信号与系统实验报告3
《信号与系统》课程实验报告
《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告
信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告
信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告-实验3--周期信号的频谱分析
信号与系统实验报告-实验3--周期信号的频谱分析信号与系统实验报告实验三周期信号的频谱分析实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。
程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of timew0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title('signal xt')(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
实验三一阶网络频响特性测量,信号与系统,南京理工大学紫金学院实验报告
信号与系统实验报告实验名称:一阶网络频响特性测量姓名:学号:班级:通信时间:2013.6南京理工大学紫金学院电光系一、 实验目的1、 掌握一阶网络的构成方法;2、 掌握一阶网络的系统响应特性;3、 了解一阶网络频响特性图的测量方法;二、实验基本原理系统响应特性是指系统在正弦信号激励下,稳态响应随信号频率变化而变化的特性,称为系统的频率响应特性(frequency response )简称频响特性。
一阶系统是构成复杂系统的基本单元。
学习一阶系统的特点有助于对一般系统特性的了解。
一阶系统的系统函数为H(s),表达式可以写成:γ+⋅=s k s H 1)( k 为一常数 (3-1) 激励信号x(t)为:(3-2)按照系统频响特性的定义可求得该一阶系统的稳态响应为:(3-3)其中⎣⎦00)()(|)(00ϕj j s ej H j H s H Ω=Ω=Ω=,⎣⎦)(00Ω=j H H 。
可见,当改变系统输入信号的频率时,稳态响应的幅度和相位也随之而改变。
因果系统是稳定的要求:0>γ,不失一般性可设τγ1==k 。
该系统的频响特性为:11)(+Ω=Ωτj j H (3-4)从其频响函数中可以看出系统响应呈低通方式,其3dB 带宽点τ1。
系统的频响特性图如下图:0()sin()m x t E t =Ω000()sin()ss m y t E H t ϕ=Ω+θ图1 一阶网络频响特性图一阶低通系统的单位冲击响应与单位阶跃响应如下图:图2 一阶网络单位冲击响应与单位阶跃响应图三、实验内容及结果一阶系统的幅度谱一阶系统相位谱3、用矢量作图法作出该一阶系统的幅度谱和相位谱。
一阶系统的幅度谱一阶系统的相位谱4、作出一阶网络的单位阶跃响应波形,标注在阶跃响应最大值的(1-e-1)倍处的时间t的值,与理论值R1C1是否相符。
四、实验分析1、实验所得一阶网络的频响特性图和用矢量作图法所得的频响特性图有何异同?说明原因。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统课程实验报告
合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。
二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。
它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。
2.实验线路检查无误后,打开实验箱右侧总电源开关。
3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。
4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。
信号与系统分析实验报告
信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。
本实验报告将对信号与系统分析实验进行详细的描述和分析。
实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。
首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。
然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。
实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。
实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。
我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。
实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。
通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。
实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。
通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。
实验结果显示,不同频率的信号在频域上有不同的分布特性。
我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。
实验四:系统辨识本实验旨在研究系统的辨识方法。
我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。
实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。
结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。
实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。
这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。
通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。
信号与系统实验报告
实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。
在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。
1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。
在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。
在MATLAB中连续信号可用向量或符号运算功能来表示。
⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。
向量f为连续信号在向量t所定义的时间点上的样值。
⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。
⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。
%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。
方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
信号与系统的实验报告
信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。
在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。
实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。
然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。
通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。
实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。
首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。
然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。
通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。
实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。
然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。
通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。
通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。
实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。
然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。
信号与系统实验实验报告材料
实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MA TLAB表示及其可视化方法。
2. 掌握信号基本时域运算的MATLAB实现方法。
3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MA TLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MA TLAB并不能处理连续时间信号,在MA TLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形Time(seconds)图1 利用向量表示连续时间信号t图 2 利用符号对象表示连续时间信号sin(t)2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
1)相加和相乘信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。
采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。
信号与系统 实验报告
信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。
本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。
二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。
三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。
其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。
2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。
采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。
四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。
然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。
最后,将重建得到的信号与原始信号进行对比,分析重建误差。
实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。
而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。
2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。
例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。
同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。
实验结果表明,不同系统对信号的频率特性有着明显的影响。
高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。
通过调节滤波器的参数,可以实现对信号频率的选择性衰减。
五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
信号与系统实验报告
信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。
本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。
实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。
首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。
然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。
实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。
实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。
通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。
在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。
实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。
实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。
我们通过输入不同频率和幅度的信号,观察系统的输出响应。
实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。
通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。
实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。
通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。
实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。
实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。
结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。
实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。
MATLAB信号与系统实验报告
信号与系统实验报告(3)连续系统的零极点分析实验目的1、学习用Matlab 绘制连续系统零极点分布图、冲激响应波形、频率响应曲线图。
2、通过运行系统零极点分布与冲激响应的关系的演示程序,加深系统零极点分布对时域响应的影响。
从而建立系统稳定性的概念。
3、研究系统零极点分布与频率响应的关系,学习用Matlab 研究频率响应的方法。
实验内容1、用“拉普拉斯变换和系统函数的曲面图演示”程序,观察零极点三维图,加深对系统零极点的理解。
考虑以下系统函数:(a) )4)(2(1)(++=s s s H ;(b) )4)(2()(++=s s s s H ;(c) )3)(2()4)(1()(++++=s s s s s s H解:(1)程序 a1=-5:0.15:-1; b1=-2:0.15:2;[x,y]=meshgrid(a1,b1); s=x+j*y;fs=abs((1./((s+2).*(s+4)))); figure(1),mesh(x,y,fs); surf(x,y,fs); colormap(hsv); a2=-6:0.18:2; b2=-6:0.18:2;[x,y]=meshgrid(a2,b2); s=x+j*y;fs=abs(s./((s+2).*(s+4))); figure(2),mesh(x,y,fs); surf(x,y,fs); colormap(hsv);a3=-6:0.18:2; b3=-6:0.18:2;[x,y]=meshgrid(a3,b3);s=x+j*y;c=(s+1).*(s+4);d=s.*(s+3).*(s+2);fs=abs(c./d);figure(3),mesh(x,y,fs); surf(x,y,fs); colormap(hsv); (2)曲面图2、用“连续系统零极点和冲激响应的关系”程序,观察零极点对冲激响应的影响,加深对系统稳定性的理解。
画出下列系统的零极点分布图和冲激响应,确定系统的稳定性。
信号与系统实验报告实验三连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验报告实验名称:信号的卷积实验时间:周一第6~8节实验日期:2014/11/24姓名:吕葛梁学号:********姓名:沈俊学号:********姓名:王海帆学号:********一.实验目的1. 理解卷积的物理意义;2. 掌握运用计算机进行卷积运算的原理和方法;3. 熟悉卷积运算函数conv 的应用;二.实验原理1.卷积的定义连续时间和离散时间卷积的定义分别如下所示:τττd t f f t f t f t f )()()(*)()(2121-⋅==⎰∞∞- ][][][*][][2121k n f k f n f n f n f k -⋅==∑∞-∞=2.卷积的计算由于计算机技术的发展,通过编程的方法来计算卷积积分和卷积和已经不再是冗繁的工作,并可以获得足够的精度,因此信号的时域卷积分析法在系统分析中得到了广泛的应用。
卷积积分的数值运算可以应用信号的分段求和来实现,即:∆⋅∆-⋅∆=-⋅==∑⎰∞-∞=→∆∞∞-)()(lim )()()(*)()(2102121k t f k f d t f f t f t f t f k τττ 数值运算只求当∆=n t 时的信号值)(∆n f ,则由上式可以得到:])[(][][][)(2121∆-⋅∆∆=∆⋅∆-∆⋅∆=∆∑∑∞-∞=∞-∞=k n f k f k n f k f n f k k上式中实际上就是连续信号)()(21t f t f 等间隔均匀抽样的离散序列)()(21∆∆n f n f 的卷积和,当∆足够小的时候)(∆n f 就是信号卷积积分的数值近似。
因此,在利用计算机计算两信号卷积积分时,实质上是先将其转化为离散序列,再利用离散卷积和计算原理来计算。
3.卷积的应用3.1 求解系统响应卷积是信号与系统时域分析的基本手段,主要应用于求解系统响应,已知一LTI 系统的单位冲激响应和系统激励信号则系统响应为激励与单位冲激响应的卷积。
τττd t h x t h t x t y )()()(*)()(-⋅==⎰∞∞-][][][*][][k n h k x n h n x n y k -⋅==∑∞-∞=需要注意的是利用卷积分析方法求得的系统响应为零状态响应。
3.2 相关性分析相关函数是描述两个信号相似程度的量。
两信号之间的相关函数一般称之为互相关函数或者互关函数,定义如下:ττττττd f t f d t f f t R )()()()()(212112⋅+=-⋅=⎰⎰∞∞-∞∞-ττττττd t f f d f t f t R )()()()()(212121+⋅=⋅-=⎰⎰∞∞-∞∞-若)()(21t f t f 是同一信号,此时相关函数称为自相关函数或者自关函数:dt t f t f dt t f t f R )()()()()(⋅+=-⋅=⎰⎰∞∞-∞∞-τττ对于相关函数与卷积运算有着密切的联系,由卷积公式与相关函数比较得:)(*)()(2112t f t f t R -=可见,由第二个信号反转再与第一个信号卷积即得到两信号的相关函数。
4.涉及的Matlab 函数 4.1 conv 函数格式w = conv(u,v),可以实现两个有限长输入序列u ,v 的卷积运算,得到有限冲激响应系统的输出序列。
输出序列长度为两个输入序列长度和减一。
三.实验内容给定如下因果线性时不变系统:y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3](1)不用impz 函数,使用filter 命令,求出以上系统的单位冲激响应h[n]的前20个样本; 【程序】clear all ; n=0:19; x=(n==0)num=[0.9 -0.45 0.35 0.002]; den=[1 0.71 -0.46 -0.62]; h=filter(num,den,x); subplot(2,1,1); stem(h,'.');title('用filter 产生的响应'); grid;y1=impz(num,den,20); subplot(2,1,2); stem(y1,'.');title('由impz 产生的响应'); grid;(2)得到h[n]后,给定x[n],计算卷积输出y[n];并用滤波器h[n]对输入x[n]滤波,求得y1[n];x=[1 -2 3 -4 3 2 1];%输入序列y=conv(h,x);%h由(1)中filter命令求出n=0:25;subplot(2,1,1);stem(n,y);xlabel(‘时间序号n’);ylabel(‘振幅’);title(‘用卷积得到的输出’);grid;x1=[x zeros(1,19)];y1=filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel(‘时间序号n’);ylabel(‘振幅’);title(‘用滤波得到的输出’);grid;【程序】clear all;n=0:19;q=(n==0);num=[0.9 -0.45 0.35 0.002];den=[1 0.71 -0.46 -0.62];h=filter(num,den,q);x=[1 -2 3 -4 3 2 1];y=conv(h,x);n=0:25;subplot(2,1,1);stem(n,y,'.');xlabel('时间序号n');ylabel('振幅');title('用卷积得到的输出');grid;x1=[x zeros(1,19)];y1=filter(h,1,x1);subplot(2,1,2);stem(n,y1,'.');xlabel('时间序号n');ylabel('振幅');title('用滤波得到的输出');grid;(3)y[n]和)y1[n]有差别吗?为什么要对x[n]进行补零得到的x1[n]来作为输入来产生y1[n]?答:y[n]和y1[n]无差别。
对x[n]补零后得到的x1[n]作为输入来产生y1[n]是因为filter 函数产生的输入和输出序列长度相同,而两信号卷积后所得的长度为这两个信号长度之和减1(即为使得y[n]和y1[n]长度相同)。
而且根据卷积的等式:][][][*][][k n h k x n h n x n y k -⋅==∑∞-∞=为使得之后的值有意义,需将x[n]补零。
(4)思考:设计实验,证明下列结论①单位冲激信号卷积:)()(*)(t f t f t =δ,)()(*)(00t t f t f t t -=-δ【程序】clear all; n=[0:20]; d=(n==0); f=sin(n); f1=conv(d,f);subplot(3,1,1); f1=f1(1:21); stem(n,f1,'.'); title('δ[n]*f[n]'); grid;subplot(3,1,2); stem(n,f,'.'); title('f[n]'); grid;subplot(3,1,3); stem(n,f-f1,'.'); title('δ[n]*f[n]-f[n]'); grid;clear all; n=[0:30]; t0=5;d=(n-t0==0); f=sin(n); f1=conv(d,f);subplot(3,1,1); f1=f1(1:31); stem(n,f1,'.');title('δ[n -n0]*f[n]');grid;subplot(3,1,2); f=[zeros(1,t0) f]; f=f(1:31); stem(n,f,'.'); title('f[n]');grid;subplot(3,1,3); stem(n,f-f1,'.');title('δ[n -n0]*f[n]-f[n]');grid;②卷积交换律)(*)()(*)()(1221t f t f t f t f t f ==【程序】clear all; n=0:30;f1=sin(n);f2=cos(n);y1=conv(f1,f2);y1=y1(1:31); y2=conv(f2,f1);y2=y2(1:31);subplot(3,1,1);stem(n,y1,'.'); title('f1*f2');grid;subplot(3,1,2);stem(n,y2,'.'); title('f2*f1');grid;subplot(3,1,3);y3=y1-y2; stem(n,y3,'.');grid;③卷积分配律)(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+【程序】clear all; n=0:30;f1=(-1).^n;f2=cos(n);f3=sin(n);y1=conv(f1,(f2+f3));y1=y1(1:31);y2=conv(f1,f2)+conv(f1,f3);y2=y2(1:31);subplot(3,1,1);stem(n,y1,'.'); title('f1*[f2+f3]');grid;subplot(3,1,2);stem(n,y2,'.'); title('f1*f2+f1*f3');grid;subplot(3,1,3);y3=y1-y2; stem(n,y3,'.');title('f1*[f2+f3]-f1*f2+f1*f3'); grid;五.实验分析本次实验通过对由卷积输出的y[n]和滤波器得到的y1[n]进行比较,让人们加深对卷积的原理意义的理解,本实验的整体思路如下:1、滤波得到信号:利用filter函数以h[n]作为滤波器,由输入x[n]补零后得到y1[n]卷积得到信号:利用conv函数,由输入x[n]与h[n]卷积后得到y[n](问题的产生:为什么要对x[n]进行补零)比较上述两种形式得到的信号,发现信号是相同的。