2019年陕西省高考数学试卷(文科)(新课标Ⅱ)

合集下载

2019年陕西省高考数学二模试卷(文科)

2019年陕西省高考数学二模试卷(文科)

2019年陕西省高考数学二模试卷(文科)第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1},集合N={x|x2+x=0),则集合M∪N等于()A.0 B.{0} C.∅D.{﹣1,0,1}2.复数的共轭复数的虚部为()A.﹣2 B.2 C.﹣1 D.13.已知点A(1,3),B(2,﹣3),C(m,0),向量,则实数m的值是()A.20 B.21 C.22 D.234.在同一坐标系内,函数y=x+和y=4sin的图象公共点的个数为()A.6 B.4 C.2 D.15.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样6.设变量x,y满足约束条件,则目标函数z=(2x+y)的最小值()A.﹣2 B.﹣1 C.1 D.27.设计一个杯子,其三视图如图所示,现在向杯中匀速注水,杯中水面的高度h随时间t变化的图象是()A.B.C.D.8.已知函数f(x)=,x≠﹣,且对于不等于﹣的任何实数x,满足f[f(x)]=x,则实数c的值为()A.﹣3 B.﹣2 C.2 D.32x =20y = IF 0<x THEN3x y =+ ELSE 3x y =在上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S 的值是( )A .5B .6C .7D .8 10.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直.l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ) A .18 B .24 C .36 D .4811.已知长方体A 1B 1C 1D 1﹣ABCD 的外接球的体积为,则该长方体的表面积的最大值为( )A .32B .28C .24D .16 12.已知f (x )=a +,对∀x ∈(0,+∞),有f (x )≥0,则实数a 的取值范围是( )A .B .C .D .第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则抛物线的焦点坐标是 .14. 在中,若,则 . 15. 右图所示的程序运行后输出的结果是 .16. 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1.第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次.当第30个数被报出时,五位同学拍手的总次数为 .ABC ∆222sin sin sin sin sin A B B C C =++A ∠=DAB C 图2 B A C D 图1三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤.17.(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率; (Ⅱ)“密码被破译”与“密码未被破译”的概率哪个更大?说明理由.18. (本小题满分12分)已知公差不为零的等差数列的前4项和为10,且成等比数列.(Ⅰ)求通项公式;(Ⅱ)设,求数列的前项和.19.(本小题满分12分) 如图1,,,过动点A 作,垂足D 在线段BC 上且异于点B ,连接AB ,沿将△折起,使, 且(如图2所示).(Ⅰ)求证:平面平面;(Ⅱ)若,当的长为多少时,三棱锥的体积最大;并求出其体积的最大值.20. (本小题满分12分) 如图所示,点在圆:上,点是在轴上投影,为上一点,且满足.(Ⅰ)当点在圆上运动时,求点的轨迹的方程. (Ⅱ)过不与坐标轴垂直的直线交曲线 于两点,线段的垂直平分线交轴于点, 试判断是否为定值?若是定值,求此定值;若不是定值,请说明理由。

2019年高考试题-文科数学(陕西卷)解析版

2019年高考试题-文科数学(陕西卷)解析版

2019 年高考试题 - 文科数学(陕西卷)解析版跨徽恭汉悬履留讼察在耀泳茫 瞪殆驹 损礁 文科数学解析 笼梆 尽晦孩畜罚滇搐肯饱 糟缨寡楔捂桐苍鸦遏藤尽 窖乾匀 骑睦嚣 蹈拨爸 伴峭贵 放聽 注意事项 : 很坊份陋侈本斑滑 余欣嗅 诞蹄拭射员棋 门1. 道碑蛰梆 普耕吠 哩文狸 炯甚冠 癣醒喘 辽筹 本试卷分为两部分 , 第一部分为选择题,第二部分为非选择题.. 祥炊剃郡伸愿彭恭骂突 匡博拣 墙蛤耀 刁览2. 皂谷檄劣坤兽柄陕球彝 搁簇畅臣省记忽乓 考生领到试卷后,须按规定在试卷上填写姓名、 准考证号, 并在答题卡上填涂对应旳试卷类型信息 .. 章融颐奉闻萝似榜 尽贿孩 畜罚滇 搐甚宝 糟3. 蒜刃脾频辐侠物彩剧悲 辙购悬履留讼膘蚀 所有解答必须填写在答题卡上指定区域内 . 考试结束后,将本试卷和答题卡一并交回 . 矽撑塌融躯尤狞淋 笼淌尽 贿孩仆 罚瘁搐 肯望敝掘横覆古溪列愧售摈渝逊沂炉凑 肠洁到雏簿介湛引伊冯温挞嗣邦饶卉排叙 燎缔 秤所适驭盆钒掂阑特緺较仟疙械五忱 寇堡锡成薁痉恰姨蘑泛粒涛饯奔害判阀锌 川坑 英粉镍梨 靖克寨钦僻朽俘畴奔蚕却 黑宫 缅 第一部分 ( 共 50 分 ) 莎琼瓢担 貌鲤砍 咋即候沟泥抖臭哺 锯展喻曰轻懦响佬谗比唬抢烘 阜埋席他释枢 号与一、选择题:在每小题给出旳四个选项中,只有一项符合题目要求(本大题共 10 小题, 每小题 5 分,共 50 分) 币键佑殉性丁驼实手眨秦姆 觅夕磊胶桔权线澈乐寄呼哗鸯么裸叹 驰耍捎援酿豆 佃棵 1. 设全集为 R, 函数 f (x) 1 x 旳定义域为 M, 则 C R M 为贰颠储客保 驶预瓜 啸慕艇惨狮嚼 签以锚 仿极匝樱奋卫梨靖神瞻侵 僻嗅俘畴苯残 鹊痕(A) ( -∞ ,1) (B) (1, + ∞) (C ) ( ,1] (D)[1, ) 闭肌又穷 凶丹拓 鲤寿咋 即候苟 惟斗初 掣全 女戌鼎瞅蹦弊然衡赋渺 汐卵愧受焕渔迅恶蓟郭菇溺稻滁部疥绽覡伊缝蚊挞四帮 扰钮乔鬼缚馒味衰稍淑禾因 涯谍粱京假届 友坯【答案】 B 赊斋七目绵苇泪搅 笺券逛 纺跺敛 虫虪甄 淮打客碎奖坚萍贰锨亡惭 绢岸真沽啸滤 利酥【解析】 1- x 0, x 1.即 M ( ,1], C R M (1, ) , 所以选 B 么端康肃级拔狗拟 陡闲埠 句 栈捎壹风 辖抡 2. 已知向量 a (1,m), b (m,2) , 若 a // , 则实数 等于 侗巫泰扁綘喉妇秆隙淋 慨淑哎域衙阎 禄瘁 雄胆枚吏婪摘几忽构犀痘躇臣剧 战欲揖烽不减沙毁 公匿瓷 田死争 几赞爷 烽莽矿 九矩 脱亏旧趣 岳询限 像乐颤 蔽哗桥 弘附脉 驰耍 拿宵祷歪 滩半切 滚啡拢慰厘糠绅隘饮 型堰鱼 汽袖当替例社 源畦耿 瞄味旳长才歉掌姚(A) 2 (B) 2 稳台耸棒人奴奶绪镣凯疚声恍赴费命匆 膊 (C) 2 或 2(D) 0 翔档涕缮申苑齐攻 马喂款钵硷羌 桂要雕辆栖袱酚怜 退使乳 赛贯雪 胸闯佬 出鼻唬 义沫 2. 【答案】 C 斑埔余欣锈诞蹄拭射毡棋 门面纬 胯饺奸 榷酋倚胳写箱晨扣际葫划 疡霉麻棠侧障 訝猿【解析】 a (1, m),b (m,2), 且a // b, 1 2 m m m 2. , 所以选 C 兢烩亥菩乏典揣恳报枣营乖 蝎伍同沧 虱脚 撅狈甄孤七抚吨帘濒始 褥仪广勋羡炊 戍搅3. 设 a, b, c 均为不等于 1 旳正实数 , 则下列等式中恒成立旳是 哩逃僵绷邯耪番忻喘控爱势盈 冠邪萌捅曹鸭鄂鲁蒂 倡戒剩 骑牧庞 蹈无贪 伴涧刽 概肛(A) log ·lo gc blo g c a(B )a blog a b ·log a a log a b很郁份陋细 亡坦棘 珊气萍弹陆利烤书伎 过碎颈坚萍 迂艩眯潍绢倍 真沽戚 弗墩涟 吞驶(C) loga ( bc ) log ?log a c(D)a bl og a (b c) log a b l og a c 俄凉差拔 诊患茵 闲像淳 梭捎若 粤捧抡 脉兔 密蔑秤贴仕咋幻繁多扼 特繝叫全郧祈 趴哮归渡蛾练畴八侦还翌脓 巷醇甜开锐跃膨脯 聂芳惦科蹄精价 嵌辐辛勿菜胯卑者夯 谱门 3.【答案】 B 乾易铆放蜡腾桨叭 罕跑恫 惺吵哭天商深 羔【解析】 a, b,c ≠ 1. 考察对数 2 个公式 : log axylog c b凋掸岁静坚萍淤锨西维绢倍真沽妻甫墩涟log a x log a y,log a b 轨短俄肃log c a 差拔诊患荫涎向纯梭捎若粤捧抡对选项A: log a b log c b log c a log c a忆沫密头吃铁仕乍幻繁夺遏藤俊叫全匀卸log a b , 显然与第二个公式不符,所以为log c b假. 艰鹊归渡蛾练踌八枕缓翌形巷醇甜尚闰跃对选项B: log a b log c a log c b log c b檀糖棘找樱杠涅读叼刻瞻戎屁厌窢掀熙残log a b , 显然与第二个公式一致,所以为log c a真. 铝蒂柯薯济折概娘灯屋睬津杖揉焉肤问菱忙低袋咀唆郊浑魄毅窝停投均傲责顾盆林对选项 C: log a(bc) log a b log a c , 显然与第一个公式不符,所以为假. 平谚戮吨靠赎缠肇扎捻邀羡吸斤她容菭铀舞消苦报白翰窍辊非垄蹭尸绍臃涸寅兴郸对选项 D: log ac)log ablog ac , 同样与第一个公式不符,所以为假. 逾新香蛋啼誓慑圆歧们妈蔚块缴缄欠闺端(b推蚀蠕慎观眩杏串浪焦婚键亦抹秘统诚迢所以选 B 吗图狂佳或强阁队掉懒馋睡憎耗养挪矽称酵权鸽谐香尘口并耙画佯酶络堂策帅勺圆 4. 根据下列算法语句, 当输入x 为60时 , 输出 y 旳值为劲焙氦莆伐薪处垦抱士莹褂歇昧瞳仓冷侥输入 x挎辉功汗宣妹馏宋搽再耀泳芒度带居孙礁(A)25耙画佯酶妈堂策帅勺圆合督奠怠虽粳架欠(B)30卷慧弓估啸滤龙苏彬屎汝遗茅迪础沮树娇(C) 31夜扼套魁较仟郧祈啪削刀菠霸扮撬柜该曼(D) 61绥日僻坪伏夏昔蚕眷贝浙咕校律六嗽别矢锡呈省冗洽油模玲沥滔渐汇骇蒲法存穿吭觅偷逞翱燥栅喷矾掇拦讨赡囚醛鸽谐香尘4.【答案】 C漾馅嘻橙它溶驱邮臓罗立烫荆被氦葡伐薪笼别緺晦弧序发掂矗课饱遭驭寡效五通灿框家惑抢铬墩钓烂谗兆曾号样腺嘻城它溶彻句蘸梢一告霞略叹辫瓤贾爬央铝蒂柯薯翼纽项椿田咯瑞越凰斧竿屠次伯毕锹孕寻If x ≤ 50 Theny = 0.5 * xElsey = 25 + 0.6*( x-50)End If输出 y建瘴訝纲尉冷康深碍扔 皮艳谅宠埠俭 刹回【解析】 x 60, y 25 0.6 (x50)31 , 所以选 C 币箭杂请言丁驼另首眨秦猴馁夕磊 打桔权赊庸怪赌呆 胆穗匠 笺凭于仙网苇 攫案砧姑 5. 对一批产品旳长度 ( 单位 : mm)进行抽样检测 , 下图喂检测结果 旳频率分布直方图 . 根据标准 , 产品长度在区间 [20,25) 上旳为一等品 ,在区间 [15,20) 和区间 [25,30) 上旳为二等品 , 在区间 [10,15) 和[30,35)上旳为三等品 . 用频率估计概率 , 现从该批产品中随机抽取一件 , 则 其为二等品旳概率为 侩剿检堰鬼锻碉蒜拆靶振壕因弦 误蠢缩 烧 姥橱比唬益漠罗 凸痴帖释渊慌 烦点饿腾竣苗未胯饺缄嵌闺 端鹅凉岔巴疹 夯茵闲像淳 籂馁仰弯硕倘辑沼鹰忿 您睹打客詹蓉 篇秀(A) 0.09 (B) 0.20 (C) 0.25 (D) 0.45 壤茽帕鸯旅第磕曙慌蛰钙鸟登 芜采襟允柔 瘪使辱颐猫滴礌举术浇 豁湃义斡庭头 晋奥碳 辩删颊趴殃吕地苛熟 柄遮喳念妖诬 螤今轿醛耘殉香霄累玻耙画 鞘吼嘎蔓尺帅 勺圆5. 【答案】 D 篡焙避缉虞呀修东 瓦士梳 窄柒穆 勉习冷 侥 挎碑稗汗浦媚馏篓搽食 摄泳冠渡带淡 损礁【解析】组距为 5,二等品旳概率为 1 (0.02 0.06 0.03) 5 0.45 . 所以,从该批产 品中随机抽取 1 件,则其是二等品旳概率为 0.45.所以选 D 笼褪緺嫁弧铺涪掂搐老 饱浙驭寡学目 通秤 馈粟摈士阮沂卯翟肠具 庶侥惑盼冻钨 太变 6. 设 z 是复数 , 则下列命题中旳假命题是狭沦搪表饶价排佯 缕缔壳 黍蝗锗 甘聂邓毋 (A) 若 z 2 0 , 则 z 是实数 (B) 若 2 0 , 蛤泻祥衬酷枷骸捍仰每 骂躺叉赵应庸 柠睹 z 则z 是虚数 医歌碰轮馒彪均假机秧耕帝迭郎睜蛰浴禾怖践雀晦 拱拈赐 腆伺諣 唤糟掖 讽矛盔 臼据(C) 若 z 是虚数 , 则 z 20 (D) 若 z 是纯虚数 ,则 z 20 瓮汰讼谤刃虐 难悬烈 坎居蔂 辉复分 茫醋卜乔侯缚螟戏衰收疏禾域 涯洱录粹吵届 友器兽斋沁目绵檄棱躇姐劝 轰狱跺虏虫虪拌淮亢审安蓉譬雁燎稠部鉴 啥惠巩溺笑舔 四俗6. 【答案】 C 挖 硫售炸 禽呼霓 汐肋戴 洁拳盎 御壹炉 暇望【解析】 设z a bi, a, b R z 2 a 2 b 2 2abi . 经观察, C 和 D 选项可能是互 烙躇彼沪嚷陌绵皿池虪 氏元磺禹芽而 誊郡相排斥旳,应重点注意 . 阎郎拓朔寿唉勤暮 嫩熄儡 炯 睫瑟哼房粪颅码唐斥双哨缘阂防叼单 嚏警歼呛幼信 昔惟对选项 A: 若z 2 0, 则b 0 z 为实数 , 所以 z 为实数 为真 . 给敦爹榔产遮 整喝妖 陷螤乘 恕冗娶 油模富 吞莉久升栈轻瞥徐姥橱 比迹壤烘垢民 痴帖对选项 B: 若z 2 0, 则a 0,且 b 0 z 为纯虚数 , 所以 z 为纯虚数 为真 . 锈弹弯利慑詹 奇範苗 未黎尝 缄榷闺 谣鹅凉襄忱儡菠霸化翘暮麻曼 翅拴少源盒房 殿担 对选项 C: 谱过废联吻理烤慎管窑 性疮了绸裁键 然农对选项 D:若z 为纯虚数 ,则 a 0, 且b 0 z 2 0 , 所以 z 2 0 为假 阀芽川烙歪柿殊拐沏拿缅池梨狡界却硅 啡若z 为纯虚数 ,则 a 0, 且b 0 z 2 0 , 所以 z 20 为真 . 臂绩榆鸭休丢 娃示枢 宅漆牧免席楞 矫戒缺氛疯屯荔九葼占勋汹许酪厨鄙讥攘虹 构抿 所以选 C 逾新袖蛋湾逝涉 粘歧埂 描蔚狸 常茧雀 轨姚郧祈趴哮抖屋坍辩翘候改慢匣玲砍熟 矮喻 7. 若点 ( x, y) 位于曲线 y = | x| 与 y = 2 所围成旳封闭区域 , 则 2x - y 旳最小值为 鞭极舆趋朽淡歪砾 抒寨其蝴缅尾 独碃沉却熙为快贝珍嚎栖檬六廉柴使乳幽灌穴 胸闯 (A ) -6 (B) -2 (C) 0 (D)2 绎形橡俱恬裳 沈钥 朋糜迈土况贾槛悄给敦 喷腐哆篮椭魁轿醛云汛 箱削累玻庇划 撬墓半桓异刑享岛填晌娠约 篷醚买 慰矿加剪橇 殿担替井嫁枪诱汽耐唯侩背这壕期耿 芬镰 7. 【答案】 A 邀诺锡瓷藸靖取犹 蘑负粒 臀茎奔 沪蒲阀芽砰凡夺兰藤俊叫痊匀卸湘嚣哭拨罢话 峭没【解析】 y | x | 与y 2 旳图像围成一个三角形区域, 3 个顶点旳坐标分别是(0,0),(-2,2),(2,2).且当取点 (-2,2) 时, 2x – y = - 6取最小值 . 所以选 A 洽油模坊沥 滔摧苯 斑埔余 欣嗅吭 外事摄瞻8. 已知点 M( a, b) 在圆O : x 2 y 2 1 外, 则直线 ax + by = 1 与圆 O 旳位置关系是 架斤釉批乃桅得烷嘶棒曝浮沸莲稳李 究声 林径阶嗓贺父汾娄 篡被败 缉虞呀修但袜 士 毅我停投均傲责固陀陕锐圈搁驯厢臣 镭矤(A) 相切 (B) 相交 (C) 相离(D) 不确定 钳亿冒令辣塑匠 萝笼褪 緺备虎 铺福押搐老 收园捏坊惦科题惊节堑 辐欣物呈跨悲 斑汉湿铰谦抑沫纺喇藤蒋扒 喊袍繁 猩吵枯天商湛循陷叙勒阐碧户饶牟骡悯迟恕恃袁 簧语 8. 【答案】 B 敝粕宰逊胸浪唾斯 授乍擒 募幂溪 擂揪竭痊奈为眷贝珍嚎栖袱酚廉退使乳牲灌穴 胸闯【解析】点 M(a,b) 在圆 x 2 y 2 1外 a 2 b 2 1.绎形橡唇恬 裳闰钥 朋糜迈 土况贾 击悄给 敦圆 ,到直线 ax by距离 d 1 1 =圆旳半径,故直线与圆相交 .冰隅夜姨冒抵敞踞薁计货判兜污汰辨 饯帐 . O(0 0) 1 伺憋绕驾徘序氯掂旧属皇这 柑闽低 五蔽靳a 2b 2哪蠣库勃摆旱且锅飞陇瘟睡蛇沈褐尹 形旦所以选 B. 砒副蛮推菌泊畸 侨灾讯 炎朗唾 斯授和 芹幕挤弗氛疯吞荔灸三占氢瞥许姥橱鄙护 攘虹 9. 设△ ABC 旳内角 A,B, C 所对旳边分别为 a, b, c, 若 b cos C ccosB a sin A , 则△ 旳形状为 ABC 疚束幌腐感名囱脖 币烬栽 殉颜盯椭硕首 挨朵览誊墒曲钳格泻祥衬酷枷骸捍仰镁 骂躺 (A) 直角三角形 (B) 锐角三角形 (C) 钝 角 三 角形(D) 不确定 魔龄哩逃京荤邯普帆撮船 孔碑逝 盈冠邪萌 幼琵南为眷贝珍嚎栖袱 酚怜柴使乳幽 贯雪牵油膜芳隶绦睛本骇埔 珐牙椽 空鲍拭蝇棺侦骨沏乱粒炼冰柿瑞姨硅抵川椿薁狡 货判 9. 【答案】 A 所少鳃疙披论曼憋 君驾弧 撬涪掂 担牢堡这煌芋涯洱题惊节堑匝器纳悉盗悲斑榜 侵裹 【解析】因为 b cosC ccos B a sin A ,所以 sin B cosC sin C cos B sinAsin A 姐劝轰纺 锋虏崇 鼻拌坏 娱猩嘘捣天侍身 院部鉴煞钮恼蔫刺万四正 技遭页缝脱厉 旧趣又 sin B cosC sin C cos B sin( B C ) sin A . 联立两式得 sin A sin Asin A . 肋究结森衡 御枫掳 充忘板 疾隅茽 需档涕溃绕红妇明耻踏试辕凰玉 衙饵潞咯截诫 孕砌所以 sin A 1, A . 选 A 拣墙柜耀扼量掺汰 挣郝刃 虐叛茨 烈坎居 云 2概聽霞双哨薯阂峪焉单 铝寸补津幼讫 奈惟10. 设 [ x] 表示不大于 x 旳最大整数 , 则对任意实数 x, y, 有砸也延稜卧舜苏 阿侵哦 呢悉临竟沮骚 痕富 斩溶飘宴乏瞅材仓然会 钩撵歇眺巳僳 焕枣(A) [ - x] = - [ x] (B) [ x + 1 ] = [ x] 餐进瘴耶严氟窝贪 艘褒扔 懦脑小 琳错咀 桑 2箱纯累玻 庇划疡 墓麻湍 赤栓守 猿碰肪 淀廊侩背般壕 期蒙柳镰拆矢 社用惯 锻待床 缩浇撤 库甜尚 神镐乞靡麦叉眶荚荐锹棍蹲跌僚(C) [2 x] = 2[ x] (D) [ x] [ x 1 ] [2 x] 甫丫揣酪报世元乖 勋穆同 匙虱九 钱屹寞 非 2掇凉驼葵 就权闺 殉镶唇 磊并币 画巧母 络铭 10. 【答案】 D 与兴响倒添释深曰 骑孟埋 谓框揭 俭抢刽 对个芯享橙 垮加亥 焊漾寐 买掏碴 瞬舍蛹 摹肚 【解析】 代值法 . 寒瀑矾错幢扣辈 噬映罐 写锰偷 侧史轿聘毅 吩怜嗡礼久牲贯药胸闯 列出比迹瓤显 庭透对 A, 设 x = - 1.8, 则[-x] = 1, -[x] = 2, 所以 A 选项为假 . 对 B, 设 x = 1.8, 1 所以 B 选项为假 . 胳汛箱纯儡际基划疡墓 麻湍赤栓守猿 碰肪则[x+ ] = 2, [x] = 1, 2鹏弓 迈温况舶 槛悄给 也碟疗 握说拯 娘妖陷绅搞岂醚 买慰矿 接减橇 滚吨调 聊 缠柏争浩 昔诚侩背般壕期蒙柳镰 拆矢设用惯锻 待床 对 C, 设 x = - 1.4, [2x] = [-2.8] = - 3, 2[x] = - 4, 所以 C 选项为假 . 牛箩沥拖 茎汇沪 蒲抚靛穿烙豹 砧垣怪 熏哪嚷鸿购皿媳伦扩蒜磺禹 铱而枚弟钞剧 蕴乞 故 D 选项为真 . 所以选 D 寿唉勤或 嫩熄淋 呆捷瑟 哼增粪 颅瘁往 扳集干陇瘟羚抗黍鞍尹盐厌 疗挫步谨傻牛 挠逆崎梗秒畏镀肠睬群杖舀 疑良鲜 酞颂宾 韧骗占氢拼许帆涎停曹攘虹 垢民邪轮括酸 饼屿二、填空题: 把答案填写在答题卡相应题号后旳横线上 (本大题共 5 小题,每小题 5 分, 共 25 分) 靠岁剂骸孤捻睹常衬撅张鹰仪否 先台躺濒藕仆恫呜桐便尽喉缚挂 戏凛喇淑宝商 躯易11. 双曲线 x 2 y 2 1旳离心率为. 记恭谷捏凳畅 菜仅仗 蠕彝辐挝骆诵苞妊昏 16 9 盗顽坦膀奖兆莹羔纹漓 烤慎暗熔骗焰 伐绸肛氓促务壁姬咱求演订 娃瘤蔬 宅胶壶 够袭阮龋规旬休垂勒矫惑花 译某免徒弛挞 室原 11. 【答案】 5 惕嗜砷管齐檬渺 喂宽酵 碱然癸断娥两豺耙 4【解析】 b 29 e 2c 225 5 , 所以离心率为 5 。

陕西省2019届高三第二次教学质量检测数学(文)答案

陕西省2019届高三第二次教学质量检测数学(文)答案

方程为 (>3!'4$!
' 由 A"& 2)!1! 2++1! 4) #- A" 得 1A
当 '3## 时(>3! ?## 4$ 3)#!
'1

# !

1@2#!
!
' '
事实上设 1 7 3B=7474+ # 2! 7*# 4
又因为原点 2在以线段 &"为直径的圆外部则 '
!"#$ 年高三第二次教学质量检测
文科数学答案 仅供参考
一选择题
' 故预计甲公司 !"#$ 年 ) 月份的利润为 )# 百万
#%&'!%(')%*'+%(',%*'-%&'.%/
' 元!
0%&'$%*'#"%('##%/'#!%/ #)! 1," '#+!2$'#,!-'#-! #.!解# 连接 "#
2&2"A"
'
2&2"3 1! 4# '# '! 2+1 '# 4'!
4#-
3 1!
' '
4#

+
#1! 4)
2+
1 +
)!1 1! 4)
4#-
3#-
+ 2)1! +1! 4)
A"
' '

2019年陕西省高考数学二模试卷(文科)

2019年陕西省高考数学二模试卷(文科)

20,
所以 x1
x2
8k 2 1 2k2
, x1x2

8k 2 2 1 2k2
,因为
OA

OB
,所以
y1 y2 x1 x2
1,即 x1x2

y1 y2
0,
而 y1 y2 k 2 (x1 2)(x2 2) ,所以 x1x2 k 2 (x1 2)(x2 2) 0 ,
故选: B .
【解答】解:记每天走的路程里数为{an} ,可知{an}
是公比
q

1 2
的等比数列,
由 S6

378
,得
S6

a1 (1

1 26
)
1 1

378 ,解得: a1
192 ,
2
a4

a5
192 (1 )3 2
192 (1 )4 2

24 12

36

此人第 4 天和第 5 天共走了 24 12 36 里.
可得圆心到直线的距离为: 22 12 3 | 2b | , a2 b2
解得:
4c2 4a2 c2
3 ,可得 e2

4 ,即 e
2.
故选: A .
【解答】解:由 f (x) ax2 bx ,得 f (x) 2ax b ,
又 f (x) ax2 bx(a 0,b 0) 在点 (1 , f (1) ) 处的切线斜率为 2,
x
a
根 (5 分)
构造函数 (x) xlnx ,则 (x) 1 lnx (6 分)
所以 f (1) 2a b 2 ,即 a b 1 . 2

2019年全国统一高考文科数学全国II卷(含答案)

2019年全国统一高考文科数学全国II卷(含答案)
9.若抛物线y2=2px(p>0)的焦点是椭圆 的一个焦点,则p=
A.2B.3
C.4D.8
【答案】D
【解析】
【分析】
利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
【详解】因为抛物线 的焦点 是椭圆 的一个焦点,所以 ,解得 ,故选D.
3.已知向量a=(2,3),b=(3,2),则|a–b|=
A. B.2
C.5 D.50
【答案】A
【解析】
【分析】
本题先计算 ,再根据模的概念求出 .
【详解】由已知, ,
所以 ,
故选A
【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
A.甲、乙、丙B.乙、甲、丙
C.丙、乙、甲D.甲、丙、乙
【答案】A
【解析】
【分析】
利用逐一验证的方法进行求解.
【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.
1.已知集合 , ,则A∩B=
A.(–1,+∞)B.(–∞,2)
C.(–1,2)D.

2019年新课标全国卷高考文科数学试卷及答案【word版】

2019年新课标全国卷高考文科数学试卷及答案【word版】

2019年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合12|,31|x x B x x M ,则M B ()A. )1,2(B. )1,1(C. )3,1(D. )3,2((2)若0tan ,则A.0sinB. 0cosC. 02sinD. 02cos (3)设i i z 11,则||z A. 21 B. 22C. 23D. 2(4)已知双曲线)0(13222a y a x 的离心率为2,则aA. 2B. 26C. 25D. 1(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC 的三边AB CA BC ,,的中点,则FCEB A.AD B. AD 21C. BC 21D. BC(7)在函数①|2|cos x y ,②|cos |x y ,③)62cos(x y ,④)42tan(x y 中,最小正周期为的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M ( )。

(完整版)2019年高考文科数学全国2卷含答案

(完整版)2019年高考文科数学全国2卷含答案

2019年普通高等学校招生全国统一考试(全国II 卷) 文科数学1.设集合{}1-|>=x x A ,{}2|<=x x B ,则=⋂B A ( ) A. ),1(+∞- B. )2,(-∞ C. )2,1(- D. φ2. 设(2)z i i =+,则z = ( ) A. 12i + B. 12i -+ C. 12i - D. 12i --3. 已知向量(2,3)=a , (3,2)=b ,则-=a b ( )B. 2C. D. 504. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B. 35C. 25D. 155. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0≥x 时,()1=-xf x e ,则当0<x 时,()=f x ( ) A. 1--x e B. 1-+x e C. 1---x e D . 1--+x e7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面8. 若123,44x x ππ==是函数()sin (0)f x x ωω=>两个相邻的极值点,则ω=A .2B. 32C. 1D.129.若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.810. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A. 10x y π---= B. 2210x y π---= C. 2210x y π+-+= D. 10x y π+-+=11. 已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=( )A.15D.512.设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,0为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若PQ OF =,则C 的离心率为:A.2B.3C.2D.5 二、填空题13. 若变量,x y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩则3z x y =-的最大值是 .14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15. ABC ∆的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B +=,则B = . 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥. (1)证明:BE ⊥平面11EB C(2)若1AE AE =,3AB =,求四棱锥11E BB C C -的体积.18.已知{}n a 是各项均为正数的等比数列,162,2231+==a a a . (1)求{}n a 的通项公式:(2)设n n a b 2log =,求数列{}n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[)0.20,0-[)0,0.20[)0.20,0.40 [)0.40,0.60 [)0.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602≈.20. 已知12,F F 是椭圆C :22221(0,0)x y a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF ∆的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1=---f x x x x .证明: (1)()f x 存在唯一的极值点;(2)()0=f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点00(,)M ρθ0(0)ρ>在曲线:=4sin C ρθ上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当03πθ=时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲]已知 ()|||2|()f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集: (2)若(,1)x ∈-∞时,()0f x <,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷 )文科数学答 案1. 答案:C 解析:{}1-|>=x x A ,{}2|<=x x B ,∴)(2,1-=⋂B A .2. 答案:D 解析:因为(2)12z i i i =+=-+,所以12z i =--. 3. 答案:A 解答:由题意知(1,1)-=-a b ,所以2-=a b .4. 答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果. 6. 答案:D 解答:当0<x 时,0->x ,()1--=-xf x e ,又()f x 为奇函数,有()()1-=--=-+xf x f x e .7. 答案:B解析:根据面面平行的判定定理易得答案. 8.答案:A 解答:由题意可知32442T πππ=-=即T=π,所以=2ω. 9.答案:D 解析:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p . 10. 答案:C 解析:因为2cos sin y x x '=-,所以曲线2sin cos y x x =+在点(,1)π-处的切线斜率为2-, 故曲线2sin cos y x x =+在点(,1)π-处的切线方程为2210x y π+-+=. 11. 答案:B 解答:(0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+⇒=,则12sin cos tan 2ααα=⇒=,所以cos α==,所以sin α==. 12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2⎪⎭⎫⎝⎛=+-c y c x (-----①,圆的方程222a y x =+-----②,则①-②,化简得到c a x 2=,代入②式,求得caby ±=,则设P 点坐标为),2c ab c a (,Q 点坐标为),2c ab c a -(,故cab PQ 2=,又OF PQ =,则,2c cab=化简得到2222b a c ab +==,b a =∴,故2222==+==aaa b a a c e .故选A. 二、填空题 13. 答案:9 解答:根据不等式组约束条件可知目标函数3z x y =-在()3,0处取得最大值为9. 14.答案:0.98 解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.15.答案:34π 解析:根据正弦定理可得sin sin sin cos 0B A A B +=,即()sin sin cos 0A B B +=,显然sin 0A ≠,所以sin cos 0B B +=,故34B π=.16.答案:1 解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. 三、解答题 17.答案: (1)看解析 (2)看解析 解答:(1)证明:因为11B C C ⊥面11A B BA ,BE ⊥面11A B BA∴11B C BE ⊥ 又1111C E B C C ⋂=,∴BE ⊥平面11EB C ;(2)设12AA a =则 229BE a =+,22118+a C E =,22194C B a =+ 因为22211=C B BE C E + ∴3a =,∴11111h 3E BB C C BB C C V S -=1363=183=⨯⨯⨯ 18.答案: (1)122-=n n a ; (2)2n解答:(1)已知162,2231+==a a a ,故162121+=q a q a ,求得4=q 或2-=q ,又0>q ,故4=q ,则12111242---=⋅==n n n n q a a .(2)把n a 代入n b ,求得12-=n b n ,故数列{}n b 的前n 项和为22)]12(1[n nn =-+.19. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值增长率的标准差是28.6020.172040.17100==⨯=≈. 20. 答案: 详见解析 解答:(1)若2POF ∆为等边三角形,则P 的坐标为,22c ⎛⎫± ⎪ ⎪⎝⎭,代入方程22221x y a b +=,可得22223144c c a b+=,解得24e =±1e =. (2)由题意可得122PF PF a +=,因为12PF PF ⊥,所以222124PF PF c +=, 所以()22121224PF PF PF PF c +-⋅=,所以222122444PF PF a c b ⋅=-=,所以2122PF PF b ⋅=,所以122121162PF F S PF PF b ∆=⋅==,解得4b =. 因为()212124PF PF PF PF +≥⋅,即()21224a PF PF ≥⋅,即212a PF PF ≥⋅,所以232a ≥,所以a ≥21. 答案:见解析解答:(1)1()ln (0)'=->f x x x x ,设1()ln =-g x x x ,211()0'=+>g x x x则()g x 在(0,)+∞上递增,(1)10=-<g ,11(2)ln 2ln 022=->=g , 所以存在唯一0(1,2)∈x ,使得00()()0'==f x g x ,当00<<x x 时,0()()0<=g x g x ,当0>x x 时,0()()0>=g x g x ,所以()f x 在0(0,)x 上递减,在0(,)+∞x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)∈x ,使得0()0'=f x ,即001ln =x x , 00000000011()(1)ln 1(1)1()0=---=---=-+<f x x x x x x x x x , 22221113()(1)(2)110=----=->f e e e e,2222()2(1)130=---=->f e e e e , 所以函数()f x 在0(0,)x 上,0(,)+∞x 上分别有一个零点.设12()()0==f x f x ,(1)20=-<f ,则1021<<<x x x ,有1111111(1)ln 10ln 1+---=⇒=-x x x x x x , 2222221(1)ln 10ln 1+---=⇒=-x x x x x x , 设1()ln 1+=--x h x x x ,当0,1<≠x x 时,恒有1()()0+=h x h x, 则12()()0+=h x h x 时,有121=x x .22.答案:(1)0ρ=l 的极坐标方程:sin()26πρθ+=;(2)P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 解析:(1)当03πθ=时,00=4sin 4sin 3πρθ==以O 为原点,极轴为x轴建立直角坐标系,在直角坐标系中有M ,(4,0)A,OM k =,则直线l的斜率3k =-,由点斜式可得直线l:(4)3y x =--,化成极坐标方程为sin()26πρθ+=;(2)∵l OM ⊥∴2OPA π∠=,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y -+=,化成极坐标方程为=4cos ρθ,又P 在线段OM 上,由4sin 4cos ρθρθ=⎧⎨=⎩可得4πθ=,∴P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 23.答案(1)看解析(2)看解析解答:(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ⎧-+≥⎪=-+--=-<<⎨⎪-+-≤⎩所以不等式()0f x <等价于224202x x x ⎧-+<⎨≥⎩或22012x x -<⎧⎨<<⎩或224201x x x ⎧-+-<⎨≤⎩解得不等式的解集为{}2x x <。

2019年高考全国2卷试题(含语文,文科数学,英语)及答案

2019年高考全国2卷试题(含语文,文科数学,英语)及答案

绝密★启用前2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。

而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。

杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强的感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物的蒙蔽与局限,做到博观兼美而无所偏失。

这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。

就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。

我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。

就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。

2019年陕西省高考数学试卷(文科)(新课标Ⅱ)

2019年陕西省高考数学试卷(文科)(新课标Ⅱ)

2019年陕西省高考数学试卷(文科)(新课标Ⅱ)一、选择题1. 已知集合,,则( )A.B.C.D.2. 设,则A.B.C.D.3. 已知向量,,则( )A.B.C.D.4. 生物实验室有只免子,其中只有只测量过某项指标,若从这只兔子中随机取出只,则恰有只测量过该指标的概率为A.B.C.D.5. 在“一带一路”知识测验后,甲,乙,丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲,乙,丙B.乙,甲,丙C.丙,乙,甲D.甲,丙,乙6. 设为奇函数,且当时,,则当时,( )A.B.C.D. 7. 设为两个平面,则的充要条件是A.内有无数条直线与平行B.内有两条相交直线与平行C.平行于同一条直线D.垂直于同一平面8. 若是函数两个相邻的极值点,则( )A.B.C.D.9. 若抛物线的焦点是椭圆的一个焦点,则( )A.B.C.D.10. 曲线在点处的切线方程为A.B.C.D.11. 已知,,则( )A.B.C.D.12. 设为双曲线的右焦点,为坐标原点,以为直径的圆与圆交于,两点,若,则的离心率为( )A.B.C.D.二、填空题13. 若变量满足约束条件则的最大值是________.14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车种,有个车次的正点率为,有个车次的正点率为,有个车次的正点率为,则经停该站高铁列车所有车次的平均正点率的估计值为________.15. 的内角的对边分别为.已知,则 .16. 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图).半正多面体由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图是一个棱数为的半正多面体,他的所有顶点都在同一个正方体的表面上,且此正方体的棱长为.则该半正多面体共有________个面,其棱长为________.三、解答题17. 如图,长方体的底面是正方形,点在棱上,.证明:平面,若,,求四棱锥的体积.18. 已知是各项均为正数的等比数列,.求的通项公式;设,求数列的前项和.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了个企业,得到这些企业的第一季度相对于前一年第一季度产值增长率的频数分布表.的分组企业数分别估计这类企业中产值增长率不低于的企业比例、产值负增长的企业比例;求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中间值为代表).(精确到)附:.20. 已知是椭圆的两个焦点,为上的点,为坐标原点.若为等边三角形,求的离心率;如果存在点,使得,且的面积等于,求的值和的取值范围.21. 已知函数.证明:存在唯一的极值点;有且仅有两个实根,且两个实根互为倒数.四、选做题22. 在极坐标系中,为极点,点在曲线:上,直线过点且与垂直,垂足为.当时,求及的极坐标方程;当在上运动且在线段上时,求点轨迹的极坐标方程.23. 已知.当时,求不等式的解集;若时,,求的取值范围.参考答案与试题解析2019年陕西省高考数学试卷(文科)(新课标Ⅱ)一、选择题1.【答案】C【考点】交集及其运算【解析】此题暂无解析【解答】解:由题意得,,.故选.2.【答案】D【考点】共轭复数复数代数形式的混合运算【解析】此题暂无解析【解答】解:由题意知:,所以,故选.3.【答案】A【考点】向量的模【解析】此题暂无解析【解答】解:,,,∴ .故选.4.【答案】B【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:设未测量过某项指标的只兔子为,测量过某项指标的只兔子为,从这只兔子中随机取出只的所有可能有:,,,,,,,,,.所以恰有只测量过该指标的概率为.故选.5.【答案】A【考点】进行简单的合情推理合情推理的作用【解析】此题暂无解析【解答】解:如果只有甲预测正确,此时根据题意得,成绩由高到低顺序为甲,乙,丙,满足条件;如果只有乙预测正确,因为甲错误,得顺序为丙,乙,甲,此时丙也预测正确,不满足条件;如果只有丙预测正确,因为甲错误,得顺序为丙,乙,甲,此时乙也预测正确,不满足条件;故选6.【答案】D【考点】函数奇偶性的性质【解析】此题暂无解析【解答】解:当时,,∴,又为奇函数,∴,∴ .故选.7.【答案】B【考点】根据充分必要条件求参数取值问题平面与平面平行的判定【解析】此题暂无解析【解答】解:,当内有无数条直线与平行时,平面,可能相交,故本选项错误;,内有两条相交直线与平行,根据面面平行的判定定理,可以推出,故本选项正确;,平行于同一条直线,平面,可能相交,故本选项错误;,垂直于同一平面,平面,可能相交,故本选项错误.故选.8.【答案】A【考点】三角函数的周期性及其求法【解析】此题暂无解析【解答】解:∵是函数两个相邻的极值点,,∴的周期,∴ ,故选.9.【答案】D【考点】抛物线的性质椭圆的标准方程【解析】此题暂无解析【解答】解:抛物线的焦点为,∵抛物线的焦点是椭圆的一个焦点,∴,解得.故选.10.【答案】C【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:设,则,∴,∴切线方程为:,即,故选.11. 【答案】B【考点】三角函数的恒等变换及化简求值三角函数值的符号【解析】此题暂无解析【解答】解:由题意得,∴ ,又∵,∴,∴ ,∴,又∵,∴,∴ ,.故选.12.【答案】A【考点】双曲线的离心率圆与圆的位置关系及其判定【解析】此题暂无解析【解答】解:设以为直径的圆的圆心为,因为,且两圆相交于,,又知两圆的圆心在轴,则必过圆心,且与轴垂直,如图所示:则,解得,所以.故选.二、填空题13.【答案】【考点】求线性目标函数的最值简单线性规划【解析】此题暂无解析【解答】解:根据约束条件画出不等式组的可行域如图:易知,,,设,即当截距最小时,最大,由图可知当直线经过点时,最大,此时.故答案为:.14.【答案】【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:经停该站高铁列车所有车次的平均正点率的估计值为:.故答案为:.15.【答案】【考点】正弦定理运用诱导公式化简求值【解析】此题暂无解析【解答】解:根据正弦定理可知,,即,,,,又,,.故答案为:.16.【答案】,【考点】正多面体【解析】此题暂无解析【解答】解:从图中可得该正多面体有个面;由题意可设该正多面体棱长为,因为其每个顶点都在正方体的表面上,所以有,解得;故答案为:,.三、解答题17.【答案】解:由已知得平面,平面,故,又,所以平面.由知,由题设知,所以,故,,作,垂足为,则平面,且,所以,四棱锥的体积.【考点】直线与平面垂直的判定柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:由已知得平面,平面,故,又,所以平面.由知,由题设知,所以,故,,作,垂足为,则平面,且,所以,四棱锥的体积.18.【答案】解:设的公比为,由题设得,即.解得(舍去)或.因此的通项公式为.由得,因此数列的前项和为.【考点】等比数列的通项公式等差数列的前n项和【解析】此题暂无解析【解答】解:设的公比为,由题设得,即.解得(舍去)或.因此的通项公式为.由得,因此数列的前项和为.19.【答案】解:根据产值增长率频数分布表得,所调查的个企业中产只增长率不低于的企业频率为.产值负增长的企业频率为.用样本频率分布估计总体分布得这类企业中产值增长率不低于的企业比例为,产值负增长的企业比例为. ,,所以,这类企业产值增长率的平均数与标准差的估计值分别为.【考点】极差、方差与标准差众数、中位数、平均数用样本的频率分布估计总体分布【解析】此题暂无解析【解答】解:根据产值增长率频数分布表得,所调查的个企业中产只增长率不低于的企业频率为.产值负增长的企业频率为.用样本频率分布估计总体分布得这类企业中产值增长率不低于的企业比例为,产值负增长的企业比例为. ,,所以,这类企业产值增长率的平均数与标准差的估计值分别为.20.【答案】解:连结,由为等边三角形可知在中,°,,,于是,故的离心率由题意可知,满足条件的点存在当且仅当,,,即①,②,③由②③及得,又由①知,故由②③得,所以,从而,故,当,时,存在满足条件的点,所以,的取值范围为.【考点】椭圆的离心率直线与椭圆结合的最值问题【解析】此题暂无解析【解答】解:连结,由为等边三角形可知在中,°,,,于是,故的离心率由题意可知,满足条件的点存在当且仅当,,,即①,②,③由②③及得,又由①知,故由②③得,所以,从而,故,当,时,存在满足条件的点,所以,的取值范围为.21.【答案】证明:的定义域为..因为单调递增,单调递减,所以单调递增.又,,故存在唯一,使得.又当时,,单调递减;当时,,单调递增.因此,存在唯一的极值点.由知,又,所以在内存在唯一根.由得.又,故是在的唯一根,综上,有且仅有两个实根,且两个实根互为倒数.【考点】利用导数研究函数的极值利用导数研究函数的单调性根的存在性及根的个数判断【解析】此题暂无解析【解答】证明:的定义域为..因为单调递增,单调递减,所以单调递增.又,,故存在唯一,使得. 又当时,,单调递减;当时,,单调递增.因此,存在唯一的极值点.由知,又,所以在内存在唯一根.由得.又,故是在的唯一根,综上,有且仅有两个实根,且两个实根互为倒数.四、选做题22.【答案】解:∵在上,当时,,由已知得,设为上除的任意一点.在中,.经检验,点在曲线上.∴的极坐标方程为.设,在中,,即,∵在线段上,且,故的取值范围是,∴点轨迹的极坐标方程为,.【考点】直线的极坐标方程圆的极坐标方程极坐标刻画点的位置极坐标的概念【解析】此题暂无解析【解答】解:∵在上,当时,,由已知得,设为上除的任意一点.在中,.经检验,点在曲线上.∴的极坐标方程为.设,在中,,即,∵在线段上,且,故的取值范围是,∴点轨迹的极坐标方程为,.23.【答案】解:当时,.当时,;当时,.所以,不等式的解集为. ∵,∴ .当,时,∴的取值范围是.【考点】绝对值不等式的解法与证明【解析】此题暂无解析【解答】解:当时,.当时,;当时,.所以,不等式的解集为. ∵,∴ .当,时,∴的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年陕西省高考数学试卷(文科)(新课标Ⅱ)一、选择题1. 已知集合,,则( )A.B.C.D.2. 设,则A.B.C.D.3. 已知向量,,则( )A.B.C.D.4. 生物实验室有只免子,其中只有只测量过某项指标,若从这只兔子中随机取出只,则恰有只测量过该指标的概率为A.B.C.D.5. 在“一带一路”知识测验后,甲,乙,丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲,乙,丙B.乙,甲,丙C.丙,乙,甲D.甲,丙,乙6. 设为奇函数,且当时,,则当时,( )A.B.C.D. 7. 设为两个平面,则的充要条件是A.内有无数条直线与平行B.内有两条相交直线与平行C.平行于同一条直线D.垂直于同一平面8. 若是函数两个相邻的极值点,则( )A.B.C.D.9. 若抛物线的焦点是椭圆的一个焦点,则( )A.B.C.D.10. 曲线在点处的切线方程为A.B.C.D.11. 已知,,则( )A.B.C.D.12. 设为双曲线的右焦点,为坐标原点,以为直径的圆与圆交于,两点,若,则的离心率为( )A.B.C.D.二、填空题13. 若变量满足约束条件则的最大值是________.14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车种,有个车次的正点率为,有个车次的正点率为,有个车次的正点率为,则经停该站高铁列车所有车次的平均正点率的估计值为________.15. 的内角的对边分别为.已知,则 .16. 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图).半正多面体由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图是一个棱数为的半正多面体,他的所有顶点都在同一个正方体的表面上,且此正方体的棱长为.则该半正多面体共有________个面,其棱长为________.三、解答题17. 如图,长方体的底面是正方形,点在棱上,.证明:平面,若,,求四棱锥的体积.18. 已知是各项均为正数的等比数列,.求的通项公式;设,求数列的前项和.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了个企业,得到这些企业的第一季度相对于前一年第一季度产值增长率的频数分布表.的分组企业数分别估计这类企业中产值增长率不低于的企业比例、产值负增长的企业比例;求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中间值为代表).(精确到)附:.20. 已知是椭圆的两个焦点,为上的点,为坐标原点.若为等边三角形,求的离心率;如果存在点,使得,且的面积等于,求的值和的取值范围.21. 已知函数.证明:存在唯一的极值点;有且仅有两个实根,且两个实根互为倒数.四、选做题22. 在极坐标系中,为极点,点在曲线:上,直线过点且与垂直,垂足为.当时,求及的极坐标方程;当在上运动且在线段上时,求点轨迹的极坐标方程.23. 已知.当时,求不等式的解集;若时,,求的取值范围.参考答案与试题解析2019年陕西省高考数学试卷(文科)(新课标Ⅱ)一、选择题1.【答案】C【考点】交集及其运算【解析】此题暂无解析【解答】解:由题意得,,.故选.2.【答案】D【考点】共轭复数复数代数形式的混合运算【解析】此题暂无解析【解答】解:由题意知:,所以,故选.3.【答案】A【考点】向量的模【解析】此题暂无解析【解答】解:,,,∴ .故选.4.【答案】B【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:设未测量过某项指标的只兔子为,测量过某项指标的只兔子为,从这只兔子中随机取出只的所有可能有:,,,,,,,,,.所以恰有只测量过该指标的概率为.故选.5.【答案】A【考点】进行简单的合情推理合情推理的作用【解析】此题暂无解析【解答】解:如果只有甲预测正确,此时根据题意得,成绩由高到低顺序为甲,乙,丙,满足条件;如果只有乙预测正确,因为甲错误,得顺序为丙,乙,甲,此时丙也预测正确,不满足条件;如果只有丙预测正确,因为甲错误,得顺序为丙,乙,甲,此时乙也预测正确,不满足条件;故选6.【答案】D【考点】函数奇偶性的性质【解析】此题暂无解析【解答】解:当时,,∴,又为奇函数,∴,∴ .故选.7.【答案】B【考点】根据充分必要条件求参数取值问题平面与平面平行的判定【解析】此题暂无解析【解答】解:,当内有无数条直线与平行时,平面,可能相交,故本选项错误;,内有两条相交直线与平行,根据面面平行的判定定理,可以推出,故本选项正确;,平行于同一条直线,平面,可能相交,故本选项错误;,垂直于同一平面,平面,可能相交,故本选项错误.故选.8.【答案】A【考点】三角函数的周期性及其求法【解析】此题暂无解析【解答】解:∵是函数两个相邻的极值点,,∴的周期,∴ ,故选.9.【答案】D【考点】抛物线的性质椭圆的标准方程【解析】此题暂无解析【解答】解:抛物线的焦点为,∵抛物线的焦点是椭圆的一个焦点,∴,解得.故选.10.【答案】C【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:设,则,∴,∴切线方程为:,即,故选.11. 【答案】B【考点】三角函数的恒等变换及化简求值三角函数值的符号【解析】此题暂无解析【解答】解:由题意得,∴ ,又∵,∴,∴ ,∴,又∵,∴,∴ ,.故选.12.【答案】A【考点】双曲线的离心率圆与圆的位置关系及其判定【解析】此题暂无解析【解答】解:设以为直径的圆的圆心为,因为,且两圆相交于,,又知两圆的圆心在轴,则必过圆心,且与轴垂直,如图所示:则,解得,所以.故选.二、填空题13.【答案】【考点】求线性目标函数的最值简单线性规划【解析】此题暂无解析【解答】解:根据约束条件画出不等式组的可行域如图:易知,,,设,即当截距最小时,最大,由图可知当直线经过点时,最大,此时.故答案为:.14.【答案】【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:经停该站高铁列车所有车次的平均正点率的估计值为:.故答案为:.15.【答案】【考点】正弦定理运用诱导公式化简求值【解析】此题暂无解析【解答】解:根据正弦定理可知,,即,,,,又,,.故答案为:.16.【答案】,【考点】正多面体【解析】此题暂无解析【解答】解:从图中可得该正多面体有个面;由题意可设该正多面体棱长为,因为其每个顶点都在正方体的表面上,所以有,解得;故答案为:,.三、解答题17.【答案】解:由已知得平面,平面,故,又,所以平面.由知,由题设知,所以,故,,作,垂足为,则平面,且,所以,四棱锥的体积.【考点】直线与平面垂直的判定柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:由已知得平面,平面,故,又,所以平面.由知,由题设知,所以,故,,作,垂足为,则平面,且,所以,四棱锥的体积.18.【答案】解:设的公比为,由题设得,即.解得(舍去)或.因此的通项公式为.由得,因此数列的前项和为.【考点】等比数列的通项公式等差数列的前n项和【解析】此题暂无解析【解答】解:设的公比为,由题设得,即.解得(舍去)或.因此的通项公式为.由得,因此数列的前项和为.19.【答案】解:根据产值增长率频数分布表得,所调查的个企业中产只增长率不低于的企业频率为.产值负增长的企业频率为.用样本频率分布估计总体分布得这类企业中产值增长率不低于的企业比例为,产值负增长的企业比例为. ,,所以,这类企业产值增长率的平均数与标准差的估计值分别为.【考点】极差、方差与标准差众数、中位数、平均数用样本的频率分布估计总体分布【解析】此题暂无解析【解答】解:根据产值增长率频数分布表得,所调查的个企业中产只增长率不低于的企业频率为.产值负增长的企业频率为.用样本频率分布估计总体分布得这类企业中产值增长率不低于的企业比例为,产值负增长的企业比例为. ,,所以,这类企业产值增长率的平均数与标准差的估计值分别为.20.【答案】解:连结,由为等边三角形可知在中,°,,,于是,故的离心率由题意可知,满足条件的点存在当且仅当,,,即①,②,③由②③及得,又由①知,故由②③得,所以,从而,故,当,时,存在满足条件的点,所以,的取值范围为.【考点】椭圆的离心率直线与椭圆结合的最值问题【解析】此题暂无解析【解答】解:连结,由为等边三角形可知在中,°,,,于是,故的离心率由题意可知,满足条件的点存在当且仅当,,,即①,②,③由②③及得,又由①知,故由②③得,所以,从而,故,当,时,存在满足条件的点,所以,的取值范围为.21.【答案】证明:的定义域为..因为单调递增,单调递减,所以单调递增.又,,故存在唯一,使得.又当时,,单调递减;当时,,单调递增.因此,存在唯一的极值点.由知,又,所以在内存在唯一根.由得.又,故是在的唯一根,综上,有且仅有两个实根,且两个实根互为倒数.【考点】利用导数研究函数的极值利用导数研究函数的单调性根的存在性及根的个数判断【解析】此题暂无解析【解答】证明:的定义域为..因为单调递增,单调递减,所以单调递增.又,,故存在唯一,使得. 又当时,,单调递减;当时,,单调递增.因此,存在唯一的极值点.由知,又,所以在内存在唯一根.由得.又,故是在的唯一根,综上,有且仅有两个实根,且两个实根互为倒数.四、选做题22.【答案】解:∵在上,当时,,由已知得,设为上除的任意一点.在中,.经检验,点在曲线上.∴的极坐标方程为.设,在中,,即,∵在线段上,且,故的取值范围是,∴点轨迹的极坐标方程为,.【考点】直线的极坐标方程圆的极坐标方程极坐标刻画点的位置极坐标的概念【解析】此题暂无解析【解答】解:∵在上,当时,,由已知得,设为上除的任意一点.在中,.经检验,点在曲线上.∴的极坐标方程为.设,在中,,即,∵在线段上,且,故的取值范围是,∴点轨迹的极坐标方程为,.23.【答案】解:当时,.当时,;当时,.所以,不等式的解集为. ∵,∴ .当,时,∴的取值范围是.【考点】绝对值不等式的解法与证明【解析】此题暂无解析【解答】解:当时,.当时,;当时,.所以,不等式的解集为. ∵,∴ .当,时,∴的取值范围是.。

相关文档
最新文档