2019年高考数学一轮: 第2章 第12节 导数与函数的极值、最值学案 文
近年届高考数学一轮复习第二章函数、导数及其应用课堂达标15导数与函数的极值、最值文新人教版(202
2019届高考数学一轮复习第二章函数、导数及其应用课堂达标15 导数与函数的极值、最值文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第二章函数、导数及其应用课堂达标15 导数与函数的极值、最值文新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第二章函数、导数及其应用课堂达标15 导数与函数的极值、最值文新人教版的全部内容。
课堂达标(十五)导数与函数的极值、最值[A基础巩固练]1.(2018·岳阳一模)下列函数中,既是奇函数又存在极值的是()A.y=x3B.y=ln(-x)C.y=x e-x D.y=x+错误![解析]由题可知,B、C选项中的函数不是奇函数,A选项中,函数y=x3单调递增(无极值),而D选项中的函数既为奇函数又存在极值.[答案]D2.(2018·哈尔滨调研)函数f(x)=错误!x2-ln x的最小值为( )A.12B.1C.0 D.不存在[解析]f′(x)=x-错误!=错误!且x>0。
令f′(x)>0,得x>1。
令f′(x)<0,得0<x<1.∴f(x)在x=1处取得极小值也是最小值,f(1)=错误!-ln 1=错误!。
[答案]A3.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y=f(x)图象的是( )[解析]因为[f(x)e x]′=f′(x)e x+f(x)(e x)′=[f(x)+f′(x)]e x,且x=-1为函数f(x)e x的一个极值点,e x>0,所以f(-1)+f′(-1)=0;选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0。
高中数学教案函数的极值和最值
高中数学教案函数的极值和最值高中数学教案:函数的极值和最值一、引言在高中数学中,函数的极值和最值是一个重要的概念和应用。
本教案将以清晰的例子和详细的解释来介绍函数的极值和最值的概念、求解方法和相关练习题。
二、函数的极值和最值的概念1. 极值的定义函数在某个定义域内有极值,是指在该定义域内存在一个或多个函数值最大或最小的点。
2. 最值的定义函数在某个定义域内有最值,是指在该定义域内函数的取值范围的最大值或最小值。
三、求解函数的极值和最值的方法1. 寻找极值点和最值点通过对函数取导数,并找到导数等于零或不存在的点,可以确定函数的极值点和最值点。
2. 判断极值和最值通过二阶导数的正负来判断极值点和最值点的类型。
四、例题讲解1. 求解函数 f(x) = x^3 - 3x^2 的极值和最值通过求解函数的导数 f'(x) 和二阶导数 f''(x),找到函数的极值点和最值点,并通过判断二阶导数的正负确定其类型。
五、练习题1. 练习题一:求解函数 f(x) = 2x^3 - 9x^2 + 12x + 7 的极值和最值。
2. 练习题二:求解函数 f(x) = e^x - 2x + 3 的极值和最值。
六、总结函数的极值和最值是数学中的重要概念,可以通过求解函数的导数和二阶导数来确定函数的极值点和最值点,并通过判断二阶导数的正负来确定其类型。
通过学习和练习,我们可以掌握函数的极值和最值的求解方法和技巧。
七、延伸阅读1. 函数的极值和最值在实际生活中的应用。
2. 更复杂的函数极值和最值问题的解法探究。
以上是本教案关于高中数学中函数的极值和最值的简要介绍和讲解,希望能够对学生们理解和掌握相关概念有所帮助。
希望同学们能够通过大量的练习和实践,深入理解函数的极值和最值的概念,提高解决问题的能力。
山东高考数学一轮总复习学案设计-第二章第十二讲第二课时导数与函数的极值、最值含答案解析
第二课时导数与函数的极值、最值知识梳理·双基自测知识梳理知识点一函数的极值1.函数的极值(1)设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)< f(x0),那么f(x0)是函数f(x)的一个极大值,记作f(x)极大值=f(x0);如果对x0附近的所有的点,都有f(x)> f(x0),那么f(x0)是函数f(x)的一个极小值,记作f(x)极小值=f(x0).极大值与极小值统称为极值.(2)当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法:如果x<x0有f′(x)>0,x>x0有f′(x)<0,那么f(x0)是极大值.如果x<x0有f′(x)<0,x>x0有f′(x)>0,那么f(x0)是极小值.2.求可导函数f(x)极值的步骤(1)求导数f′(x);(2)求方程f′(x)=0的根;(3)检验f′(x)在方程f′(x)=0的根左右的值的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y=f(x)在这个根处取得极大值;如果在根的左侧附近为负,右侧附近为正,那么函数y=f(x)在这个根处取得极小值.知识点二函数的最值1.函数的最值的概念设函数y=f(x)在[a,b]上连续,在(a,b)内可导,函数f(x)在[a,b]上一切函数值中的最大(最小)值,叫做函数y=f(x)的最大(最小)值.2.求函数最值的步骤设函数y=f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最值,可分两步进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.重要结论1.f′(x0)=0与x0是f(x)极值点的关系函数f(x)可导,则f′(x0)=0是x0为f(x)的极值点的必要不充分条件.例如,f(x)=x3,f′(0)=0,但x=0不是极值点.2.极大值(或极小值)可能不止一个,可能没有,极大值不一定大于极小值.3.极值与最值的关系极值只能在定义域内取得(不包括端点),最值却可以在端点处取得;有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取.4.定义在开区间(a,b)内的函数不一定存在最大(小)值.双基自测题组一走出误区1.(多选题)下列结论正确的是(ABCD)A.函数的极大值不一定比极小值大B.导数等于0的点不一定是函数的极值点C.若x0是函数y=f(x)的极值点,则一定有f′(x0)=0D.函数的最大值不一定是极大值,函数的最小值也不一定是极小值[解析]对于A,如图,在x1处的极大值比在x2处的极小值小.对于B,如y=x3在x=0处,导数为0,但不是极值点.对于C,由极点定义知显然正确.对于D,如图知正确.故选A、B、C、D.题组二走进教材2.(多选题)(选修2-2P32A T4改编)若函数f(x)的导函数f′(x)的图象如图所示,则下面正确的是(CD)A.x=1是最小值点B.x=0是极小值点C .x =2是极小值点D .函数f (x )在(1,2)上单调递减[解析] 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,f ′(x )在(1,2)上小于0,因此f (x )单调递减,选C 、D .3.(选修2-2P 32A T5改编)函数f (x )=(x 2-1)2+2的极值点是( C ) A .x =1B .x =-1C .x =1或-1或0D .x =0[解析] ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0,∴x =0,1,-1都是f (x )的极值点.4.(选修2-2P 32A T6改编)函数f (x )=ln x -x 在区间(0,e]上的最大值为( B ) A .1-e B .-1 C .-eD .0[解析] 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以当x =1时,f (x )取得最大值ln 1-1=-1.故选B .题组三 考题再现5.(2017·课标Ⅱ,11)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( A )A .-1B .-2e -3 C .5e -3D .1[解析] 由题意可得f ′(x )=e x -1[x 2+(a +2)x +a -1].∵x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,∴f ′(-2)=0,∴a =-1,∴f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1(x 2+x -2)=e x -1(x-1)(x +2),∴x ∈(-∞,-2),(1,+∞)时,f ′(x )>0,f (x )单调递增;x ∈(-2,1)时,f ′(x )<0,f (x )单调递减.∴f (x )极小值=f (1)=-1.故选A .6.(2018·课标Ⅰ,16,5分)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是-2[解析] 由f (x )=2sin x +sin 2x ,得f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2,令f ′(x )=0,得cos x =12或cos x =-1,可得当cos x ∈(-1,12)时,f ′(x )<0,f (x )为减函数;当cos x∈(12,1)时,f ′(x )>0,f (x )为增函数,所以当cos x =12时,f (x )取最小值,此时sin x =±32.又因为f (x )=2sin x +2sin x cos x =2sin x (1+cos x ),1+cos x ≥0恒成立,∴f (x )取最小值时,sin x =-32,∴f (x )min =2×(-32)×(1+12)=-332.KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 用导数求解函数极值问题——多维探究角度1 根据函数图象判断极值例1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( D )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)[解析] 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.故选D .角度2 求函数的极值例2 求下列函数的极值. (1)f (x )=12(x -5)2+6ln x ;(2)f (x )=x -a ln x (a ∈R ).[分析] 求导,研究函数的单调性从而确定极值. [解析] (1)函数f (x )的定义域为(0,+∞), f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x 1=2,x 2=3,可得x(0,2)2(2,3)3(3,+∞)f ′(x ) + 0 - 0 + f (x )极大值极小值由上表可知当x =2时,极大值f (2)=92+6ln 2,当x =3时,极小值f (3)=2+6ln 3.(2)f ′(x )=1-a x =x -ax,x >0.若a ≤0,则f ′(x )>0恒成立,f (x )不存在极值. 若a >0,则x ,f ′(x ),f (x )的变化情况如下表:x (0,a ) a (a ,+∞)f ′(x ) - 0 + f (x )极小值所以f (x )综上可知a ≤0时,无极值;a >0时,极小值f (a )=a -a ln a .名师点拨 ☞可导函数求极值的步骤(1)确定函数的定义域. (2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根和不可导点的x 的值顺次将函数的定义域分成若干个小开区间,并形成表格.(4)由f ′(x )=0的根左右的符号以及f ′(x )在不可导点左右的符号来判断f ′(x )在这个根或不可导点处取极值的情况,此步骤不可缺少.f ′(x )=0是函数有极值的必要条件.角度3 根据极值求参数的取值范围例3 (1)已知函数f (x )=x e x 在区间(a ,a +1)上存在极值点,则实数a 的取值范围为(-2,-1).(2)(2020·江西八校联考)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为a ∈(-∞,-1].[解析] (1)f ′(x )=e x +x e x =e x (x +1),令f ′(x )=0,得x =-1,当x ∈(-∞,-1)时,f (x )单调递减;当x ∈(-1,+∞)时,f (x )单调递增,则-1是函数f (x )的极值点,所以a <-1<a +1,即-2<a <-1.故填(-2,-1).(2)解法一:函数f (x )的定义域为(0,+∞),f ′(x )=2x -1+a x =2x 2-x +ax ,由题意知2x 2-x +a =0在R 上有两个不同的实数解,且在[1,+∞)上有解,所以Δ=1-8a >0,且2×12-1+a ≤0,所以a ∈(-∞,-1].由解法一得2x 2-x +a =0在[1,+∞)上有解即a =-2x 2+x ,x ∈[1,+∞),当x =1时有最大值-1,∴a ≤-1.名师点拨 ☞函数极值问题的常见类型及解题策略:(1)已知导函数图象判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f ′(x )→求方程f ′(x )=0的根→列表检验f ′(x )在f ′(x )=0的根的两侧的符号→得出结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且f (x )在该点左、右两侧的导数值符号相反.〔变式训练1〕(1)(多选题)(角度1)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述不正确的是( ABD )A . f (b )>f (a )>f (c )B .函数f (x )在x =c 处取得极小值,在x =e 处取得极大值C .函数f (x )在x =c 处取得极大值,在x =e 处取得极小值D .函数f (x )的最小值为f (d )(2)(角度2)函数y =e xx 的极小值为( B )A .1B .eC .-1D .-1e(3)(角度3)(2020·广东肇庆第二次检测)已知x =1是f (x )=[x 2-(a +3)x +2a +3]e x 的极小值点,则实数a 的取值范围是( D )A .(1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,1)[解析] (1)由图可知x ∈[a ,c ]时f ′(x )≥0,f (x )单调递增,又a <b <c ,∴f (a )<f (b )<f (c ),A 错;x <c 时,f ′(x )>0,f (x )递增;c <x <e 时,f ′(x )<0,f (x )递减,x >e 时,f ′(x )>0,f (x )递增.∴f (x )在x =c 处取得极大值,在x =e 处取得极小值,B 错,C 对;f (d )不是极值,又不是定义域端点的函数值,∴f (d )不是最小值,D 错,故选A 、B 、D .(2)∵y ′=x e x -e x x 2=(x -1)e xx 2,x ,y ′,y 的极值情况如下表.x (-∞,0)0 (0,1) 1 (1,+∞)y ′ - - 0 + y极小值f (x )(3)依题意f ′(x )=(x -a )(x -1)e x ,它的两个零点为x =1,x =a ,若x =1是函数y (x )的极小值点,则需a <1,此时函数f (x )在(a,1)上单调递减,在(1,+∞)上单调递增,在x =1处取得极小值.故选D .考点二 用导数求函数的最值——师生共研例4 (2017·北京,20)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间[0,π2]上的最大值和最小值.[解析] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈(0,π2)时,h ′(x )<0,所以h (x )在区间[0,π2]上单调递减.所以对任意x ∈(0,π2]有h (x )<h (0)=0,即f ′(x )<0.所以函数f (x )在区间[0,π2]上单调递减.因此f (x )在区间[0,π2]上的最大值为f (0)=1,最小值为f (π2)=-π2.名师点拨 ☞1.求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值.(2)求函数在区间端点的函数值f (a ),f (b ).(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 2.求函数在无穷区间(或开区间)上的最值,一般要根据其极值及单调性画出函数的大致图象,借图求解.注:求最值时,不可想当然认为极值点就是最值点,要通过比较再下结论. 〔变式训练2〕(1)(2020·辽宁辽阳期末)函数f (x )=x 3-3ln x 的最小值为( B ) A .0 B .1 C .2D .3(2)(2020·潍坊期末)函数f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是( D )A .1+1eB .1C .e +1D .e -1[解析] (1)函数f (x )=x 3-3ln x 的定义域为(0,+∞).可得f ′(x )=3x 3-3x =3(x -1)(x 2+x +1)x ,令f ′(x )=0,可得x =1,所以x ∈(0,1)时,f ′(x )<0,函数f (x )是减函数; x ∈(1,+∞)时,f ′(x )>0,函数f (x )是增函数, 所以函数f (x )的最小值为f (1)=1.故选B .(2)因为f (x )=e x -x ,所以f ′(x )=e x -1.令f ′(x )=0,得x =0.且当x >0时,f ′(x )=e x -1>0;x <0时,f ′(x )=e x -1<0,即函数f (x )在x =0处取得极小值,f (0)=1,又f (-1)=1e +1,f (1)=e -1,比较得函数f (x )=e x -1在区间[-1,1]上的最大值是e -1.故选D .MING SHI JIANG TAN SU YANG TI SHENG 名师讲坛·素养提升利用导数研究生活中的优化问题例5 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2.其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[解析] (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6. 从而,f ′(x )=30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得, 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.名师点拨 ☞函数的优化问题即实际问题中的最值问题,其一般解题步骤为:一设,设出自变量、因变量;二列,列出函数关系式,并写出定义域;三解,解出函数的最值,一般常用导数求解;四答,回答实际问题.〔变式训练3〕已知圆柱的体积为16π cm 3,则当底面半径r =2cm 时,圆柱的表面积最小.[解析] 圆柱的体积为V =πr 2h =16π⇒r 2h =16,圆柱的表面积S =2πrh +2πr 2=32πr +2πr 2=2π(16r+r 2),由S ′=2π·(-16r2+2r )=0,得r =2.因此。
数学教案导数复习函数的极值与最值,导数的综合运用
数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
高考数学一轮复习 函数的最值与导数教案
山东省泰安市肥城市第三中学高考数学一轮复习 函数的最值与导数教案学习内容w学习指导即时感悟 【学习目标】1.理解函数的最大值和最小值的概念;2.掌握用导数求函数的最值的方法和步骤。
【学习重点】利用导数求函数的最大值和最小值的方法。
【学习难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系。
学习方向【回顾引入】回顾:求极值的步骤:创设情景:极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小. 【自主﹒合作﹒探究】问题1:观察在闭区间[]b a ,上的函数)(x f 的图象,你能找出它的极大(小)值吗?最大值,最小值呢?(见教材P30面图1.3-14与1.3-15)在图1中,在闭区间[]b a ,上的最大值是 f(b),最小值是 f(a) ;在图2中,在闭区间[]b a ,上的极大值是 f(x 1) f(x 3) f(x 5) ,极小值是 f(x 2)f(x 4) 最大值是 f(x 3) 最小值是 f(x 4) .思考2:⑴ 极值与最值有何关系?⑵ 最大值与最小值可能在何处取得?极值点或端点处⑶ 怎样求最大值与最小值?回顾知识引入新知得到知识图1 图2①求出极值②极值与端点函数值作比较新知:一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 由上面函数)(x f 的图象可以看出,只要把连续函数所有的 与定义区间端点的函数值进行比较,就可以得出函数的最值了. 例1.试试:上图的极大值点为 x 2,x 4,x 6 ,极小值点为x 1,x 3,x 5;最大值为 f(a) ,最小值为 f(x 5)例2.求函数31()443f x x x =-+在[0,3]上的最大值与最小值. ∵f(x)=44313+-x x ,∴4)(2-='x x f .∵[]3,0∈x ,∴由0)(='x f 得x=2,又由0)(>'x f 得x>2,由0)(<'x f 得0<x<2,∴f(x)有极小值f(2)=34- 又f(0)=4,f(3)=1,所以f(x)的最大值为4,最小值为34-。
高三数学一轮教学资料 导数的应用-极值、最值活动导学案
第1页 共4页 《导数的应用—极值、最值》活动导学案【学习目标】1.会用导数研究函数的极值和最值;2.会求函数的极值和最值.【重难点】掌握求函数极值和最值的的一般方法.【课时安排】1课时【活动过程】一、自学质疑1.函数x x y 22-=在R 上有极 值,该值的大小为 .2.函数1112)(3+-=x x x f 的极小值为 .3.函数x ax x x f 2)(23++=的极值点有两个,则实数a 的取值范围是 .4.函数]2,2[,cos 21ππ-∈+=x x y 的最大值为 .二、互动研讨 求函数8235323+-=x x y 的极值小组讨论一、 利用导数研究函数的极值1、设函数2312)(bx ax ex x f x ++=-,已知2-=x 和1=x 为)(x f 的极值点,求a 和b 的值.(2)已知函数x b ax x f ln )(2+=在1=x 处有极值21.求a 和b 的值.2、设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.小组讨论二、 利用导数求函数的最值1、 (2012·重庆卷)已知函数f (x )=ax 3+bx +c 在x =2处取得极值为c -16.(1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值.2、 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值.3.已知函数x ax x x f 3)(23+-=.(1)若)(x f 在),1[+∞上是单调增函数,求实数a 的取值范围;(2)若3=x 是函数)(x f 的极值点,求)(x f 在区间],1[a 上的最值.4.已知函数c bx ax x x f +++=23)(在1=x 和32-=x 时都取得极值. (1)求b a ,的值;第3页 共4页 (2)若23)1(=-f ,求)(x f 的极值; (3)若对于]2,1[-∈∀x 都有c x f 3)(<恒成立,求c 的取值范围.三、检测反馈1.函数93)(23-++=x ax x x f 在3-=x 时取得极值,则=a .2.函数)(x f 的导函数x x x f 4)('2-=,则函数)(x f 取得极大值的=x .3.函数],0[,sin 21)(π∈-=x x x x f 的值域为 .4.已知函数)(x f 的导函数为))(1()('a x x a x f -+=,若)(x f 在a x =处取得极大值,则实数a 的取值范围是 .5、],0[,cos 3sin )(π∈-=x x x x f 的单调增区间为 .6、函数)0(ln 2)(2<+=a x a x x f 的单调减区间为 .7、若函数a x ax x y 23123-+-=在R 上不是单调函数,则实数a 的取值范围是8、已知函数x x ax x f ln 21)(--=在),0(+∞上是增函数,则实数a 的取值范围是 .。
2019年高考数学一轮复习 第2章 函数、导数及其应用 第12节 导数与函数的极值、最值学案 文 北师大版
第十二节导数与函数的极值、最值[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).(对应学生用书第34页)[基础知识填充]1.函数的极值与导数(1)极值点与极值设函数f(x)在点x0及附近有定义,且在x0两侧的单调性相反或导数值异号,则x0为函数f(x)的极值点,f(x0)为函数的极值.(2)极大值点与极小值点①若先增后减(导数值先正后负),则x0为极大值点;②若先减后增(导数值先负后正),则x0为极小值点.(3)求可导函数极值的步骤:①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图像是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[知识拓展]1.对于可导函数f′(x),f′(x)=0是函数f(x)在x=x0处有极值的必要不充分条件.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图像,然后借助图像观察得到函数的最值.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的极大值一定比极小值大.( )(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )(4)若实际问题中函数定义域是开区间,则不存在最优解.( )[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图像如图2121所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )图2121A.1 B.2C.3 D.4A[导函数f′(x)的图像与x轴的交点中,左侧图像在x轴下方,右侧图像在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.]3.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-1x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )3A.13万件B.11万件C.9万件D.7万件C[y′=-x2+81,令y′=0得x=9或x=-9(舍去).当x∈(0,9)时,y′>0,当x∈(9,+∞)时,y′<0,则当x=9时,y有最大值.即使该生产厂家获取最大年利润的年产量为9万件.]4.(2016·四川高考)已知a为函数f(x)=x3-12x的极小值点,则a=( ) A.-4 B.-2C.4 D.2D[由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上是增加的,在(-2,2)上为减函数,在(2,+∞)上是增加的.∴f(x)在x=2处取得极小值,∴a=2.]5.函数y=2x3-2x2在区间[-1,2]上的最大值是________. 【导学号:00090069】8[y′=6x2-4x,令y′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827, f (2)=8,∴最大值为8.](对应学生用书第35页)利用导数研究函数的极值问题角度1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图2122所示,则下列结论中一定成立的是( )图2122A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.] 角度2 求函数的极值求函数f (x )=x -a ln x (a ∈R )的极值.【导学号:00090070】[解] 由f ′(x )=1-a x =x -ax,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;5分(2)当a >0时,由f ′(x )=0,解得x =A .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,9分从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a lna ,无极大值. 12分角度3 已知极值求参数(1)(2018·青岛模拟)若函数f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为( ) A .2 B .6 C .2或6D .-2或-6(2)(2018·广州一模)若函数f (x )=x (x -a )2在x =2处取得极小值,则a =________. (1)B (2)2 [(1)∵函数f (x )=x (x -c )2=x 3-2cx 2+c 2x ,它的导数为f ′(x )=3x 2-4cx +c 2,由题意知,在x =2处的导数值为12-8c +c 2=0,∴c =6,或c =2,又函数f (x )=x (x -c )2在x =2处有极大值,故导数值在x =2处左侧为正数,右侧为负数.当c =2时,f ′(x )=3x 2-8x +4=3⎝ ⎛⎭⎪⎫x -23(x -2),不满足导数值在x =2处左侧为正数,右侧为负数.当c =6时,f ′(x )=3x 2-24x +36=3(x 2-8x +12)=3(x -2)(x -6),满足导数值在x =2处左侧为正数,右侧为负数,故c =6.故选B . (2)求导函数可得f ′(x )=3x 2-4ax +a 2, ∴f ′(2)=12-8a +a 2=0,解得a =2,或a =6,当a =2时,f ′(x )=3x 2-8x +4=(x -2)(3x -2),函数在x =2处取得极小值,符合题意;当a =6时,f ′(x )=3x 2-24x +36=3(x -2)(x -6),函数在x =2处取得极大值,不符合题意,∴a =2.][规律方法] 利用导数研究函数极值的一般流程利用导数解决函数的最值问题(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x, 令f ′(x )=0,得x =k -1.2分f (x )与f ′(x )的变化情况如下:x (-∞,k -1)k -1(k -1,+∞)f ′(x ) - 0 +f (x )单调递减-ek -1单调递增所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).5分 (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上是增加的, 所以f (x )在区间[0,1]上的最小值为f (0)=-k , 7分当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上是减少的,在(k -1,1]上是增加的, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-ek -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上是减少的, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 10分综上可知,当k ≤1时,f (x )min =-k ; 当1<k <2时,f (x )min =-ek -1;当k ≥2时,f (x )min =(1-k )e.12分[规律方法] 求函数f (x )在[a ,b ]上的最大值、最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的为最大值,最小的为最小值. [变式训练1] (2018·南昌模拟)函数y =x e -x,x ∈[0,4]的最小值为( ) A .0 B .1e C .4e4D .2e2 A [f ′(x )=1-xe x ,当x ∈[0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1,4]时,f ′(x )<0,f (x )单调递减,∵f (0)=0,f (4)=4e 4>0,∴当x =0时,f (x )有最小值,且f (0)=0.]利用导数研究生活中的优化问题y 与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【导学号:00090071】[解] (1)因为x =5时,y =11,所以a2+10=11,a =2.5分(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10x -62=2+10(x -3)(x -6)2,3<x <6.7分从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6), 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) + 0 - f (x )是增加的极大值42是减少的所以,当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.12分 [规律方法] 利用导数解决生活中优化问题的一般步骤(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答.[变式训练2] 某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 40 [由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0;x >40时,y ′>0.所以当x =40时,y 有最小值.]。
数学教案导数复习函数的极值与最值,导数的综合运用
数学教案-导数复习函数的极值与最值,导数的综合运用一、教学目标:1. 理解函数的极值与最值的概念,掌握求解函数极值与最值的方法。
2. 熟练运用导数性质,解决实际问题中的最值问题。
3. 提高学生分析问题和解决问题的能力,培养学生的逻辑思维和数学素养。
二、教学内容:1. 函数的极值与最值概念。
2. 求解函数极值与最值的方法。
3. 导数在实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数的极值与最值的概念,求解方法及实际应用。
2. 教学难点:导数在实际问题中的综合运用。
四、教学方法与手段:1. 采用问题驱动法,引导学生主动探究函数极值与最值的问题。
2. 利用多媒体课件,展示函数图像,直观地引导学生理解极值与最值的概念。
3. 结合实际问题,运用导数求解最值问题,培养学生的应用能力。
五、教学过程:1. 导入新课:复习函数的极值与最值概念,引导学生回顾求解方法。
2. 知识讲解:讲解求解函数极值与最值的方法,结合实例进行分析。
3. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。
4. 案例分析:结合实际问题,运用导数求解最值问题,培养学生的应用能力。
6. 作业布置:布置课后作业,巩固所学知识,提高学生的自主学习能力。
教案将继续编写后续章节,敬请期待。
六、教学评估:1. 课堂练习环节,通过学生解答练习题的情况,评估学生对函数极值与最值概念的理解以及求解方法的掌握程度。
2. 案例分析环节,通过学生分析实际问题、运用导数求解最值问题的过程,评估学生的应用能力和逻辑思维。
3. 课后作业的完成情况,评估学生对课堂所学知识的巩固程度和自主学习能力。
七、教学反思:1. 根据教学评估的结果,反思教学过程中是否存在不足,如有需要,调整教学方法,以提高教学效果。
2. 针对学生的掌握情况,针对性地进行辅导,解决学生在学习过程中遇到的问题。
3. 结合学生的反馈,优化教学内容,使之更符合学生的学习需求。
八、课后作业:1. 复习本节课所学的函数极值与最值的概念及求解方法。
2018一轮北师大版(理)数学教案:第2章 第12节 导数与函数的极值、最值 Word版含解析
第十二节导数与函数的极值、最值[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).1.导数与函数的极值(1)函数的极大值与导数的关系x (a,x0)极大值点x0(x0,b) f′(x)+0-y=f(x)增加极大值减少图示(2)函数的极小值与导数的关系x (a,x0)极小值点x0(x0,b) f′(x)-0+y=f(x)减少极小值增加图示(1)求函数y=f(x)在(a,b)内的极值.(2)将函数y=f(x)的各极值与f(a),f(b)比较,最大的为最大值,最小的为最小值.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的极大值一定比极小值大.()(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(4)若实际问题中函数定义域是开区间,则不存在最优解.()[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图像如图2-12-1所示,则函数f(x)在开区间(a,b)内极小值点的个数为()【导学号:57962113】图2-12-1A.1B.2C.3D.4A[导函数f′(x)的图像与x轴的交点中,左侧图像在x轴下方,右侧图像在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.] 3.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为()A.13万件B.11万件C.9万件D.7万件C[y′=-x2+81,令y′=0得x=9或x=-9(舍去).当x∈(0,9)时,y′>0,当x∈(9,+∞)时,y′<0,则当x=9时,y有最大值.即使该生产厂家获取最大年利润的年产量为9万件.]4.(2016·四川高考)已知a为函数f(x)=x3-12x的极小值点,则a=() A.-4B.-2C.4D.2D [由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,∴当x <-2或x >2时,f ′(x )>0;当-2<x <2时,f ′(x )<0,∴f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f (x )在x =2处取得极小值,∴a =2.]5.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________. 8 [y ′=6x 2-4x ,令y ′=0, 得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8,∴最大值为8.]利用导数研究函数的极值问题设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图2-12-2所示,则下列结论中一定成立的是( )图2-12-2A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.]☞角度2 求函数的极值求函数f (x )=x -a ln x (a ∈R )的极值.[解] 由f ′(x )=1-a x =x -ax ,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;5分(2)当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,9分 从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.12分☞角度3 已知极值求参数(1)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )【导学号:57962114】A .(-∞,0) B.⎝ ⎛⎭⎪⎫0,12 C .(0,1)D .(0,+∞)(2)设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________.(1)B (2)-14 [(1)∵f (x )=x (ln x -ax ), ∴f ′(x )=ln x -2ax +1,故f ′(x )在(0,+∞)上有两个不同的零点,令f ′(x )=0,则2a =ln x +1x , 设g (x )=ln x +1x ,则g ′(x )=-ln xx 2, ∴g (x )在(0,1)上递增,在(1,+∞)上递减,又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1, ∴只需0<2a <1⇒0<a <12.(2)由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x ,由题意得,f ′(1)=0,则-2a -2a -1=0, 得a =-14,又当a =-14时, f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0, ∴f (1)是函数f (x )的极小值, ∴a =-14.][规律方法] 利用导数研究函数极值的一般流程利用导数解决函数的最值问题ax (1)求函数f (x )的单调区间; (2)求函数f (x )在⎣⎢⎡⎦⎥⎤1a ,2a 上的最大值.[解] (1)f (x )=x -e ax (a >0),则f ′(x )=1-a e ax , 令f ′(x )=1-a e ax =0,则x =1a ln 1a .3分 当x 变化时,f ′(x ),f (x )的变化情况如下表: x ⎝ ⎛⎭⎪⎫-∞,1a ln 1a 1a ln 1a ⎝ ⎛⎭⎪⎫1a ln 1a ,+∞ f ′(x ) + 0 - f (x )↗极大值↘ 故函数f (x )的增区间为⎝ ⎛⎭⎪⎫-∞,1a ln 1a ;减区间为⎝ ⎛⎭⎪⎫1a ln 1a ,+∞.6分(2)当1a ln 1a ≥2a ,即0<a ≤1e 2时,f (x )max =f ⎝ ⎛⎭⎪⎫2a =2a -e 2;9分当1a <1a ln 1a <2a ,即1e 2<a <1e 时,f (x )max =f ⎝ ⎛⎭⎪⎫1a ln 1a =1a ln 1a -1a ;当1a ln 1a ≤1a ,即a ≥1e 时,f (x )max =f ⎝ ⎛⎭⎪⎫1a =1a -e.12分[规律方法] 求函数f (x )在[a ,b ]上的最大值、最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的为最大值,最小的为最小值.[变式训练1] (2017·石家庄质检(二))若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为( )【导学号:57962115】A .2B .3C .6D .9D [f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,a +b =6,又a >0,b >0,则t =ab ≤=9,当且仅当a =b =3时取等号,故选D.]利用导数研究生活中的优化问题克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[解] (1)因为x =5时,y =11,所以a2+10=11,a =2. 5分(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2 =2+10(x -3)(x -6)2,3<x <6.7分从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6), 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.12分[规律方法] 利用导数解决生活中优化问题的一般步骤(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.[变式训练2] 某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________.【导学号:57962116】40 [由y ′=x 2-39x -40=0, 得x =-1或x =40,由于0<x<40时,y′<0;x>40时,y′>0.所以当x=40时,y有最小值.][思想与方法]1.可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.2.求闭区间上可导函数的最值时,对函数的极值是极大值还是极小值可不作判断,直接与端点的函数值比较即可.3.如果目标函数在定义区间内只有一个极值点,那么根据实际意义该极值点就是最值点.4.若函数f(x)在定义域A上存在最大值与最小值,则:(1)对任意x∈A,f(x)>0⇔f(x)min>0;(2)存在x∈A,f(x)>0⇔f(x)max>0.[易错与防范]1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.2.导数为零的点不一定是极值点.对含参数的求极值问题,应注意分类讨论.3.若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.4.利用导数解决实际生活中的优化问题,要注意问题的实际意义.。
高考数学一轮复习教案(含答案):第2章 第12节 导数与函数的极值、最值
第十二节导数与函数的极值、最值[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).1.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[常用结论]对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的极大值一定比极小值大.()(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(4)x=0是函数f(x)=x3的极值点. ()[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极小值点的个数为()A.1B.2C.3D.4A[导函数f′(x)的图象与x轴的交点中,左侧图象在x轴下方,右侧图象在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.]3.设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点D[函数f(x)的定义域为(0,+∞),f′(x)=1x-2x2=x-2x2,令f′(x)=0得x=2,又0<x<2时,f′(x)<0,x>2时,f′(x)>0.因此x=2为f(x)的极小值点,故选D.]4.已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4 B.-2 C.4 D.2D[由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f ′(x )>0;当-2<x <2时,f ′(x )<0,∴f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f (x )在x =2处取得极小值,∴a =2.]5.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________.8 [y ′=6x 2-4x ,令y ′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827, f (2)=8,∴最大值为8.]【例1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.]►考法2 根据函数的解析式求极值【例2】 已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.[解] (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )极大值(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0, 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 故函数在x =1a 处有极大值.综上所述,当a ≤0时,函数在定义域上无极值点,当a >0时,函数有一个极大值点.►考法3 已知函数的极值求参数【例3】 (1)(2020·成都模拟)若函数f (x )=(x 2+ax +3)e x 在(0,+∞)上有且仅有一个极值点,则实数a 的取值范围是( )A .(-∞,-22]B .(-∞,-22)C .(-∞,-3]D .(-∞,-3)(2)若函数f (x )=x (x -a )2在x =2处取得极小值,则a =________.(1)C (2)2 [(1)f ′(x )=(2x +a )e x +(x 2+ax +3)e x =[x 2+(a +2)x +a +3]e x . 令g (x )=x 2+(a +2)x +a +3,由题意知⎩⎪⎨⎪⎧ -a +22>0,g (0)≤0或⎩⎪⎨⎪⎧ -a +22≤0,g (0)<0, 即⎩⎪⎨⎪⎧ -a +22>0,a +3≤0或⎩⎪⎨⎪⎧ -a +22≤0,a +3<0,解得a ≤-3,故选C.(2)f (x )=x (x -a )2=x 3-2ax 2+a 2x ,∴f ′(x )=3x 2-4ax +a 2.由f ′(2)=12-8a +a 2=0,解得a =2或a =6.当a =2时,f ′(x )=3x 2-8x +4=(x -2)(3x -2),函数在x =2处取得极小值,符合题意;当a =6时,f ′(x )=3x 2-24x +36=3(x -2)(x -6),函数在x =2处取得极大值,不符合题意,∴a =2.](1)当a =1,且函数图象过点(0,1)时,求f (x )的极小值.(2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围.[解] f ′(x )=3ax 2-4x +1.(1)函数图象过点(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2-4x +1,令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增; 在 ⎝ ⎛⎭⎪⎫13,1上单调递减,极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立.①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a ≠0时,f ′(x )≥0或f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.【例4】 (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x ,令f ′(x )=0,得x =k -1.f (x )与f ′(x )的变化情况如下:所以,f (x )(k -1,+∞).(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ,当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上可知,当k ≤1时,f (x )min =-k ;当1<k <2时,f (x )min =-e k -1;当k ≥2时,f (x )min =(1-k )e.已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值.[解] 因为f (x )=1-x x +k ln x ,所以f ′(x )=-x -(1-x )x 2+k x =kx -1x 2. (1)若k =0,则f ′(x )=-1x 2在⎣⎢⎡⎦⎥⎤1e ,e 上恒有f ′(x )<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减.所以f (x )min =f (e)=1-e e ,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -1. (2)若k ≠0,f ′(x )=kx -1x 2=k ⎝ ⎛⎭⎪⎫x -1k x 2.①若k <0,则在⎣⎢⎡⎦⎥⎤1e ,e 上恒有k ⎝ ⎛⎭⎪⎫x -1k x 2<0, 所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减, 所以f (x )min =f (e)=1-e e +k ln e =1e +k -1,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -k -1. ②若k >0,由k <1e ,得1k >e ,则x -1k <0,所以k ⎝ ⎛⎭⎪⎫x -1k x 2<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减. 所以f (x )min =f (e)=1-e e +k ln e =1e +k -1,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -k -1. 综上,k <1e 时,f (x )min =1e +k -1,f (x )ma x =e -k -1.【例5】 已知函数f (x )=e x(a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.[解] (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x, 令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点, 且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧ 9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x. 因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e-5=5e 5>5=f (0), 所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________.[-3,0) [由题意,得f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,⎩⎨⎧-3≤a <0,a +5>0,解得a ∈[-3,0).]1.(2020·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1]. 由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)·e -3=0,所以a =-1.所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点.所以函数f (x )的极小值为f (1)=-1.故选A.]2.(2020·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;第11页 共11页 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).。
2019高考数学(理)一轮复习全套学案
2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图111)表示的集合是( )图111A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图121(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图211所示,所给图像是函数图像的有( )图211A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。
高考数学一轮总复习 2.12.2导数与函数的极值、最值课件
A
24
变式思考 2 设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1 处与直线y=-12相切.
(1)求实数a,b的值; (2)求函数f(x)在1e,e上的最大值.
A
25
解 (1)f′(x)=ax-2bx,
∵函数f(x)在x=1处与直线y=-12相切,
f′1=a-2b=0,
a=1,
A
22
又f(0)=1,f(1)=a, 所以当0<a<1时,f(x)在x=1处取得最小值; 当a=1时,f(x)在x=0处和x=1处同时取得最小值; 当1<a<4时,f(x)在x=0处取得最小值.
A
23
【规律方法】 求函数f(x)在[a,b]上的最大值和最小值的步 骤
(1)求函数在(a,b)内的极值. (2)求函数在区间端点的函数值f(a),f(b). (3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为 最大值,最小的一个为最小值.
A
11
【规律方法】 求函数f(x)极值的步骤: (1)确定函数的定义域; (2)求导数f′(x); (3)解方程f′(x)=0,求出函数定义域内的所有根; (4)列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号,如果 左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0 处取极小值.
答案 C
A
16
(1)(文)解析
由f′(x)=
2xx+1-x2+a x+12
=
x2+2x-a x+12
=0,
∴x2+2x-a=0,x≠-1,又f(x)在x=1处取极值,∴x=1是x2+
2x-a=0的根,∴a=3.
答案 3
《导数与函数的极值、最值》优秀教案
第2课时导数与函数的极值、最值一、选择题1下列函数中,既是奇函数又存在极值的是A=3B=n-C=e-D=+错误!解析由题可知,B,C选项中的函数不是奇函数,A选项中,函数=3单调递增无极值,D选项中的函数既为奇函数又存在极值答案 D22021·石家庄质检若a>0,b>0,且函数f=43-a2-2b+2在=1处有极值,若t=ab,则t的最大值为A2 B3 C6 D9解析f′=122-2a-2b,则f′1=12-2a-2b=0,则a+b=6,又a>0,b>0,则t=ab≤错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!a=f错误!=-n a-1=-1,解得a=1答案 D=3+a2+a+6+1有极大值和极小值,则实数a的取值范围是A-1,2 B-∞,-3∪6,+∞C-3,6 D-∞,-1∪2,+∞解析∵f′=32+2a+a+6,由已知可得f′=0有两个不相等的实根,∴Δ=4a2-4×3×a+6>0,即a2-3a-18>0,∴a>6或a则f的最大值为________解析当>0时,f=-2021是增函数,当-10时,-e0,r>01求f的定义域,并讨论f的单调性;2若错误!=400,求f在0,+∞内的极值解1由题意可知≠-r,所求的定义域为-∞,-r∪-r,+∞f=错误!=错误!,f′=错误!=错误!所以当r时,f′0因此,f的单调递减区间为-∞,-r,r,+∞;f的单调递增区间为-r,r2由1的解答可知f′r=0,f在0,r上单调递增,在r,+∞上单调递减因此,=r是f的极大值点,所以f在0,+∞内的极大值为fr=错误!=错误!=错误!=100,f在0,+∞内无极小值;综上,f在0,+∞内极大值为100,无极小值102021·衡水中学二调已知函数f=n ,g=-2+a-3e a为实数1当a=5时,求函数=g在=1处的切线方程;2求f在区间[t,t+2]t>0上的最小值解1当a=5时,g=-2+5-3e,g1=e又g′=-2+3+2e,故切线的斜率为g′1=4e所以切线方程为-e=4e-1,即=4e-3e2函数f的定义域为0,+∞,f′=n +1,当变化时,f′,f的变化情况如下表:错误!错误!错误!f′-0+f 极小值①当t≥错误!时,在区间[t,t+2]上f为增函数,所以f min=ft=t n t②当00,b0,d>0 B a>0,b0C a0,d>0D a>0,b>0,c>0,d0,f0=d>0又1,2是函数f的极值点,且f′=3a2+2b+c=0,∴1,2是方程3a2+2b+c=0的两根由图象知,1>0,2>0,∴错误!因此b0答案 A132021·陕西卷函数=e在其极值点处的切线方程为________解析由=e可得′=e+e=e+1,从而可得=e在-∞,-1上递减,在-1,+∞上递增,所以当=-1时,=e取得极小值-e-1,因为′|=-1=0,故切线方程为=-e-1,即=-错误!答案=-错误!142021·山东卷改编设f=n -a2+2a-1常数a>01令g=f′,求g的单调区间;2已知f在=的取值范围1解由f′=n -2a+2a,可得g=n -2a+2a,∈0,+∞所以g′=错误!-2a=错误!又a>0,当∈错误!时,g′>0,函数g单调递增,当∈错误!时,g′错误!错误!错误!错误!1,由1知f′在错误!内单调递增,可得当∈0,1时,f′错误!0 所以f在0,1内单调递减,在错误!内单调递增所以f在=1处取得极小值,不合题意②当a=错误!时,错误!=1,f′在0,1内单调递增,在1,+∞内单调递减,所以当∈0,+∞时,f′≤0,f单调递减,不合题意③当a>错误!时,0错误!错误!0,f单调递增,当∈1,+∞时,f′<0,f单调递减所以f在=1处取极大值,符合题意综上可知,实数a的取值范围为错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二节导数与函数的极值、最值[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).(对应学生用书第34页)[基础知识填充]1.函数的极值与导数(1)极值点与极值设函数f(x)在点x0及附近有定义,且在x0两侧的单调性相反或导数值异号,则x0为函数f(x)的极值点,f(x0)为函数的极值.(2)极大值点与极小值点①若先增后减(导数值先正后负),则x0为极大值点;②若先减后增(导数值先负后正),则x0为极小值点.(3)求可导函数极值的步骤:①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图像是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[知识拓展]1.对于可导函数f′(x),f′(x)=0是函数f(x)在x=x0处有极值的必要不充分条件.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图像,然后借助图像观察得到函数的最值.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的极大值一定比极小值大.( )(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )(4)若实际问题中函数定义域是开区间,则不存在最优解.( )[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图像如图2121所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )图2121A.1 B.2C.3 D.4A[导函数f′(x)的图像与x轴的交点中,左侧图像在x轴下方,右侧图像在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.]3.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-1x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )3A.13万件B.11万件C.9万件D.7万件C[y′=-x2+81,令y′=0得x=9或x=-9(舍去).当x∈(0,9)时,y′>0,当x∈(9,+∞)时,y′<0,则当x=9时,y有最大值.即使该生产厂家获取最大年利润的年产量为9万件.]4.(2016·四川高考)已知a为函数f(x)=x3-12x的极小值点,则a=( ) A.-4 B.-2C.4 D.2D[由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上是增加的,在(-2,2)上为减函数,在(2,+∞)上是增加的.∴f(x)在x=2处取得极小值,∴a=2.]5.函数y=2x3-2x2在区间[-1,2]上的最大值是________. 【导学号:00090069】8[y′=6x2-4x,令y′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827, f (2)=8,∴最大值为8.](对应学生用书第35页)利用导数研究函数的极值问题角度1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图2122所示,则下列结论中一定成立的是( )图2122A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.] 角度2 求函数的极值求函数f (x )=x -a ln x (a ∈R )的极值.【导学号:00090070】[解] 由f ′(x )=1-a x =x -ax,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;5分(2)当a >0时,由f ′(x )=0,解得x =A .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,9分从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a lna ,无极大值. 12分角度3 已知极值求参数(1)(2018·青岛模拟)若函数f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为( ) A .2 B .6 C .2或6D .-2或-6(2)(2018·广州一模)若函数f (x )=x (x -a )2在x =2处取得极小值,则a =________. (1)B (2)2 [(1)∵函数f (x )=x (x -c )2=x 3-2cx 2+c 2x ,它的导数为f ′(x )=3x 2-4cx +c 2,由题意知,在x =2处的导数值为12-8c +c 2=0,∴c =6,或c =2,又函数f (x )=x (x -c )2在x =2处有极大值,故导数值在x =2处左侧为正数,右侧为负数.当c =2时,f ′(x )=3x 2-8x +4=3⎝ ⎛⎭⎪⎫x -23(x -2),不满足导数值在x =2处左侧为正数,右侧为负数.当c =6时,f ′(x )=3x 2-24x +36=3(x 2-8x +12)=3(x -2)(x -6),满足导数值在x =2处左侧为正数,右侧为负数,故c =6.故选B . (2)求导函数可得f ′(x )=3x 2-4ax +a 2, ∴f ′(2)=12-8a +a 2=0,解得a =2,或a =6,当a =2时,f ′(x )=3x 2-8x +4=(x -2)(3x -2),函数在x =2处取得极小值,符合题意;当a =6时,f ′(x )=3x 2-24x +36=3(x -2)(x -6),函数在x =2处取得极大值,不符合题意,∴a =2.][规律方法] 利用导数研究函数极值的一般流程利用导数解决函数的最值问题(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x, 令f ′(x )=0,得x =k -1.2分f (x )与f ′(x )的变化情况如下:x (-∞,k -1)k -1(k -1,+∞)f ′(x ) - 0 +f (x )单调递减-ek -1单调递增所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).5分 (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上是增加的, 所以f (x )在区间[0,1]上的最小值为f (0)=-k , 7分当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上是减少的,在(k -1,1]上是增加的, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-ek -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上是减少的, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 10分综上可知,当k ≤1时,f (x )min =-k ; 当1<k <2时,f (x )min =-ek -1;当k ≥2时,f (x )min =(1-k )e.12分[规律方法] 求函数f (x )在[a ,b ]上的最大值、最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的为最大值,最小的为最小值. [变式训练1] (2018·南昌模拟)函数y =x e -x,x ∈[0,4]的最小值为( ) A .0 B .1e C .4e4D .2e2 A [f ′(x )=1-xe x ,当x ∈[0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1,4]时,f ′(x )<0,f (x )单调递减,∵f (0)=0,f (4)=4e 4>0,∴当x =0时,f (x )有最小值,且f (0)=0.]利用导数研究生活中的优化问题y 与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【导学号:00090071】[解] (1)因为x =5时,y =11,所以a2+10=11,a =2.5分(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10x -62=2+10(x -3)(x -6)2,3<x <6.7分从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6), 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) + 0 - f (x )是增加的极大值42是减少的所以,当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.12分 [规律方法] 利用导数解决生活中优化问题的一般步骤(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答.[变式训练2] 某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 40 [由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0;x >40时,y ′>0.所以当x =40时,y 有最小值.]。