模态分析理论基础
模态分析理论基础共62页文档
40、学而不思则罔,思而不学则殆。——孔子
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
模态分析理论基础
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
模态分析的基础理论
模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。
在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。
模态分析的基础理论包括概率论、统计学和模态分析技术等。
概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。
在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。
通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。
统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。
模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。
在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。
聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。
主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。
这可以帮助我们更好地理解系统模态之间的关系和重要性。
模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。
通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。
模态分析的基础理论对于理解和优化系统具有重要意义。
通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。
同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。
因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。
第3章 实验模态分析的基本理论
实验模态分析第三章:实验模态分析的基本理论振动系统的特性可以用模态来描述:固有频率、固有振型(主振型)、模态质量、模态刚度和模态阻尼等。
建立用模态参数表示的振动系统的运动方程并确定其模态参数的过程使称为模态分析。
—种理解可以认为,振动系统的物理模型、物理参数和以物理参数表示的运动方程都是已知的,引入模态参数、建立模态方程的目的是为了简化计算,解除方程耦合,缩减自由度。
另一种理解可以认为,通过对实际结构的振动测试,识别振动系统的模态参数,从而建立起系统的以模态参数表示的运动方程,供各种工程计算应用。
试验模态分析指的是后一种过程,即通过振动测试(称模态试验),识别模态参数,建立以模态参数表示的运动方程这样一个过程。
1 多自由度系统振动基础回顾&&&++=M x C x K x f t []{}[]{}[]{}{()} 2实模态理论一个n 自由度线性定常振动系统,其运动方程可以如下表示:现对两端作付氏变换得:[]{}[]{}[]{}{()}M x C xK x f t ++=&&&2([][][]){()}{()}M j C K X F ωωωω−++=式中和分别是x(t)和F(t)的付氏变换,并有()X ω()F ω()()j t X x t e dt ωω+∞−−∞=∫()()j t F f t e dtωω+∞−−∞=∫(){()}{()}Z X F ωωω=111212122212()()()()()()()()()()n n n n nn Z Z Z Z Z Z Z Z Z Z ωωωωωωωωωω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 1()[()]{()}{()}{()}X Z F H F ωωωωω−==2[][][]K M j C ωω=−+阻抗矩阵中各元素值无法在实际振动测试中获得,因为人们不可能在实际结构上固定其它坐标,令其不动,仪留下J坐标,待其作出响应;也不可能仅使某个坐标运动,在其余坐标上测量力。
_模态分析理论基础
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
Iration Engineering, Northwestern Polytechnical University, China
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结 构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准 确确定的影响,特别是结构的形状和动态特性很复杂时,
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
•解的形式(s为复数)及拉氏 变换: x Xest (ms2 cs k ) x(s) f (s)
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
单自由度模态分析理论
要点二
非线性模态分析的研 究
目前,大多数模态分析研究都集中在 线性系统上。然而,在许多工程应用 中,非线性因素对结构振动的影响是 不可忽视的。因此,未来可以进一步 研究非线性模态分析方法,以更准确 地描述这些非线性效应。
要点三
智能材料和结构的应 用
随着智能材料和结构的发展,它们在 许多领域的应用越来越广泛。这些材 料和结构具有独特的动态特性,需要 新的模态分析方法来描述。因此,未 来的研究可以探索适用于智能材料和 结构的模态分析方法。
背景
随着工程结构的日益复杂化,模态分析在结构健康监测、振 动控制、地震工程等领域的应用越来越广泛。单自由度模态 分析作为模态分析的基础,为多自由度模态分析提供了理论 支持。
模态分析的定义
模态
模态是结构的固有振动特性,包 括频率、阻尼比和振型。
模态分析
模态分析是通过试验或数值方法 识别结构的模态参数的过程。
模态振型之间具有正交性, 即不同模态的振动不会相 互干扰。
选择性
在实际工程中,可以根据需要 选择特定的模态进行分析,以 简化计算和提高分析效率。
Part
03
单自由度系统的01
激振器激励
STEP 02
自由衰减振动
通过激振器对系统施加激励 ,使其产生振动响应,然后 采集响应信号进行分析。
04
单自由度系统的模态特性分析
模态正交性分析
模态正交性是指在模态空间中,不同的模态之间相互独立, 没有耦合关系。在单自由度系统中,模态正交性表现为各模 态振型函数的正交性,即它们的内积为零。
模态正交性的意义在于,它使得各模态之间互不干扰,各自 独立地响应外部激励,从而使得系统的响应可以通过叠加各 模态的响应得到。
模态分析理论基础
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准
确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
•传递函数和频率响应函数
H(s)m2s(11jg)k
H()m21(1jg)k
(1+jg)k — 复刚度
–用实部和虚部表示
H ()1 k (1 1 2 )22 g2j(1 2)g 2g2
与粘性阻尼系统相比频响函数形式相同 g和2 相互置换即可得各自表达式
位移、速度和加速度传递函数
Hd (s)
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
x(s) f (s)
Hv(s)
v(s) f (s)
Ha(s)
a(s) f (s)
• 位移、速度和加速度频率响应函数
()
x() f ()
Hv()
v() f ()
• 三者之间的关系
Ha()
模态分析的基础理论
运动微分方程
单自由度系统无阻尼自由振动是简谐振动
2π
m
T 2π
n
k
fn
1 T
n
2π
1 2π
k m
能量关系
mx dx kx dx 0 dt dt
意义:惯性力的功率Fm与弹性力的功率Fs之和为零
d dt
1 2
mx2
1 2
kx 2
0
ET
1 mx2 2
单自由度系统
自由振动 简谐振动 非周期强迫振动
自由振动
振动系统在初始激励下或外加激励消失后的 运动状态。
自由振动时系统不受外界激励的影响,其运 动时的能量来自于初始时刻弹性元件和惯性 元件中存储的能量。
振动规律完全取决于初始时刻存储的能量和 系统本身的性质。
运动微分方程
•使该矢量以等角速度在复平面内旋转(复数旋转矢量)
虚轴
ei x cos i sin
P A
t
z Acost i sint Aeit
实轴
y Asint Im z Im Aeit
运动学
速度、加速度的复数表示
位移 x Aeit
速度 x d Aeit iAAeeiitt / 2
2.0
0.5 和 0.7 临 界 阻 尼 比 无
c/cc=0
抛物线
阻尼曲线更接近理想加
1.5
速度计曲线
c/cc=0.5
1.0
c/cc=0.7
0.5
0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
模态分析基本理论
+ +
(C1 (C2
+ +
C2 C3
)x&1(t) - C2x&2 (t) )x&2 (t) - C2x&1(t)
+ +
(K1 (K2
+ K2 )x1(t) - K2x2 (t) + K3 )x2 (t) - K2x1(t)
= =
f1 (t) f2 (t)
第三节 多自由度振动系统举例
一 系统方程
写出矩阵形式:
\
eλ1 t
\
e∧t
\
=
O
0
eλN t
eλ*1 t
0
O
e
λ*N
t
第四节 多自由度系统相关模态概念
一 无阻尼系统
阻尼矩阵[C]为零矩阵的系统
系统阻尼因子σ r = 0 ,全为纯虚数极点 λ1 = jω,L , λ*N = − jωN
系统方程:
P2 + Pα Pβ+1
[M]
+
[K
]{x}
=
{0}
比例阻尼系统频响函数
\
或 [H( jω)] = [ψ]
[ ] ∑ { } { } H(jω)
=
N
j2ωr Qr
ψ
r
ψ
T
r
r =1
(σ
2
r
+
ω
2
r
-
ω
2
)
-
2σ
r
模态分析理论
e t
sin dt
就是脉冲响应函数。
很容易证明频响函数和脉冲响应函数是一对傅氏变换对:
H () Fh(t)
(1) 简谐激励
结构在简谐激励下的稳态响应也是同频率的简谐振动。但有相位差。
f (t) Fe j(t ) x(t) Xe j(t )
H() X e j( )
F
工程中,应变常常是非常重要的,而且易于测量。应变片体积小、质量小、成分低,对试验结
结构动力修改
模态分析的目的是了解系统的动态特性。在已知结构动态特性参数后,我们应该寻求改进系统动态 特性的方法。 有两种情况: 1) 由于制造和设计原因,不得不对现有结构进行局部修改。
word 格式-可编辑-感谢下载支持
机械模态分析理论基础
假设:系统是线性、定常与稳定的线性时不变系统
线性:描述系统振动的微分方程为线性方程,其响应对激励具有叠加性;
定常:振动系统的动态特性(如质量、阻尼、刚度等)不随时间变化,即具有频率保持性;如系统受简谐 激励-响应的频率必定与激励一致。 稳定:系统对有限激励必将产生一个有限响应,即系统满足傅氏变换和拉氏变换的条件。 振动系统分类:
word 格式-可编辑-感谢下载支持
ˆ
2 fx
()
1
GMM G ff ()
1 1
GNN Gxx ( )
输入存在噪声,会使估计的频响函数偏小;
输出存在噪声,会使估计的频响函数偏大;
还可用下面一些估计方法:
Hˆ 3 ()
Hˆ 1 ( )
2
Hˆ 2 ()
Hˆ 4 () Hˆ1() Hˆ 2 ()
K s2M φs 0
右乘 φs ,得到:
φsT KT s2MT φr 0
模态分析理论基础
损耗因子
E 2U
U——最大势能
根据能量等效原则(一个周期内等效粘性阻尼与结构阻尼耗散能量相等 ΔW=ΔE),求得结构阻尼的等效粘性阻尼系数ce :
ce g rk 2
或
ce
k
注意与频率有 关,非常数
其中 g
rk k 称为结构阻尼系数,具有刚度量纲。 2
损耗因子常称为结构阻尼比。
5
2014/12/18
表1.3-1 单自由度结构阻尼系统频响函数各种图形及数字特征(续)
(b) 相频特性曲线
半功率带宽
O 4 2 4
A B
① 拐点M (位移谐振点):
A M B
=1 ( =D =0 )
固有频率
0 D
-
② 半功率点A、B: A ,B 结构阻尼比
(1.3-1)
其中频率比(无量纲频率) B. 频响函数的极坐标表达式:
0
H H e j
(1.3-2) (1.3-3) (1.3-4)
8
其中:幅频特性 相频特性
H
1 k
1
2
1
2
tg 1
2 1
i. ii.
各种特性曲线不象结构阻尼系统那样具有较简单的特征; 粘性阻尼系统具有三种不相等的谐振频率:位移谐振频率D、阻尼谐 振频率d和无阻尼谐振频率0,它们出现在各种曲线的不同特征点上, 具有如下关系:
D d 0
iii.
粘性阻尼系统的Nyquist图也不在是一个圆,而是一个近似桃形的图形。 不过,在小阻尼情形下,使用Nyquist图作参数识别时仍可将其视为圆 来处理。
模态分析的理论介绍及目的
模态分析理论1模态分析简介1.1 模态简介模态是结构固有的振动特性,每一个模态具有一个特定的固有频率、阻尼比和模态振型。
这些模态参数可以由分析软件分析取得,也可以经过试验计算获得,这样一个软件或者试验分析过程称为模态分析。
这个分析结果如果是由有限元计算的方法取得的,则称为计算模态分析;如果结果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
1.2 固有频率简介固有频率是物体的一种物理特性,由它的结构、大小、形状等因素决定的。
这种物理特征不以物体是否处于振动状态而转移。
当物体在多个频率上振动时会渐渐固定在某个频率上振动,当他受到某一频率策动时,振幅会达到最大值,这个频率就是物体的固有频率。
1.3 振型简介振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一个物体实际上都会有无穷多个固有频率,每一阶固有频率相对应物体相对应的形状改变我们称之为振型。
理论上来说振型也有无穷多个,但是由于振型阶数越高,阻尼作用造成的衰减越快,所以高振型只有在振动初期才较明显,以后则衰减。
因此一般情况下仅考虑较低的几个振型.1.4模态分析的目的模态分析技术从上世纪60年代开始发展至今,已趋于成熟。
它和有限元分析技术一起,已成为结构动力学中的两大支柱。
到目前,这一技术已经发展成为解决工程振动问题的重要手段,在机械、航空航天、土木建筑、制造化工等工程领域被广泛的应用。
我国在这一方面的研究,在理论上和应用上都取得了很大的成果,处于世界前列。
模态分析的最终目标就是识别出系统的模态参数,为结构系统的振动特性的分析、振动故障的诊断和检测以及结构的优化提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价所求结构系统的动态特性;2) 在新产品设计中进行结构特性的预估,优化对结构的设计;3) 诊断及预报结构系统中的故障;4) 识别结构系统的载荷。
振动 冲击及噪声测试技术09-模态分析PPT
八 、模态分析系统
► 反映了模态参数k、m、g、φ、 ω与H (ω)之间的关
系 ,是参数识别的基本公式
►如果H (ω)的值足够多 ,便可以求得系统的各个模
态参数
七 、模态参数识别
是一种系统识别技术
识别步骤:
( 1)模态试验,测量导纳 Hlp (ω)
(2)根据实测导纳值求出结构的模态参数
ωi 、mi 、ki 、ci 、φli 、 (3) 由模态参数φ求pi 出相应的物理模型参数
第九讲 、模态分析基本原理
将复杂的多自由度系统模态分解为若干 个单自度系统模态来分析 ,是一种重要 的分析方法
一 、理论基础
► 物理模型: 又称空间模型 ,用质量 、刚度和阻尼特性描述结构 的物理特性
► 模态模型: 即振动模态(振型) ,一组固有频率以及对应的振 型和模态阻尼因子
► 响应模态: 即响应特性 ,结构在标准激励下的响应 ,一般是指 一组频率响应函数
F (f2) 2阶主模态
3 、模态质量矩阵
共振时的运动方程 其中[M]称为模态质量矩阵 ,q称为模态坐标 广义坐标系与模态坐标间的关系为
可见模态质量与结构质量是不一样的
3 、模态刚度与各阶共振频率
模态刚度矩阵
系统特征值(共振频率) 系统坐标系的变换不会改变系统的特征值
四 、粘性阻尼系统的模态
阻尼振动系统是强迫振动系统 对于粘性阻尼系统 ,其运动方程为
1 、物理模型和模态模型
物理模型mk1Fra bibliotek模态模型 2
模态模型 1
模态模型 3
2、单自度系统的响应模型 Ⅰ
位移导纳
2 、单自度系统的响应模型Ⅱ
奈奎斯特图
位移图
速度图
什么是模态分析,模态分析有什么用
什么是模态分析,模态分析有什么用什么是模态分析模态分析有什么用结构劢力学分析中,最基础、也是最重要的一种分析类型就是“结构模态分析”。
模态分析主要用亍计算结构的振劢频率和振劢形态,因此,又可以叫做频率分析戒者是振型分析。
劢力学分析可分为时域分析不频域分析,模态分析是劢力学频域分析的基础分析类型。
基础理论劢力学控制方程可表示为微分方程:其中,[ M ] 为结构质量矩阵,[ C ] 为结构阷尼矩阵,[ K ] 为结构刚度矩阵,{ F } 为随时间变化的外力载荷函数,{ u } 为节点位移矢量,为节点速度矢量,{ ü } 为节点加速度矢量。
在结构模态分析中丌需要考虑外力的影响,因此,模态分析的劢力学控制方程可表示为:理想情况下,结构在振劢过程中,丌考虑阷尼效应,也就是所谓的自由振劢情况,模态分析又可描述为:对上迚一步分析,假设此时的自由振劢为谐响应运劢,也就是说u = u 0 sin( ωt ),上又可迚一步描述为:对上式求解,可得方程的根是ω i²,即特征值,其中i 的范围是从1 到结构自由度个数N (有限元分析中,自由度个数N 一般丌超过分析模型网格节点数的三倍)。
特征值开平方根是ω i ,即固有圆周频率,这样,结构振劢频率(结构固有频率)f i就可通过公式f i = ω i /2 π 得到。
有限元模态分析可以得到f i 戒者ω i ,都可以用来描述结构的振劢频率。
特征值对应的特性矢量为{ u } i 。
特征矢量{ u } i表示结构在以固有频率f i振劢时所具有的振劢形状(振型)。
模态分析中的矩阵1. 模态分析微分方程组包含六个矩阵:[ K ] 代表刚度矩阵。
可参考“结构静力学”中的解释说明。
{ u } 代表位移矢量。
主要用来描述模态分析的振型。
可参考“结构静力学”中的解释说明,但一定要注意,模态分析中得到的位移矢量不静力学分析中位移矢量代表变形丌同。
[ C ] 代表阷尼矩阵。
第一章模态分析理论基础
共振频率点
ds max d 1
• 粘滞阻尼系统
– Nyquist图
2
2
[H
R
( )]2
(H
I
( ))2
1
4k
1
4k
» 特点
»桃子形,阻尼比越小
轨迹圆越大
» ( 是变的,所以不是圆 )
在固有频率附近,曲线 接近圆,仍可利用圆
的特性
第20页/共60页
速度与加速度频响函数特性曲线
• 关系回顾
HR 1, 2
(
)
4k
1 (1
)
2
1
g
2
半功率带宽反映阻尼大小 阻尼越大,半功率带宽
越大,反之亦然
第17页/共60页
• 虚频图
• •
H
I
( )
g
k[(1 2 )2
(结构阻尼) (g粘2 ] 性阻尼)
• 以H结I构(阻) 尼k[为(1例:2 )22(2 )2 ]
– 系统共振时虚部达到最大值
– 系统共振时实部为零
m1
机架线
第30页/共60页
• 一般多自由度约束系统
机架线
– N自由度约束系统有N个共振频率,(N-1)个反共振频率 – 对原点函数共振反共振交替出现 – 对跨点频响函数无此规律 – 一般两个距离远的跨点出现反共振的机会比较近的跨点少
第31页/共60页
– 自由系统
• 两自由度系统运动方程(无阻尼)
第7页/共60页
单自由度系统频响函数分析
粘性阻尼系统
•阻尼力(与振动速度成正比):
•强迫fd振动方c程x 及其解
..
.
m x•解c的x形式k(xs为复f 数)及拉氏变换:
模态分析理论基础
点,有图可知节点并不唯一,而且修改前后节点的位置未变。
对应尽可能避开结构振动的节点,以免给测量带来误差。
4.4试验模态分析试验模态分析的目的是为了验证理论模态分析的正确性的基础上进行深入研究奠定基础。
4.4.1试验模态分析的理论基础阻1所以在进行模态实验为在理论模态分析在物理坐标下,描述N自由度离散振动系统的运动微分方程为阻】耕+【c】扛}+医】M=沙}(4.2)式中:【M]——质量矩阵(对称且正定),M∈R~,【C】——阻尼矩阵,C∈R“”,晖】——刚度矩阵(对称且正定或半正定),K∈R“”,{x),{卦,{封——N维位移、速度和加速度响应向量,{厂(r))——_N维激振力向量。
设系统的初始状态为零,对式(4.2)两边进行拉普拉斯变换可得([Mls2“C]s+【K]){X0))=【Z(s)]{工0))={F0))式中的矩阵【Z(s)]-([M]s2+[c]s+[K】)反映了系统的动态特性,称为系统动态矩阵或广义阻抗矩阵,其逆阵[日(5)】=[Z(s)】~=(【M]s2+【C]s+[K])。
1称为广义导纳矩阵,也就是传递函数矩阵。
由式(2.2)可知{x(J))_【日0)】(F(J)}在上式中.令S=joJ,即可得到系统在频域内输出和输入的关系式{并(国)}=【日(脚)】(F(国))(4.3)(4.4)(4.5)(4.6)(4.7)式中[H(co)】为频率响应函数矩阵。
[H(∞)】矩阵中第f行_,列的元素%(叻2篇(48)表示仅在』坐标激振(其余坐标激振力为零)时,i坐标的响应与激振力之比。
在式(4.4)中令S=_,∞,可得阻抗矩阵[z(∞)】=([K]一曲2【吖])+jco[C](4.9)它和导纳矩阵有类似式(4.5)的关系[日(珊)]=[z(国)】~={(【置卜。
2[^卅)+jco[C】}1(4.10)对于一般机械、结构,假设矩阵[c]也对称,这样矩阵【z(∞)】对称,频率响应函数矩阵[日@)]也对称,故有q(脚)=HⅣ(03)(4.11)上式反映了机械、结构频率响应有互易性,可作为频率响应测试精度的一项重要检验手段。
模态分析理论
精心整理模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。
首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态22¨330m 0z k 2k k z 000m 0k k z 0z +--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9) 定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。
主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。
主振型定义如下:()i i j ωt+i i sin ωt+=Im(e )φφi mi mi z =z z (10)其中为第i 阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为(去除项化简得以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(15)有非零解,则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(16)即()234222ω-m ω+4km ω-3k m =0(17)阶固有频率,每一个特征根对应一个特征矢量,表示对应模态下该由式3i i 21=z k 如果设定了1z 值,则就可以求出三个特征根值下,2z 和3z 相对于1z 的位移。
假设m=k=1, 一阶模态,1ω=0:21z =1z ,31z =1z ,即;二阶模态,223kω=m :21z=0z,31z=-1z,即;三阶模态,23kω=m :21z=-2z,31z=1z,即。
运动方程的解耦图错误!未指定顺序。
运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化。
模态分析理论
模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。
首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态矢量、模态阻尼比、模态质量、模态刚度等参数。
特征根问题以图3所示的三自由度无阻尼系统为例,设123m =m =m =m ,123k =k =k =k ,图 1 三自由度系统其齐次运动方程为:(8)其中分别为系统的质量矩阵和刚度矩阵,123m 00m 00m=0m 0=0m 000m 00m ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,11212221k -k 0k -k 0k=-k k +k -k =-k 2k -k 0-k k 0-k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则运动方程展开式为: ¨11¨22¨33z m 00k k 0z 00m 0z k 2k k z 000m 0k k z 0z ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9)定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。
主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。
主振型定义如下:()i ij ωt+i i sin ωt+=Im(e)φφi mi mi z =z z (10)其中为第i 阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为初始相位。
对于三自由度系统,在第i 阶频率下,等式可以写成1m1i 2m2i i i 3m3i z z z =z sin(ωt+)z z φ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(11)mki z 表示第k 个自由度在第i 阶模态下的模态矩阵。
自由模态与约束模态的理论基础
网上经常看到一些朋友询问关于自由模态与约束模态的问题,而且看到了很多不同的说法。
而最近又有朋友向我问到了这个问题,我想,还是彻底地解决这个问题为好。
而要彻底解决它,就需要考察其理论基础。
所以这篇文章专门去看看它的理论底层。
首先我们要明确,无论是自由模态还是约束模态,都属于模态分析的范畴。
那么什么是模态分析呢?这个概念来自于《机械振动》。
于是我们到《机械振动》中去看看。
考察一个三自由度的例子现在我们要对该三自由度系统列动力学方程。
这很容易,只需要分别取出每个质量块,使用牛顿第二定律就好这样就有三个微分方程,用矩阵的形式整理这三个方程,得到其中这里的[m][k][c]分别是质量矩阵,刚度矩阵和阻尼矩阵。
而{F(t)}是力向量。
下面我们来考虑模态分析。
所谓模态分析,是取力向量为0,就是说系统不受外力;而且忽略阻尼,则上述方程变成下面的任务是求解这个微分方程组这种解很难找到,于是我们假设了一个解的形式为(很有意思的是,这种形式的解刚好是正确的)将该假设的解代入到上述方程中,得到整理上述方程组,得到该方程组的左边只与时间t有关,而右边与时间t无关。
如果要这两边相等,除非两端都等于一个常数。
例如都等于,于是有(1)以及(2)对于(1)式,从《高等数学》的二阶常系数微分方程的解可以知道,其解为对于(2)式,把它写成矩阵形式,并令可以得到提出位移向量{u},可以得到上述式子要有非零解,按照《线性代数》理论,有将该式子展开,可以得到根据它就可以解出各个可以证明,该方程有n个正实根,它们对应于系统的n个自然频率。
假设没有重根,则这些频率可以从小到大排序,得到这其中,最小的这个就是基频。
可见,系统有多少个自由度,就有多少个频率。
在解出所有频率后,将某个频率代入到中,就可以得到此时的此即系统的模态向量或者振型向量。
从以上推导中我们知道(1)有多少个自由度,就有多少个自然频率。
(2)有多少个自然频率,就有多少个与自然频率相对应的模态向量。
第10讲:模态分析
一、步进式正弦激励法
步进式正弦激励法是一种测量频响函数 的经典方法。在预先选定的频率范围内,从 最低频到最高频选定足够数目的离散频率值, 每次用一个频率给出激励信号,测出该激励 的稳定响应,再步进到下一个频率,进行同 样的测量。直到所有预先设定的离散点全都 步进完毕。
对于复杂的空间结构,一般情况下将表 现为三维空间变形。这就要求在结构上一个 几何点测量三个方向的响应。在这种情况下, 测量点数和几何点数并不相等。所有测点均 应在测量之前在结构上编号注明。
三、试验频段的选择
试验频段的选择应考虑机械或机构在正 常运行条件下激振力的频率范围。通常认为, 远离振源频带的模态对结构实际振动响应的 贡献较小,甚至认为低频激励激出的响应不 含高阶模态的贡献。实际上,高频模态的贡 献的大小除了与激励频带有关外,还与激振 力的分布状态有关。因此,试验频段应适当 高于振源频段。
五、激振器的支承
1. 当激振器外壳刚性固接于地面时,由 于支承刚度很大,可使激振系统的固有频率
远高于结构的弹性振动频率b>>s,适于用
来激振固有频率较低的结构。
2. 若将激振器外壳通过软弹簧接地,或
采用悬吊支承时,将有b<<s,适用于激振 固有频率较高的结构;为了尽量降低b,可
将重物附加在激振器上,以增加激振系统的 质量。
m1=20m2, 1:2=1 : 20,则二自由度系统
的第二阶固有频率与试件固有频率仅相差 1.2%,可近似为试件接地状态。
近似接地支承方法及等效二自由度系统
二 测点及测量方法的安排 测点位置、测点数量及测量方向的选定 应考虑以下两方面的要求: (1) 能够明确显示在试验频段内的所有模 态的变形特征及各模态间的变形区别; (2) 保证所关心的结构点(如在总装时要与 其他部件连接的点)都在所选的测量点之中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章模态分析理论基础
姜节胜 西北工业大学 振动工程研究所
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
模态分析理论基础是20世纪30年代机械阻抗 与导纳的概念上发展起来。吸取了振动理论、 信号分析、数据处理、数理统计、自动控制理 论的有关营养,形成一套独特的理论。
对汽车车厢内或室内辐射噪声的控制,道理也一样。车厢座舱或室 内辐射噪声与其结构的振动特性(模态)关系密切,由于辐射噪声是 由结构振动“辐射”出来的。控制了结构的振动,也就是实现了辐射 噪声的控制。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
f. 有限元模性修正与确认
当今工程结构计算采用最广泛的计算模型就是有限元模型。再好的 算法和软件都是建立在理想的结构物理参数和边界条件假设上的。结构 有限元计算结果和试验往往存在不小差距。此时在模态试验可信的前提 下,一般是以试验结果来对有限元模型进行修正和确认。经过修正和确 认的有限元模型具有优化概念下的与试验结果最大的接近。可以进一步 用于后继的响应、载荷和强度计算。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
试验模态分析的典型应用
a. 获得结构的固有频率,可避免共振现象的发生
当外界激励力的频率等于振动系统的固有频率时,系统发生共振 现象。此时系统最大限度地从外界吸收能量,导致结构过大有害振动。 结构设计人员要设法使结构不工作在固有频率环境中。
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
d. 振动与噪声控制
既然结构振动是各阶振型响应的迭加,只要设法控制相关频率附近 的优势模态(改设计和加阻尼材料等或使用智能材料)就可以达到控 制结构振动的目的。
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实 际结构的误差,而且受到边界条件很难准 确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
解析模态分析可用有限元计算实现,而试验模态分析则是对结构进行 可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数 矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结 构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
b. 为了应用模态叠加法求结构响应,确定动强度, 和疲劳寿命
分析告诉我们任何线性结构在已知外激励作用下他的响应是可以 通过每个模态的响应迭加而成的。所以模态分析另一主要的应用是建 立结构动态响应的预测模型,为结构的动强度设计及疲劳寿命的估计 服务。
c. 载荷(外激励)识别
由激励和模态参数预测响应的问题称为动力学正问题,反之由响应 和模态参数求激励称为反问题。原则上只要全部的各阶模态参数都求 得, 由响应就可以求出外激励(称为载荷识别)。
模态分析的最终目标是识别出系统的模态 参数,为结构系统的振动分析、振动故障诊断 和预报、结构动力特性的优化设计提供依据。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
模态分析定义为:将线性时不变系统振动微分方程组中 的物理坐标变换为模态坐标,使方程组解耦,成为一组以 模态坐标及模态参数描述的独立方程,坐标变换的变换矩 阵为振型矩阵,其每列即为各阶振型。
相反,共振现象并非总是有害的:振动筛、粉末碾磨机、打夯机 和灭虫声发射装置等等就是共振现象的利用。结
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
单自由度系统频响函数分析
粘性阻尼系统
•阻尼力(与振动速度成正比):
fd cx
•强迫振动方程及其解
..
.
m x c x kx f
•解的形式(s为复数)及拉氏 变换:
x Xest (ms 2 cs k)x(s) f (s)
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
自由振动