气压传动元件

合集下载

气压传动概述

气压传动概述
1、直动型减压阀 图11.2.1所示为QTY型直动型减压阀的结构简 图。其工作原理是:阀处于工作状态时,压缩空气从 左侧入口流入,经阀口11后再从阀出口流出。当顺时 针旋转手柄1,压缩弹簧2、3推动膜片5下凹,再通 过阀杆6带动阀芯9下移,打开进气阀口11,压缩空 气通过阀口11的节流作用,使输出压力低于输入压力, 以实现减压作用。
一、气缸的分类及工作原理
1、气缸的分类
气缸组成:缸筒、活塞、活塞杆、前后端盖及 密封件等组成,如图11.1.1所示为普通气缸结构。
气缸的种类很多,分类的方法也不同,一般可 按压缩空气作用在活塞端面上的方向、结构特征和 安装形式来分类。
2、气缸的工作原理
以图11.1.1所示双作用气缸为例。所谓双作用是指活 塞的往复运动均由压缩空气来推动。在单伸出活塞杆 的动力缸中,因活塞右边面积比较大,当空气压力作 用在右边时,提供一慢速的和作用力大的工作行程; 返回行程时,由于活塞左边的面积较小,所以速度较 快而作用力变小。
单向阀打开,不节流。
图11.2.11 单向节流阀工作原理图
图11.2.12 为单向节流阀的结 构图。
(a)结构图
(b)图形符号
图11.2.12 单向节流阀
1—调节杆;2—弹簧;3—单向阀;4—节流口
三、带消声器的节流阀
带消声器的节流阀是安装在元件的排气口处,用 来控制执行元件排人大气中气体的流量并降低排气噪 声的一种控制阀。图11.2.13所示为带消声器的节 流阀的结构图,图11.2.14为其应用实例。
a)结构原理图
(b)图形符号
图11.2.4 直动型溢流阀
2、先导型溢流阀 如图11.2.5所示。溢流阀的先导阀为减压阀,由 它减压后的空气从上部K口进入阀内,以代替直动型 的弹簧控制溢流阀。先导型溢流阀适用于管道通径较 大及远距离控制的场合。 溢流阀选用时其最高工作压力应略高于所需控制 压力。

液压与气压传动液压辅助元件详解

液压与气压传动液压辅助元件详解
液压辅件
1、密封件 2、滤油器 3、蓄能器 4、油箱及热交换器 5、其他辅件
密封件
静密封
分类
非金属静密封
橡胶-金属复合静密封 金属静密封 液态密封垫
非接触式密封\间隙密封
自封式压紧型密封
动密封
接触式密封
自封式自紧型密封(唇形密 封)
活塞环 旋转轴油封 液压缸导向支承件 液压缸防尘圈
其他
主要密封件
O形橡胶密封圈 橡胶垫片
聚四氟乙烯生料带 组合密封垫圈 金属垫圈
空心金属O形密封圈 密封胶
利用间隙\迷宫\阻尼等 O形橡胶密封圈 同轴密封圈 异形密封圈 其他 Y形密封圈 V形密封圈 组合式U形密封圈
星形和复式唇密封圈 带支承环组合双向密封圈
其他 金属活塞环
油封 导向支承环
防尘圈 其他
1、O型密封圈:O形封圈是一种截面为圆形的橡胶圈,如图所示。其材料主 要为丁腈橡胶或氟橡胶。O形密封圈是液压传动系统中使用最广泛的一种密 封件。它主要用于静密封和往复运动密封。其使用速度范围一般为 0.005~0.3m/s。用于旋转运动密封时,仅限于低速回转密封装置。
4.其他 如 抗腐蚀性 耐久性 结构 安装 维护 价格
四、滤油器的安装位置
1、滤油器安装于液压泵吸油口。
可避免大颗粒的杂质进入液压泵,一般采用过滤精度较低的网式滤油器。
2、滤油器安装于液压泵压油口。
器能耐高压。
3、滤油器安装于回油管路。
使油箱中的油液得到净化。此种滤油器壳体的耐压性能可较低。
(a)支撑环;(b)密封环;(c)压环
4、组合式密封装置
组合式密封件由两个或两个以上元件组成。一部分是润滑性能好、摩擦因数 小的元件;另一部分是充当弹性体的元件,从而大大改善了综合密封性能。

气压传动元件图形符号

气压传动元件图形符号

达)
旋转 运动
电动 机操
电气 控制

压力 直接 加压 控制 压力 或泄 阀 控制 压控

差动 控制
拉钮式
按-拉式
手柄式
踏板式
双向踏 板式
顶杆式
可变行 程控制 式
弹簧控 制式
滚轮式
单向滚 轮式
类别
名称 符号
内部
压力控制 压

力控
顺制

阀 外部

力控

内部 压力 控制
外部 压力 控制
气压 先导 控制
先导
转矩仪
压力继电器
行程开关 模拟传感器
油雾器
辅助气 瓶
消声器 报警器


制 快速
阀 排气

辅件及 其它装 置
人工 排出
分 水 排 水 器
自动 排出
人工 空 排出 气 过 滤 器
自动 排出
人工 排出
除 油 器
自动 排出
空气干 燥器
辅件 及其 它装 气罐 置
气源调节装 置
压力 指示 器
压力 计
压力
检测 器
压差

脉冲 计数 器
流量 流量 计 检测 累计 器 流量
计 转速仪
口 带连
接措

不带
快 单向
换阀
接 头 带单
向阀
单通 旋路 转 接 头 三通

气源、电动 机、气马达
气压源
及气缸
电动机
双向变量气 马达
摆动气马达
单活 塞杆 气缸 单作 用气 缸
伸缩 缸
双作 单活 用气 塞杆 缸 气缸

气压传动系统的组成。

气压传动系统的组成。

气压传动系统的组成。

气压传动系统的组成主要包括以下几个部分:
1. 压缩空气供应:这是系统的核心组成部分,包括压缩机、压缩空气储存罐、过滤器等。

压缩机将空气压缩并送入储存罐中,过滤器用于过滤空气中的杂质。

2. 控制元件:控制元件主要包括气压调节器、气阀、气缸等。

气压调节器用于调节系统中的气压,气阀用于控制气体的流动方向和流量,气缸则用于将气压转化为机械运动。

3. 传动管路:传动管路用于将压缩空气从压缩机传输到控制元件和执行元件之间。

传动管路通常由钢管或软管组成,通过接头连接各个元件。

4. 执行元件:执行元件主要包括气动缸、气动马达等。

它们通过接收气压信号,将气压能转化为机械能,实现各种工作任务。

5. 辅助元件:辅助元件主要包括压力表、安全阀、滤清器、润滑器等,用于监测和维护系统的正常运行。

气压传动系统主要由压缩空气供应、控制元件、传动管路、执行元件和辅助元件组成,通过将气压能转化为机械能,实现各种工作任务。

气压传动元件课件

气压传动元件课件

第5章 气压传动元件
图5-7所示为QTY型直动式减压阀及图形符号。阀处于工作状态时, 顺时针旋转手柄1,向下压缩弹簧2和3以及膜片5,迫使阀芯8 下移,从而使阀口10被打开,压缩空气从左端输入,经阀口10减压 后从右端输出。输出气体一部分经阻尼管7进入膜片气室6,对膜 片5产生向上的推力,当作用在膜片5上的推力略大于等于弹簧力 时,阀芯8便保持在某一平衡位置并保持一定的开度,减压阀也得 到了一个稳定的输出压力值。减压阀工作过程中,当输入压力增大 时,输出压力也随之增大,膜片5所受到向上的推力也相应增大, 使膜片5上移,阀芯8在出口气压和复位弹簧9的作用下也随之上 移,阀口10开度减小,减压作用增强,输出压力下降,输出压力又 基本上重新维持到原值。反之,若输入压力减小,则阀的调节过程 相反,平衡后仍能保持输出压力基本不变。
溢流阀不工作;而当系统压力逐渐升高并作用在阀芯上的气体压力略
大于等于弹簧的调定压力 p≥pt 时,阀芯被向上顶开,溢流阀阀芯
开启实现溢流,图b 所示,并保持溢流阀的进气压力稳定在调定压力 值上。
第5章 气压传动元件
a)
b)
c)
图5-8 直动式溢流阀工作原理图
a)溢流阀原理图p<pt b)溢流阀原理图p≥pt c)图形符号
图5-6所示为普通油雾器的结构示意图。气动系统在正常工作时, 压缩空气经入口1进入油雾器,大部分经出口4输出,一小部分通 过小孔2进入截止阀10,在钢球5的上下表面形成压力差,和弹簧力 相平衡,钢球处于阀座的中间位置,压缩空气经阀10侧面的小孔进 入贮油杯5的上腔 A,使油面压力增高,润滑油经吸油管11向上顶 开单向阀6,继续向上再经可调节流阀7流入视油器8内,最后滴 入喷嘴小孔3中,被从入口到出口的主管道中通过的气流引射出来 成雾状,随压缩空气输出。

气压传动部分

气压传动部分

14.1.2 往复换向(振荡)回路
气缸连续自动往复运动时,需要换向阀连续自动换向。 换向指令信号一般通过行程阀或行程开关检测。图 14—4所示为气缸自动进行往复振荡回路。手动阀3切 换,向换向阀供气,控制压力p1使换向阀1换向气缸前 进。节流阀和储气罐产生一定的时间延迟,控制压力 p3使换向阀2换向,控制压力p2使换向阀1换向,气缸 后退。同样,节流阀和储气罐产生一定的时间延迟, 控制压力p4使阀2换向到初始状态。这样气缸便可实 现自动往复振荡。
贮气罐4中的压缩空气即可用于一般要求的气动系统,贮气罐7输出 的压缩空气可用于要求较高的气动系统(如气动仪表、射流元件等组成的 系统)。
空压机
1.分类 空气压缩机简称空压机,是气源装置的核心,用以
将原动机输出的机械能转化为气体的压力能。空压机有 以下几种分类方法: (1)按工作原理分类 容积型 速度型 (2)按结构形式分类 (3)按输出压力分类 (4)按输出流量分类
图14-3自锁式换向回路
图14-4换向振荡回路
1,2一手动阀;3一气缸;4一主控阀。 1,2一气控换向阀;3一手动阀;4一储气罐;5一单向节流阀。
14.2 压力与力控制回路
包括压力控制回路与力控制回路
14.2.1 压力控制回路
对系统压力进行调节和控制的回路称为压 力控制回路。
图14—5一次压力控制回路 1一溢流阀;2一空气压缩机;3一单向阀;4一气罐;5一电接点压力表;6一气源调节装置。
图14—1所示为采用无记忆作用的单控换向阀的换向回路。当加 上控制信号后,气缸活塞杆伸出;控制信号一旦消失,无论活塞 杆运动到何处,活塞杆立即返回。在实际运用中必须保证信号有 足够的延续时间,否则会出现事故。
图14—2所示为采用记忆功能的双控换向阀的换向回路。回路中 的主控阀具有记忆功能,故可以使用脉冲信号(其脉冲宽度应保 证主控阀换向),只有加了相反的控制信号后,主控阀才会换向。

气压传动知识

气压传动知识

贮气罐4中的压缩空气可用于一般要求的气动系 统,贮气罐7输出的压缩空气可用于要求较高 的气动系统(如气动仪表、射流装置)。 过滤器6(又称一次过滤器)进一步过滤除去压缩 空气中的灰尘颗粒杂质。
空气压缩机
空压机工作原理
气动系统中最常用的是往复活塞式空压机。 其当活塞3向右移动时,气缸2左腔的压力低于 大气压力 ,吸气阀9打开,空气在大气压力作 用下进入气缸2左腔,这一过程称为吸气过程; 当活塞3向左移动时,吸气阀9在气缸2左腔内 压缩气体的作用下关闭,气缸左腔内气体被压 缩,这一过程称为压缩过程。 活塞3的往复运动是由电动机(或内燃机)带 动曲柄8转动,通过连杆7、滑块5、活塞杆4转 化成直线往复运动而产生的。
快速排气阀 工作原理
它有三个阀口 P、 A、 T, P接 气源,A接执 行元件,T通 大气。当P有
压缩空气输 入时,
工作原理
推动阀芯右移、P与A通,给执行元件供 气;当P无压缩空气输入时,执行元件中 的气体通过A使阀芯左移,堵住P、A通路, 同时打开A、T通路,气体通过T快速排出。 快速排气阀常装在换向阀和气缸之间, 使气缸的排气不用通过换向阀而快速排 出。从而加快了气缸往复运动速度,缩 短了工作周期。
简单压力控制回路 采用溢流式减压阀对气 源实行定压控制。
过载保护回路
正常工作时,使阀3 下位,使阀1 得电, 阀2 换向,气缸活塞 杆外伸。如果活塞杆 受压的方向发生过载, 则顺序阀动作,阀3 切换,阀2 的控制气 体排出,在弹簧力作 用下换至图示位置, 使活塞杆缩回。
换向回路
单作用气缸换向回路 用三位五通换向阀可控制 单作用气缸伸、缩、任意位置停止。
10.2.2 气源装置和辅助元件
⑴气源装置
气源装置组成部分

第十章 气压传动

第十章 气压传动

消声器的图形符号为
多孔扩散式消声器结构
(六)气-电转换元件
1.气-电转换器
2.压力继电器
(七)管道、接头和管路布置
1.管道
2.接头
3.管路布置
(八)密封件
§10.3
气动执行元件 Pneumatic Transmitting Actuators
功用:是将净化后的压缩空气能转变成机械能输出的能量转换 元件。 包括:气缸、气动马达。
同学们好
welcome to classroom
第十章 气压传动 pneumatic transmission
§10.1 概述
气压传动是以净化后的压缩空气为工作介质,在密闭容器内进行能量转换、 控制与传递的一种传动技术。 由于空气取之不尽用之不竭,投资小,污染少,能耗小,所以气压传动与控 制技术被大量应用于机械加工、汽车制造、电子工业、机器人、气动测量等工业 中。尤其在轻工业领域和气动工具中的应用越来越广泛。
三.气动元件图形符号
气压传动系统中各元件均按GB/T 786.1—1993《液压气动图形符 号》(见附录)规定绘制。
四.气压传动优缺点
优点: 1.工作介质来源方便,而无需投资。使用后的气体直接排向大气、不需要 回收,几乎无污染; 2.安全可靠,自保护能力强; 3.压力损失小,可远距离传动和集中供气; 4.传动与控制响应快,调节使用方便,维护简单; 5.适应工作环境能力强, 可在易燃、易爆、强磁、粉尘、潮湿等环境下工 作。 缺点: 1.不宜精确的定比传动; 2.通常工作压力低,输出功率小; 3.排气时会产生高频噪声。因此需要安装消声器进行降噪处理。
3.坐标气缸
特点是重复定位精度高( 0.01mm )
同学们好
welcome to the classroom

【2019年整理】1液压传动系统和气压传动系统主要有以下四部分组成1动力元件2执行元件3控制元件4辅助元件

【2019年整理】1液压传动系统和气压传动系统主要有以下四部分组成1动力元件2执行元件3控制元件4辅助元件

1液压传动系统和气压传动系统主要有以下四部分组成1动力元件2执行元件3控制元件4 辅助元件2答:液压传动的主要优点:在输出相同功率的条件下,液压转动装置体积小、重量轻、结构紧凑、惯性小、并且反应快3是依据帕斯卡原理实现力的传递力4轴向柱塞泵:由于径向尺寸小,转动惯量小,所以转速高,流量大,压力高,变量方便,效率也较高;但结构复杂,价格较贵,油液需清洁,耐冲击振动性比径向柱塞泵稍差。

51.溢流阀是维持阀前的压力恒定的压力控制阀;2.减压阀是用节流的方法使出口低于进口压力并保持出口压力恒定的压力控制阀;3.顺序阀是进油压力达到预调值时,阀门开放使液流畅通6液压泵的特点 1具有若干密封且有可以周期性变化的空间 3 油箱内液体的绝对压力必须恒等于或大于大气压力 3 具有相应的配流装置7但叶片泵、四、名词解释1.帕斯卡原理(静压传递原理)(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。

)2.系统压力(系统中液压泵的排油压力。

)3.运动粘度(动力粘度μ和该液体密度ρ之比值。

)4.液动力(流动液体作用在使其流速发生变化的固体壁面上的力。

)5.层流(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。

)6.紊流(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。

)7.沿程压力损失(液体在管中流动时因粘性摩擦而产生的损失。

)8.局部压力损失(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。

当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。

)10.液压冲击(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。

气压传动概述

气压传动概述

第一章气压传动概述1.1 气压传动系统的工作原理及组成一、气压传动系统的工作原理气压传动系统的工作原理是利用空气压缩机将电动机或其它原动机输出的机械能转变为空气的压力能,然后在控制元件的控制和辅助元件的配合下,通过执行元件把空气的压力能转变为机械能,从而完成直线或回转运动并对外作功。

二、气压传动系统的组成典型的气压传动系统,一般由以下部分组成:1 气压发生装置它是原动机输出的机械能转变为空气的压力能。

其主要设备是空气压缩机。

2 控制元件是用来控制压缩空气的压力、流量和流动方向,以保证执行元件具有一定的输出力和速度,并按设计的程序正常工作。

如压力阀、流量阀、方向阀和逻辑阀等。

3 执行元件是将空气的压力能转变为机械能的能量转换装置。

如气缸和气马达。

4 辅助元件是用于辅助保证气动系统正常工作的一些装置。

如过滤器、干燥器、空气过滤器、消声器和油雾器等。

1.2 气压传动的特点一、气压传动及其应用气压传动简称气动,是指以压缩空气为工作介质来传递动力和控制信号,控制和驱动各种机械和设备,以实现生产过程机械化、自动化的一门技术。

因为以压缩空气为工作介质具有防火、防爆、防电磁干扰,抗振动、冲击、辐射,无污染,结构简单,工作可靠等特点,所以气动技术与液压、机械、电气和电子技术一起,互相补充,已发展成为实现生产过程自动化的一个重要手段,在机械工业、冶金工业、轻纺食品工业、化工、交通运输、航空航天、国防建设等各个部门已得到广泛的应用。

二、气压传动的优点1. 空气随处可取,取之不尽,节省了购买、贮存、运输介质的费用和麻烦;用后的空气直接排入大气,对环境无污染,处理方便,不必设置回收管路,因而也不存在介质变质、补充和更换等问题。

2. 因空气粘度小(约为液压油的万分之一),在管内流动阻力小,压力损失小,便于集中供气和远距离输送。

即使有泄漏,也不会像液压油一样污染环境。

3. 与液压相比,气动反应快,动作迅速,维护简单,管路不易堵塞。

简述气压传动系统的基本组成及作用

简述气压传动系统的基本组成及作用

简述气压传动系统的基本组成及作用气压传动系统是一种利用气体的压力来实现力的传递和控制的系统。

它由多个组成部分组成,每个部分都有着不同的作用和功能。

1. 压缩机:气压传动系统的核心部件之一,主要功能是将气体压缩至一定压力。

压缩机可以通过电动机、内燃机等驱动,使气体压缩并提供给系统使用。

2. 储气罐:用于储存压缩空气,平衡系统内部的气压波动,并提供稳定的气源。

储气罐通常具有一定的容量,可以根据系统需求进行选择。

3. 管道:气压传动系统中气体传输的通道。

管道应具有足够的强度和密封性,以确保气体传输的安全和可靠性。

4. 阀门:用于控制气压传动系统中气体的流动和压力。

阀门可以分为手动阀和自动阀两种类型,手动阀需要人工操作,而自动阀可以根据系统的需求自动控制。

5. 作动器:气压传动系统中的执行部件,接受气体的力并将其转化为机械运动。

作动器通常包括气缸和气动马达两种类型,可以根据具体应用选择合适的作动器。

6. 控制元件:用于控制气压传动系统的工作状态和运行参数。

常见的控制元件包括气控阀、传感器等,通过对这些元件的控制可以实现对系统的精确控制。

气压传动系统的作用是实现力的传递和控制,广泛应用于各个领域。

它具有以下几个主要作用:1. 力的传递:气压传动系统通过压缩气体产生的力来实现力的传递。

通过合理的设计和安装,可以将气体的压力传递到作动器上,从而实现对工件的加工、装卸或其他操作。

2. 动力传递:气压传动系统可以将压缩空气的能量转化为机械能,从而驱动各种设备和机械。

例如,气动工具、气动机械手臂等都是利用气压传动系统提供的动力来完成工作。

3. 控制:气压传动系统可以通过控制元件实现对系统的精确控制。

通过控制气压、流量和方向等参数,可以实现对作动器的运动速度、位置和力的控制,从而满足不同工作需求。

4. 自动化:气压传动系统可以与自动化设备和系统结合,实现工业生产的自动化。

通过与传感器、PLC等设备的联动,可以实现对工艺过程的自动控制和监测。

气压传动系统的组成和工作原理

气压传动系统的组成和工作原理

气压传动系统的组成和工作原理气压传动系统是一种基于气压力传递能力的工程控制系统,广泛应用于各个行业中。

本文将介绍气压传动系统的基本组成和工作原理。

一、气压传动系统的组成气压传动系统主要由以下几个组成部分构成:1. 压缩空气源:压缩空气源是气压传动系统的核心部分,它提供压缩空气作为传动介质。

常见的压缩空气源包括压缩空气机和气体储罐。

压缩空气机通过将空气压缩,提高气体密度和压力。

2. 动力元件:动力元件是气压传动系统中的能量转换部分。

它将压缩空气能量转化为机械能供给执行元件使用。

常见的动力元件包括气缸和驱动装置。

气缸利用气压力将气体能量转化为线性或旋转运动。

驱动装置则将气压能量转化为其他形式的运动能量。

3. 控制元件:控制元件用于控制气压传动系统的工作状态。

它根据不同的控制信号来调整气压传动系统的工作过程。

常见的控制元件包括气压阀门、气动执行器和传感器。

气压阀门用于调节和控制气压的流动方向和压力大小。

气动执行器根据控制信号实现对执行元件的驱动和控制功能。

传感器用于感知和检测气压传动系统的工作状态。

4. 执行元件:执行元件是气压传动系统中的工作末端。

它接受控制信号并完成相应的工作任务。

常见的执行元件包括气动气缸、气动马达和气动夹具。

气动气缸通过气压驱动将压缩空气能量转化为机械能完成线性或旋转运动。

气动马达以气压为动力源,实现转动运动。

气动夹具则通过气压力来实现锁紧、夹紧等功能。

二、气压传动系统的工作原理气压传动系统的工作过程可以概括为压缩空气源产生气压力,经过控制元件控制和传递到执行元件完成工作任务。

1. 压缩空气源工作原理:压缩空气源通过压缩机将大量的气体压缩成较小体积。

当气体被压缩时,分子之间的距离减小,分子间的碰撞增加,从而增加了气体的压力和密度。

2. 控制元件工作原理:气压阀门是气压传动系统中的核心控制元件。

它通过调节气压力流动的方向和大小来实现对系统的控制。

传感器感知气压传动系统的工作状态,并将信号传递给控制元件,进而控制执行元件的运动。

气压传动的基本原理和应用

气压传动的基本原理和应用

气压传动的基本原理和应用气压传动是一种常见且广泛应用于工业领域的传动方式,它利用气体的压力传递动力或控制信号。

本文将介绍气压传动的基本原理以及其在工业领域中的应用。

一、气压传动的基本原理气压传动的基本原理是依靠气体压力产生和传递的力或信号来实现动力传动或控制。

在气压传动系统中,常用的气体是压缩空气,它可以通过压缩机或气罐等装置进行压缩并存储。

压缩空气经由管道传输到需要的位置,并通过调节阀门、活塞等元件来控制动力的传递。

气压传动的基本原理包括以下几个方面:1. 压缩空气的产生与储存:气压传动系统需要通过压缩机或气罐等设备将大气中的空气进行压缩,并储存起来以供使用。

2. 气体传输管道:压缩空气通过管道系统传输到需要的位置。

这些管道通常由金属或塑料材料制成,以确保传输效率和可靠性。

3. 控制元件:气压传动系统具有多种控制元件,如压力调节阀、电磁阀、活塞等。

通过调节这些控制元件的状态,可以实现对气体传动力或信号的控制和调节。

4. 动力执行元件:气压传动系统用于执行动作的元件,如气缸、气动马达等。

这些元件接受传递来的气体力或信号,将其转化为具体的机械运动。

二、气压传动的应用气压传动广泛应用于工业领域中的各种机械设备和自动化生产线中。

以下是气压传动的几个常见应用:1. 气动工具:气动工具是气压传动的典型应用,如气动扳手、气动钉枪等。

这些工具通过将压缩空气转化为机械动力,提供便利和高效率的工作方式。

2. 气动传送系统:气压传动可用于物料的输送和搬运,如气动输送机、气动输送管道等。

气压传送系统具有快速、稳定和可靠的特点,广泛应用于物料输送领域。

3. 气压控制系统:气压传动可用于各种需要动力控制和调节的系统,如气动制动系统、气动操纵系统等。

这些系统通过调节气体的压力和流量,实现对机械设备的控制。

4. 气动装配线:气压传动被广泛应用于自动化装配线中,用于驱动和控制各种机械臂、夹具和传感器等设备。

气动装配线具有高效率、高精度和灵活性强的特点,能够满足复杂装配过程的要求。

液压与气压传动系统的组成

液压与气压传动系统的组成

液压与气压传动系统的组成液压与气压传动系统是现代工程中常用的两种传动系统。

液压传动系统通过液体传递力和能量,而气压传动系统通过气体传递力和能量。

它们在工业生产、机械设备以及汽车等领域都有广泛的应用。

本文将详细介绍液压与气压传动系统的组成。

一、液压传动系统的组成液压传动系统主要由以下几个组成部分构成:1. 液压能源装置:液压能源装置主要由液压泵、液压马达或液压发电机等组成。

液压泵通过机械或电动驱动,将机械能转化为液压能。

液压泵有多种类型,常见的有齿轮泵、柱塞泵和液压泵等。

2. 液压执行元件:液压执行元件主要由液压缸和液压马达等组成。

液压缸将液压能转化为机械能,通过液压缸的伸缩来实现力的传递和工作的执行。

液压马达则将液压能转化为机械能,通过旋转来实现力的传递和工作的执行。

3. 液压控制元件:液压控制元件主要由液压阀、液压缸和液压马达等组成。

液压阀用于控制液压系统的压力、流量和方向等参数,实现对液压系统的控制。

液压缸和液压马达则用于实现对液压执行元件的控制,以实现工作的执行。

4. 液压传动介质:液压传动介质主要是液体,通常使用的是油作为液压传动介质。

液压传动介质具有良好的润滑性和密封性能,能够在液压系统中有效地传递力和能量。

二、气压传动系统的组成气压传动系统主要由以下几个组成部分构成:1. 气压能源装置:气压能源装置主要由气压泵和气压发生器等组成。

气压泵通过机械或电动驱动,将机械能转化为气压能。

气压发生器则通过压缩空气,将空气转化为气压能。

2. 气压执行元件:气压执行元件主要由气缸和气动马达等组成。

气缸将气压能转化为机械能,通过气缸的伸缩来实现力的传递和工作的执行。

气动马达则将气压能转化为机械能,通过旋转来实现力的传递和工作的执行。

3. 气压控制元件:气压控制元件主要由气动阀和气缸等组成。

气动阀用于控制气压系统的压力、流量和方向等参数,实现对气压系统的控制。

气缸则用于实现对气压执行元件的控制,以实现工作的执行。

机械原理气压传动的基本原理

机械原理气压传动的基本原理

机械原理气压传动的基本原理气压传动是一种常见的机械传动方式,广泛应用于各个领域,如工业生产、汽车制造和航空航天等。

它基于气体的压缩和释放来实现机械能的传递和控制。

在本文中,我们将探讨气压传动的基本原理及其应用。

一、气体压缩与储存气压传动所依赖的关键是气体的压缩和储存。

通常使用压缩机将气体从大气中抽取并进行压缩,使其体积减小、密度增加,同时增加了气体分子的运动速度和动能。

压缩后的气体可在储气罐中进行储存,以备后续使用。

二、气压传动元件1. 气缸:气缸是气压传动系统中的关键元件之一。

它是一个密封的容器,装有活塞。

当气压通过气缸时,可以推动活塞进行往复运动,从而实现机械能的传递和转换。

2. 活塞杆:活塞杆是与活塞连接的零件,将气缸内的动力传递给其他机械部件。

它可根据需求进行伸缩,实现不同长度和行程的传动。

3. 阀门:阀门是气压传动系统中的控制元件。

它用于控制气体的流动,将气体压力引导至不同的传动元件。

常见的阀门类型包括单向阀、调压阀和方向控制阀等。

三、气压传动原理气压传动的基本原理类似于液压传动,都是通过介质的压力来传递力或运动。

在气压传动系统中,气体的压缩和释放控制着气压的变化。

当气压作用在气缸上时,活塞将受到力的作用而发生运动。

气压传动原理的主要特点如下:1. 压力传递:气压传动通过气体的压力传递力量,无需直接接触或润滑剂。

这使得气压传动系统具有干净、无污染和环境友好等特点。

2. 输送远距离:气体在管道中的传输速度较快,能够输送到较远的地方。

这使得气压传动非常适用于需要远距离传输动力或信号的场合。

3. 可控性较强:通过控制气体的压力和流量,可以实现气压传动系统的灵活运行和精确控制。

通过调节阀门和不同传动元件的组合,可以实现多种复杂的机械操作。

四、气压传动应用气压传动广泛应用于众多领域,下面列举几个常见的应用案例:1. 工业自动化:气压传动系统在工业自动化生产线中被广泛使用,如气动机械手臂、气动系统等。

气压传动与液压传动

气压传动与液压传动

§10-2 气压传动的应用
二、气压传动执行元件-气缸、气马达
气缸应用于往复运动,气马达应用于气动砂轮或 气动抛光机的转动。如图10-12、13所示。
§10-2 气压传动的应用
三 、气压控制阀
1、方向控制阀 控制气体流动的方向。在图形符号上 的排气口符号为三角形,排出的空气是直通大气。 (1)单向阀 控制气体单向流动。如图10-14所示。
§10-3 液压传动的应用
换向阀 如图10-33所示。
§10-3 液压传动的应用
控制改变油流的方向。通过改变换向阀内阀芯的位 置达到改变流向,如图10-34所示。阀芯的机能如图10 -35所示。图形符号中的中位机能是不同阀芯的型号, 记住“位”和“通”含义,P、O、A、B的油口特性。
滑阀中位机能
A.液压系统中的油液压力取决于外负载大小 B.当某处有几个负载并联时,压力大小取决于克服负载的各个压力值中的 最小值 帕斯卡原理:在密闭容器内,施加于静止液体上的压力,能等值的传递到 静止液体上的各点,且压力值处处相等。 即:P1=P2=P3.....或 F1/A1=F2/A2=....
§10-1 气压传动与液压传动的基本常识
直动型顺序阀
先导型顺序阀
1-调节螺母 2-调压弹簧 3-锥阀 4-主阀弹簧 5-主阀芯
§10-3 液压传动的应用
(3)流量控制阀 普通节流阀 改变阀口的流通面积大小来改变流量, 如自来水龙头的原理一样。有针阀式、偏心式和轴向三 角槽式三种。如图10-39所示。
1.节流阀
2.调速阀
调速阀 将节流阀和定 差减压阀串连而成。采 用调速阀保证进出口压 力差值不变,使执行元 件的运动速度不因负载 的变化而变化。
缸体固定
(活塞杆带动工作台移动)

16—2气压传动常用元件简介

16—2气压传动常用元件简介

2.压力控制阀
减压阀 将从储气罐传来的压力调到所需的压力,减小压 力波动,保持系统压力的稳定。
减压阀及图形符号
减压阀通常安装在过滤器之后,油雾器之前。在生 产实际中,常把这三个元件做成一体,称为气源三联件 (气来控制执行机构按顺序动
除油器 储气罐 过滤器 油雾器 消声器
储气罐及其图形符号
除油器及其图形符号
过滤器及其图形符号
消声器及其图形符号
油雾器及其图形符号
二、气缸
常用于实现往复直线运动。
双作用单活塞杆气缸及图形符号
三、气压控制阀
控制和调节压缩空气压力、流量和流向的控制元件。
1.方向控制阀
控制压缩空气的流动方向和气流通断的一种阀。
的流量,以此控制执行元件的运动速度。它不仅 能调节执行元件的运动速度,还能起到降低排气 噪声的作用。
排气节流阀及图形符号
单向节流阀 气流正向流入时,起节流阀作用,调节执行元件的运动速 度;气流反向流入时,起单向阀作用。
单向节流阀及图形符号
标准化气缸
一、标准化气缸的系列和标记
QG(A、B、C、D、H)缸径D×行程s
§16—2 气压传动常用元件简介
1.了解气源装置及气动辅助元件。 2.了解气压执行元件。 3.了解气压控制元件。
你知道空气压缩机在气压传动中起什么作用吗? 空气压缩机
一、气源装置及气动辅助元件
气源装置
1.空气压缩机
把电动机输出的机械能转换成气体压力能。
气压源及图形符号
2.气动辅助元件
使空气压缩机产生的压缩空气得以经过净化、 减压、降温及稳压等处理,供给控制元件及执行 元件,保证气压传动系统正常工作。
二、标准化气缸的主要参数
主要参数是缸径D和行程s。在一定的气压 力下,缸径D标志着气缸活塞杆的输出力,行 程s标志着气缸的作用范围。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一页
返回
8.3气压传动调节与控制元件
8.3.1压力控制阀
在气压传动中,压力控制阀按功能可分为溢流阀(安全阀)、 顺序阀、减压阀。
1.溢流阀(安全阀) 气压传动系统中,溢流阀起安全阀作用,限定系统最高工
作压力以保护系统。当气源压力达到溢流阀调定值时,阀口 迅速开启,释放气体。当气源压力低于溢流阀调定值时,阀 口关闭。气压传动中溢流阀也有直动式和先导式。 (1)直动式溢流阀直动式溢流阀的图形符号见图8 18(a)。图8-18 (b),(c)为两种结构形式的直动式溢流阀, 图8-18 (b)为球阀式,图8-18 (c)为膜片式。
(3)单杆膜片式气缸图8-14为单杆膜片式气缸的基本结构形 式。膜片在无杆腔压力气体作用下克服复位弹簧力及负载向 右运动。当压力气体释放后,在弹簧力作用下复位。显然这 种气缸也属单作用式气缸。
上一页 下一页 返回
8.2气压传动执行元件
(4)气一液阻尼缸气一液阻尼缸是由气缸和液压缸组合而成。 而且有串联式结构和并联式结构之分,见图8-15。
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
(2)油水分离器油水分离器的作用是将后冷却器降温析出的 水滴、油滴等杂质与压缩空气分离。油水分离器的结构形式 有环形回转式、离心旋转式、撞击挡板式等。
人工排出油水分离器的图形符号见图8-5 (a),图8-5 (b)为人工排出撞击挡板式油水分离器。
上一页
返回
8.2气压传动执行元件
8.2.1气缸
1.气缸的合式。按功
能可分为普通气缸和特殊气缸。 气缸图形符号的简化画法同液压缸图形符号,只是气缸进
排气口用空三角形标注,如图8-12 (a)所示。 2.几种常用气缸 (1)双作用单杆活塞式气缸图8-12 (b)为双作用单杆活塞式
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
5.消声器 气压传动系统消声降噪有多种措施。消声器是简单方便的
一种。根据消声器原理不同,消声器分为阻性式、抗性式、 阻抗性式和多孔扩散式。 消声器的图形符号见图8-11 (a),图8-11 (b)为阀用 多孔扩散式消声器结构。图中1为消声排气芯,2为接头。 6.密封及密封件 气动元件及系统能否可靠工作,很大程度取决于密封技术。 由于气体介质赫度较低,所以密封更显得重要。气压传动密 封件通常采用皮革或合成材料制成,也可使用液压密封件, 具体查阅气压传动手册。
实际上,空气压缩机是最小单元。厂家通常把空气压缩机、 油水分离器、安全阀、气罐和压力表等组合在一起,构成空 气压缩机组销售。小型空气压缩机组通常制造成便携式或可 移动式,如图8 -3所示。
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
8.1.2气压传动辅助元件
1.压缩空气的净化元件 (1)后冷却器空气压缩机输出的压缩空气通常温度在
下一页 返回
8.3气压传动调节与控制元件
(2)先导式溢流阀先导式溢流阀的图形符号见图8-19 (a)。 图8 -19 (b)为先导式溢流阀的主阀,其先导阀是利用一个 直动式减压阀的出口气压接入K口构成。这样,调节减压阀 的工作压力即可调节主阀的工作压力。
2.顺序阀 气压传动顺序阀可以用于回路中各元件的顺序动作控制。
气压传动顺序阀分为直动式、先导式。顺序阀与单向阀复合 在一起可以组成单向顺序阀。 (1)直动式顺序阀直动式顺序阀的图形符号见图8 20(a)。图8-20 (b),(c)为直动式顺序阀的工作原理图。 图8-20 (b)是阀口关闭状态,图8 -20 (c)是阀口开启状 态。调节弹簧压缩量即可调节进口压力。
上一页 下一页 返回
8.3气压传动调节与控制元件
(1)直动式减压阀直动式减压阀的图形符号见图8-22 (a)。 图8 -22 (b)为QTY型直动式减压阀的结构图,在调压弹簧 力作用下有预开口。
第8章气压传动元件
8.1气压传动能源元件和辅助元件 8.2气压传动执行元件 8.3气压传动调节与控制元件
8.1气压传动能源元件和辅助元件
8.1.1空气压缩机
1.空气压缩机的种类及工作原理 空气压缩机的种类很多,容积式空气压缩机按结构可分为活
塞式、叶片式、螺杆式和膜片式。 容积式压缩机是指直接依靠改变气体容积来提高气体压力的
上一页 下一页 返回
8.2气压传动执行元件
(5)坐标气缸图8-16为坐标气缸的基本结构。由图可知, 这种气缸的活塞杆与缸体连接。而缸筒在气压作用下往复运 动。为了增强刚度和防扭转,缸筒与缸体之间装有精密的滚 珠轴承导向。缸体内还装有可调行程的限位装置、缓冲器和 接近式位置传感器。
3.气缸工作参数及计算 气缸主要工作参数包括推力、拉力、运动速度、效率和负
2.压缩空气的储存元件 压缩空气的储存元件是气罐,种类有立式和卧式。图8-8
是立式气罐。气罐的图形符号见图8-8 (a)。 气罐的作用:保证系统具有连续和稳定的气源而储存一定
量的压缩空气;当原动机出现意外故障后,确保系统有足够压 缩空气复位或安全制动;降低气温;沉积杂质、水分和油分。
上一页 下一页 返回
压缩机。其工作原理是压缩气体的体积,使单位体积内气体 分子的密度增加以提高压缩空气的压力。 往复式压缩机(也称活塞式压缩机)是容积式压缩机,其压 缩元件是一个活塞,在气缸内作往复运动。其工作原理是直 接压缩气体,当气体达到一定压力后排出。
下一页 返回
8.1气压传动能源元件和辅助元件
2.空气压缩机主要参数
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
3.常用空气压缩机 (1)滑块一活塞式空气压缩机滑块一活塞式空气压缩机是
气压传动系统中最常用的一种,具体结构形式也有多种。图 8-1是滑块一活塞式(往复式)空气压缩机原理图。 原动机驱动空气压缩机的曲柄1作回转运动,带动连杆2,滑 块3、活塞组件4在缸筒5内作往复运动。当活塞向右运动时, 工作腔(活塞左腔)容积增大,形成真空,大气推开吸气阀6 进入工作腔。当活塞向左运动时,工作腔容积减小,吸气阀 关闭,气体受到压缩,压力增大,排气阀8开启并向外排气。 曲柄轴转动一周,空气压缩机吸气一次,排气一次。
8.1气压传动能源元件和辅助元件
(2)空气压缩机流量qs可按下式确定
Ps=k1k2k3q
(8-2)
式中q—系统工作时,同一时间内需求的最大耗气量(扩is) ;
k1—泄漏系数,k1=1. 15-1. 5;
k2—备用系数,k2=1.3-1. 6,根据可能增加的执行元
件数确定;
k3—利用系数,通常取k3=1。
上一页 下一页 返回
8.1气压传动能源元件和辅助元件
(2)叶片式空气压缩机图8-2是叶片式空气压缩机(旋转式) 结构原理图。由图可知,叶片式空气压缩机与液压传动的单 作用式叶片泵相似,其工作原理相同。
空气压缩机与液压泵相比,相对运动的零件之间没有自润 滑能力,摩擦发热严重。因此,散热与润滑是空气压缩机的 关键问题,通常在泵体工作腔外侧设计翅片以增大散热面积, 或者将泵体设计成空腔,增大与大气的接触面积而散热。
.串联式气一液阻尼缸如图8-15 (a)所示,以气缸6产生 动力驱动负载1;以液压缸2产生阻尼力控制运动速度;油杯5 的作用是补偿液压缸泄漏的。在油液阻尼作用下,可克服气 缸运动中的爬行、前冲或振动现象,满足稳定进给的需要。
.并联式气一液阻尼缸如图8-15 (b)所示,这种缸是由液 压缸和气缸经过档铁螺母7和连接板8浮动连接组成。
上一页 下一页 返回
8.3气压传动调节与控制元件
(2)单向顺序阀单向顺序阀的图形符号见图8-21 (a)。图 8-21 (b)为单向顺序阀的结构图。
3.减压阀 在气压传动系统中,来自空气压缩机的气源压力由溢流阀
(安全阀)调定,其值高于各执行元件所需压力。各执行元件 的工作压力由减压阀调节和控制。减压阀在气压传动中也称 调压阀。通常减压阀与分水过滤器、油雾器组合在一起使用, 称为气压传动三联件。
8.1气压传动能源元件和辅助元件
3.自动排水器 自动排水器可复合在净化器上,也可单独安装在管道下方
或气罐底部以及容易形成积水的部位。自动排水器的图形符 号见图8-9 (a),图8-9 (b)为浮子式自动排水器结构图。 4.油雾器 在气动流体传动系统中,动力是通过闭合回路中的压缩空 气来传递和控制的。在空气介质需要润滑的场合,油雾器就 是设计用以把需要的润滑剂加入到空气流中的元器件。 油雾器按雾化粒径大小分为普通型和微雾型;按原理可分 为固定节流式和可调节流式。油雾器的图形符号见图810(a),图8-10(b)为QIU型油雾器的结构图。
上一页 下一页 返回
8.2气压传动执行元件
2.气动电动机的特点及应用 气动电动机与和它起同样作用的电动机相比,其特点是壳
体轻,输送方便;又因为其工作介质是空气,就不必担心引起 火灾;气动电动机过载时能自动停转,而与供给压力保持平衡 状态。由于上述特点,气动电动机广泛应用于矿山机械及气 动工具等场合。
.理论耗气量qt
qt=ALN
(8-4)
式中A—活塞(柱塞)有效作用面积(m2)
L—活塞(柱塞)有效行程(m);
N一每秒钟往复次数。
上一页 下一页 返回
8.2气压传动执行元件
8.2.2气动电动机
1.气动电动机分类 气动电动机的分类不论从形式上、结构上都与空气压缩机相
似,工作原理上相反。常用的气压电动机是容积式气动电动 机,它利用工作腔的容积变化来做功,分叶片式、活塞式和 齿轮式等形式。气动电动机的图形符号与液压电动机符号对 应,只是将其表示进排气口的三角画成空的即可,如图817(a)所示。图8-17 (b)是叶片式气动电动机的特性曲线。
(3)分水滤气器分水滤气器结构形式有多种。人工排出分水 滤气器的图形符号见图8-6 (a)。图8-6 (b)是QSL型人工 排出分水滤气器。其分水效率大于75%,粉尘滤除效率 95%以上。
相关文档
最新文档