水泥熟料全分析

合集下载

水泥熟料组成及特性

水泥熟料组成及特性

School of Highway, Chang’an University
长安大学公路学院
第四节 水泥熟料组成及特性
③C3A结构特征
结构中的铝离子、钙离子具有较高活性; 结构中存在较大的“空穴”,水化速度快。
School of Highway, Chang’an University
长安大学公路学院
第四节 水泥熟料组成及特性
④C4AF结构特征
C4AF也称才利特或C矿。在透射光下,呈黄 褐色或褐色的晶体,有很高的折射率。其结 构特征为: 高温时形成一种固溶体,在铝原子取代铁 原子时引起晶格稳定性降低。
School of Highway, Chang’an University
长安大学公路学院
School of Highway, Chang’an University
大的水化速度。
长安大学公路学院
第四节 水泥熟料组成及特性
②C2S结构特征
C2S称为贝利特或简称B矿(因为没有纯的C2S ,固溶有MgO,Al2O3,Fe2O3 等) 。 C2S有4种晶型,在2130℃下烧至熔融为α型,1420°C为α′型,温度降至 675℃转变为β型,降到300~400℃转变为γ型。 强度以α型最高,以后随温度降低和晶型转变而降低,到γ型几乎没有强度, 体积膨胀10%,造成熟料粉化。
C4AF---呈棱柱状或圆粒状,反光能力强,在反光镜下呈亮白色,称为白色中间相。
School of Highway, Chang’an University长安大学公路学院来自第四节 水泥熟料组成及特性
①C3S结构特征
C3S称为阿利特或简称A矿(因为没有纯的C3S ,固
溶有MgO,Al2O3,Fe2O3 等)。其晶体断面 为六角形和棱柱形。

水泥熟料全分析范文

水泥熟料全分析范文

水泥熟料全分析范文
水泥熟料是一种主要用于制备混凝土和其他建筑材料的关键原材料。

它是在水泥生产过程中通过对石灰石和粘土的加工而得到的一种粉末材料。

水泥熟料的化学成分和物理性能影响着最终水泥制品的强度和耐久性。

水泥熟料的化学成分主要包括四个主要组分,即三氧化二钙(C3S),二氧化二钙(C2S),三氧化三铝(C3A),四氧化三铁(C4AF)以及其他
一些辅助成分。

其中,C3S是水泥熟料中的主要成分,它能够提供早期强
度和良好的耐久性。

C2S也是一种重要的成分,它可以提供较慢但持久的
强度。

水泥熟料的物理性能主要包括细度、表面积和密度。

细度是指熟料颗
粒的大小,通常使用比表面积来衡量。

细度越高,水泥熟料颗粒越小,其
反应活性也更高。

表面积是指单位质量熟料的表面积,常用来评估熟料的
反应活性。

密度是指单位体积的质量,水泥熟料的密度对混凝土的强度和
耐久性有一定影响。

除了化学成分和物理性能外,水泥熟料的熟化反应也是影响其性能和
应用的重要因素之一、水泥熟料的熟化过程是一个复杂的化学反应过程,
在这个过程中熟料中的化学物质逐渐结晶并形成水泥石。

熟料的熟化过程
直接影响着水泥石的形成和发展,从而影响最终的混凝土性能。

总之,水泥熟料是制备混凝土和其他建筑材料的重要原材料。

其化学
成分、物理性能和熟化反应会直接影响最终水泥制品的性能和耐久性。

因此,在水泥生产过程中,需要精确控制水泥熟料的成分和性能,以确保最
终产品的质量和可靠性。

水泥、熟料质量控制管理

水泥、熟料质量控制管理

进厂石灰石主要质量控制项目:日常以控制 CaO含量为主,即进厂石灰石品位。对于其中的有 害成份,一般随石灰石品位变化:石灰石品位越 高,有害成份越低;石灰石品位越低,有害成份 越高。
进厂石灰石品位控制原则:控制合理的进厂 石灰石品位,是为了保证生料率值满足预计的要 求。石灰石品位既非越高越好、也非越低越好, 应根据所使用的硅铝质原料的硅酸率来限定。如 所用硅铝质原料的硅酸率偏高,进厂石灰石的品 位应偏低控制;硅铝质原料的硅酸率偏低,则进 厂石灰石品位应偏高控制。
类别
CaO(%)
MgO (%)
石灰石
一级品二 级品
>48 45~48
<2.5 <3.0
泥灰岩
35~45 <3.0
R2O(%) SO3(%) 燧石或石英
<1.0 <1.0
<1.0 <1.0
<4.0 <4.0
<1.2 <1.0
<4.0
2、硅铝质原料
天然硅铝质原料的种类很多,有粘土、黄土、页岩、 砂岩、粉砂岩等。
烟煤
≥22
≤28.0
≤1.0
≥5000
贫瘦煤
10≤V≥20
≤28.0
≤1.0
≥5000
原燃材料质量控制
生、熟料质量控制应以配料为纲,从原燃材料质量抓 起,强化过程均化.原材料质量是制备成分合适,均匀稳 定的生料基础条件,生料质量是熟料质量的基础。
1、石灰石质原料控制
石灰石质原料是构成生料的主要原料,一般在生料中 占85%左右。石灰石的质量指标控制主要包括CaO、MgO、 R2O、SO3、Cl-等。其中CaO是构成生料的主要成份,MgO、 R2O、SO3、Cl-的含量为有害成份。CaO、MgO、R2O、SO3、 Cl-的含量是石灰石矿山前期勘探需查明的主要内容。较 高的CaO、较低的MgO、R2O、SO3、Cl-含量是优质石灰石矿 山和生产优质熟料的基本要求,矿山选址的依据。

水泥有限公司熟料全分析作业指导书

水泥有限公司熟料全分析作业指导书

水泥有限公司熟料全分析作业指导书1检验设备:分析天平、高温炉、坩埚、烘箱、滴定管、容量瓶、移液管等。

2检验频次与抽样计划:按本企业《过程质量控制明细表》要求进行。

3取样方法与样品制备:按《取样及制样作业指导书》进行。

4试剂配制:GB176-96《标准溶液的制备和标定》5检验准备:5.1送检的试样,应是具有代表性的均匀样品,并全部通过孔径0.08mm 的方孔筛,数量不少于50g ,试样应装入带有磨口塞的瓶中,瓶口须密封。

5.2所用分析天平不应低于四级,天平与砝码应定期进行检定。

5.3称取试样时应准确到0.0001g 。

5.4化学分析用的水是蒸馏水或去离子水,所用试剂应为分析纯或优级纯试剂。

5.5所用的滴定管、容量瓶、移液管应进行校正。

5.6各项分析结果(%)的数值经修约后应保留到小数点后第二位。

5.7分析结果允许误差按《试验允许误差表》执行。

6分析方法:6.1烧失量的测定:准确称取试样约1g ,放入已灼烧恒重的瓷坩埚中,放入马沸炉内,由低温升起至所需温度并保持半小时以上,取出坩埚,置于干燥器内冷却至室温称量,如此反复灼烧,直到恒重。

烧失量=GG G 1 ×100% G —称取的试样质量(g );G 1—烧后余物质量(g )。

6.2二氧化硅的测定:称取试样0.5g 置于瓷坩埚中,加入1g 氯化铵,用平头玻璃棒混匀,盖上蒸发皿,沿皿口加2ml 浓盐酸及2-3滴硝酸仔细搅匀,使试样充分分解。

将蒸发皿置于沸水浴上,皿上放一玻璃架,盖上蒸发皿,蒸发至干,约15min ,取下蒸发皿,加10ml 热盐酸搅拌(3+97),使可溶性盐类溶解,以中速定量滤滤纸过滤,用胶头扫棒以(3+97)盐酸擦洗玻璃棒及蒸发皿,并洗涤10-12次,滤液及洗液保存在250ml 容量瓶中冷却稀释至刻线。

将沉淀和滤纸一并移入瓷坩埚内,先在电炉上以低温烘干,再升温使滤纸充分灰化,然后于950-1000℃的高温炉,灼烧40min ,取出坩埚置于干燥器中冷却15-20min ,称量,如此反复灼烧直至恒量。

水泥熟料全分析标准

水泥熟料全分析标准

水泥熟料全分析标准
水泥熟料是水泥的主要原料,其质量直接影响到水泥产品的质量。

因此,对水泥熟料进行全面的分析是非常重要的。

下面将对水泥熟料的全分析标准进行详细介绍。

首先,水泥熟料的化学成分分析是非常重要的一项标准。

化学成分分析包括了熟料中各种化学成分的含量,如SiO2、Al2O3、Fe2O3、CaO等。

这些成分的含量直接影响到水泥的强度、硬化时间等性能指标。

因此,对水泥熟料的化学成分进行准确分析是确保水泥产品质量稳定的重要手段。

其次,水泥熟料的矿物组成分析也是必不可少的一项标准。

矿物组成分析可以确定熟料中各种矿物的含量和种类,如方解石、石英、辉石等。

不同的矿物组成会对水泥的硬化速度、抗压强度等性能产生影响,因此矿物组成分析对于水泥产品的质量控制至关重要。

此外,水泥熟料的物理性能分析也是一个重要的标准。

物理性能分析包括了熟料的比表面积、密度、热稳定性等指标。

这些指标对于水泥的生产工艺和产品性能有着重要的影响,因此对水泥熟料的物理性能进行全面分析是确保水泥产品质量稳定的重要手段之一。

最后,水泥熟料的烧成性能分析也是不可或缺的一项标准。

烧成性能分析包括了熟料的烧成温度、烧成时间、烧成均匀性等指标。

这些指标直接关系到水泥熟料的烧成工艺和烧成质量,对于水泥产品的质量稳定起着至关重要的作用。

综上所述,水泥熟料的全分析标准包括了化学成分分析、矿物组成分析、物理性能分析和烧成性能分析。

这些分析标准的准确执行对于确保水泥产品质量稳定具有重要的意义。

只有通过全面的分析,才能够更好地控制水泥熟料的质量,为生产高质量的水泥产品提供有力的保障。

水泥熟料产生粉化的原因分析20120810YYYY 2

水泥熟料产生粉化的原因分析20120810YYYY 2

佳木斯市松江水泥有限公司化验室佳木斯市松江水泥有限公司化验室二O一二年十一月一日关于立窑外卸熟料产生粉化的原因分析2012年立窑车间外卸部分熟料,在堆场由于小雨浇湿后产生粉化现象,粉末成灰白色。

熟料产生粉化现象,理论上是由于熟料中β-C2S转变成γ-C2S,体积膨胀所引起,这种现象往往发生在熟料KH 比较低的时候,为什么KH高达0.98以上还会出现粉化现象呢?通过查询资料,并结合公司原燃材料实际情况和立窑运行情况,应该有以下几个方面的原因:1. 作为主要原材料的石灰石里面砂土(结晶硅)含量比较多,直接造成生料中含有较高的结晶SiO2,在熟料煅烧时难以化合完全,在结晶SiO2周围就会形成一层β-C2S矿巢。

由于这β-C2S矿巢在冷却时转变成了γ-C2S,就产生了熟料粉化现象。

库底石灰石全分析可以验证这一点,数据如下:要想解决结晶硅问题,应从降低结晶硅含量和增加结晶硅反应活性两方面着手。

欲降低结晶硅含量,主要是降低石灰石中的含砂量和石灰石中结晶硅含量,也就是说选择比较易烧的石灰石,但就目前原燃材料现状难以办到。

欲增加结晶硅的反应活性,从工艺角度讲,主要采取了两个措施:一是降低生料粉磨细度,生料细度由原先不大于8.0%调整为不大于7.0%,减小结晶硅的颗粒度,从而提高其反应速度,减少β-C2S矿巢的量。

二是用萤石矿化剂使用比例调整为2.0%,增加结晶硅的反应活性。

2. 熟料冷却慢:立窑煅烧应该采取“快烧急冷”的煅烧制度,熟料如果冷却速度慢,使得熟料中实际C3S含量减少,C2S相应地增多,出窑链板熟料温度很高,敲开后里面还是红的,此时熟料温度在900℃左右,若让其慢慢冷却,会在500℃时C2S容易产生晶型转变,就会发生粉化,最后只剩下一层在窑内已经快冷过的坚硬外壳。

此类粉化熟料,粉末成灰白色。

鉴定标准为:将出窑的熟料(红料)丢入冷水中冷却便不发生粉化,由此可以判断其粉化是由于煅烧操作不当,冷却太慢之故。

水泥厂的生料配料

水泥厂的生料配料

水泥厂的生料配料一水泥生产原料种类及大致用量1 主要原料:1钙质原料:以碳酸钙为主要成分的原料,是水泥孰料中CaO的主要来源。

一顿孰料需1.4-1.5吨石灰质干原料,在生料中月占80%左右。

2硅铝质原料:含碱和碱土的铝硅酸盐,主要成分为SiO2,其次为AI2O3,少量Fe2O3,是水泥孰料中SiO2,AI2O3,Fe2O3的主要来源。

一吨熟料约需0-3~0.4吨粘土质原料,在生料中占11~17%。

2 生料定义:由石灰质原料、粘土质原料、少量校正原料(有时还加入矿化剂、晶种等,立窑生产时还要加煤)按比例配合,粉磨到一定细度的物料。

3 生料分类:生料粉和生料浆两种。

(1)料粉:干法生产用的生料。

一般水分≤1%。

据生料中是否含煤又分为三种:白生料:出磨生料中不含煤。

干法回转窑及采用白生料法煅烧的立窑用。

黑生料:出磨生料中含有煅烧所需的全部煤。

采用全黑生料法煅烧的立窑用。

半黑生料:出磨生料中只含有煅烧所需煤的一部分。

采用半黑生料法煅烧的立窑用。

(2)生料浆:湿法生产所用的生料。

一般含水分32%~40%左右。

二配料的原则(率值)及对熟料质量的影响1、配料定义:根据水泥品种、原燃料品质、工厂具体生产条件等选择合理的熟料矿物组成或率值,并由此计算所用原料及燃料的配合比,称为生料配料,简称配料。

2、配料的目的:根据原料资源情况,进行合理的配料,从而尽可能地充分利用矿山资源确定个原料的配比。

计算全厂的物料平衡,作为全厂工艺设计主机选型的依据。

确定原料消耗比例改善物料易磨性和生料的易烧性,为窑磨创造良好的操作条件,达到优质,高产,低消耗的生产目的。

3 配料应遵循的基本原则:(1)烧出的熟料具有较高的强度和良好的物理化学性能。

(2)配制的生料易于粉磨和煅烧;(3)生产过程易于控制,便于生产操作管理,尽量简化工艺流程。

并结合工厂生产条件,经济、合理地使用矿山资源。

4 配料计算中的常用基准1、干燥基准:用干燥状态物料(不含物理水)作计算基准,简称干基。

日产5000吨水泥熟料预分解窑窑尾部分的工艺设计

日产5000吨水泥熟料预分解窑窑尾部分的工艺设计

第1章绪论1.1 概述新型干法预分解窑是现代最先进的水泥生产技术,它以其独特的优越性赢得了国际的认可。

以预分解窑为代表的新型干法水产技术已经成为当今水泥工业发展的主导技术艺,它具有生产能力大、自动化程度高、产品质量高、能耗低、有害物排放量低等一系列优点。

目前,我国广泛采用的是国际上先进的图形显示技术、通信技术、计算机控制技和集中管理、分制的集散型控制系统,并自行研发了工厂生产管理信息系统,保障了系统的安全性和可靠性,符合了实用性的要求。

新型干法工艺是当代最具现代化、规模化的水泥生产方式,已被世界各国普遍采用,成为水泥生产技术的主流。

通过多年的不断探索,我国的水泥工业发展取得了很大成果,水泥产量多年位居世界第一,为我国国民经济发展的提供了有力保障。

然而就目前来看,我国水泥工业的结构仍然存在十分突出的矛盾,主要表现为经营粗放、生产集中度和劳动生产率相对较低、资源及能源消耗较高、环境污染比较严重,特别是立窑、湿法窑、干法中空窑等落后技术装备还占相当比重,可持续发展面临着严峻的挑战。

为加快推进水泥工业结构调整和产业升级,满足科学发展观和走新型工业化道路的要求,新型干法水泥生产技术将迎来在全国发展的大好时机。

1.2 设计简介本设计是5000t/d熟料新型干法生产线窑尾部分的工艺设计,设计采用目前国内外水泥行业相对较为先进的技术和设备,力求最大限度的降低能耗、降低基建投资,又最大限度的提高产、质量,实现环境友好型、资源节约型的水泥发展要求。

石灰石预均化堆场设计为矩形预均化堆场,其规格为42×170m。

石灰石矿山全矿化学成分比较稳定,品质优良,均匀性比较好。

厂区设1个Ø15×30m 圆库储存石灰石用于生料配料,库有效储量6844t,实际储存时间为1.09d,能满足生产的正常进行。

因为原煤成的分波动对烧成工艺、热工制度的稳定性及熟料质量等的影响极大,外购煤的质量难以完全预先控制,同时多点供应原煤的可能性是存在的,并且考虑将来使用低品位原煤的需要,故设置原煤预均化设施。

水泥熟料全分析水泥熟料分析—预习思考题

水泥熟料全分析水泥熟料分析—预习思考题

10水泥熟料分析四、水泥熟料分析的实验步骤3、EDTA 与CuSO 4的体积比测定准确放出约15 mL 0.01M EDTA 于400 mL 烧杯中 →加水稀释至200 mL → 15 mL pH4的HAc-NaAc → 煮沸2min →4d 0.3%PAN →0.01 M CuSO 4至亮紫色2、0.01 mol/L EDTA 标液的配制及标定500 mL (不做) P229。

CaCO 3为基准物;CMP 为指示剂(注意:标定方法同试样中钙的测定,取25.00mL )(做!)0.05mol/L EDTA 标液的稀释:取50mL 于250 mL 容量瓶中,加水、定容、摇匀。

12水泥熟料分析补充:坩埚及沉淀的灼烧和恒重⏹坩埚:800℃灼烧30min ,取出稍冷, 放入干燥器约40 min ,称量m 1;再800℃灼烧30min ,取出稍冷, 放入干燥器约40 min ,称量m 2。

直至2次称量不相差0.3mg 。

(第一周,直接烧1小时)⏹沉淀:包裹后的沉淀放入已恒重的坩埚内,盖盖(露一角)先在明火电炉上灰化,直到滤纸变成黑色灰; (第一周) 注意:稍冷和干燥器内冷却时间均要相同;称量天平同一台。

干燥器每组1个(组长负责时间、召集,统一行动!)14水泥熟料分析2、Fe 2O 3和Al 2O 3的分步测定25.00 mL 试样溶液于400mL 烧杯中→75 mLH 2O → 2d 溴甲酚绿(pH <3.8黄色,pH>5.4绿色)→滴加1:1氨水至绿色→滴加1:1盐酸至黄色,再过量3滴,pH ≈2 → 加热至60~70℃ → 6~8d Sal →0.01M EDTA 滴定(由紫红色变为亮黄色)(注:橙色后稍放置即变为亮黄色),记下V1(量很小),计算Fe 2O 3含量。

→准确加入约20 mL 0.01M EDTA →加水稀释至200 mL → 15 mL pH4的HAc-NaAc → 煮沸2min →4d 0.3%PAN →0.01 M CuSO 4滴定(由黄色变为亮紫色),记录V 2,计算Al 2O 3含量。

水泥工艺培训材料(生料、熟料部分)

水泥工艺培训材料(生料、熟料部分)

水泥工艺培训材料(生料、熟料部分)一新型干法工艺流程二、水泥生产的原燃料及配料2.1、水泥生产原料2.1.1.石灰质原料:(石灰石、大理石等)占生料70~75% (本厂82~87%)2.1.2粘土质原料:(硅铝质原料、粘土、砂岩等)占生料10~20% (砂岩4~6%)2.1.3.校正原料:(铁质、铝质原料、外加剂等)占生料5~10% (煤矸石3~4% 粉煤灰3~4% 钢渣3~4%)(有3、4、5组分配料。

其中组分多、易于调整。

我们厂现在是5组分配料)2.2、水泥生产燃料1.固体燃料(1)烟煤:挥发分≥14% 回转窑主要使用烟煤。

Vf(30~36%)Af(8~12%)Qdwf(6000~6500)(2)无烟煤:挥发分≤10%(3)低质煤:热值≤4000×4.18kJ/kg2.液体和气体燃料重油、渣油、天然气、煤气等。

2.3水泥熟料的矿物组成2.3.1、熟料矿物组成C3S ——硅酸三钙(含量:50~60%)(强度高)C2S ——硅酸二钙(含量:15~32%)(强度较高)C3A ——铝酸三钙(含量:3~11%)(凝结快)C4AF——铁铝酸四钙(含量:8~18%)(耐磨耐蚀)2.3.2、主要化学成分:CaO 62~67%、SiO2 20~24%、Al2O3 4~7%、Fe2O3 2.5~6%。

MgO R2O SO3 CL-2.4、硅酸盐水泥熟料的率值2.4.1.率值:水泥熟料中各氧化物之间的相对含量的比值。

它与熟料的矿物组成、熟料质量、生料的易烧性有密切的关系,是水泥生产中的重要控制指标之一。

2.4.2常用率值:(1)石灰饱和比(KH):表示SiO2被CaO饱和成C3S的程度。

KH={CaO-(1.65*AL2O3+0.35*Fe2O3+0.7SO3)}/2.8SiO2(2)硅酸率(n或SM):表示SiO2与Al2O3及Fe2O3之和的比值。

SM=SiO2/(Al2O3+Fe2O3)(3)铝氧率(P或IM):表示Al2O3与Fe2O3的比值。

水泥中控技能大赛案例分析题

水泥中控技能大赛案例分析题

水泥中控技能大赛案例分析题案例分析:1.熟料样的化学全分析结果如表所示,请对该结果作分析。

解:看熟料全分析结果时,一要看三率值(KH、n、p 是否在要求的范围内;二要看熟料中C3S + C2S含量是否高,C3A+C4AF含量是否为20~22%;三要看MgO 是否超出范围, 如超出范围, 就是废品,不能直接粉磨出厂,只能与低MgO 熟料搭配合格后才能粉磨出厂; 四要看熟料化学组成及矿物含量多少,以便分析煅烧难易的影响因素。

由上表可见,C3A+C4AF只有17.89%,KH为0.833,都太低,而n高达2.81。

该熟料化学成分波动太大,煅烧中因熔剂矿物成分含量过少,结粒困难,易出现“飞砂",熟料标号也不会高。

根据这种情况,要建议提高KH值和熔剂矿物含量,增加铁含量, 降低n值,减少SiO2含量,使配料达到要求。

2. 蓖冷机出口熟料温度总是偏高,试分析产生的原因并提出处理建议。

解:可能的原因和现象:⑴冷却风量不够; ⑵蓖床速度过快, 熟料冷却后移;⑶蓖床上出现“红料流”或熟料结大块;⑷冷却机内有高温区的热风窜至冷端。

主要操作处理:⑴适当增加有关风室的风量;⑵适当减慢蓖速;⑶冷却机如无隔墙,可以增加隔墙,以控制冷端风量的分布。

3. Y水泥厂的增湿塔有湿底现象,该如何解决这个问题?答:原因分析:⑴喷嘴调整不佳; ⑵喷嘴内结垢堵塞或喷嘴接缝处漏水(喷嘴密封垫失效);⑶管路漏水,压力不足;⑷水泵故障.处理方法:⑴停窑检修时重新调整喷嘴;⑵停窑检修时清洗或更换喷嘴; ⑶堵漏管路、调整水泵工作压力;⑷启动备用水泵。

查明原因, 尽快检修更换部件;⑸湿窑灰立刻从旁路排出。

4. 煤源紧张,ZD水泥厂在煅烧时掺用了灰分较大的劣质煤,要注意什么问题? 答:劣质煤的特点是灰份高,燃烧慢,发热量低。

使用劣质煤煅烧时,黑火头长,窑内温度低后不易烧起来,而且易结圈。

使用劣质煤时,首先应根据煤的成分改变配料, 采用比较易烧的方案;同时改进喷煤系统,加强煤风混合,加快燃烧速度。

水泥熟料全分析范文

水泥熟料全分析范文

水泥熟料全分析范文水泥熟料是水泥生产过程中最重要的原材料之一,对于水泥的质量和性能有着直接影响。

水泥熟料是指经过石灰石煅烧后制成的颗粒状物质,主要成分为氧化钙、二氧化硅、氧化铝和氧化铁等。

以下是对水泥熟料的详细分析。

首先,水泥熟料的主要成分是氧化钙(CaO)。

氧化钙是水泥的主要活性成分,它是水泥中最重要的固化剂。

在水泥制备过程中,石灰石经高温煅烧后分解产生氧化钙,通过与水反应生成水化钙,从而实现水泥的硬化过程。

氧化钙的含量越高,水泥的早期强度和后期强度也会相应增加。

其次,水泥熟料中的二氧化硅(SiO2)是水泥的次要成分,其含量通常在20%到25%之间。

二氧化硅主要来自于石灰石中的硅酸盐。

当石灰石煅烧时,硅酸盐分解并释放二氧化硅,形成熟料的主要硅酸盐成分。

二氧化硅对水泥的早期硬化具有很大的影响,它可以促使水泥更快地发生水化反应,从而提高水泥的早期强度。

此外,水泥熟料中还含有氧化铝(Al2O3)和氧化铁(Fe2O3)等杂质成分。

氧化铝主要来自石灰石中的粘土矿物,而氧化铁则主要来自于石灰石中的铁矿物。

这些氧化铝和氧化铁的存在可以增加水泥的耐火性和耐久性。

氧化铝和氧化铁还能与二氧化硅反应生成硅铝酸盐胶体,从而提高水泥的强度和耐久性。

除了主要成分外,水泥熟料还可能含有少量的镁氧化物(MgO)、硫酸盐(SO3)、石膏(CaSO4·2H2O)等。

镁氧化物是由于石灰石中含有镁矿物所致,其含量对水泥的性能影响较小。

硫酸盐和石膏则可以调节水泥的硬化速度和抗裂性能。

总之,水泥熟料是水泥制备过程中的关键原料,其中的氧化钙、二氧化硅、氧化铝和氧化铁等成分直接影响水泥的质量和性能。

了解水泥熟料的详细分析有助于提高水泥生产的质量和效益。

水泥熟料全分析

水泥熟料全分析
水泥熟料全分析
本实验共包括以下几部分:
一、实验目的 二、实验原理 三、实验试剂 四、注意事项 五、操作及注意事项 六、 思考题
一、实验目的
1、 了解重量法测定SiO2含量的原理和利用重 量法测定水泥熟料中SiO2含量的方法; 2、 进一步掌握络合滴定法的原理,特别是 通过控制试液的酸度、温度及选择适当 的掩蔽剂和指示剂等,在铁、铝、钙、镁 共存时直接分别测定它们的方法; 3、 掌握络合滴定的几种测定方法—直接滴定 法,返滴定法和差减法,及这几种测定 法中的计算方法; 4、 掌握水浴加热、沉淀、过滤、洗涤、灰化 、 灼烧等操作技术。
Ca2+和Mg2+: 按常法用三乙醇胺掩 蔽Fe3+ 、Al3+离子后在pH≈10时用 EDTA滴定,测得钙和镁的总量;另 取一份滤液在pH>12时,用EDTA滴 定钙的含量。然后计算试样中CaO和 MgO的含量。
三、实验试剂
(1)钙指示剂 (2)10%磺基水杨酸 (3)0.3% PAN指示剂 (4)K-B指示剂 (5)铬黑T指示剂 (6)金属锌指示剂 (7)氨缓冲溶液 (8)HAc-NaAc缓冲溶液 (9)25%三乙醇胺 (10)5%酒石酸钾钠 (11)浓盐酸 (12)6M HCl溶液 (13)浓HNO3 (14)1:1氨水 (15)0.1M硝酸银溶液(16)NH4Cl固体 (17)6M的NaOH溶液(18)1:1硫酸 (19)0.01M的CuSO4 (20)0.01M的EDTA溶液
四、实验内容 1、0.01mol/L EDTA标准溶液的配 制与标定; 2、CuSO4标准溶液对EDTA标准液 体积 比的测定; 3、SiO2的测定; 4、铁的测定; 5、铝的测定; 6、钙的测定; 7、镁的测定。
五、操作及注意事项

水泥熟料全分析

水泥熟料全分析

水泥熟料全分析摘要:实验目的:利用沙浴获得除去SiO2的水泥溶解溶液,通过EDTA和CuSO4的配位滴定法测定水泥中Ca2+、Fe3+、Al3+、Mg2+的含量,对水泥的主要成分进行全分析。

进一步掌握络合滴定方法,通过控制试液的酸度、温度和合适的掩蔽剂、指示剂等条件,来测定铁、铝、镁共存时各自的浓度。

实验结果:Fe2O3%=6.33;Al2O3%= -0.903;CaO%=64.07;MgO%=2.61。

Fe2O3的测定偏高,Al2O3完全错误,应该是EDTA加入不足,CaO、MgO测量合理。

背景介绍:实验原理:水泥熟料的主要化学成分:SiO2(18-24%)、Fe2O3(2-5.5%)、Al2O3(4-9.5%)、MgO(<4.5%)CaO(60-70%)。

通过HCl、HNO3使金属氧化物(实际是硅铝酸盐)变成可溶性盐,然后过滤出SiO2(以硅酸的形式沉淀,可以通过加热称重法测定SiO2的质量)。

由于硅酸吸附严重,需要用热水不断洗涤,利用各离子与EDTA的配合物稳定程度的强弱、所需要的指示剂和掩蔽作用、pH的影响,可以采取不同的滴定方案分别测定各离子的含量。

M n++Y4-=MY4-n;Fe2O3%=C EDTA×V EDTA÷1000×M0.5Fe2O3(159.69)÷(W水泥×50÷250)×100;Al2O3%=C EDTA×(V1×K)÷1000×M0.5Al2O3(101.96)÷(W水泥×50÷250)×100;CaO%=C EDTA×V EDTA÷1000×M CaO(56.8)÷(W水泥×25÷250)×100;Fe2O3%=C EDTA×(V EDTA2 -V EDTA2)÷1000×M MgO(40.31)÷(W水泥×25÷250)×100;实验方法:实验仪器:沙浴箱、滴定管、锥形瓶(2个)、250ml容量瓶(2个)、加热装置、大小烧杯、钙指示剂、磺基水杨酸、PAN指示剂、K-B指示剂、氨缓冲溶液(pH=10)、醋酸缓冲溶液(pH=4),20%的NaOH溶液、EDTA溶液、三乙醇胺(1:2)溶液、CuSO4固体、固体NH4Cl、浓盐酸、浓硝酸、1:1HCl、氨水、1:1H2SO4、水泥样品实验步骤:1.水泥样品的制备洗涤仪器,检验滴定管是否漏水---》分析天平准确称量0.4-0.6g的水泥样品,置于干燥烧小杯中。

水泥生产化学分析操作规程

水泥生产化学分析操作规程

水泥生产化学分析操作规程熟料化学分析操作规程一、烧失量(Loss)称取试样 0.5g,精确至 0.0001,置于干净的小瓷坩锅中,放置在高温炉中,从低温升到950℃或1000℃恒温灼烧至恒重(1000℃恒温烧 30 分钟),取出冷却称量。

计算:Loss=【1-(灼烧后重-空锅重)÷试样重】×100%二、游离氧化钙 f-CaO(1)、称取试样 0.2 克,精确至 0.0001,置于干燥的三角瓶中,用量筒(杯)量取甘油—酒精溶液 25—30 毫升,摇匀后置于有回流冷凝管的电炉上加热,至微沸关掉电炉,冷到无回流液时,用苯甲酸滴定至红色完全消失,这样反复操作三次,10分钟后,不再出现红色即为化学反应终点。

(2)、计算方法:f-CaO=V 耗×TCaO÷试样重×100%三、化学全分析:(氯化铵重量法)1、SiO2 :称取试样 0.5g,精确至 0.0001,置于干净干燥的小烧杯中(250毫升),再取 1g 左右 NH4Cl倒入该杯中,用平头玻璃棒(干净、干燥的)压破 NH4Cl,搅匀试样后加浓HN3 2—3 滴,浓HCl 5毫升,拌匀后,水浴加热蒸干,然后用( 3+97)热盐酸溶液洗涤过滤(定量快速滤纸),过滤后,滤纸与SiO2 (滤纸上)置于大瓷坩锅中,放到电炉上灰化,至白色(用大瓷坩锅盖子保留逢隙盖住,不能让滤纸燃烧),后放到高温炉中 950℃或 1000℃灼烧至恒重,(灼烧半小时)取出冷却称重。

计算:SiO2 =(烧后重-空锅重)÷试样重×100%2、全分析:CaO、MgO、Fe2O3、Al2O3将过滤后的母液冷却后,用蒸馏水稀释至刻度线摇匀,移液管先用自来水洗涤2—3次,再用蒸馏水洗涤2—3次,然后用分析液洗涤2—3次。

(1)、CaO:吸取分析液 25 毫升,置于干净的大烧杯中,后用蒸馏水稀释至 200 毫升左右,拌匀后,先加(1+2)三乙醇胺 5 毫升,加钙指示剂少许,搅拌再加 20%KOH溶液,调至出现荧光黄后过量 7—9 毫升,拌匀后,用 EDTA 标液滴定,终点为亮红色。

水泥熟料需水量高的原因分析

水泥熟料需水量高的原因分析

近期水泥熟料需水量高的原因分析0 前言水泥工业的节能减排和绿色发展要求,引起人们对水泥需水量问题的重视,施工方在选择水泥时,都对水泥需水量有严格的要求,以减少混凝土减水剂和水泥的用量,达到降低成本、提高混凝土质量之目的。

水泥需水量决定着混凝土中水泥的用量,也决定着混凝土的性能,是影响混凝土经济性的最重要因素。

而影响水泥需水泥量除水泥比表面积和水泥颗粒特性、掺加的石膏的性质、混合材的种类和掺加量以及水泥温度有关而外,熟料需水量上升也是导致水泥需水量上升的主要原因之一,因此,现就我公司近期出窑熟料需水量增大的原因分析如下:1、2015年1月至6月出窑熟料物理性能见表1从表1数据看出,熟料物理性能稳定,强度符合国家标准要求,熟料标准稠度呈逐月上升趋势,1-3月稳定在24.0%-24.9之间,从4月份开始上升了0.5%,6月份上升到26.2%,与1月份相比上升了2.2%。

6月出窑熟料物理性能见表26月份出窑熟料化学全分析见表36月份出窑熟料三率值及矿物组成见表4从表3数据看出,从6月14日起2#窑出窑熟料标准稠度用水量均上升到了26.2%以上,熟料C3A为7.93%--8.53%之间,因此熟料中C3A并不高。

2、熟料矿物组成的影响熟料矿物组成中需水量由大到小顺序为:C3A,C3S,C4AF,C2S。

我们知道C3A含量与水泥需水量成线性关系,有经验推测熟料中C3A每增1%水泥需水量就要增加1%,由此可知,熟料中硅酸盐矿物含量愈高,需水量愈低,C3A含量愈高熟料需水量愈大。

2015年度出窑熟料矿物组成及三率值见表2由表2数据看出,2015年1月至6月1#、2#窑出窑熟料C3A在8.04%-至8.68%之间,且含量较为稳定,因此,从4月份分以来出窑熟料需水量增大的原因可排除熟料中C3A的影响。

3、熟料烧结程度的影响2015年度出窑熟料化学成分见表3:趋势,6月份为最高,达到了0.81%,相比1月份烧失量上升0.39%。

硅酸盐水泥熟料要点

硅酸盐水泥熟料要点
( 2 )测定原理:
在pH=1.8~2.0及60~70℃的溶液中,以磺基水杨酸 或其钠盐为指示剂,用EDTA标准滴定溶液直接滴 定溶液中的3价铁离子。
(3)试剂与仪器: 氨水溶液(1+1) 盐酸溶液(1+1) 氢氧化钾溶液(200g/L) 磺基水杨酸钠指示剂溶液 CMO混合指示溶液 碳酸钙标准溶液 EDTA标准溶液
➢ 氢氧化钠标准溶液浓度公式: C(NaOH)=m×1000/V×204.2(苯二甲质量分数)
• m--苯二甲的质量g V--滴定时消耗氢氧化钠滴定溶液的体积ml • 二氧化硅质量分数w(sio2) • w(sio2)=Tsio2×V×5/m×1000×100%
• Tsio2--每毫升氢氧化钠标准滴定溶液相当于sio2的质量分数mg/ml • 纯sio2质量分数wsio2(可溶sio2)=m3×250/(m×25×1000)×100% • m3--测定的100ml溶液中的二氧化硅的含量 • m--溶液A试样的质量g
• (2)对温度敏感,适合高温养护。
• (3)耐腐蚀性好,可用于有耐腐蚀要的混凝土工 程。但使用时应注意,火山灰水泥抵抗硫酸盐腐 蚀的能力较弱,因而不宜用于有硫酸盐腐蚀介质 的工程中。
• (4)水化热小,适用于大体积混凝土工程。 • (5)抗冻性与耐磨性差,不宜用于严寒地区水位
升降范围内的混凝土工程和有耐磨要求的混凝土 工程中。 • (6)抗碳化能力差,因而不宜用于CO2浓度高的 环境中,但在一般的工业与中国民航飞行学院空 管学院交通工程土木工程材料作业
• 结果计算:
• • 二氧化钛的质量分数=m4/m • m4------100ml测定溶液中二氧化钛的含量,单位为毫
克 • m--------溶液A中试料的质量,单位为克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泥熟料全分析摘要:实验目的:利用沙浴获得除去SiO2的水泥溶解溶液,通过EDTA和CuSO4的配位滴定法测定水泥中Ca2+、Fe3+、Al3+、Mg2+的含量,对水泥的主要成分进行全分析。

进一步掌握络合滴定方法,通过控制试液的酸度、温度和合适的掩蔽剂、指示剂等条件,来测定铁、铝、镁共存时各自的浓度。

实验结果:Fe2O3%=6.33;Al2O3%= -0.903;CaO%=64.07;MgO%=2.61。

Fe2O3的测定偏高,Al2O3完全错误,应该是EDTA加入不足,CaO、MgO测量合理。

背景介绍:实验原理:水泥熟料的主要化学成分:SiO2(18-24%)、Fe2O3(2-5.5%)、Al2O3(4-9.5%)、MgO(<4.5%)CaO(60-70%)。

通过HCl、HNO3使金属氧化物(实际是硅铝酸盐)变成可溶性盐,然后过滤出SiO2(以硅酸的形式沉淀,可以通过加热称重法测定SiO2的质量)。

由于硅酸吸附严重,需要用热水不断洗涤,利用各离子与EDTA的配合物稳定程度的强弱、所需要的指示剂和掩蔽作用、pH的影响,可以采取不同的滴定方案分别测定各离子的含量。

M n++Y4-=MY4-n;Fe2O3%=C EDTA×V EDTA÷1000×M0.5Fe2O3(159.69)÷(W水泥×50÷250)×100;Al2O3%=C EDTA×(V1×K)÷1000×M0.5Al2O3(101.96)÷(W水泥×50÷250)×100;CaO%=C EDTA×V EDTA÷1000×M CaO(56.8)÷(W水泥×25÷250)×100;Fe2O3%=C EDTA×(V EDTA2 -V EDTA2)÷1000×M MgO(40.31)÷(W水泥×25÷250)×100;实验方法:实验仪器:沙浴箱、滴定管、锥形瓶(2个)、250ml容量瓶(2个)、加热装置、大小烧杯、钙指示剂、磺基水杨酸、PAN指示剂、K-B指示剂、氨缓冲溶液(pH=10)、醋酸缓冲溶液(pH=4),20%的NaOH溶液、EDTA溶液、三乙醇胺(1:2)溶液、CuSO4固体、固体NH4Cl、浓盐酸、浓硝酸、1:1HCl、氨水、1:1H2SO4、水泥样品实验步骤:1.水泥样品的制备洗涤仪器,检验滴定管是否漏水---》分析天平准确称量0.4-0.6g的水泥样品,置于干燥烧小杯中。

粗称2.5-3.5gNH4Cl,与水泥混匀,盖上表面皿,滴加浓盐酸润湿(3ml左右),加入浓硝酸数滴,此时水泥消失,溶液显橙红色或黄色。

---》把烧杯放在沙浴上加热至接近蒸干,不时搅拌,若酸加入较多则延长加热时间,且溶液易产生气泡---》第一次蒸干后,加入1-2ml浓盐酸,搅拌,并加入40ml热水,充分搅拌溶解,颜色变黄---》用普通漏斗过滤,热水洗涤直至沉淀为白色(絮状SiO2),并不时用AgNO3检验Cl-存在---》滤液转移至250ml容量瓶中,定容2.CuSO4的制备和体积比测定天平粗称1.0gCuSO4·5H2O于烧杯中,滴加1:1H2SO4,用水溶解,配成200ml溶液---》移液管移取25ml溶液EDTA溶液于锥形瓶中,加入10mlpH=4的醋酸缓冲溶液---》加热至80-90°C,稍冷后加入PAN指示剂4-6滴---》用CuSO4溶液滴定,颜色由色变成红色---》记录CuSO4的体积,算出体积比K。

3.Fe3+的测定移液管移取50ml水泥样品于锥形瓶中,滴加10滴磺基水杨酸,先加HCl,用HCl和氨水调节pH约为2,使溶液变成紫红色,加热至60-70°C ---》用EDTA标定,溶液由紫红变成浅黄色,记录所消耗的EDTA体积4.Al3+的测定Al3+的测定采用反滴定法,先向滴完Fe的溶液中精确加入20ml左右EDTA溶液---》加入醋酸缓冲溶液10ml,然后加热煮沸2分钟,稍冷后加入PAN指示剂4-6滴---》用CuSO4溶液滴定,由黄变成绿色再变成紫红,记录所消耗的CuSO4的体积5.Ca2+的测定移液管移取25ml水样,加100ml水,加入1:2的三乙醇胺溶液6ml,加入20%NaOH调节pH,混匀,加入钙指示剂---》用EDTA标定,颜色由酒红变成蓝色,记录消耗的EDTA 的体积6.Mg2+的测定移液管移取25ml水泥水样,加入100ml水,5ml三乙醇胺,加入pH=10的氨缓冲溶液10ml,加入K-B指示剂2-3滴---》用EDTA标定,由酒红色变蓝色,记录EDTA的体积7. 记录数据和计算各物质的含量。

数据处理、结果和讨论:对结果的分析:理论上水泥熟料的主要化学成分:SiO2(18-24%)、Fe2O3(2-5.5%)、Al2O3(4-9.5%)、MgO(<4.5%)CaO(60-70%)实际测得水泥的成分:Fe2O3%=6.33;Al2O3%= -0.903;CaO%=64.07;MgO%=2.61旁边同学测定:Fe2O3%=3.5;Al2O3%=7.4;CaO%=65.6;MgO%=1.0可以看出,Fe2O3的含量偏高,Al2O3的测量失误,与之对应的原因可能是:测定Fe滴定过头,而对于Al,通过计算和数据,可以看出v1-v2*K<0,即所加的EDTA太少,未能达到反滴定的效果,所以测量值为负。

同时,在测定铝的过程中,溶液无明显变色,一直偏向橙红色,而没有变成酒紫红,也进一步验证了应该是所加的EDTA不足,使得仍为原来的指示颜色。

所以,我留下了原来的溶液,下次在测量一次。

钙镁测量基本合理,说明熟能生巧。

而与旁边的同学的测量不同,可能是所取样本不同导致。

讨论:实验原理:本次实验可以说是配位滴定的综合应用,多种离子的滴定,利用其pH、指示剂和稳定性能不同,采取不同的方法分别测定。

对于Fe3+,用HCl和氨水调节pH在2.0-2.5之间,用磺基水杨酸做指示剂,既能使其他离子的干扰最小,也能减少Fe3+的沉淀。

对于Al3+来说,其和EDTA反应慢,需要煮沸加热,同时由于其他离子的干扰,采用返滴定法,先加过量的EDTA,用醋酸调节pH,煮沸,待Al3+充分反应后,再用PAN做指示剂,CuSO4返滴定剩余的EDTA。

对于Ca2+、Mg2+的测定,方法同上次试验,采用差减法,用NaOH控制pH>12,使镁离子沉淀,测定钙离子,然后用氨缓冲溶液控制pH=10,测定钙镁总和,差减法求出镁离子含量。

纵观整个实验,对于pH的控制、指示剂的选择和终点的判断很重要,同时需要弄懂不同的离子采用的方法不同,才能又快又好的完成测定,否则少加一种物质则会导致实验失败。

操作:整个实验操作与普通滴定类似,但对于水泥的溶解过程和过滤,需要注意HCl和HNO3的挥发性和有害,注意盖上表面皿,不要加太多,操作在通风橱中进行。

需要加热的操作:水泥的酸解(沙浴)、热水过滤洗涤、CuSO4测定体积比需要80-90度、Fe3+测定需要加热60-70度、Al3+与EDTA充分反应需要煮沸。

若反应终点变色不明显则可稀释后再加几滴指示剂看效果。

热水洗涤水泥沉淀时,直至沉淀为白色(絮状SiO2),并不时用AgNO3检验Cl-存在(防止戳破滤纸、用玻璃棒轻搅动沉淀,加快和充分洗涤)加入的指示剂和变色:水泥:加酸后变橙红(Mn2+),过滤后为淡黄色溶液(Fe3+)。

Fe3+:指示剂-磺基水杨酸,pH=2,由紫红色变淡黄色Al3+:指示剂-PAN,pH=4.2,由黄变绿再变紫红Ca2+:加入三乙醇胺做掩蔽剂,pH>12,指示剂-钙指示剂,由紫红变蓝Mg2+:加入三乙醇胺做掩蔽剂,pH=10,指示剂-K-B指示剂,由淡紫红变淡蓝CuSO4测定体积比:pH=4,指示剂-PAN,由黄变红思考题:(1)本次实验虽然没有测定SiO2的含量,但可以通过酸解把金属盐变成溶液,通过把硅酸盐变成硅酸沉淀出来,然后加热称重法测量SiO2的含量。

(2)如上面所示:Fe3+:指示剂-磺基水杨酸,pH=2,用HCl和氨水调节pHAl3+:指示剂-PAN,pH=4.2,用醋酸缓冲溶液Ca2+:加入三乙醇胺做掩蔽剂,pH>12,指示剂-钙指示剂,用20%NaOH调节Mg2+:加入三乙醇胺做掩蔽剂,pH=10,指示剂-K-B指示剂,用氨缓冲溶液调节(3)从等式上看:n(Fe3)+n(Al3+)+n(CuSO4)=n(EDTA1)+n(EDTA2)当铁测量过量时,即向测定铝的体系内加入过量的EDTA,使得消耗的CuSO4过量,从而使得Al3+测量偏高,同样,铁测量偏低,使得Al3+测量偏低。

这也可能是我本次实验Al测量严重偏低而Fe偏高的原因之一。

(4)加入三乙醇胺的目的是与Fe和Al络合,形成稳定配合物,不干扰。

而加入NaOH的目的是让镁离子沉淀,若先加NaOH,会使得出现Fe(OH)3和Al(OH)3,甚至AlO2-,这会使得胶体吸附,并导致镁离子不以沉淀形式出现,而与EDTA络合。

(5)由于要返滴定,需要EDTA过量,根据EDTA浓度和Al的理论含量,可以根据原理中的公式反推出0.5323g下,需要的EDTA体积:2.44ml+V(CuSO4)×K。

参考文献:实验讲义/view/1a76024e767f5acfa1c7cd65.html/view/4081720.htm(PAN指示剂)/view/1018886.htm(磺基水杨酸和Fe配位的pH控制)/view/37827e6aa45177232f60a2a9.html(K-B指示剂)。

相关文档
最新文档