距是 2 .【分析】将x=0代入一次函数解析式中求出y值,此题得解.【解答】解:当x=0时,y=3x+2=2,∴直线y=3x+2在y轴上的截距是2.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,将x=0代入函数解析式求出y值是解题的关键.2.(3分)已知函数,则= .【分析】首先把x=代入,然后进行求值即可.【解答】解:f()==3.故答案是:3.【点评】本题主要考查了函数值的求法,解题的关键是正确代入数值,正确进行实数的计算.3.(4分)一次函数y=2x的图象是由y=2x﹣2向上平移 2 单位得到的.【分析】直接利用一次函数上加下减规律得出答案.【解答】解:一次函数y=2x的图象是由y=2x﹣2向上平移2单位得到的.故答案为:上,2.【点评】此题主要考查了一次函数图象与几何变换,正确记忆平移规律是解题关键.4.(3分)如果y=3x+3k﹣2的图象经过原点,那么k= .【分析】把原点的坐标是(0,0)代入函数y=3x+3k﹣2可求得k的值.【解答】解:原点的坐标是(0,0),即当x=0时,y=0,将其代入函数y=3x+3k﹣2得到k=.故答案.【点评】本题考查原点的坐标特点以及利用待定系数法求解析式.5.(3分)直线y=x+1与直线y=2x﹣2的交点坐标是(3,4).【分析】联立两直线的解析式即可求出交点的坐标.【解答】解:联立,解得:∴交点坐标为(3,4)故答案为(3,4).【点评】本题考查两直线的交点坐标问题,解题的关键是联立两直线的解析式后解方程组,本题属于基础题型.6.(3分)一次函数y=kx+b中,y随x的增大而减小,且kb>0,则它的图象一定不经过第一象限.【分析】根据一次函数y=kx+b中,k>0,y随x的增大而增大,k<0,y随x的增大而减小,可得出k的取值范围,再有kb>0,即可得出答案.【解答】解:∵一次函数y=kx+b中,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0.根据一次函数的图象即可得出:该一次函数一定不经过第一象限.故答案为:一.【点评】本题考查了一次函数的性质及图象,属于基础题,关键是掌握一次函数y=kx+b 中,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.7.(3分)某一次函数图象过点(﹣1,5),且函数y的值随自变量x的值的增大而增大,请你写出一个符合上述条件的函数关系式答案不唯一,如y=x+6 .【分析】因为一次函数y的值随自变量x的值的增大而增大,函数图象经过一、三象限,设y=kx+b(k>0),代入点即可求得.【解答】解:因为一次函数y的值随自变量x的值的增大而增大,所以函数图象经过一、三象限,设y=x+b(k>0),把(﹣1,5)代入得:y=x+6.【点评】此题是一个答案不唯一的题,根据一次函数图象与性质判定k>0,再任选一个k 的值,设出一般形式,代入点就可以解决.8.(3分)已知函数y=x﹣1,如果函数值y>2,那么相应的自变量x的取值范围是x >4 .【分析】令y=x﹣1>2,解关于x的不等式求出x的取值范围即可.【解答】解:∵在函数y=x﹣1中,函数值y>2,∴x﹣1>2,∴x>4.故答案为x>4.【点评】本题主要考查了一次函数的性质,解答本题的关键是令y>2得出x的不等式,解不等式求出x的取值范围.9.(3分)直线y=kx+b过点(2,﹣1),且与直线y=x+3相交于y轴上同一点,则其函数表达式为y=﹣2x+3 .【分析】先根据直线y=x+3,求得其交于y轴上(0,3),再根据待定系数法,求得其函数表达式.【解答】解:∵直线y=x+3中,令x=0,则y=3,∴直线y=x+3相交于y轴上(0,3),∵直线y=kx+b过点(2,﹣1),(0,3),∴,解得,∴函数表达式为y=﹣2x+3,故答案为:y=﹣2x+3.【点评】本题主要考查了两条直线相加问题以及待定系数法的运用,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.10.(3分)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是x<2 .【分析】先由图象得到一次函数的增减性,再由y=ax+b的图象与x轴的交点,确定不等式ax+b<0的解集.【解答】解:从图象上得到函数值y随x的增大而增大,一次函数y=ax+b的图象经过A(2,0),即当x=2时,y=0,∴关于x的不等式ax+b<0的解集是x<2.故本题答案为:x<2.【点评】认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.11.(3分)已知直角三角形两边x、y的长满足|x2﹣4|+=0,则第三边长为.【分析】任何数的绝对值,以及算术平方根一定是非负数,已知中两个非负数的和是0,则两个一定同时是0;另外已知直角三角形两边x、y的长,具体是两条直角边或是一条直角边一条斜边,应分类讨论.【解答】解:∵|x2﹣4|≥0,,∴x2﹣4=0,y2﹣5y+6=0,∴x=2或﹣2(舍去),y=2或3,①当两直角边是2时,三角形是直角三角形,则斜边的长为:=;②当2,3均为直角边时,斜边为=;③当2为一直角边,3为斜边时,则第三边是直角,长是=.【点评】本题考查了有理数加法法则,非负数的性质,另外考查勾股定理的应用.12.(4分)如图,直线l:y=﹣x+与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则∠OBC= 60°.点C的坐标为(,).【分析】过点C作CE⊥x轴于点E,先根据直角三角形的性质求出OA,OB的长度,根据直角三角形特殊角的三角函数值可求得有关角的度数.利用轴对称性和直角三角函数值可求得AE,CE的长度,从而求得点C的坐标.【解答】解:过点C作CE⊥x轴于点E,由直线AB的解析式可知当x=0时,y=﹣x+,即OB=当y=0时,x=1,即OA=1∵∠AOB=∠C=90°,tan∠3=OB:OA=∴∠3=60°,∵△AOB与△ACB关于直线l对称∴∠2=∠3=60°,则∠OBC=60°,AC=OA=1,∴∠1=180°﹣∠2﹣∠3=60°,在Rt△ACE中,AE=cos60°×AC=×1=,CE=sin60°×AC=,∴OE=1+=,∴点C的坐标是(,).故答案为:60°,(,).【点评】本题主要考查了一次函数图象上点的性质和有关轴对称的性质,熟练运用数形结合的知识解题是关键.二、选择题(每题3分,满分15分)13.(3分)已知下列判断:①y=不是一次函数;②直线y+4=3x的截距为4;③y=kx+b,当b=0时为正比例函数;④y=﹣2x﹣5中,y随x的增大而减小.其中正确的有()A.1个B.2个 C.3个 D.4个.【分析】根据一次函数、正比例函数的定义以及一次函数、正比例函数的性质进行判断即可.【解答】解::①y=是正比例函数,属于一次函数,故说法①错误;②直线y+4=3x即为y=3x﹣4,其截距为﹣4,故说法②错误;③y=kx+b,当k≠0,且b=0时为正比例函数,故说法③错误;④y=﹣2x﹣5中,k=﹣2<0,故y随x的增大而减小,故说法④正确.故选:A.【点评】本题主要考查了一次函数图象上点的坐标特征以及一次函数、正比例函数的定义的运用,解题时注意:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.形如y=kx (k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.14.(3分)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.15.(3分)如果函数y=kx+k﹣1的图象不经过第二象限,那么k的取值范围是()A.k>0 B.0<k<1 C.k>1 D.0≤k≤1【分析】由函数y=kx+k﹣1的图象不经过第二象限,可以得到k≥0,k﹣1≤0,由此即可求出k的取值范围.【解答】解:∵函数y=kx+k﹣1的图象不经过第二象限,∴k≥0,k﹣1≤0,解得0≤k≤1,∴k的取值范围是0≤k≤1,故选:D.【点评】本题主要考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.16.(3分)由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是()A.干旱第50天时,蓄水量为1200万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱开始后,蓄水量每天减少20万米3【分析】根据图象,直接判断C、A错误;干旱开始后,蓄水量每天只可能减少,排除B;通过计算判断D正确.【解答】解:刚开始时水库有水1200万米3;50天时,水库蓄水量为200万米3,减少了1200﹣200=1000万米3;那么每天减少的水量为:1000÷50=20万米3.故选:D.【点评】本题应首先看清横轴和纵轴表示的量,然后根据题意采用排除法求解.17.(3分)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A. B. C. D.【分析】先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.【解答】解:根据题意可知s=400﹣100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.【点评】主要考查了一次函数的图象性质,首先确定此函数为一次函数,然后根据实际意义,函数图象为一条线段,再确定选项即可.三、解答题.(每题9分,满分36分)18.(9分)已知一次函数y=﹣2x﹣6.(1)画出函数图象;(2)说出不等式﹣2x﹣6>0解集是x<﹣3 ;不等式﹣2x﹣6<0解集是x>﹣3 ;(3)求出函数图象与坐标轴的两个交点之间的距离.【分析】(1)分别将x=0、y=0代入一次函数y=﹣2x﹣6,求出与之相对应的y、x值,由此即可得出点C、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点B、C的坐标即可得出OB、OC的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【解答】解:(1)当x=0时,y=﹣2x﹣6=﹣6,∴一次函数y=﹣2x﹣6与y轴交点C的坐标为(0,﹣6);当y=﹣2x﹣6=0时,解得:x=﹣3,∴一次函数y=﹣2x﹣6与x轴交点B的坐标为(﹣3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<﹣3时,一次函数y=﹣2x﹣6的图象在x轴上方;当x>﹣3时,一次函数y=﹣2x﹣6的图象在x轴下方.∴不等式﹣2x﹣6>0解集是x<﹣3;不等式﹣2x﹣6<0解集是x>﹣3.故答案为:x<﹣3;x>﹣3.(3)∵B(﹣3,0),C(0,﹣6),∴OB=3,OC=6,∴BC==3.【点评】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.19.(9分)已知:如图,△ABC中,∠C=90°,∠A=30°,ED垂直平分AB交AB于点D,交AC于点E,EC=2.求AE的长.【分析】首先连接BE,根据ED垂直平分AB,判断出AE=BE;然后判断出∠EBC=30°,根据含30度角的直角三角形的性质,求出BE的长度是多少,即可求出AE的长度是多少.【解答】解:如图,连接BE,,∵ED垂直平分AB,∴AE=BE,∴∠ABE=∠A=30°,∵∠ABC=90°﹣30°=60°,∴∠EBC=60°﹣30°=30°,∴BE=2CE=2×2=4,∴AE=4.【点评】此题主要考查了含30度角的直角三角形的性质,以及线段垂直平分线的性质和应用,要熟练掌握.20.(9分)已知直线l1与直线l2:y=x+3平行,直线l1与x轴的交点的坐标为A(2,0),求:(1)直线l1的表达式.(2)直线l1与坐标轴围成的三角形的面积.【分析】(1)由直线l1与直线l2:y=x+3平行易得k=,设l1解析式为y=x+b,将A(2,0)代入解析式,解得b,可得l1表达式;(2)令x=0,可得直线l1与y轴的交点,利用三角形的面积公式可得结果.【解答】解:(1)∵直线l1与直线l2:y=x+3平行,∴设l1解析式为y=x+b,∵直线l1与x轴的交点的坐标为A(2,0),∴0=解得,b=,∴直线l1的表达式为:y=;(2)设直线l1与x轴、y轴的交点的坐标分别为A,B,令x=0,可得y==,则B点坐标为(0,﹣)S△AOB=•|OA|•|OB|=2×=.直线l1与坐标轴围成的三角形的面积为:.【点评】本题主要考查了两直线相交与平行问题,求得直线与两坐标轴的交点坐标是解答此题的关键.21.(9分)如图,线段AB、CD分别是一辆轿车的油箱剩余油量y1(升)与另一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1、y2关于x的函数解析式,并写出定义域;(2)如果两车同时出发,轿车的行驶速度为每小时100千米,客车的行驶速度为每小时80千米,当油箱的剩余油量相同时,两车行驶的时间相差几分钟?【分析】(1)设出线段AB、CD所表示的函数解析式,由待定系数法结合图形可得出结论;(2)由(1)的结论算出当油箱的剩余油量相同时,跑的路程数,再由时间=路程÷速度,即可得出结论.【解答】解:(1)设AB、CD所表示的函数解析式分别为y1=k1x+50,y2=k2x+80.结合图形可知:,解得:.故y1=﹣0.1x+50(0≤x≤500),y2=﹣0.2x+80(0≤x≤400).(2)令y1=y2,则有﹣0.1x+50=﹣0.2x+80,解得:x=300.轿车行驶的时间为300÷100=3(小时);客车行驶的时间为300÷80=(小时),﹣3=小时=45(分钟).答:当油箱的剩余油量相同时,两车行驶的时间相差45分钟.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.四、综合题(满分11分)22.(11分)已知一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,四边形AOBC(O是原点)的一组对边平行,且AC=5.(1)求点A、B的坐标;(2)求点C的坐标;(3)如果一个一次函数y=kx+b(k、b为常数,且k<0)的图象经过点A、C,求这个一次函数的解析式.【分析】(1)根据一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,即可得到点A、B的坐标;(2)根据梯形的对边平行,分为AC∥OB,BC∥OA两种情况,画出图形,结合勾股定理求解;(3)根据C点坐标,一次函数y=kx+b中k<0的条件,确定C的坐标,求一次函数解析式.【解答】解:(1)∵一次函数y=﹣x+4中,当x=0时,y=4;当y=0时,x=8,∴A(8,0),B(0,4);(2)∵四边形AOBC(O是原点)的一组对边平行,∴四边形AOBC是梯形,在梯形AOBC中,OA=8,OB=4,AC=5,当AC∥OB时(如图1),点C的坐标为(8,5),当BC∥OA时(如图2),设点C(x,4).∵AC=5,∴(x﹣8)2+(4﹣0)2=52,∴x1=5,x2=11,这时点C的坐标为(5,4)或(11,4),∴点C的坐标为(8,5)或(5,4)或(11,4);(3)∵点A、C在一次函数y=kx+b(k<0)的图象上,∴点(8,5)与(11,4)都不符合题意,只有当C为(5,4)时,k<0,∴,∴,∴这个一次函数的解析式为y=﹣x+.【点评】本题考查了一次函数的综合运用,根据组成梯形的字母顺序,按照梯形的底边,需要分类讨论求C点坐标,进而得到一次函数解析式.。

华师大版数学八年级下册第三次月考试卷及答案

华师大版数学八年级下册第三次月考试卷及答案

华师大版数学八年级下册第三次月考试题一、单选题1.要使分式3x +有意义,x 必须满足的条件是( ) A .3x >- B .0x ≠ C .3x ≠ D .3x ≠- 2.如图,笑脸盖住的点的坐标可能为( )A .(5,2)B .(3,-4)C .(-2,3)D .(-4,-6) 3.下列运算中,正确的是( ) A .33m m+= B .2222y y x x ⎛⎫= ⎪⎝⎭ C .n na m ma = (0a ≠) D .22x x x xy x y =++ 4.方程2113x =+的解的情况是( ). A .5x =B .4x =C .3x =D .无解 5.一次函数34y x =-的图象不经过的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 6.关于反比例函数2y x=,下列说法不正确...的是 ( ) A .点()21--,在它的图象上 B .它的图象在第一、三象限C .当1x >时,02y <<D .当0x >时,y 随x 的增大而增大 7.如图,点P 为□ABCD 的边AD 上一点,若△PAB 、△PCD 和△PBC 的面积分别为12,S S 和3S ,则它们之间的大小关系是( )A .312S S S =+B .3122S S S =+C .312S S S >+D .312S S S <+8.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A→B→C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D . 9.若关于x 的方程2+233x m x x +=--有增根,则m 的值是( ). A .0 B .1- C .1 D .310.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点.AB ⊥x 轴于B ,CD ⊥x 轴于D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52二、填空题11.在□ABCD 中,∠A =80°,则∠C=__________________.12.点A (2,-3)关于x 轴对称的点的坐标是______.13.在某分子的半径大约是0.00 000 018mm ,用科学记数法表示为______________mm. 14.计算:22•2a a a a-=-___________. 15.如图,□ABCD 的对角线AC 、BD 交于点O ,若两条对角线长的和为18cm ,且BC 的长为6cm ,则△AOD 的周长为 ______________cm.16.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 60的坐标是 .三、解答题17.计算:(1) ()1015π 3.12-⎛⎫-+--+ ⎪⎝⎭ (2)221•21x x x x x x +--+18.如图,在平行四边形ABCD 中,E 、F 分别是对边BC 和AD 上的两点,且DF =BE.求证: AE =CF .19.一水池已装满水10吨,如果每小时放水0 . 5吨,放水x小时后剩余的水量为y吨.(1)直接写出y与x的函数关系式:;(2)自变量x的取值范围是;(3)对于本题中的函数的图象,下列说法正确的是().A.一条直线B.一条射线C.一条线段D.一段双曲线20.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元,求甲、乙两种款型的T恤衫各购进多少件?21.已知反比例函数kyx=(0k≠)的图象经过点B(4,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求k的值;(2)求△ACD的面积22.如图,一次函数的图象与反比例函数的图象交于A(-3,2),B(m,-6)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象,直接写出使一次函数的值大于反比例函数的值的x的取值范围.23.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a=;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?24.已知,长方形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8).(1)直接写出点C的坐标为:C(,);(2)已知直线AC与双曲线y=mx(m≠0)在第一象限内有一点交点Q为(5,n);①求m及n的值;②若动点P从A点出发,沿折线AO→OC的路径以每秒2个单位长度的速度运动,到达C 处停止.求△OPQ的面积S与点P的运动时间t(秒)的函数关系式.参考答案1.D【解析】【分析】根据分母不等于0,分式有意义列式进行计算即可求解.【详解】根据题意得,x+3≠0,x≠-.3故选:D.【点睛】考查分式有意义的条件,掌握分式有意义的条件是分母不为0是解题的关键. 2.B【解析】【分析】笑脸在第四象限,找出第四象限内点的坐标即可.【详解】∵笑脸在第四象限,∴笑脸盖住的点的坐标是第四象限的点,纵观各选项,只有(3,-4)是第四象限的点.故选:B.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.3.C【解析】【分析】A、本选项为最简分式,错误;B 、利用分式的乘方法则计算得到结果,即可做出判断;C 、在分式分子分母都乘以同一个不为0的数,分式的大小不变,故正确;D 、约分得到结果,即可做出判断.【详解】A. 此式子为最简分式,故A 选项错误;B. 2224y y x x ⎛⎫= ⎪⎝⎭,故B 选项错误; C. n na m ma= (0a ≠) ,故C 选项正确; D. 222x x xy x y=++,故D 选项错误, 故选:C.【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.4.A【解析】【分析】最简公分母是3(x +1),可让方程两边都乘最简公分母3(x +1),化为整式方程求解.结果要检验.【详解】方程两边都乘3(x +1),得6= x +1,解得x =5.检验:当x =5时3(x +1)≠0.∴x =5是原方程的解.故选:A.【点睛】考查分式方程的解法,掌握解分式方程的步骤是解题的关键,注意检验.5.B【解析】【分析】根据一次函数的性质一次项系数大于0,则函数一定经过一,三象限,常数项-4<0,则一定与y 轴负半轴相交,据此即可判断.【详解】∵函数y=3x-4中的3>0,∴该图象经过第一、三象限,又∵函数y=3x-4中的-4<0,∴该图象与y 轴交于负半轴,∴该函数图象经过第一、三、四象限,即一次函数y=3x-4的图象一定不经过第二象限. 故选:B .【点睛】考查一次函数的图象,掌握一次函数图象与系数的关系是解题的关键.6.D【解析】【分析】 根据反比例函数k y x =(k≠0)的k 的符号判断该函数图象的单调性、所在的象限以及所经过的点的坐标.【详解】A. 当x =−2时,y =−1,即点(−2,−1)在它的图象上;故本选项正确;B.∵2>0,反比例函数2y x =经过第一、三象限,且在每一个象限内y 随x 的增大而减小; 故本选项正确;C.∵2>0,反比例函数2y x=经过第一、三象限,且在每一个象限内y 随x 的增大而减小; 当1x =时,2y =,则当1x >时,02y <<,故本选项正确;D.∵2>0,反比例函数2y x=过第一、三象限,且在每一个象限内y 随x 的增大而减小;故本选项错误.故选D.【点睛】考查反比例函数的图象与性质,反比例函数()0,k y k x=≠ 当0k >时,图象在第一、三象限.在每个象限,y 随着x 的增大而减小, 当k 0<时,图象在第二、四象限.在每个象限,y 随着x 的增大而增大.7.A【解析】【分析】设平行四边形的高为h ,然后分别表示出s 1、s 2和s 3,即可得出三者的关系.【详解】设平行四边形的高为h , 则123111222S AP h S PD h S BC h =⨯⨯=⨯=⨯,,, 又平心四边形的对边相等,∴AP +PD =AD =BC ,∴312S S S =+.故选:A.【点睛】考查平行四边形的性质,掌握平行四边形的对边相等是解题的关键.8.B【解析】【分析】△ADP 的面积可分为两部分讨论,由A 运动到B 时,面积逐渐增大,由B 运动到C 时,面积不变,从而得出函数关系的图象.【详解】解:当P 点由A 运动到B 点时,即0≤x≤2时,y =12×2x =x , 当P 点由B 运动到C 点时,即2<x <4时,y =12×2×2=2, 符合题意的函数关系的图象是B ;故选B .【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.9.B【解析】【分析】方程两边都乘以最简公分母(x-3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【详解】方程两边都乘以(x−3)得,2−x−m=2(x−3),∵分式方程有增根,∴x−3=0,解得x=3,∴2−3−m=2(3−3),解得m=−1.故选:B.【点睛】考查分式方程的增根,掌握增根的概念,写出方程的增根是解题的关键.10.C【解析】试题分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即,得出,再根据反比例函数的对称性可知:OB=OD,得出,从而得出结果.根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于,∵A(1,1),B(1,0),C(-1,-1),D(-1,0)∴,,∴四边形ABCD的面积=2.故选C.考点:本题考查反比例函数系数k的几何意义点评:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即.11.80°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C=80°.故答案为:80°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.13.71.810-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00 000 018mm 用科学记数法表示为71.810-⨯ mm.故答案为:71.810-⨯【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.14.1a【解析】【分析】直接根据分式的乘法法则进行计算即可.【详解】原式()()221.2a a a a a-==- 故答案为:1a 【点睛】考查分式的乘法,掌握分式乘法的运算法则是解题的关键.15.15【解析】【分析】根据平行四边形的对角线互相平分求出OA+OD=9.即可求出△AOD 的周长.【详解】根据题意画出图形.∵四边形ABCD是平行四边形,∴AO=OC,BO=DO,BC=AD=6.∵AC+BD=18,1122AO OC AC BO DO BD ====,,∴OA+OD=9.∵△AOD的周长为OA+OD+AD,OA+OD=9,AD=6,∴△AOD的周长=9+6=15(cm).故答案为:15.【点睛】考查平行四边形的性质,掌握平行四边形的对角线互相平分是解题的关键.16.(20,0).【解析】试题分析:观察图形可得,点P60在x轴上,它的横坐标为60÷3=20,所以点P60的坐标是(20,0). 考点:规律探究题.17.(1)6;(2)11 xx+ -.【解析】【分析】(1)首先分别计算绝对值、负整数指数幂、零次幂,二次根式,然后再计算有理数的加减即可;(2)首先把分子分母分解因式,再进行约分化简即可.【详解】(1)解:原式=5+1-2+2,=6.(2)解:原式=() ()211,1x x xx x+-⋅-=11x x +- . 【点睛】考查分式的乘法, 实数的运算, 零指数幂, 负整数指数幂,掌握运算法则是解题的关键. 18.见解析.【解析】【分析】根据平行四边形的性质得到AB =CD ,∠B =∠D ,证明△E AB ≌△C F D ,根据全等三角形的性质,即可证明.【详解】证明:∵四边形ABCD 是平行四边形∴AB =CD ,∠B =∠D在△E AB 和△C F D 中C BD BE DF AB D =⎧⎪∠=∠⎨⎪=⎩.∴△E AB ≌△C F D ,∴AE =CF【点睛】考查平行四边形的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理是解题的关键.19.(1)100.5y x =-;(2)020x ≤≤;(3)C.【解析】【分析】(1)根据函数的概念和所给的已知条件即可列出关系式;(2)结合实际即可得出时间x 的取值范围;(3)根据(1)中的解析式即可解决问题.【详解】解:(1)根据题意可知水池中剩下的水量y (m 3)与放水时间x (时)之间的函数关系式为100.5y x =-.(2)根据题意可知100.50x -≥,0x ≥,故020x ≤≤.(3)令y=0,则100.50x -=,解得20x =,令0x =,得y=10,函数的图象是一条线段.故选:C.【点睛】考查一次函数的应用,本题的关键是解决第(1)问,然后根据第(1)问即可解决问题. 20.甲种购进60件,乙种购进40件.【解析】【分析】设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解.【详解】解:设乙种购进x 件,则甲种购进1.5x 件, 根据题意,得:78001.5x +30=6400x, 解得:x =40,经检验x =40是原分式方程的解,1.5x =60,答:甲种购进60件,乙种购进40件.【点睛】本题考查了分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.21.(1)8;(2)8.【解析】【分析】(1)根据待定系数法,可得k 的值;(2)根据三角形的面积公式,可得答案.【详解】解:(1)将B 点坐标代入k y x =,得24k =, ∴8k =, (2)由B (4,2)与点C 关于原点O 对称,得C (﹣4,﹣2).∵BA ⊥x 轴于点A ,CD ⊥x 轴于点D ,∴CD 2=,OA 4=, OD 4=,则AD 8= ∴11 82822ACD S AD CD =⋅=⨯⨯=. 【点睛】考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.22.(1) 24y x =--;(2) 3x <-或01x <<.【解析】【分析】(1)把A 坐标代入反比例解析式求出k 的值,确定出反比例解析式;把B 坐标代入反比例解析式求出m 的值,确定出B 坐标,将A 与B 坐标求得一次函数解析式;(2)根据A 与B 横坐标,结合图象确定出所求不等式的解集即可.【详解】解:(1)设反比例函数的解析式为k y x=(0k ≠); 一次函数的解析式为y ax b =+(0a ≠)∵A (3-,2)在反比例函数图象上,∴把A (3-,2)代入反比例函数k y x =得:23k =-,解得6k =-, ∴反比例函数解析式为6y x=-; 又B (m ,﹣6)在反比例函数图象上,∴把B (m ,﹣6)代入反比例函数解析式,解得=1m ,即B (1,﹣6),把A (3-,2)和B 坐标B (1,﹣6)代入一次函数解析式y ax b =+得:326a b a b -+=⎧⎨+=-⎩,解得:24a b =-⎧⎨=-⎩, ∴一次函数解析式为24y x =--;(2)根据图象得:3x <-或01x <<.【点睛】属于反比例函数与一次函数的交点问题,掌握待定系数法求一次函数以及反比例函数解析式是解题的关键.23.(1)A 、C 两村间的距离120km ,a=2;(2)P (1,60)表示经过1小时甲与乙相遇且距C 村60km .(3)当x=h ,或x=h ,或x=h 乙距甲10km . 【解析】【分析】(1)、根据函数图象得出A 、C 之间的距离;(2)、首先分别求出两条直线的函数解析式,然后求出a 的值和点P 的坐标;(3)、本题分y 1-y 2=10,y 2-y 1=10以及甲走到C 地,而乙距离C 地10km 这3种情况分别列出方程,求出x 的值.【详解】(1)、A 、C 两村间的距离120km ,a =120÷[(120−90)÷0.5]=2;(2)、设y 1=k 1x +120,代入(0.5,90)解得y 1=-60x +120, 把y=0代入得x=2 ∴a=2 设y 2=k 2x +90,代入(3,0)解得y 2=-30x +90,由-60x +120=-30x +90,解得x =1,则y 1=y 2=60,∴P (1,60)所以P (1,60)表示经过1小时甲与乙相遇且距C 村60km .(3)、当y 1-y 2=10,即-60x +120-(-30x +90)=10,解得x =23, 当y 2-y 1=10,即-30x +90-(-60x +120)=10,解得x =43, 当甲走到C 地,而乙距离C 地10km 时,-30x +90=10,解得x =83;综上所知当x=23h,或x=43h,或x=83h乙距甲10km.考点:一次函数的应用.24.(1) 0,8;(2)①n=4,m=20,②S=204(05) 525(59)t tt t-≤≤⎧⎨-<≤⎩.【解析】【分析】(1)根据矩形的对边相等的性质直接写出点C的坐标;(2)①设直线AC的解析式为y=kx+b(k≠0),将A(10,0)、C(0,8)两点代入其中,即利用待定系数法求一次函数解析式;然后利用一次函数图象上点的坐标特征,将点Q代入函数关系式求得n值;最后将Q点代入双曲线的解析式,求得m值;②分类讨论:当0≤t≤5时,OP=10-2t;当5<t≤9时,OP=2t-10.【详解】解:(1)C(0,8);(2)①设直线AC的解析式为y=kx+b(k≠0),过A(10,0)、C(0,8)两点,∴直线AC的解析式为y=-45x+8,∵Q(5,n)在直线AC上,∴n=-45×5+8=4,又∵双曲线过Q(5,4),∴m=5×4=20;②当0≤t≤5时,OP=10-2t,过点Q作QD⊥OA于点D,∴QD=4,∴S=20-4t,当5<t≤9时,OP=2t-10,过点Q作QE⊥OC于E,∴QE=5,∴S=5t-25,∴S与t的函数关系式为:S=204(05) 525(59)t tt t-≤≤⎧⎨-<≤⎩.故答案为(1) 0,8;(2)①4,20,②S=204(05) 525(59)t tt t-≤≤⎧⎨-<≤⎩.【点睛】此题主要考查反比例函数综合题.注意解(2)②时,要分类讨论,以防漏解.。

人教版八年级(下)学期3月份 自主检测数学试卷含解析

人教版八年级(下)学期3月份 自主检测数学试卷含解析

一、选择题1.下列根式是最简二次根式的是( ) A .4B .21x +C .12D .40.52.下列根式中,最简二次根式是( ) A .13B .0.3C .3D .83.下列二次根式是最简二次根式的是( ) A .12B .3C .0.01D .124.下列计算正确的是( ) A .325+=B .2222+=C .2651-=D .822-=5.在实数范围内,若2x +有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-26.如果关于x 的不等式组0,2223x mx x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >,且式子3m -的值是整数,则符合条件的所有整数m 的个数是( ). A .5 B .4C .3D .27.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定8.若a b >3a b - ) A .ab --B .-abC .a abD .-ab9.下列计算正确的是( ) A 1233=B 235=C .43331=D .32252+=10.给出下列化简①(2-2=222-=()2221214+=311142-=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④二、填空题11.比较实数的大小:(1)5?-______3- ;(2)514-_______12 12.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f +=+⋅+z z __________.13.甲容器中装有浓度为a 的果汁40kg ,乙容器中装有浓度为b 的果汁90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________. 14.把31a a-根号外的因式移入根号内,得________ 15.方程14(1)(1)(2)(8)(9)x x x x x x ++⋅⋅⋅+=+++++的解是______.16.化简二次根式2a 1a a+-的结果是_____. 17.化简4102541025-++++=_______. 18.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.19.2121=-+3232=+4343=+20202324320202019+++++……=___________.20.4x -x 的取值范围是_____三、解答题21.观察下列各式子,并回答下面问题. 211-(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.26.计算(1+(2+-÷(4)((3)2b;(4)7.【答案】(1)23)4【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+==;(2==;(3÷=2b=;4(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.27.观察下列一组等式,然后解答后面的问题=,1)1=,1=,1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-++-=6+.(2)原式=3434【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】可以根据最简二次根式的定义进行判断.【详解】A,原根式不是最简二次根式;B=,原根式不是最简二次根式;C2=⨯=D、=42故选B.【点睛】本题考查最简二次根式的定义,熟练掌握最简二次根式的定义及二次根式的化简方法是解题关键.2.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.3.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:ABC0.1,故此选项错误;D故选:A.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.4.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.5.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】有意义,得:20x +>,解得:2x >-. 故选:B . 【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.C解析:C 【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2. 【详解】 解:解不等式02x m->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2, ∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2, 由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个. 故选:C . 【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.D解析:D【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】3-a b∴-a3b≥0∵a>b,∴a>0,b<03=2--=-,a b ab a a ab故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.9.A解析:A【分析】A12进行化简为23B中,被开方数不同的两个二次根式之和不等于和的二次根式,据此可对B进行判断;C中,合并同类二次根式后即可作出判断;D中,无法进行合并运算,据此可对D进行判断.【详解】==A符合题意;解:123233323B不符合题意;C.43333=C不符合题意;D.3与2不能合并,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的加减运算,能够判断出二次根式是同类二次根式是解答此题的10.C解析:C【分析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式==,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<1=2∵3=<∴1 4< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 12.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+,(2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=-20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 13.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】 解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】,甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.【点睛】 本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.14.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a -≥, ∴0a <,∴a ===.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键. 15.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.16.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为17.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.19.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=, 20202=-,2018=,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4. 故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华一寄宿八年级数学月考答案
一,B,A,B,C,D,B,B,C,C,D
二,11,-2
12,13
13,相等的角是对顶角
14,4 15,33
16,2(∵∠PAB=∠PBC,∴∠APB=90°,取AB 中点D,连PD,CP ,由题设OP=3,OC=5 当O,P ,C 三点共线时,CPmin=2)
三,17,(1)0,(2),a 2a 20
18,4-2x
19.证:∵四边形ABCD 是平行四边形
∴AD ∥BC,AD=BC;
又E,F 为AD,BC 的中点
∴ED=BF
∴四边形BFDE 为平行四边形
∴BE ∥FD
∴∠EGH=∠FHG
∴∠AGE=∠FHC
又∠EAG=∠FCH,AE=FC
∴△AEG ≌△CFH
∴AG=CH
20,证:连EB,ED.
∵∠ABC=90°E 为AC 中点,
∴EB=
2
1AC, 同理,ED=21AC ∴EB=ED
又∵F 为BD 中点。

∴EF ⊥BD.
21, 20
22,(1)证:∵四边形ABCD 是平行四边形
∴AB=DC,AD=BC,∠ADC=∠CBA,
又△ADF,△ABE 为等边三角形
∴DA=DF,BA=BE,∠ADF=∠ABE=60°
而∠FDC=360°-60°-∠ADC,∠CBE=360°-60°-∠ABC
∴DC=BE,DF=BC,∠FDC=∠CBE
∴△FDC ≌△CBE(SAS)
(2)证△FAE ≌△CBE 得EC=EF,或证∠FCE=60°
23,(1)证得EFGH 为矩形,得EH=5
(2)有面积法和勾股定理得,
45=BC AB ,(考察勾股,用相似不给分) 24,(1)(-3,3)
(2)倍长QR 至点G,连GB,GO,证△BAQ ≌△BOG 由中位线定理得RT=
2
1AQ (3)233+(过D 作DM ⊥DP 交OP 于点M)。

相关文档
最新文档