数值计算方法复习资料
数值计算方法复习

第三章 常微分方程的差分方法 熟练掌握欧拉法及改进的欧拉法的思想及算法的 求解过程. 求解过程 熟练掌握龙格-库塔法的思想及求解过程 库塔法的思想及求解过程. 熟练掌握龙格 库塔法的思想及求解过程 第四章 方程求根的迭代法 熟练掌握迭代法收敛的判定方法. 熟练掌握迭代法收敛的判定方法. 熟练掌握牛顿法的思想及求解过程. 熟练掌握牛顿法的思想及求解过程 熟练掌握弦截法及快速弦截法的思想及其求解过程. 熟练掌握弦截法及快速弦截法的思想及其求解过程 第五章 线性方程组的迭代法 熟练掌握雅可比迭代的求解过程及收敛的判定方法. 熟练掌握雅可比迭代的求解过程及收敛的判定方法. 熟练掌握塞德尔迭代的求解过程及收敛的判定方法. 熟练掌握塞德尔迭代的求方程组的直接法 熟练掌握约当消去法的思想及其求解方法. 熟练掌握约当消去法的思想及其求解方法. 熟练掌握高斯消去法的思想及其求解方法. 熟练掌握高斯消去法的思想及其求解方法. 熟练掌握选主元消去法的思想及其求解方法. 熟练掌握选主元消去法的思想及其求解方法. 熟练掌握追赶法的思想及其求解方法. 熟练掌握追赶法的思想及其求解方法. 熟练掌握平方根法的思想及其求解方法. 熟练掌握平方根法的思想及其求解方法.
数值计算方法复习
引言: 了解算法的构成要素. 了解算法的构成要素 掌握有效数字的概念及求解方法. 掌握有效数字的概念及求解方法 第一章 插值方法 熟练掌握拉格朗日插值方法的思想及求解思路. 熟练掌握拉格朗日插值方法的思想及求解思路 熟练掌握牛顿插值方法的思想及求解思路. 熟练掌握牛顿插值方法的思想及求解思路 掌握埃特金方法的思路及对低阶多项式的构造方法. 掌握埃特金方法的思路及对低阶多项式的构造方法. 第二章 数值积分 掌握解决数值积分问题的基本思想及代数精度的概念. 掌握解决数值积分问题的基本思想及代数精度的概念 熟练掌握牛顿-柯斯特公式及其思想 柯斯特公式及其思想. 熟练掌握牛顿 柯斯特公式及其思想 熟练掌握复化求积公式的的思想及求解过程. 熟练掌握复化求积公式的的思想及求解过程 熟练掌握龙贝格加速公式. 熟练掌握龙贝格加速公式
(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法复习要点

第一章引论计算方法解决问题的主要思想计算方法的精髓:以直代曲、化繁为简1、采用“构造性”方法构造性方法是指具体地把问题的计算公式构造出来。
这种方法不但证明了问题的存在性,而且有了具体的计算公式,就便于编制程序上机计算。
2、采用“离散化”方法把连续变量问题转为求离散变量问题。
例:把定积分离散成求和,把微分方程离散成差分方程。
3、采用“递推化”方法将复杂的计算过程归结为简单过程的多次重复。
由于递推算法便于编写程序,所以数值计算中常采用“递推化”方法。
4、采用“近似代替”方法计算机运算必须在有限次停止,所以数值方法常表现为一个无穷过程的截断,把一个无限过程的数学问题,转化为满足一定误差要求的有限步来近似替代。
算法的可行性分析时间复杂度、空间复杂度分析算法的复杂性(包含时间复杂性和空间复杂性)。
时间复杂度是算法耗费时间的度量。
算法的空间复杂度是指算法需占用存储空间的量度算法的可靠性分析良态算法、病态算法一个算法若运算过程中舍入误差的积累对最后计算结果影响很大,则称该算法是不稳定的或病态算法,反之称为稳定算法或良态算法。
误差的来源1、模型误差我们所建立的数学模型是对实际问题进行抽象简化而得到的。
因而总是近似的,这就产生了误差。
这种数学模型解与实际问题的解之间出现的误差,称为模型误差。
2、观测误差观测到的数据与实际数据之差。
3、截断误差数学模型的准确解与计算方法的准确解之间的误差。
4、舍入误差由于计算机字长有限,原始数据在计算机上表示会产生误差,每次计算又会产生新的误差,这种误差称为舍入误差。
绝对误差、相对误差定义2 记x*为x的近似数,称E(x)=x-x*为近似数x*的绝对误差,|E(x)|为绝对误差限。
定义3 称Er(x)=(x-x*)/x为近似数x*的相对误差。
实际运算时也将Er*(x)=(x-x*)/x*称为近似数x*的相对误差。
“四舍五入”:即尾数是4或以下则舍去,尾数是6或以上则进1,如果尾数是5,则规定:前面一位数字是偶数则舍去,奇数则进1。
(完整)数值计算方法复习

2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。
(二) 复习要求1。
了解数值分析的研究对象与特点。
2。
了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。
(三)例题例1. 设x =0.231是精确值x *=0。
229的近似值,则x 有2位有效数字。
例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。
了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。
3。
理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。
4。
掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。
为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。
数值计算方法复习

数值计算方法复习1.数值求解数值求解是通过数值计算方法来寻找一个给定方程的数值解。
常见的数值求解方法包括二分法、牛顿法、割线法和迭代法等。
-二分法是一种用于求解单调函数方程的数值方法。
它将函数方程的解限定在一个区间内,然后通过缩小区间的方式来逼近解。
二分法的思想是通过不断将区间一分为二,并判断解是否在其中一半区间内,从而缩小解的范围。
-牛顿法是一种用于求解非线性方程的数值方法。
它利用函数方程的切线来逼近解。
牛顿法的核心思想是通过不断迭代逼近解的位置,使得迭代序列逐渐收敛到解。
-割线法是一种求解非线性方程的数值方法,类似于牛顿法。
它通过连结两个近似解点,得到一个割线,然后以割线和x轴的交点作为下一次迭代的近似解点。
-迭代法是一种通过迭代计算来逼近解的数值方法。
迭代法的核心思想是通过不断更新迭代序列的值,使得序列逐渐收敛到解。
2.插值与拟合插值与拟合是通过已知数据点来推断出未知数据点的数值计算方法。
-插值是通过已知数据点在这些点之间进行推断。
常见的插值方法包括拉格朗日插值和分段线性插值。
拉格朗日插值通过构造一个n次多项式函数来拟合已知数据点,从而推断出未知数据点的值。
分段线性插值是指将数据点之间的区间划分为若干段,然后在每段区间内使用线性插值来推断未知数据点的值。
-拟合是通过已知数据点在这些点之间进行逼近。
常见的拟合方法包括最小二乘拟合和多项式拟合。
最小二乘拟合通过使得残差的平方和最小来找到最优拟合函数。
多项式拟合是指通过构造一个n次多项式函数来拟合已知数据点,从而得到一个逼近函数。
3.数值积分数值积分是通过数值计算方法来近似计算函数的定积分。
常见的数值积分方法包括矩形法、梯形法、辛普森法和龙贝格法等。
-矩形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过函数的平均值来近似计算定积分的方法。
-梯形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过线性插值来近似计算定积分的方法。
数值计算方法重点复习内容

Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式
《数值计算方法》复习资料

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法总复习.docx

数值计算方法总复习第一章算法与误差 第二章非线性方程求解 第三章线性代数方程求解 第四章函数插值与曲线拟合 第五章数值积分与数值微分 第六章當微分方程的数值解法 Chap. 1 (1)关于数值计算方法,What,特点教窗才算方法是应用数学的一个分支, 又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计 和对数值结果进行分析的依据和基础。
应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数 学模型;选用数值计算方法;程序设计和上机计算。
可见数值计算方法是进行 科学计算全过程的一个重要环节。
计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和 一些逻辑运算。
所以,各种复朵的数学问题 T 归结为四则运算 ------------- 9 编程指令。
把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序 有完整而准确的描述的算法称为数值计算方法或简称数值算法。
研究各种算法 和和关理论的一门课程。
§1.2误差一、 误差的来源数分为两类:精确数(准确数、真值); 近似数/近似值。
1) 模型课差或描述误差2) 测量误差(观测误差)3) 截断误并(方法误并)4) 舍入误差(计算误差):数值计算关心的是截断谋差(方法谋差)和舍入谋差(计算谋差) 二、误差限和有效数字1. 误差限的定义设Z 是准确值Z 的某个近似值,如果根据具体测量或计算的情况,可以事 先估计出误差的绝对值不超过某个正数5即:关于《数值计算方法》IZ - Z| W £则称£为近似值的谋差限。
或称在允许谋差£的情况下,结果z是“准确的”・2.误差限和有效数字在表示一个近似数时,常常用到“有效数字”,有效数字和谋差限都是用来定量表示误差的大小,且它们之间有对应关系。
有效数字的定义:设数x的近似值T=0內兀2…乙xl(T ,其中灯是0到9之间的任一个数,但力工0门二1,2,3.・・,n正整数,刃整数,若lx-x* l< jxlO,n-n则称x*为x的具有n位有效数字的近似值,准确到第n位,x 1x2...xn是/ 的有效数字。
数值计算方法复习知识点

数值计算方法复习知识点数值计算方法是研究计算数值解的方法和数值计算的理论。
它是计算数学的一个分支,主要用于解决无法用解析方法求解的数学模型问题。
本文将综述数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。
一、插值与逼近1.插值:插值是利用已知数据点构造一个函数,使得该函数在给定的数据点上与已知函数完全相等。
常见的插值方法有拉格朗日插值和牛顿插值。
2. 逼近:逼近是从已知数据点构造一个函数,使得该函数在给定的数据点附近与已知函数近似相等。
逼近常用的方法有最小二乘逼近和Chebyshev逼近。
二、数值微分与数值积分1.数值微分:数值微分是通过计算差分商来近似计算函数的导数。
常见的数值微分方法有前向差分、后向差分和中心差分。
2.数值积分:数值积分是通过近似计算定积分的值。
常见的数值积分方法有中矩形法、梯形法和辛普森法。
三、线性方程组的直接解法与迭代解法1.直接解法:直接解法是通过一系列数学运算直接计算线性方程组的解。
常见的直接解法有高斯消元法和LU分解法。
2. 迭代解法:迭代解法是通过迭代计算逼近线性方程组的解的方法。
常见的迭代解法有Jacobi迭代法和Gauss-Seidel迭代法。
四、常微分方程的数值解法1.常微分方程:常微分方程是描述动力系统的数学模型,常用来描述物理系统、生物系统等。
常微分方程的数值解法主要包括初始值问题的一阶常微分方程和常微分方程组的数值解法。
2.常微分方程的数值解法:常微分方程的数值解法有欧拉方法、改进的欧拉方法、龙格-库塔方法等。
这些方法都是将微分方程转化为递推方程,通过迭代计算逼近微分方程的解。
总结:数值计算方法是求解数学模型的重要工具,在科学计算、工程设计和经济管理等领域有广泛的应用。
本文回顾了数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。
数值计算期末复习资料

引言例: 利用秦九韶算法求多项式p(x)=x5-3x4+4x2-x+1,在x=3 时的值。
(课本11页习题3) 解:p(x)=(x-3)x4+4x2-x+1 =((x-3)x2+4)x2-x+1 =(((x-3)x2+4)x-1)x+1 =((0*x2+4)x-1)x+1 =(4x-1)x+1 =(4*3-1)*3+1 =34练习. x=3, f=2x5 – 5x4 – 4 x3 + 3x2 – 6 x + 7⏹ 解:f=(2x-5)x4 – 4 x3 + 3x2 – 6 x + 7 =((2x-5)x – 4 ) x3 + 3x2 – 6 x + 7 =(((2x-5)x – 4 ) x + 3)x2 – 6 x + 7 = ((((2x-5)x – 4 ) x + 3)x – 6) x +7=((((2*3-5)*3 – 4 )* 3 + 3)*3 – 6) *3 +7 =-11练习:用二分法求方程ex+10x-2=0在[0,1]内的近似根,要求误差不超过1/2*10-2.(课本11页,习题1) k ak bk xk f(ak)* f(xk) 0 0 1 0.5000 <0 1 0.5000 0.2500 <0 2 0.2500 0.1250 <0 3 0.1250 0.0625 >0 4 0.0625 0.0937 <0 5 0.0937 0.0781 >0 6 0.0781 0.0859 >0 70.08590.0898误差的来源:误差限和有效数字:⏹ 误差限:次二分故需做可得根据误差分析式7,20012561)12(21,20011021)(21|*|1721<=-⨯=⨯<-≤-+-+a b x x k ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧舍入误差截断误差计算误差模型误差测量误差固有误差误差来源设以x 代表x*的近似值,则绝对误差为:|x-x*|,若有|x-x*|≤ε则ε称为近似值x 的绝对误差限,简称误差限,或称精度。
数值计算方法总复习

数值计算方法总复习第一章算法与误差第二章非线性方程求解第三章线性代数方程求解第四章函数插值与曲线拟合第五章数值积分与数值微分第六章常微分方程的数值解法Chap.1 (1)关于数值计算方法,What,特点一、关于《数值计算方法》数值计算方法是应用数学的一个分支,又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计和对数值结果进行分析的依据和基础。
应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数学模型;选用数值计算方法;程序设计和上机计算。
可见数值计算方法是进行科学计算全过程的一个重要环节。
计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和一些逻辑运算。
所以,各种复杂的数学问题------→归结为四则运算------→编程指令。
把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序有完整而准确的描述的算法称为数值计算方法或简称数值算法。
研究各种算法和相关理论的一门课程。
§1.2 误差一、误差的来源数分为两类:精确数(准确数、真值);近似数/近似值。
1)模型误差或描述误差2)测量误差(观测误差)3)截断误差(方法误差)4)舍入误差(计算误差):数值计算关心的是截断误差(方法误差)和舍入误差(计算误差)二、误差限和有效数字1. 误差限的定义设Z 是准确值Z *的某个近似值,如果根据具体测量或计算的情况,可以事先估计出误差的绝对值不超过某个正数ε:即: |Z * - Z |≤ε则称ε为近似值的误差限。
或称在允许误差ε的情况下,结果Z 是“准确的”.2. 误差限和有效数字在表示一个近似数时,常常用到“有效数字”,有效数字和误差限都是用来定量表示误差的大小,且它们之间有对应关系。
有效数字的定义:设数x 的近似值m n x x x x 10.021*⨯= , 其中 xi 是0到9之间的任一个数,但x 1≠0,i=1,2,3…,n 正整数,m 整数,若nm *|x x |-⨯≤-1021 则称x *为x 的具有n 位有效数字的近似值,x *准确到第n 位,x1x2…xn 是x *的有效数字。
数值计算方法复习知识点

数值计算方法复习知识点数值计算是计算机科学的一个重要分支,它研究如何使用计算机来进行数值计算和数值模拟。
在实际应用中,许多问题无法用解析表达式求解,只能通过数值计算方法来近似求解。
因此,数值计算方法的学习对于掌握计算机科学和工程中的相关问题具有重要意义。
1.插值与拟合插值是通过已知数据点构造出一个函数,使得该函数在已知数据点上的取值与给定数据点相同。
常用的插值方法有拉格朗日插值和牛顿插值。
拟合是通过已知数据点,在一定误差范围内,用一个函数逼近这些数据点的过程。
最小二乘法是一种常用的拟合方法。
2.数值积分数值积分是通过数值计算方法对定积分进行近似求解的过程。
常用的数值积分方法有梯形法则、辛普森法则和龙贝格法则。
3.数值微分数值微分是通过数值计算方法来计算函数的导数。
常用的数值微分方法有前向差分法和中心差分法。
4.常微分方程数值解常微分方程是研究自变量只有一个的微分方程。
常微分方程数值解是通过数值计算方法来求解常微分方程的近似解。
常用的常微分方程数值解方法有欧拉法、改进欧拉法和龙格-库塔法等。
5.线性方程组的数值解法线性方程组是一个包含多个线性方程的方程组。
线性方程组的数值解法主要包括直接法和迭代法。
直接法是通过一系列代数运算直接求解出方程组的解,常用的直接法有高斯消元法和LU分解法。
迭代法是通过一系列迭代运算逐步逼近方程组的解,常用的迭代法有雅可比迭代法和高斯-赛德尔迭代法等。
6.非线性方程的数值解法非线性方程是含有未知数的函数与该未知数的组合线性关系不成立的方程。
非线性方程的数值解法包括二分法、牛顿法和割线法等。
7.特征值与特征向量特征值和特征向量是矩阵理论中的重要概念。
特征值是矩阵运算中的一个标量,特征向量是矩阵运算中的一个向量。
特征值和特征向量的计算可以通过幂法、反幂法和QR分解等数值计算方法来实现。
8.插值和误差分析插值方法的误差分析是指通过数值计算方法来分析插值近似值与精确值之间的误差大小。
数值计算方法复习提纲

数值计算方法复习提纲第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计;2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系;3.掌握算法及其稳定性,设计算法遵循的原则。
1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字绝对误差 E (x )=x-x *绝对误差限ε εε+≤≤-**x x x相对误差 ***/)(/)()(x x x x x x x E r -≈-=有效数字m n a a a x 10.....021*⨯±=若n m x x -⨯≤-1021*,称*x 有n 位有效数字。
有效数字与误差关系(1) m 一定时,有效数字n 越多,绝对误差限越小; (2)*x 有n 位有效数字,则相对误差限为)1(11021)(--⨯≤n r a x E 。
选择算法应遵循的原则1、 选用数值稳定的算法,控制误差传播; 例 ⎰=101dx e x eI xn n eI nI I n n11101-=-=- △!n x n=△x 02、 简化计算步骤,减少运算次数;3、 避免两个相近数相减,和接近零的数作分母; 避免第二章 线性方程组的数值解法1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法;4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。
本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解?⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111)两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。
数值计算复习资料

第一章 绪论§1 绪论:数值分析的研究内容 §2 误差的来源和分类 §3 误差的表示 §4 误差的传播 §5 算法设计的若干原则一、误差的分类(绝对误差,相对误差)例1-1 设 x *=是由精确值x 经过四舍五入得到的近似值。
问 x 的绝对误差限ε和相对误差限η各是多少解:因为 x =x * ± ,所以绝对误差限为ε= 相对误差限为二、有效数字定义 设数 x 的近似值可以表示为其中 m 是整数,αi (i=1,2, …, n ) 是0到9 中的一个数字,而α1 ≠ 0. 如果其绝对误差限为则称近似数 x* 具有 n 位有效数字。
结论:通过四舍五入原则求得的近似数,其有效数字就是从末尾到第一位非零数字之间的所有数字。
例1-2 下列近似数是通过四舍五入的方法得到的,试判定它们各有几位有效数字:x 1* =87540,x 2*=8754×10, x 3*=, x 4*= ×10-2%23.018.2005.0*≈==x εηm n x 10.021*⨯±=ααα *1102m nx x --≤⨯111x x *-≤5511101-*⨯≤-x x 所以已知有5位有效数字。
同理可以写出可以得出 x 2 , x 3 , x 4 各具有4、3、4 位有效数字。
例1-3 已知 e =……, 试判断下面两个近似数各有几位有效数字解:由于而e 1有7位有效数字。
同理:e 2 只有6位有效数字。
三、算法设计的若干原则• 1:两个很接近的数字不做减法:• 2: 不用很小得数做分母(不用很大的数做分子)练习: 求方程 x 2-56x +1=0 的两个根,使它们至少具有四位有效数字•第二章 插值与拟合1、Lagrange 插值多项式,Newton 插值多项式的构造与插值余项估计,及证明过程。
2、 Hermite 插值多项式的构造与插值余项估计,带导数条件的插值多项式的构造方法,基于承袭性的算法,基函数法, 重节点差商而所以 7161102110210000005.00000001.0--⨯=⨯=≤=- e e 510.8754010x *=⨯而1221102x x *-≤⨯520.875410x *=⨯54221102x x *--≤⨯5331102x x *--≤⨯230.34510x *-=⨯-23331102x x *--≤⨯6441102x x *--≤⨯240.345010x *-=⨯24441102x x *---≤⨯718281.2,718282.221==e e 6110210000005.00000001.0-⨯=≤=- e e 11102718282.0718282.2⨯==e 615210211021000005.00000008.0--⨯=⨯=<=- e e表的构造;3、分段插值及三次样条插值的构造4、最小二乘拟合• 掌握Lagrange 插值多项式的构造方法及具体结构 • 掌握Lagrange 插值多项式误差分析方法和证明方法 • 掌握Newton 插值多项式的形式及误差 • 掌握差商表的构造过程 关于离散数据:Newton 插值多项式:例1-3 已知f (x ) 的五组数据(1,0)、(2,2)、(3,12)、(4,42)、(5,116),求 N 4 (x )。
数值计算复习资料2

四、计算题:1、用高斯-塞德尔方法解方程组 ⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算)。
答案:迭代格式⎪⎪⎪⎩⎪⎪⎪⎨⎧--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x xk )(1k x )(2k x )(3k x0 0 0 0 1 2.7500 3.8125 2.5375 2 0.20938 3.1789 3.6805 3 0.24043 2.5997 3.1839 40.504202.48203.70192、求A 、B 使求积公式⎰-+-++-≈11)]21()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求⎰=211dxx I (保留四位小数)。
答案:2,,1)(x x x f =是精确成立,即⎪⎩⎪⎨⎧=+=+32212222B A B A 得98,91==B A求积公式为)]21()21([98)]1()1([91)(11f f f f dx x f +-++-=⎰-当3)(x x f =时,公式显然精确成立;当4)(x x f =时,左=52,右=31。
所以代数精度为3。
69286.014097]321132/11[98]311311[91311113221≈=+++-++++-≈+=⎰⎰--=dt t dx x x t3、已知i x 1 3 4 5 )(i x f2654分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。
答案:)53)(43)(13()5)(4)(1(6)51)(41)(31()5)(4)(3(2)(3------+------=x x x x x x x L)45)(35)(15()4)(3)(1(4)54)(34)(14()5)(3)(1(5------+------+x x x x x x差商表为i x i y 一阶均差二阶均差三阶均差1 2 3 6 2 4 5 -1 -154-141)4)(3)(1(41)3)(1()1(22)()(33---+----+==x x x x x x x N x P5.5)2()2(3=≈P f9﹑对方程组 ⎪⎩⎪⎨⎧=-+=--=++841025410151023321321321x x x x x x x x x(1) 试建立一种收敛的Seidel 迭代公式,说明理由;(2) 取初值T)0,0,0()0(=x ,利用(1)中建立的迭代公式求解,要求3)()1(10||||-∞+<-k k x x 。
(完整版)数值计算方法复习提纲

定理1:n+1个节点的插值型求积公式代数精确度至少为n;
定理2;Newton-Cotes公式代数精确度至少为n;当n为偶数时,可达n+1次代数精确度。
二、Gauss型求积公式
定义:若n+1个节点求积公式 具有2n+1次代数精确度,则称为Gauss型求积公式,节点为Gauss点。
Jacobi迭代公式收敛与Gauss--Seidel迭代公式收敛关系举例:
第三章非线性方程的数值解法
1.了解二分法的原理与算法;
2.掌握一般迭代法的基本思想及其收敛性判定;
3.掌握Newton切线法、弦截法,并用它们求方程近似根的方法。
本章问题:求方程f(x)=0的根
§1二分法
一、根的存在性
定理:函数f(x)在区间[a,b]连续,且f(a).f(b)<0,则方程f(x)=0在区间[a,b]有根。
1、向量的极限
2、矩阵的谱半径:
为特征值;
3、收敛性的判定
收敛的充要条件:
迭代公式 收敛的充要条件为谱半径 。
判定定理1:
若 则迭代公式 收敛。
判定定理2:
若对方程AX=b的系数矩阵A为对角占优,则Jacobi迭代公式,Gauss--Seidel迭代公式收敛;
判定定理3:
若对方程AX=b的系数矩阵A为对称正定,则Gauss--Seidel迭代公式收敛;
L是单位下三角矩阵,称为Doolittle分解;
U是单位上三角矩阵,称为Crout分解;
定理: n阶矩阵A有唯一分解的充要条件为A的前n-1阶主子式都不为0.
Doolittle分解算法:
由矩阵乘法:
得到:
算法特点:先计算U的行,再计算L的列,交替进行;存储时可用紧凑格式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档文案大全《数值计算方法》复习资料第一章数值计算方法与误差第二章非线性方程的数值第三章线性方程组的数值第四章插值与第五数值积分与第六常微分方程的数值解自测课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
实用文档文案大全三例题例1设x*= ?=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位. 又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字. 而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字. 这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 0009 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限?r= =0.002 5实用文档文案大全x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限?r==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为?r==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是?=0.0005,故至少要保留小数点后三位才可以。
故ln2?0.693。
第二章非线性方程的数值解法一考核知识点二分法;迭代法;牛顿法;弦截法。
二复习要求1. 知道有根区间概念,和方程f(x)=0在区间(a,b)有根的充分条件。
2. 掌握方程求根的二分法,知道其收敛性;掌握二分法二分次数公式,掌握迭代法,知道其收敛性。
3. 熟练掌握牛顿法。
掌握初始值的选择条件。
4. 掌握弦截法。
三例题例1证明方程1-x-sinx=0在区间[0,1]内有一个根,使用二分法求误差不超过0.5×10.实用文档文案大全-4的根要迭代多少次?证明令f(x)=1-x-sinx,∵ f(0)=1>0,f(1)=-sin1<0∴ f(x)=1-x-sinx=0在[0,1]有根.又f?(x)=1-cosx>0(x?[0.1]),故f(x)=0在区间[0,1]内有唯一实根.给定误差限?=0.5×10-4,有只要取n=14.例2用迭代法求方程x5-4x-2=0的最小正根.计算过程保留4位小数. [分析] 容易判断[1,2]是方程的有根区间.若建立迭代格式,此时迭代发散. 建立迭代格式,此时迭代收敛. 解建立迭代格式实用文档文案大全取 1.5185例3 用弦截法求方程x3-x2-1=0,在x=1.5附近的根.计算中保留5位小数点. [分析] 先确定有根区间.再代公式.解 f(x)= x3-x2-1,f(1)=-1,f(2)=3,有根区间取[1,2]. 取x1=1, 迭代公式(n=1,2,…)实用文档文案大全取 1.46553,f(1.46553) -0.000145例4选择填空题1. 设函数f(x)在区间[a,b]上连续,若满,则方程f(x)=0在区间[a,b]一定有实根. 答案:f(a)f(b)<0解答:因为f(x)在区间[a,b]上连续,在两端点函数值异号,由连续函数的介值定理,必存在c,使得f(c)=0,故f(x)=0一定有根. 2. 用简单迭代法求方程f(x)=0的实根,把方程(x)=0表成x=?(x),则f(x)=0的根是( ) (A)y=x与y=?(x)的交点 (B) y=x与y=?(x)交点的横坐标(C) y=x与x轴的交点的横坐标 (D) y=?(x)与x轴交点的横坐标答案:(B)解答:把f(x)=0表成x=?(x), 满足x=?(x)的x是方程的解,它正是y=x与y=?(x)的交点的横坐标.3.为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)实用文档文案大全(C)(D)答案:(A) 解答:在(A)中故迭代发散.在(B)中,故迭代收敛.在(C)中,,故迭代收敛.在(D)中,类似证明,迭代收敛.第三章线性方程组的数值解法一、考核知识点高斯顺序消去法,列主元消去法;雅可比迭代法,高斯――赛德尔迭代法,超松弛迭代法;消去法消元能进行到底的条件,迭代解数列收敛的条件。
二、复习要求1. 知道高斯消去法的基本思想,熟练掌握高斯顺序消去法和列主元消去法。
2. 掌握线性方程组雅可比迭代法和高斯――赛德尔迭代法。
3. 知道解线性方程组的高斯消去法消元能进行到底的条件,知道迭代解数列收敛概念和上述两种迭代法的收敛性的充分条件。
实用文档文案大全三、例题例1用顺序消去法解线性方程组解顺序消元于是有同解方程组:回代得解: x3=-1, x2=1,x1=1。
原线性方程组的解为X=(1,1,-1)T。
例2取初始向量X(0)=(0,0,0)T,用雅可比迭代法求解线性方程组解建立迭代公式(k=1,2,3,…)第1次迭代,k=0,X(0)=0,得到X(1)=(1,3,5)T, 第2次迭代,k=1,实用文档文案大全,得到 X(2)=(5,-3,-3)T 第3次迭代,k=2,,得到X(3)=(1,1,1)T第4次迭代,k=3,,得到X(4)=(1,1,1)T例3填空选择题:1. 用高斯列主元消去法解线性方程组作第1次消元后的第2,3个方程分别为。
解答 1. 选a21=2为主元,作行互换,第1个方程变为:2x1+2x2+3x3=3,消元得到是应填写的内容。
2.用高斯-赛德尔迭代法解线性方程组的迭代格式中实用文档文案大全= (k=0,1,2,…)解答高斯-赛德尔迭代法就是充分利用已经得到的结果,求x2的值时应该用x1的新值。
答案是:3. 当 ( )时,线性方程组的迭代解一定收敛。
(A) >6 (B) =6 (C) <6 (D) >?6?解答:当?a?>6时,线性方程组的系数矩阵是严格对角占优矩阵,由教材第3章定理知,迭代解一定收敛。
应选择(A)。
第四章插值与曲线拟合一考核知识点插值函数,插值多项式,被插值函数,节点;拉格朗日插值多项式:插值基函数;差商及其性质,牛顿插值多项式;分段线性插值、线性插值基函数,最小二乘法,直线拟合。
二复习要求1. 了解插值函数,插值节点等概念。
2. 熟练掌握拉格朗日插值多项式的公式,知道拉格朗日插值多项式余项。
3. 掌握牛顿插值多项式的公式,了解差商概念和性质,掌握差商表的计算,知道牛顿插值多项式的余项。
4. 掌握分段线性插值的方法和线性插值基函数的构造。
5.了解曲线拟合最小二乘法的意义和推导过程,以及线性拟合和二次多项式拟合的方法,三例题例1已知函数y=f(x)的观察数据为x k -2045y k 51-31实用文档文案大全试构造f(x)的拉格朗日多项式P n(x),并计算f(-1)。
解先构造基函数所求三次多项式为P3(x)==+-+=P3(-1)=例2已知函数y=f(x)的数据如表中第2,3列。
计算它的各阶均差。
实用文档文案大全三阶均差四阶均差10.550.578 15 1.116 0020.650.696 75 1.168 000.280 0030.800.888 11 1.275 730.358 930.197 3340.90 1.201 52 1.384 100.433 480.213 000.031 34计算公式为:一阶均差二阶均差………例3设是n+1个互异的插值节点,是拉格朗日插值基函数,证明:证明 P n(x)=y0l0(x)+y1l1(x)+…+y n l n(x)=当f(x) 1时,1=由于 ,故有实用文档文案大全例4满足条件的插值多项式p(x)=_________________解设所求的为 p(x)=a0+a1x+a2x2+a3x3由插值条件知解之得 a2 =3/2 a3 = - 1/2 所求的插值多项式为 p(x)= -1/2x3 + 3/2x2例5选择填空题1.通过四个互异节点的插值多项式P(x),只要满足( ),则P(x)是不超过一次的多项式。
(A) 初始值y0=0 (B) 一阶均差为0 (C) 二阶均差为0 (D)三阶均差为0 解答:因为二阶均差为0,那么牛顿插值多项式为N(x)=f(x0)+f(x0,x1)(x-x0)它是不超过一次的多项式。
故选择(C)正确。
2. 拉格朗日插值多项式的余项是( ),牛顿插值多项式的余项是( )(A) (B) f(x,x0,x1,x2,…,x n)(x-x1)(x-x2)…(x-x n-1)(x-x n)(C) (D) f(x,x0,x1,x2,…,x n)(x-x0)(x-x1)(x-x2)…(x-x n-1)(x-x n)实用文档文案大全解答:(A),(D)。
第五章数值积分与数值微分一考核知识点数值求积公式,求积节点,求积系数,代数精度;插值型求积公式,牛顿――柯特斯求积公式,柯特斯系数及其性质,(复化)梯形求积公式,(复化)辛卜生求积公式;高斯型求积公式,高斯点,(二点、三点)高斯――勒让德求积公式; (二点、三点)插值型求导公式。
二复习要求1. 了解数值积分和代数精度等基本概念。