模态分析理论基础

合集下载

模态分析理论基础共62页文档

模态分析理论基础共62页文档

40、学而不思则罔,思而不学则殆。——孔子

谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
模态分析理论基础
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

模态分析的基础理论

模态分析的基础理论

模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。

在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。

模态分析的基础理论包括概率论、统计学和模态分析技术等。

概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。

在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。

通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。

统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。

模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。

在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。

聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。

主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。

这可以帮助我们更好地理解系统模态之间的关系和重要性。

模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。

通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。

模态分析的基础理论对于理解和优化系统具有重要意义。

通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。

同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。

因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。

第3章 实验模态分析的基本理论

第3章 实验模态分析的基本理论

实验模态分析第三章:实验模态分析的基本理论振动系统的特性可以用模态来描述:固有频率、固有振型(主振型)、模态质量、模态刚度和模态阻尼等。

建立用模态参数表示的振动系统的运动方程并确定其模态参数的过程使称为模态分析。

—种理解可以认为,振动系统的物理模型、物理参数和以物理参数表示的运动方程都是已知的,引入模态参数、建立模态方程的目的是为了简化计算,解除方程耦合,缩减自由度。

另一种理解可以认为,通过对实际结构的振动测试,识别振动系统的模态参数,从而建立起系统的以模态参数表示的运动方程,供各种工程计算应用。

试验模态分析指的是后一种过程,即通过振动测试(称模态试验),识别模态参数,建立以模态参数表示的运动方程这样一个过程。

1 多自由度系统振动基础回顾&&&++=M x C x K x f t []{}[]{}[]{}{()} 2实模态理论一个n 自由度线性定常振动系统,其运动方程可以如下表示:现对两端作付氏变换得:[]{}[]{}[]{}{()}M x C xK x f t ++=&&&2([][][]){()}{()}M j C K X F ωωωω−++=式中和分别是x(t)和F(t)的付氏变换,并有()X ω()F ω()()j t X x t e dt ωω+∞−−∞=∫()()j t F f t e dtωω+∞−−∞=∫(){()}{()}Z X F ωωω=111212122212()()()()()()()()()()n n n n nn Z Z Z Z Z Z Z Z Z Z ωωωωωωωωωω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 1()[()]{()}{()}{()}X Z F H F ωωωωω−==2[][][]K M j C ωω=−+阻抗矩阵中各元素值无法在实际振动测试中获得,因为人们不可能在实际结构上固定其它坐标,令其不动,仪留下J坐标,待其作出响应;也不可能仅使某个坐标运动,在其余坐标上测量力。

_模态分析理论基础

_模态分析理论基础
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
Iration Engineering, Northwestern Polytechnical University, China
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结 构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准 确确定的影响,特别是结构的形状和动态特性很复杂时,
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
•解的形式(s为复数)及拉氏 变换: x Xest (ms2 cs k ) x(s) f (s)
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China

单自由度模态分析理论

单自由度模态分析理论

要点二
非线性模态分析的研 究
目前,大多数模态分析研究都集中在 线性系统上。然而,在许多工程应用 中,非线性因素对结构振动的影响是 不可忽视的。因此,未来可以进一步 研究非线性模态分析方法,以更准确 地描述这些非线性效应。
要点三
智能材料和结构的应 用
随着智能材料和结构的发展,它们在 许多领域的应用越来越广泛。这些材 料和结构具有独特的动态特性,需要 新的模态分析方法来描述。因此,未 来的研究可以探索适用于智能材料和 结构的模态分析方法。
背景
随着工程结构的日益复杂化,模态分析在结构健康监测、振 动控制、地震工程等领域的应用越来越广泛。单自由度模态 分析作为模态分析的基础,为多自由度模态分析提供了理论 支持。
模态分析的定义
模态
模态是结构的固有振动特性,包 括频率、阻尼比和振型。
模态分析
模态分析是通过试验或数值方法 识别结构的模态参数的过程。
模态振型之间具有正交性, 即不同模态的振动不会相 互干扰。
选择性
在实际工程中,可以根据需要 选择特定的模态进行分析,以 简化计算和提高分析效率。
Part
03
单自由度系统的01
激振器激励
STEP 02
自由衰减振动
通过激振器对系统施加激励 ,使其产生振动响应,然后 采集响应信号进行分析。
04
单自由度系统的模态特性分析
模态正交性分析
模态正交性是指在模态空间中,不同的模态之间相互独立, 没有耦合关系。在单自由度系统中,模态正交性表现为各模 态振型函数的正交性,即它们的内积为零。
模态正交性的意义在于,它使得各模态之间互不干扰,各自 独立地响应外部激励,从而使得系统的响应可以通过叠加各 模态的响应得到。

模态分析理论基础

模态分析理论基础

有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准
确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
•传递函数和频率响应函数
H(s)m2s(11jg)k
H()m21(1jg)k
(1+jg)k — 复刚度
–用实部和虚部表示
H ()1 k (1 1 2 )22 g2j(1 2)g 2g2
与粘性阻尼系统相比频响函数形式相同 g和2 相互置换即可得各自表达式
位移、速度和加速度传递函数
Hd (s)
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
x(s) f (s)
Hv(s)
v(s) f (s)
Ha(s)
a(s) f (s)
• 位移、速度和加速度频率响应函数

()
x() f ()
Hv()
v() f ()
• 三者之间的关系
Ha()

模态分析的基础理论

模态分析的基础理论

运动微分方程
单自由度系统无阻尼自由振动是简谐振动

m
T 2π
n
k
fn

1 T

n


1 2π
k m
能量关系
mx dx kx dx 0 dt dt
意义:惯性力的功率Fm与弹性力的功率Fs之和为零
d dt

1 2
mx2

1 2
kx 2


0
ET

1 mx2 2
单自由度系统
自由振动 简谐振动 非周期强迫振动
自由振动
振动系统在初始激励下或外加激励消失后的 运动状态。
自由振动时系统不受外界激励的影响,其运 动时的能量来自于初始时刻弹性元件和惯性 元件中存储的能量。
振动规律完全取决于初始时刻存储的能量和 系统本身的性质。
运动微分方程
•使该矢量以等角速度在复平面内旋转(复数旋转矢量)
虚轴
ei x cos i sin
P A
t
z Acost i sint Aeit
实轴
y Asint Im z Im Aeit
运动学
速度、加速度的复数表示
位移 x Aeit
速度 x d Aeit iAAeeiitt / 2
2.0
0.5 和 0.7 临 界 阻 尼 比 无
c/cc=0
抛物线
阻尼曲线更接近理想加
1.5
速度计曲线
c/cc=0.5
1.0
c/cc=0.7
0.5
0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

模态分析基本理论

模态分析基本理论

+ +
(C1 (C2
+ +
C2 C3
)x&1(t) - C2x&2 (t) )x&2 (t) - C2x&1(t)
+ +
(K1 (K2
+ K2 )x1(t) - K2x2 (t) + K3 )x2 (t) - K2x1(t)
= =
f1 (t) f2 (t)
第三节 多自由度振动系统举例
一 系统方程
写出矩阵形式:

\
eλ1 t


\
e∧t
\

=



O
0

eλN t

eλ*1 t

0
O

e
λ*N
t

第四节 多自由度系统相关模态概念
一 无阻尼系统
阻尼矩阵[C]为零矩阵的系统
系统阻尼因子σ r = 0 ,全为纯虚数极点 λ1 = jω,L , λ*N = − jωN
系统方程:

P2 + Pα Pβ+1
[M]
+
[K
]{x}
=
{0}
比例阻尼系统频响函数
\
或 [H( jω)] = [ψ]

[ ] ∑ { } { } H(jω)
=
N
j2ωr Qr
ψ
r
ψ
T
r
r =1

2
r
+
ω
2
r
-
ω
2
)
-

r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0/26
第一章模态分析理论基础
姜节胜 西北工业大学 振动工程研究所
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
模态分析理论基础是20世纪30年代机械阻抗 与导纳的概念上发展起来。吸取了振动理论、 信号分析、数据处理、数理统计、自动控制理 论的有关营养,形成一套独特的理论。
对汽车车厢内或室内辐射噪声的控制,道理也一样。车厢座舱或室 内辐射噪声与其结构的振动特性(模态)关系密切,由于辐射噪声是 由结构振动“辐射”出来的。控制了结构的振动,也就是实现了辐射 噪声的控制。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
f. 有限元模性修正与确认
当今工程结构计算采用最广泛的计算模型就是有限元模型。再好的 算法和软件都是建立在理想的结构物理参数和边界条件假设上的。结构 有限元计算结果和试验往往存在不小差距。此时在模态试验可信的前提 下,一般是以试验结果来对有限元模型进行修正和确认。经过修正和确 认的有限元模型具有优化概念下的与试验结果最大的接近。可以进一步 用于后继的响应、载荷和强度计算。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
试验模态分析的典型应用
a. 获得结构的固有频率,可避免共振现象的发生
当外界激励力的频率等于振动系统的固有频率时,系统发生共振 现象。此时系统最大限度地从外界吸收能量,导致结构过大有害振动。 结构设计人员要设法使结构不工作在固有频率环境中。
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
d. 振动与噪声控制
既然结构振动是各阶振型响应的迭加,只要设法控制相关频率附近 的优势模态(改设计和加阻尼材料等或使用智能材料)就可以达到控 制结构振动的目的。
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实 际结构的误差,而且受到边界条件很难准 确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
解析模态分析可用有限元计算实现,而试验模态分析则是对结构进行 可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数 矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结 构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
b. 为了应用模态叠加法求结构响应,确定动强度, 和疲劳寿命
分析告诉我们任何线性结构在已知外激励作用下他的响应是可以 通过每个模态的响应迭加而成的。所以模态分析另一主要的应用是建 立结构动态响应的预测模型,为结构的动强度设计及疲劳寿命的估计 服务。
c. 载荷(外激励)识别
由激励和模态参数预测响应的问题称为动力学正问题,反之由响应 和模态参数求激励称为反问题。原则上只要全部的各阶模态参数都求 得, 由响应就可以求出外激励(称为载荷识别)。
模态分析的最终目标是识别出系统的模态 参数,为结构系统的振动分析、振动故障诊断 和预报、结构动力特性的优化设计提供依据。
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
模态分析定义为:将线性时不变系统振动微分方程组中 的物理坐标变换为模态坐标,使方程组解耦,成为一组以 模态坐标及模态参数描述的独立方程,坐标变换的变换矩 阵为振型矩阵,其每列即为各阶振型。
相反,共振现象并非总是有害的:振动筛、粉末碾磨机、打夯机 和灭虫声发射装置等等就是共振现象的利用。结
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
单自由度系统频响函数分析
粘性阻尼系统
•阻尼力(与振动速度成正比):
fd cx
•强迫振动方程及其解
..
.
m x c x kx f
•解的形式(s为复数)及拉氏 变换:
x Xest (ms 2 cs k)x(s) f (s)
IVE Institute of Vibration Engineering, Northwestern Polytechnical University, China
自由振动
相关文档
最新文档