商务数据分析报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科学生综合性实验报告项目组长张梦瑶学号*******
成员
专业国际经贸班级国贸142
实验项目名称商务数据分析报告
指导教师及职称李虹来
开课学期2015 至2016 学年下学期
上课时间2016 年 6 月16 日
1.商业理解阶段
网上销售与传统的店面销售不同,没有售货员提供现场咨询服务。但是,网上销售可以利用互联网的优势,为用户提供更优质的服务。由于服务器会记录用户在浏览电子商务网站时的所有行为,因此,企业很容易收集用户的浏览记录、交易信息及偏好数据。
在个性化推荐技术的关联规则分析中,最典型的例子是购物篮分析,其目标是发现交易数据库中不同商品之间的联系强度,挖掘用户潜在购买模式,并将这些模式所对应的服务或产品展示给用户,为其提供参考,从而提高用户的满意度及购买率。
2. 数据理解阶段
本案例采用淘宝网的用户交易数据进行分析,每条交易记录包括记录号和顾客购买的商品,表1给出了数据集中各属性名及意义,表2为部分交易实例数据示例。
3. 数据准备阶段
原始数据集可能包含了一些冗余的数据、空值和零值等,这种格式不能作为关联规则分析算法的输入,需要对数据进行预处理。本案例的预处理中包括过滤掉原始数据集中的商品数量和单价这两个属性。同时为了保护顾客的隐私,过滤了用户名属性,并且用交易号来唯一表示顾客的每一次交易。处理后的数据集如表3所示。
通常有两种格式:一种是布尔矩阵形式,即每行表示一条交易记录,列中的T/F值表示该商品是否有在相应的交易记录中出现,T表示有出现,F表示没有出现(表4列出转换后的前3条记录信息);一种是事务处理格式,即每行对应一个交易号和一个商品项(表5列出了前3个事务对应的事务处理格式)。
4. 数据建模
利用Clementine中的Apriori算法进行关联规则分析,设定最小支持度1%,最小置信度50%,输入为布尔矩阵格式的交易数据(如表4),输出商品的关联规则及相应的支持度、置信度和提升度信息(如表6)。表中显示“高跟鞋”和“洗发水”、“童装”和“玩具”、“文具”经常被一起购买。
表6 Apriori算法运行结果
5. 模型评估
我们选取以下的关联规则向顾客进行推荐。
规则1:(玩具、文具)=>童装
规则2:洗发水=>高跟鞋
规则3:玩具=>童装
规则4:地毯=>家具
规则5:(短裙、高跟鞋)=>女装T恤
规则6:(童装、文具)=>玩具
再结合规则和实际经验知识,可以对规则进行进一步优化处理。在本案例中,可以对规则1{(玩
具、文具)=>童装}和规则3{玩具=>童装}进行合并,以规则3的形式呈现。
6. 模型发布
通过建模分析由得出的关联规则,企业就可以得到商品销售的一些合理搭配,进而设定相应的推荐策略。如在顾客购买了地毯后,可以向其推荐家具类商品;或者当顾客购买了童装后,可以向其推荐玩具和文具类商品;这些都可能是顾客感兴趣或需要的商品。