气压传动元件
液压与气压传动液压辅助元件详解
1、密封件 2、滤油器 3、蓄能器 4、油箱及热交换器 5、其他辅件
密封件
静密封
分类
非金属静密封
橡胶-金属复合静密封 金属静密封 液态密封垫
非接触式密封\间隙密封
自封式压紧型密封
动密封
接触式密封
自封式自紧型密封(唇形密 封)
活塞环 旋转轴油封 液压缸导向支承件 液压缸防尘圈
其他
主要密封件
O形橡胶密封圈 橡胶垫片
聚四氟乙烯生料带 组合密封垫圈 金属垫圈
空心金属O形密封圈 密封胶
利用间隙\迷宫\阻尼等 O形橡胶密封圈 同轴密封圈 异形密封圈 其他 Y形密封圈 V形密封圈 组合式U形密封圈
星形和复式唇密封圈 带支承环组合双向密封圈
其他 金属活塞环
油封 导向支承环
防尘圈 其他
1、O型密封圈:O形封圈是一种截面为圆形的橡胶圈,如图所示。其材料主 要为丁腈橡胶或氟橡胶。O形密封圈是液压传动系统中使用最广泛的一种密 封件。它主要用于静密封和往复运动密封。其使用速度范围一般为 0.005~0.3m/s。用于旋转运动密封时,仅限于低速回转密封装置。
4.其他 如 抗腐蚀性 耐久性 结构 安装 维护 价格
四、滤油器的安装位置
1、滤油器安装于液压泵吸油口。
可避免大颗粒的杂质进入液压泵,一般采用过滤精度较低的网式滤油器。
2、滤油器安装于液压泵压油口。
器能耐高压。
3、滤油器安装于回油管路。
使油箱中的油液得到净化。此种滤油器壳体的耐压性能可较低。
(a)支撑环;(b)密封环;(c)压环
4、组合式密封装置
组合式密封件由两个或两个以上元件组成。一部分是润滑性能好、摩擦因数 小的元件;另一部分是充当弹性体的元件,从而大大改善了综合密封性能。
气压传动元件图形符号
达)
旋转 运动
电动 机操
电气 控制
纵
压力 直接 加压 控制 压力 或泄 阀 控制 压控
制
差动 控制
拉钮式
按-拉式
手柄式
踏板式
双向踏 板式
顶杆式
可变行 程控制 式
弹簧控 制式
滚轮式
单向滚 轮式
类别
名称 符号
内部
压力控制 压
阀
力控
顺制
序
阀 外部
压
力控
制
内部 压力 控制
外部 压力 控制
气压 先导 控制
先导
转矩仪
压力继电器
行程开关 模拟传感器
油雾器
辅助气 瓶
消声器 报警器
阀
控
制 快速
阀 排气
阀
辅件及 其它装 置
人工 排出
分 水 排 水 器
自动 排出
人工 空 排出 气 过 滤 器
自动 排出
人工 排出
除 油 器
自动 排出
空气干 燥器
辅件 及其 它装 气罐 置
气源调节装 置
压力 指示 器
压力 计
压力
检测 器
压差
计
脉冲 计数 器
流量 流量 计 检测 累计 器 流量
计 转速仪
口 带连
接措
施
不带
快 单向
换阀
接 头 带单
向阀
单通 旋路 转 接 头 三通
路
气源、电动 机、气马达
气压源
及气缸
电动机
双向变量气 马达
摆动气马达
单活 塞杆 气缸 单作 用气 缸
伸缩 缸
双作 单活 用气 塞杆 缸 气缸
第三单元 第九章气源、气压传动基本元器件
9.3.1 压力控制阀
压力控制阀主要有减压阀、溢流阀 (安全阀)和顺序阀。 1.减压阀 . 减压阀的作用是降低来自气源的压 缩空气的压力,并保持压力的稳定。 (1)直动式减压阀 图9.12所示为QTY型直动式减压阀。 工作原理:当阀处于工作状态时,压 缩空气从左侧进口流入,经阀口11后 从阀出口流出。顺时针旋转手柄1,调 压弹簧2、3推动膜片5下凹,通过阀杆 6带动阀芯9下移,打开阀口11,压缩 空气通过阀口11的节流作用,使输出 压力低于输入压力,实现减压作用。
9.1.2 气源装置的组成
. 5.空气过滤器 空气过滤器一般安装在气动系统的入口处,用于进一步滤除压缩空气中的水分、 油滴及其他杂质。图9.6所示为普通分水滤气器 6.贮气罐 . 贮气罐主要用来调节气流,减少输出气流的压力脉动,保持输出气流的连续性 和稳定性,储存一定量的压缩空气,以备应急使用。 如图9.7所示,贮气罐一般采用焊接结构,以立式居多。
(1)直动式溢流阀 图9.14所示为直动式溢流阀,它的P口与系统相连, O口通大气。当系统的压力超过调定压力时,气体压力 克服弹簧力,使膜片上凸,带动阀芯上移,阀口打开, 达到排气降压的目的,保证系统的安全。而当压力低于 调定压力时,弹簧力使阀口关闭。 (2)先导式溢流阀 图9.15所示为先导式溢流阀,它的先导阀 为减压阀(图中未画),气体经先导阀减压 后,从控制口K进入阀体内部,代替弹簧控制 溢流阀。
分类:气压控制、电磁控制、机械控制、手动控制以及时间控制 (1)气压控制换向阀
气压控制换向阀是以压缩空气作为动力来切换主阀 是以压缩空气作为动力来切换主阀, 气压控制换向阀是以压缩空气作为动力来切换主阀,以此改变气体的流动方向或 控制通断的阀。 控制通断的阀。
(2)电磁控制换向阀
气压传动的气动元件与附件
气压传动的气动元件与附件气压传动技术在机械工业中扮演着重要的角色,而气动元件与附件作为气压传动系统的核心组成部分,起到了至关重要的作用。
本文将探讨气压传动领域中常见的气动元件及其附件,介绍其原理、分类和应用。
一、气动元件的原理气动元件是指基于气体压力来传递能量、控制和执行机械动作的装置。
它们采用了压缩空气作为工作介质,通过改变气体的压力变化来实现机械运动。
常见的气动元件包括气缸、阀门、气源处理装置等。
1.气缸气缸是一种将气体能量转化为机械能的装置,通过压缩空气将柱塞或者活塞驱动产生直线运动。
气缸根据其结构形式可分为活塞式气缸、薄膜式气缸和旋转气缸等。
气缸广泛应用于工业生产线上的升降、夹持、推拉等动作执行过程中,具有结构简单、动作灵敏等优点。
2.阀门阀门是气动系统中常见的控制元件,用来控制气体的流动和压力。
它可以精确控制气体的开关状态,并根据需要调整气体的流量。
常见的气动阀门包括单向阀、节流阀和方向控制阀等。
阀门的选择应根据具体需求来确定,以保证气动系统的正常工作。
3.气源处理装置气源处理装置主要用于气动系统中的空气净化、排除水分和油污、调节气源压力等。
它通常包括滤清器、减压阀和润滑器等组件。
气源处理装置的作用是保证气动系统中的气体质量和稳定性,提高元件的使用寿命。
二、气动元件的分类根据功能和结构特点,气动元件可分为执行元件、控制元件和辅助元件。
1.执行元件执行元件是气动系统中的能量转换部分,用于执行机械动作。
常见的执行元件有气缸和液压马达等。
执行元件通过气压能量将机械运动传递给工作部件,实现线性或旋转运动。
2.控制元件控制元件用于控制气体的流动、压力和方向等,常见的控制元件有阀门、压力开关和方向控制阀等。
控制元件通过改变气体流动的通道和方向,控制气动系统中元件的运行状态。
3.辅助元件辅助元件主要包括气源处理装置、管路附件和连接元件等。
它们为气动系统提供必要的支持和保障,确保系统的可靠运行。
常见的辅助元件有滤清器、接头和快速插拔接头等。
气压传动系统的组成。
气压传动系统的组成。
气压传动系统的组成主要包括以下几个部分:
1. 压缩空气供应:这是系统的核心组成部分,包括压缩机、压缩空气储存罐、过滤器等。
压缩机将空气压缩并送入储存罐中,过滤器用于过滤空气中的杂质。
2. 控制元件:控制元件主要包括气压调节器、气阀、气缸等。
气压调节器用于调节系统中的气压,气阀用于控制气体的流动方向和流量,气缸则用于将气压转化为机械运动。
3. 传动管路:传动管路用于将压缩空气从压缩机传输到控制元件和执行元件之间。
传动管路通常由钢管或软管组成,通过接头连接各个元件。
4. 执行元件:执行元件主要包括气动缸、气动马达等。
它们通过接收气压信号,将气压能转化为机械能,实现各种工作任务。
5. 辅助元件:辅助元件主要包括压力表、安全阀、滤清器、润滑器等,用于监测和维护系统的正常运行。
气压传动系统主要由压缩空气供应、控制元件、传动管路、执行元件和辅助元件组成,通过将气压能转化为机械能,实现各种工作任务。
气压传动元件课件
第5章 气压传动元件
图5-7所示为QTY型直动式减压阀及图形符号。阀处于工作状态时, 顺时针旋转手柄1,向下压缩弹簧2和3以及膜片5,迫使阀芯8 下移,从而使阀口10被打开,压缩空气从左端输入,经阀口10减压 后从右端输出。输出气体一部分经阻尼管7进入膜片气室6,对膜 片5产生向上的推力,当作用在膜片5上的推力略大于等于弹簧力 时,阀芯8便保持在某一平衡位置并保持一定的开度,减压阀也得 到了一个稳定的输出压力值。减压阀工作过程中,当输入压力增大 时,输出压力也随之增大,膜片5所受到向上的推力也相应增大, 使膜片5上移,阀芯8在出口气压和复位弹簧9的作用下也随之上 移,阀口10开度减小,减压作用增强,输出压力下降,输出压力又 基本上重新维持到原值。反之,若输入压力减小,则阀的调节过程 相反,平衡后仍能保持输出压力基本不变。
溢流阀不工作;而当系统压力逐渐升高并作用在阀芯上的气体压力略
大于等于弹簧的调定压力 p≥pt 时,阀芯被向上顶开,溢流阀阀芯
开启实现溢流,图b 所示,并保持溢流阀的进气压力稳定在调定压力 值上。
第5章 气压传动元件
a)
b)
c)
图5-8 直动式溢流阀工作原理图
a)溢流阀原理图p<pt b)溢流阀原理图p≥pt c)图形符号
图5-6所示为普通油雾器的结构示意图。气动系统在正常工作时, 压缩空气经入口1进入油雾器,大部分经出口4输出,一小部分通 过小孔2进入截止阀10,在钢球5的上下表面形成压力差,和弹簧力 相平衡,钢球处于阀座的中间位置,压缩空气经阀10侧面的小孔进 入贮油杯5的上腔 A,使油面压力增高,润滑油经吸油管11向上顶 开单向阀6,继续向上再经可调节流阀7流入视油器8内,最后滴 入喷嘴小孔3中,被从入口到出口的主管道中通过的气流引射出来 成雾状,随压缩空气输出。
气压传动部分
14.1.2 往复换向(振荡)回路
气缸连续自动往复运动时,需要换向阀连续自动换向。 换向指令信号一般通过行程阀或行程开关检测。图 14—4所示为气缸自动进行往复振荡回路。手动阀3切 换,向换向阀供气,控制压力p1使换向阀1换向气缸前 进。节流阀和储气罐产生一定的时间延迟,控制压力 p3使换向阀2换向,控制压力p2使换向阀1换向,气缸 后退。同样,节流阀和储气罐产生一定的时间延迟, 控制压力p4使阀2换向到初始状态。这样气缸便可实 现自动往复振荡。
贮气罐4中的压缩空气即可用于一般要求的气动系统,贮气罐7输出 的压缩空气可用于要求较高的气动系统(如气动仪表、射流元件等组成的 系统)。
空压机
1.分类 空气压缩机简称空压机,是气源装置的核心,用以
将原动机输出的机械能转化为气体的压力能。空压机有 以下几种分类方法: (1)按工作原理分类 容积型 速度型 (2)按结构形式分类 (3)按输出压力分类 (4)按输出流量分类
图14-3自锁式换向回路
图14-4换向振荡回路
1,2一手动阀;3一气缸;4一主控阀。 1,2一气控换向阀;3一手动阀;4一储气罐;5一单向节流阀。
14.2 压力与力控制回路
包括压力控制回路与力控制回路
14.2.1 压力控制回路
对系统压力进行调节和控制的回路称为压 力控制回路。
图14—5一次压力控制回路 1一溢流阀;2一空气压缩机;3一单向阀;4一气罐;5一电接点压力表;6一气源调节装置。
图14—1所示为采用无记忆作用的单控换向阀的换向回路。当加 上控制信号后,气缸活塞杆伸出;控制信号一旦消失,无论活塞 杆运动到何处,活塞杆立即返回。在实际运用中必须保证信号有 足够的延续时间,否则会出现事故。
图14—2所示为采用记忆功能的双控换向阀的换向回路。回路中 的主控阀具有记忆功能,故可以使用脉冲信号(其脉冲宽度应保 证主控阀换向),只有加了相反的控制信号后,主控阀才会换向。
第十章 气压传动
消声器的图形符号为
多孔扩散式消声器结构
(六)气-电转换元件
1.气-电转换器
2.压力继电器
(七)管道、接头和管路布置
1.管道
2.接头
3.管路布置
(八)密封件
§10.3
气动执行元件 Pneumatic Transmitting Actuators
功用:是将净化后的压缩空气能转变成机械能输出的能量转换 元件。 包括:气缸、气动马达。
同学们好
welcome to classroom
第十章 气压传动 pneumatic transmission
§10.1 概述
气压传动是以净化后的压缩空气为工作介质,在密闭容器内进行能量转换、 控制与传递的一种传动技术。 由于空气取之不尽用之不竭,投资小,污染少,能耗小,所以气压传动与控 制技术被大量应用于机械加工、汽车制造、电子工业、机器人、气动测量等工业 中。尤其在轻工业领域和气动工具中的应用越来越广泛。
三.气动元件图形符号
气压传动系统中各元件均按GB/T 786.1—1993《液压气动图形符 号》(见附录)规定绘制。
四.气压传动优缺点
优点: 1.工作介质来源方便,而无需投资。使用后的气体直接排向大气、不需要 回收,几乎无污染; 2.安全可靠,自保护能力强; 3.压力损失小,可远距离传动和集中供气; 4.传动与控制响应快,调节使用方便,维护简单; 5.适应工作环境能力强, 可在易燃、易爆、强磁、粉尘、潮湿等环境下工 作。 缺点: 1.不宜精确的定比传动; 2.通常工作压力低,输出功率小; 3.排气时会产生高频噪声。因此需要安装消声器进行降噪处理。
3.坐标气缸
特点是重复定位精度高( 0.01mm )
同学们好
welcome to the classroom
【2019年整理】1液压传动系统和气压传动系统主要有以下四部分组成1动力元件2执行元件3控制元件4辅助元件
1液压传动系统和气压传动系统主要有以下四部分组成1动力元件2执行元件3控制元件4 辅助元件2答:液压传动的主要优点:在输出相同功率的条件下,液压转动装置体积小、重量轻、结构紧凑、惯性小、并且反应快3是依据帕斯卡原理实现力的传递力4轴向柱塞泵:由于径向尺寸小,转动惯量小,所以转速高,流量大,压力高,变量方便,效率也较高;但结构复杂,价格较贵,油液需清洁,耐冲击振动性比径向柱塞泵稍差。
51.溢流阀是维持阀前的压力恒定的压力控制阀;2.减压阀是用节流的方法使出口低于进口压力并保持出口压力恒定的压力控制阀;3.顺序阀是进油压力达到预调值时,阀门开放使液流畅通6液压泵的特点 1具有若干密封且有可以周期性变化的空间 3 油箱内液体的绝对压力必须恒等于或大于大气压力 3 具有相应的配流装置7但叶片泵、四、名词解释1.帕斯卡原理(静压传递原理)(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。
)2.系统压力(系统中液压泵的排油压力。
)3.运动粘度(动力粘度μ和该液体密度ρ之比值。
)4.液动力(流动液体作用在使其流速发生变化的固体壁面上的力。
)5.层流(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。
)6.紊流(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。
)7.沿程压力损失(液体在管中流动时因粘性摩擦而产生的损失。
)8.局部压力损失(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。
当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。
)10.液压冲击(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。
气压传动在自动化生产线中的应用
气压传动在自动化生产线中的应用在自动化生产线中,气压传动技术被广泛应用。
气压传动是指利用气体压力来传递能量和控制机械运动的技术,它具有体积小、重量轻、响应速度快、可靠性高、安全性好等优点。
在自动化生产线中,气压传动技术的应用可以提高生产效率、降低生产成本、增加生产线的自动化程度。
首先,气压传动技术在自动化生产线中的一个重要应用是气缸控制。
气缸是气压传动的核心元件之一,可以将气体能量转化为机械能,实现各种线性运动。
在自动化生产线中,气缸被广泛用于对工件的夹取、定位和推动等操作。
通过控制气缸的进气和排气,可以精确控制气缸的运动速度和力度,从而实现对工件的准确操作。
例如,在装配生产线上,通过控制气缸的运动,可以将零件定位到指定位置,并将其固定在一定位置上,完成装配工序。
其次,气压传动技术还可以实现连续的旋转运动。
在自动化生产线中,常常需要将工件进行旋转,以完成特定的加工或装配任务。
气压传动技术通过气动旋转马达等设备,可以实现对工件的连续旋转,并根据需要进行速度和方向的调节。
例如,在零件加工的生产线上,通过气动旋转马达控制工件的旋转,可以使工件在加工过程中保持恒定的旋转速度,从而提高加工精度和效率。
此外,气压传动技术还可以实现复杂的运动轨迹控制。
在自动化生产线中,有些操作需要按照复杂的轨迹进行,如曲线运动、环形运动等。
气压传动技术通过组合多个气动元件,如气缸、节流阀、气动阀等,可以实现复杂的运动轨迹控制。
例如,在流水线上,通过控制多个气缸的协调动作,可以使工件在规定的轨迹上完成运动,如在装配过程中将零件从一个工位转移到另一个工位。
另外,气压传动技术还可以实现力的放大和传递。
在自动化生产线中,有些工序需要施加较大的力来完成,如压合、冲压等操作。
通过气压传动技术,可以将较小的气压力转化为较大的力,并将其传递给工作部件,从而实现对工件的加工和成形。
例如,在冲压生产线上,通过气动液压缸可以将相对较小的气压力转化为较大的液压力,使冲头能够对工件施加足够的压力,从而完成冲压操作。
简述气压传动系统的基本组成及作用
简述气压传动系统的基本组成及作用气压传动系统是一种利用气体的压力来实现力的传递和控制的系统。
它由多个组成部分组成,每个部分都有着不同的作用和功能。
1. 压缩机:气压传动系统的核心部件之一,主要功能是将气体压缩至一定压力。
压缩机可以通过电动机、内燃机等驱动,使气体压缩并提供给系统使用。
2. 储气罐:用于储存压缩空气,平衡系统内部的气压波动,并提供稳定的气源。
储气罐通常具有一定的容量,可以根据系统需求进行选择。
3. 管道:气压传动系统中气体传输的通道。
管道应具有足够的强度和密封性,以确保气体传输的安全和可靠性。
4. 阀门:用于控制气压传动系统中气体的流动和压力。
阀门可以分为手动阀和自动阀两种类型,手动阀需要人工操作,而自动阀可以根据系统的需求自动控制。
5. 作动器:气压传动系统中的执行部件,接受气体的力并将其转化为机械运动。
作动器通常包括气缸和气动马达两种类型,可以根据具体应用选择合适的作动器。
6. 控制元件:用于控制气压传动系统的工作状态和运行参数。
常见的控制元件包括气控阀、传感器等,通过对这些元件的控制可以实现对系统的精确控制。
气压传动系统的作用是实现力的传递和控制,广泛应用于各个领域。
它具有以下几个主要作用:1. 力的传递:气压传动系统通过压缩气体产生的力来实现力的传递。
通过合理的设计和安装,可以将气体的压力传递到作动器上,从而实现对工件的加工、装卸或其他操作。
2. 动力传递:气压传动系统可以将压缩空气的能量转化为机械能,从而驱动各种设备和机械。
例如,气动工具、气动机械手臂等都是利用气压传动系统提供的动力来完成工作。
3. 控制:气压传动系统可以通过控制元件实现对系统的精确控制。
通过控制气压、流量和方向等参数,可以实现对作动器的运动速度、位置和力的控制,从而满足不同工作需求。
4. 自动化:气压传动系统可以与自动化设备和系统结合,实现工业生产的自动化。
通过与传感器、PLC等设备的联动,可以实现对工艺过程的自动控制和监测。
气压传动系统的组成和工作原理
气压传动系统的组成和工作原理气压传动系统是一种基于气压力传递能力的工程控制系统,广泛应用于各个行业中。
本文将介绍气压传动系统的基本组成和工作原理。
一、气压传动系统的组成气压传动系统主要由以下几个组成部分构成:1. 压缩空气源:压缩空气源是气压传动系统的核心部分,它提供压缩空气作为传动介质。
常见的压缩空气源包括压缩空气机和气体储罐。
压缩空气机通过将空气压缩,提高气体密度和压力。
2. 动力元件:动力元件是气压传动系统中的能量转换部分。
它将压缩空气能量转化为机械能供给执行元件使用。
常见的动力元件包括气缸和驱动装置。
气缸利用气压力将气体能量转化为线性或旋转运动。
驱动装置则将气压能量转化为其他形式的运动能量。
3. 控制元件:控制元件用于控制气压传动系统的工作状态。
它根据不同的控制信号来调整气压传动系统的工作过程。
常见的控制元件包括气压阀门、气动执行器和传感器。
气压阀门用于调节和控制气压的流动方向和压力大小。
气动执行器根据控制信号实现对执行元件的驱动和控制功能。
传感器用于感知和检测气压传动系统的工作状态。
4. 执行元件:执行元件是气压传动系统中的工作末端。
它接受控制信号并完成相应的工作任务。
常见的执行元件包括气动气缸、气动马达和气动夹具。
气动气缸通过气压驱动将压缩空气能量转化为机械能完成线性或旋转运动。
气动马达以气压为动力源,实现转动运动。
气动夹具则通过气压力来实现锁紧、夹紧等功能。
二、气压传动系统的工作原理气压传动系统的工作过程可以概括为压缩空气源产生气压力,经过控制元件控制和传递到执行元件完成工作任务。
1. 压缩空气源工作原理:压缩空气源通过压缩机将大量的气体压缩成较小体积。
当气体被压缩时,分子之间的距离减小,分子间的碰撞增加,从而增加了气体的压力和密度。
2. 控制元件工作原理:气压阀门是气压传动系统中的核心控制元件。
它通过调节气压力流动的方向和大小来实现对系统的控制。
传感器感知气压传动系统的工作状态,并将信号传递给控制元件,进而控制执行元件的运动。
气压传动的基本原理和应用
气压传动的基本原理和应用气压传动是一种常见且广泛应用于工业领域的传动方式,它利用气体的压力传递动力或控制信号。
本文将介绍气压传动的基本原理以及其在工业领域中的应用。
一、气压传动的基本原理气压传动的基本原理是依靠气体压力产生和传递的力或信号来实现动力传动或控制。
在气压传动系统中,常用的气体是压缩空气,它可以通过压缩机或气罐等装置进行压缩并存储。
压缩空气经由管道传输到需要的位置,并通过调节阀门、活塞等元件来控制动力的传递。
气压传动的基本原理包括以下几个方面:1. 压缩空气的产生与储存:气压传动系统需要通过压缩机或气罐等设备将大气中的空气进行压缩,并储存起来以供使用。
2. 气体传输管道:压缩空气通过管道系统传输到需要的位置。
这些管道通常由金属或塑料材料制成,以确保传输效率和可靠性。
3. 控制元件:气压传动系统具有多种控制元件,如压力调节阀、电磁阀、活塞等。
通过调节这些控制元件的状态,可以实现对气体传动力或信号的控制和调节。
4. 动力执行元件:气压传动系统用于执行动作的元件,如气缸、气动马达等。
这些元件接受传递来的气体力或信号,将其转化为具体的机械运动。
二、气压传动的应用气压传动广泛应用于工业领域中的各种机械设备和自动化生产线中。
以下是气压传动的几个常见应用:1. 气动工具:气动工具是气压传动的典型应用,如气动扳手、气动钉枪等。
这些工具通过将压缩空气转化为机械动力,提供便利和高效率的工作方式。
2. 气动传送系统:气压传动可用于物料的输送和搬运,如气动输送机、气动输送管道等。
气压传送系统具有快速、稳定和可靠的特点,广泛应用于物料输送领域。
3. 气压控制系统:气压传动可用于各种需要动力控制和调节的系统,如气动制动系统、气动操纵系统等。
这些系统通过调节气体的压力和流量,实现对机械设备的控制。
4. 气动装配线:气压传动被广泛应用于自动化装配线中,用于驱动和控制各种机械臂、夹具和传感器等设备。
气动装配线具有高效率、高精度和灵活性强的特点,能够满足复杂装配过程的要求。
液压与气压传动系统的组成
液压与气压传动系统的组成液压与气压传动系统是现代工程中常用的两种传动系统。
液压传动系统通过液体传递力和能量,而气压传动系统通过气体传递力和能量。
它们在工业生产、机械设备以及汽车等领域都有广泛的应用。
本文将详细介绍液压与气压传动系统的组成。
一、液压传动系统的组成液压传动系统主要由以下几个组成部分构成:1. 液压能源装置:液压能源装置主要由液压泵、液压马达或液压发电机等组成。
液压泵通过机械或电动驱动,将机械能转化为液压能。
液压泵有多种类型,常见的有齿轮泵、柱塞泵和液压泵等。
2. 液压执行元件:液压执行元件主要由液压缸和液压马达等组成。
液压缸将液压能转化为机械能,通过液压缸的伸缩来实现力的传递和工作的执行。
液压马达则将液压能转化为机械能,通过旋转来实现力的传递和工作的执行。
3. 液压控制元件:液压控制元件主要由液压阀、液压缸和液压马达等组成。
液压阀用于控制液压系统的压力、流量和方向等参数,实现对液压系统的控制。
液压缸和液压马达则用于实现对液压执行元件的控制,以实现工作的执行。
4. 液压传动介质:液压传动介质主要是液体,通常使用的是油作为液压传动介质。
液压传动介质具有良好的润滑性和密封性能,能够在液压系统中有效地传递力和能量。
二、气压传动系统的组成气压传动系统主要由以下几个组成部分构成:1. 气压能源装置:气压能源装置主要由气压泵和气压发生器等组成。
气压泵通过机械或电动驱动,将机械能转化为气压能。
气压发生器则通过压缩空气,将空气转化为气压能。
2. 气压执行元件:气压执行元件主要由气缸和气动马达等组成。
气缸将气压能转化为机械能,通过气缸的伸缩来实现力的传递和工作的执行。
气动马达则将气压能转化为机械能,通过旋转来实现力的传递和工作的执行。
3. 气压控制元件:气压控制元件主要由气动阀和气缸等组成。
气动阀用于控制气压系统的压力、流量和方向等参数,实现对气压系统的控制。
气缸则用于实现对气压执行元件的控制,以实现工作的执行。
气压传动与液压传动
§10-2 气压传动的应用
二、气压传动执行元件-气缸、气马达
气缸应用于往复运动,气马达应用于气动砂轮或 气动抛光机的转动。如图10-12、13所示。
§10-2 气压传动的应用
三 、气压控制阀
1、方向控制阀 控制气体流动的方向。在图形符号上 的排气口符号为三角形,排出的空气是直通大气。 (1)单向阀 控制气体单向流动。如图10-14所示。
§10-3 液压传动的应用
换向阀 如图10-33所示。
§10-3 液压传动的应用
控制改变油流的方向。通过改变换向阀内阀芯的位 置达到改变流向,如图10-34所示。阀芯的机能如图10 -35所示。图形符号中的中位机能是不同阀芯的型号, 记住“位”和“通”含义,P、O、A、B的油口特性。
滑阀中位机能
A.液压系统中的油液压力取决于外负载大小 B.当某处有几个负载并联时,压力大小取决于克服负载的各个压力值中的 最小值 帕斯卡原理:在密闭容器内,施加于静止液体上的压力,能等值的传递到 静止液体上的各点,且压力值处处相等。 即:P1=P2=P3.....或 F1/A1=F2/A2=....
§10-1 气压传动与液压传动的基本常识
直动型顺序阀
先导型顺序阀
1-调节螺母 2-调压弹簧 3-锥阀 4-主阀弹簧 5-主阀芯
§10-3 液压传动的应用
(3)流量控制阀 普通节流阀 改变阀口的流通面积大小来改变流量, 如自来水龙头的原理一样。有针阀式、偏心式和轴向三 角槽式三种。如图10-39所示。
1.节流阀
2.调速阀
调速阀 将节流阀和定 差减压阀串连而成。采 用调速阀保证进出口压 力差值不变,使执行元 件的运动速度不因负载 的变化而变化。
缸体固定
(活塞杆带动工作台移动)
16—2气压传动常用元件简介
2.压力控制阀
减压阀 将从储气罐传来的压力调到所需的压力,减小压 力波动,保持系统压力的稳定。
减压阀及图形符号
减压阀通常安装在过滤器之后,油雾器之前。在生 产实际中,常把这三个元件做成一体,称为气源三联件 (气来控制执行机构按顺序动
除油器 储气罐 过滤器 油雾器 消声器
储气罐及其图形符号
除油器及其图形符号
过滤器及其图形符号
消声器及其图形符号
油雾器及其图形符号
二、气缸
常用于实现往复直线运动。
双作用单活塞杆气缸及图形符号
三、气压控制阀
控制和调节压缩空气压力、流量和流向的控制元件。
1.方向控制阀
控制压缩空气的流动方向和气流通断的一种阀。
的流量,以此控制执行元件的运动速度。它不仅 能调节执行元件的运动速度,还能起到降低排气 噪声的作用。
排气节流阀及图形符号
单向节流阀 气流正向流入时,起节流阀作用,调节执行元件的运动速 度;气流反向流入时,起单向阀作用。
单向节流阀及图形符号
标准化气缸
一、标准化气缸的系列和标记
QG(A、B、C、D、H)缸径D×行程s
§16—2 气压传动常用元件简介
1.了解气源装置及气动辅助元件。 2.了解气压执行元件。 3.了解气压控制元件。
你知道空气压缩机在气压传动中起什么作用吗? 空气压缩机
一、气源装置及气动辅助元件
气源装置
1.空气压缩机
把电动机输出的机械能转换成气体压力能。
气压源及图形符号
2.气动辅助元件
使空气压缩机产生的压缩空气得以经过净化、 减压、降温及稳压等处理,供给控制元件及执行 元件,保证气压传动系统正常工作。
二、标准化气缸的主要参数
主要参数是缸径D和行程s。在一定的气压 力下,缸径D标志着气缸活塞杆的输出力,行 程s标志着气缸的作用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
(4)干燥器干燥器的作用是进一步除去压缩空气中的水、油 和杂质。常用的干燥器有吸附式和冷凝式。吸附式干燥器的 图形符号见图8-7 (a),图8-7 (b)为吸附式干燥器。
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
(2)油水分离器油水分离器的作用是将后冷却器降温析出的 水滴、油滴等杂质与压缩空气分离。油水分离器的结构形式 有环形回转式、离心旋转式、撞击挡板式等。
人工排出油水分离器的图形符号见图8-5 (a),图8-5 (b)为人工排出撞击挡板式油水分离器。
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
5.消声器 气压传动系统消声降噪有多种措施。消声器是简单方便的
一种。根据消声器原理不同,消声器分为阻性式、抗性式、 阻抗性式和多孔扩散式。 消声器的图形符号见图8-11 (a),图8-11 (b)为阀用 多孔扩散式消声器结构。图中1为消声排气芯,2为接头。 6.密封及密封件 气动元件及系统能否可靠工作,很大程度取决于密封技术。 由于气体介质赫度较低,所以密封更显得重要。气压传动密 封件通常采用皮革或合成材料制成,也可使用液压密封件, 具体查阅气压传动手册。
8.1气压传动能源元件和辅助元件
(2)空气压缩机流量qs可按下式确定
Байду номын сангаас
Ps=k1k2k3q
(8-2)
式中q—系统工作时,同一时间内需求的最大耗气量(扩is) ;
k1—泄漏系数,k1=1. 15-1. 5;
k2—备用系数,k2=1.3-1. 6,根据可能增加的执行元
件数确定;
k3—利用系数,通常取k3=1。
120℃ -150 ℃ ,通过后冷却器处理,可将高温汽化后的 水分、油雾冷凝成水滴和油滴,以便再处理。后冷却器有多 种结构形式。 带冷却剂管路的后冷却器的图形符号见图8-4 (a),图84(b)为比较简单的蛇形管式水冷却器。高温压缩空气从蛇形 管上方进入,从下方出口排出。而冷却水则从下方入口进入, 从上方出口排出。冷却水通过蛇形管表面带走热量,从而降 低管中空气的温度。
空气压缩机的主要参数是压力和流量。根据系统负载力和速 度要求,以及执行元件的有效作用面积,即可算出系统的工 作压力Ps和流量q。
(1)考虑各种压力损失时,空气压缩机工作压力Ps为
p1 p p
(8-1)
式中P—负载压力(MPa );
p—管路阻力、阀口等压力损失之和(MPa )
上一页 下一页 返回
2.压缩空气的储存元件 压缩空气的储存元件是气罐,种类有立式和卧式。图8-8
是立式气罐。气罐的图形符号见图8-8 (a)。 气罐的作用:保证系统具有连续和稳定的气源而储存一定
量的压缩空气;当原动机出现意外故障后,确保系统有足够压 缩空气复位或安全制动;降低气温;沉积杂质、水分和油分。
上一页 下一页 返回
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
(2)叶片式空气压缩机图8-2是叶片式空气压缩机(旋转式) 结构原理图。由图可知,叶片式空气压缩机与液压传动的单 作用式叶片泵相似,其工作原理相同。
空气压缩机与液压泵相比,相对运动的零件之间没有自润 滑能力,摩擦发热严重。因此,散热与润滑是空气压缩机的 关键问题,通常在泵体工作腔外侧设计翅片以增大散热面积, 或者将泵体设计成空腔,增大与大气的接触面积而散热。
第8章气压传动元件
8.1气压传动能源元件和辅助元件 8.2气压传动执行元件 8.3气压传动调节与控制元件
8.1气压传动能源元件和辅助元件
8.1.1空气压缩机
1.空气压缩机的种类及工作原理 空气压缩机的种类很多,容积式空气压缩机按结构可分为活
塞式、叶片式、螺杆式和膜片式。 容积式压缩机是指直接依靠改变气体容积来提高气体压力的
压缩机。其工作原理是压缩气体的体积,使单位体积内气体 分子的密度增加以提高压缩空气的压力。 往复式压缩机(也称活塞式压缩机)是容积式压缩机,其压 缩元件是一个活塞,在气缸内作往复运动。其工作原理是直 接压缩气体,当气体达到一定压力后排出。
下一页 返回
8.1气压传动能源元件和辅助元件
2.空气压缩机主要参数
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
3.常用空气压缩机 (1)滑块一活塞式空气压缩机滑块一活塞式空气压缩机是
气压传动系统中最常用的一种,具体结构形式也有多种。图 8-1是滑块一活塞式(往复式)空气压缩机原理图。 原动机驱动空气压缩机的曲柄1作回转运动,带动连杆2,滑 块3、活塞组件4在缸筒5内作往复运动。当活塞向右运动时, 工作腔(活塞左腔)容积增大,形成真空,大气推开吸气阀6 进入工作腔。当活塞向左运动时,工作腔容积减小,吸气阀 关闭,气体受到压缩,压力增大,排气阀8开启并向外排气。 曲柄轴转动一周,空气压缩机吸气一次,排气一次。
8.1气压传动能源元件和辅助元件
3.自动排水器 自动排水器可复合在净化器上,也可单独安装在管道下方
或气罐底部以及容易形成积水的部位。自动排水器的图形符 号见图8-9 (a),图8-9 (b)为浮子式自动排水器结构图。 4.油雾器 在气动流体传动系统中,动力是通过闭合回路中的压缩空 气来传递和控制的。在空气介质需要润滑的场合,油雾器就 是设计用以把需要的润滑剂加入到空气流中的元器件。 油雾器按雾化粒径大小分为普通型和微雾型;按原理可分 为固定节流式和可调节流式。油雾器的图形符号见图810(a),图8-10(b)为QIU型油雾器的结构图。
实际上,空气压缩机是最小单元。厂家通常把空气压缩机、 油水分离器、安全阀、气罐和压力表等组合在一起,构成空 气压缩机组销售。小型空气压缩机组通常制造成便携式或可 移动式,如图8 -3所示。
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
8.1.2气压传动辅助元件
1.压缩空气的净化元件 (1)后冷却器空气压缩机输出的压缩空气通常温度在