储磷屏影响系统-CyclonePlus-PerkinElmer-天池凯源

合集下载

用于液晶投影仪的图象赝象去除技术[发明专利]

用于液晶投影仪的图象赝象去除技术[发明专利]

专利名称:用于液晶投影仪的图象赝象去除技术专利类型:发明专利
发明人:疏效平,陈昭元,林宗男
申请号:CN02102401.4
申请日:20020118
公开号:CN1366270A
公开日:
20020828
专利内容由知识产权出版社提供
摘要:提供一种用于识别投影或显示图象中点阵和非点阵区以便在保持非点阵区中鲜明度的同时使图象柔和并有选择地去除点阵区中的莫尔条纹的技术。

图象中每一象素归类为点阵或非点阵象素然后在各象素的预定周围区中的象素被加以验证以核查该象素的归类。

将低通滤波器应用到图象中的各象素,使得当应用低通滤波器时,低通滤波器的中心根据检验相对于当前的象素被有选择地移位。

申请人:精工爱普生株式会社
地址:日本东京都
国籍:JP
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。

含磷组分薄膜对InGaAsP/InP多量子阱无序处理的影响

含磷组分薄膜对InGaAsP/InP多量子阱无序处理的影响

1 引 言
单 片光 电子 集 成 电路 的研 制 , 常要 求 同一 量 常 子 阱材料 上 不 同位 置有 不 同带 睬 , 常 采 用多 次腐 通
蚀和 量子 阱再 生 长的方法 来 实现 口. 而 , ]然 该技 术 复
膜 组 合 和 含 P 组 分 的 SO… i PN 新 的 薄 膜 作 为

分析( E A) X D 确定.C 包封层中经能谱分析测定 3 T5
掺 磷量 为 7 8 . . 将 制 备好 的不 同结构 电介 质 包 封层 的 MQWs
样 品 , 行 快 速 热退 火 ( A) 理 . 火 时将 样 品 进 RT 处 退
Ga P IP量子 阱带 昧展竟十分呈著 , As /n 高达 2 4 V,L谱峰值波长蓝移 3 2 m, 2me P 4n 半宽较窄仅为 2n 说明量子 阱 5 m,
性能保持 十分 良好 , 并对此现象 的成园被 了初步分析 . 关■诩 t量子阱混合互扩 }无 杂质空位扩散 }等高 子体增强化学气相淀积
清 洁处理 后备 用 . 该结 构 i 层具 有 4个 IG As n a P量
子 阱结 构 , 图 1 示. 如 所
p I P n
i4 QWs n A P Oa s l
n I P n
电介 质盖层 下量 子 阱互 扩 , 分改变 造成 带隙变化 . 组 P L谱 结 果 显 示 渡 长 蓝移 ( 晾增 宽 ) 相 反 .9 5 带 或 1 9 年 法 国 Ra 人 提 出了掺 P的 SO: 的包 封源 , o等 i 新
获得 了较 大 的蓝 移 [ , a a e等 人用 该法 制 备 出 E R md n ]
*瑁 家 自鼎 科 学 基 金赍 助 明 目 ( 准 号 ;9 80 16 8 6 6 ) 批 6 86 0 ,9 9 2 0 王永 晨 男 .9 1年 【生 , 授 . 14 } 教 l 矸究 生导 师 . 事 忧 台 约 半导 体物 理 、 辩和 嚣 件 的 矸 究 从 材

储能接入风光互补系统潮流分析

储能接入风光互补系统潮流分析

文章编号:1004-289X(2022)06-0080-04储能接入风光互补系统潮流分析徐真真1ꎬ张师2(1 国网北京石景山供电公司ꎬ北京㊀100000ꎻ2 东北电力大学电气工程学院ꎬ吉林㊀吉林㊀132012)摘㊀要:风光储系统在未来实现碳达峰㊁碳中和中扮演着重要的角色ꎬ储能接入对风光互补系统的影响也是一项值得研究的工作ꎮ本文分析了储能接入风光互补系统后ꎬ对系统潮流变化的影响ꎬ基于PSAT搭建了潮流模型ꎬ并分析了不同风光互补系统工况下ꎬ储能接入对系统潮流的影响ꎮ通过本文的分析可知ꎬ储能接入后ꎬ可减少节点注入的功率波动ꎬ从而减少线路功率波动ꎬ并可以减少各节点电压波动情况ꎮ关键词:风光互补ꎻ风光储ꎻ潮流ꎻ功率波动中图分类号:TM71㊀㊀㊀㊀㊀文献标识码:BAnalysisofEnergyStorageandEnergy ̄windComplementarySystemTrendXUZhen ̄zhen1ꎬZHANGShi2(1 StateGridBeijingShijingshanPowerSupplyCompanyꎬBeijing100000ꎬChinaꎻ2 NortheastPowerUniversityꎬJilin132012ꎬChina)Abstract:Awind ̄lightstoragesystemplaysanimportantroleinachievingcarbonpeakandcarbonneutralityinthefutureꎬandtheimpactofenergystorageaccessonwindandsolarcomplementarysystemisalsoaworkworthstudying.Thispaperanalyzestheinfluenceofenergystorageonthesystempowertrendchangeafteraccessingthewind ̄solarcomplementarysystemꎬbuildsthepowertrendmodelbasedonPSATꎬandanalyzestheimpactofenergystorageaccessonthesystempowertrendunderdifferentwind ̄solarcomplementarysystemworkingconditions.Ac ̄cordingtotheanalysisofthispaperꎬtheenergystorageaccesscanreducethepowerfluctuationinjectedbythenodesꎬthusreducingthelinepowerfluctuationꎬandreducingthevoltagefluctuationofeachnode.Keywords:complementaryꎻwind ̄lightstorageꎻtidaltrendꎻpowerfluctuation1㊀引言2020年9月ꎬ国家主席习近平在第七十五届联合国大会一般性辩论会上发表重要讲话ꎬ宣布中国力争2030年实现碳达峰ꎬ努力争取2060年实现碳中和ꎮ风电㊁光伏作为技术较为成熟的可再生能源发电形式ꎬ其生产规模不断壮大ꎬ并网容量不断增加ꎬ受到了国内外学者的广泛关注[1-6]ꎮ㊀㊀由于风电功率和光伏功率都具有随机波动的特性ꎬ可采用储能配合风电光伏发电的接入ꎬ以提高电网对风电和光伏并网的消纳能力ꎮ㊀㊀目前ꎬ关于风光储联合系统的研究已经取得了一些成果ꎬ文献[7]构建了风光储微电网的出力模型ꎬ然后以最小系统年等额成本㊁最小系统年碳排放总额和最小系统外购电比例为优化目标ꎬ建立了并网型风光储微电网容量的多目标优化模型ꎻ文献[8]提出基于山体的重力储能形式ꎬ以系统成本最小为优化目标的并网型风光储联合发电系统容量优化规划模型ꎻ文献[9]基于改进多元宇宙算法提出了包含度电成本㊁可再生能源利用率和碳排放处理成本的并网型微电网容量优化配置方法ꎻ文献[10]针对风光储系统中储能深度放电造成的寿命损耗严重问题ꎬ建立储能寿命优化目标函数ꎬ在对风光储微电网制定调度计划的同时兼顾对储能的寿命优化ꎻ文献[11]提出风光储电站对临近火电厂黑启动的协调控制策略ꎬ可以降低黑启动过程中储能充放电功率和转换次数ꎮ㊀㊀现有研究中ꎬ未见对风光储系统潮流进行深入分析的成果ꎬ而储能接入对风光互补系统的消纳能力具有重要提升作用ꎬ储能接入后配合风电光伏并网对系统潮流的影响也是一项值得分析的工作ꎮ基于此ꎬ本文将基于PSAT搭建风光储联合发电系统ꎬ分析储能接入对风光互补系统潮流的影响ꎮ2㊀基于PSAT的风光储仿真模型㊀㊀以吉林省风资源和光资源分布为例ꎬ如图1所示ꎮ图1㊀吉林省风光资源分布情况㊀㊀吉林省总体呈东林㊁中农㊁西牧的土地利用格局ꎬ即东部分布长白山原始森林ꎬ农业用地集中在中部ꎬ建设用地集中在中部ꎬ西部未利用地较多ꎬ西部地区目前地势平坦ꎬ适合发展风电及光伏ꎮ㊀㊀基于三机九节点系统网络参数搭建风光储系统仿真模型[12]2所示ꎮ图2㊀3机9节点仿真系统㊀㊀图2中ꎬbus2为未利用地区ꎬ由于一次能源丰富ꎬ可能未来要发展的风光储基地ꎮBus3为建设用地集中区域ꎬ已经建设了部分风光储基地ꎮBus1为不适合建设风光储基地的地区ꎬ采用传统火电或水电ꎮ3㊀储能接入对风光互补系统的影响㊀㊀某条线路实际一年损耗的电能可以表示为:ΔWi=ʏ87600ΔPidt=RiU2iNʏ87600(Picosφi)2dt(1)㊀㊀式中:ΔWi为第i条支路年电能损耗ꎻΔPi为第i条支路的有功功率损耗ꎻRi为第i条支路的电阻ꎻPi为第i条流过的有功功率ꎻcosφi为第i条支路的功率因数ꎻUiN为第i条支路的额定电压ꎮ式(1)中近似认为支路的两端电压为额定电压ꎮ㊀㊀从式(1)可知ꎬ线路传输的无功功率越少ꎬ功率因数越高ꎬ有功功率损耗越小ꎬ损耗的电能就越少ꎮ因此ꎬ当线路传输无功较多时ꎬ在配备储能的同时适当加入部分无功补偿ꎬ可以提高系统运行经济性ꎮ此外ꎬ接入储能后ꎬ会改变线路流过的有功功率ꎬ从而改变年电能损耗ꎬ影响系统的经济性ꎮ由于ΔWi和Pi为非线性关系ꎬ且储能功率对Pi的影响较为复杂ꎬ储能接入后系统的经济性可通过仿真进一步分析ꎮ㊀㊀相邻的i节点和j节点的电压幅值可以近似表示为:Ui1ʈUi2+Pi2Ri+Qi2XiUi2(2)㊀㊀式中:Ui1为i支路首端电压幅值ꎻUi2为i支路末端电压幅值ꎻRi为第i条支路的电阻ꎻXi为第i条支路的电抗ꎻPi2为i支路末端有功功率ꎻQi2为i支路末端无功功率ꎮ㊀㊀由式(2)可知ꎬ增加储能后可减少Pi2的功率率波动ꎬ从而减少风光互补系统各节点电压的波动ꎮ节点并联电容器补偿的容量可以表示为:QCiʈUi2CXi(Ui2C-Ui2)(3)㊀㊀式中:Ui2C为i支路末端补偿后的电压ꎻQCi为i支路末端并联的补偿容量ꎮ㊀㊀从式(3)可以看出ꎬ当减少电压波动后ꎬ会减少无功补偿的容量ꎮ㊀㊀基于以上分析可知ꎬ储能接入后ꎬ可减少节点注入的功率波动ꎬ从而减少线路功率波动ꎬ并可以减少各节点电压波动情况ꎮ4㊀算例分析㊀㊀本文首先针对储能接入对风光互补系统功率波动的影响进行仿真分析ꎮ在bus2接入风光互补系统ꎬ风电机组采用120MW的DFIGꎬ光伏为30MWꎬ总风光互补基地发电为80MWꎬ仿真时间50minꎬ仿真步长为6sꎮbus2-bus7支路的有功功率如图3所示ꎮ图3㊀接入储能前后的功率波动情况㊀㊀接入储能后ꎬ可以减少风光基地注入电网的功率波动ꎮ㊀㊀Bus7的电压波动情况如图4所示ꎮ图4㊀接入储能前后的电压波动情况㊀㊀接入储能后ꎬbus7的电压波动也有所减少ꎮ㊀㊀对整个系统进行潮流分析ꎬbus1为传统电源ꎬbus2㊁bus3为风光互补系统ꎬ由于bus2和bus3存在资源分布差异ꎬ因此同一时间断面下ꎬ其风速㊁日照强度也会有所不同ꎮ㊀㊀未接储能前ꎬbus2㊁bus3的风光互补系统在不同时段的功率如图5~图7所示ꎮ时段1:bus2处风光互补系统总出力140MWꎬbus3处出力120MWꎻ时段2:bus2处风光互补系统总出力50MWꎬbus3处出力35MWꎻ时段3:bus2处风光互补系统总出力80MWꎬbus3处出力80MWꎮ㊀㊀在时段1ꎬ风光互补系统的输出功率较多ꎬ系统各线路功率分布较平均ꎻ时段2ꎬ风光互补系统输出功率较少ꎬ此时负荷主要由传统电源供电ꎬbus4-bus5线路功率较大ꎮ图5㊀时段1未接储能的功率热力图图6㊀时段2未接储能的功率热力图图7㊀时段3未接储能的功率热力图㊀㊀接入储能后ꎬ在风光互补系统出力大时储能ꎬ在风光互补系统发电不足时放电ꎬ各时段风光储系统出力改变ꎮ时段1:bus2处风光储系统总出力120MWꎬbus3处出力100MWꎻ时段2:bus2处风光储系统总出力70MWꎬbus3处出力55MWꎻ时段3:bus2处风光储系统总出力80MWꎬbus3处出力80MWꎮ图8㊀时段1接入储能的功率热力图图9㊀时段2接入储能的功率热力图图10㊀时段3接入储能的功率热力图㊀㊀接入储能后ꎬ在风电光伏出力达到峰值时储存能量ꎬ在风电光伏出力达到低谷时可以放电ꎬ从而使系统工况改变时ꎬ联络线的功率变化减少ꎮ5㊀结论㊀㊀本文分析了储能接入对风光互补系统潮流的影响ꎮ通过分析可知ꎬ储能接入后ꎬ可减少节点注入的功率波动ꎬ从而减少线路功率波动ꎬ并可以减少各节点电压波动情况ꎮ参考文献[1]㊀张昕ꎬ魏立明ꎬ张师.光伏分布式接入对配电网电压稳定性的影响研究[J].吉林电力ꎬ2021ꎬ49(2):12-15.[2]㊀张师ꎬ刘竞泽ꎬ田蕾ꎬ等.分布式风光储对中压配电网的影响[J].黑龙江电力ꎬ2021ꎬ43(1):73-77.[3]㊀WangZWꎬShenCꎬLiuF.ProbabilisticAnalysisofSmallSignalStabilityforPowerSystemsWithHighPenetrationofWindGeneration[J].IEEETransactionsonSustainableEnergyꎬ2017ꎬ7(3):1182-1193.[4]㊀EknathVittalꎬAndrewKeane.IdenticationofCriticalWindFarmLocationsforImprovedStabilityandSystemPlanning[J].2013ꎬ28(3):2950-2958.[5]㊀任振宇ꎬ张师.直驱风电接入后对电力系统小干扰稳定性影响分析[J].电气开关ꎬ2017ꎬ55(2):57-60.[6]㊀安军ꎬ张师ꎬ穆钢ꎬ等.双馈风电场有功分配方式对风火打捆系统暂态稳定性的影响[J].太阳能学报ꎬ2017ꎬ38(5):1391-1396.[7]㊀孟凡斌ꎬ周静ꎬ张霄ꎬ等.基于改进FPA-LHS算法的并网型微电网容量优化配置研究[J].智慧电力ꎬ2021ꎬ49(10):45-51.[8]㊀侯慧ꎬ徐焘ꎬ肖振锋ꎬ等.基于重力储能的风光储联合发电系统容量规划与评价[J].电力系统保护与控制ꎬ2021ꎬ49(17):74-84.[9]㊀唐文东.并网型风/光/储微电网容量优化配置与经济优化运行研究[D].湘潭大学ꎬ2021.[10]㊀甘锐.风光储微电网能量管理系统优化控制方法研究[D].哈尔滨工业大学ꎬ2021.[11]㊀赵晶晶ꎬ朱天天ꎬ陈凌汉ꎬ等.风光储电站对临近火电厂黑启动的协调控制策略[J].电力系统及其自动化学报ꎬ2021ꎬ33(11):105-111.[12]㊀KundurP.PowerSystemStabilityandControl[M].中国电力出版社ꎬ1994.收稿日期:2022-05-20作者简介:徐真真(1987-)ꎬ男ꎬ汉族ꎬ工程师ꎬ学士ꎬ电气工程及其自动化专业ꎬ研究方向:电力系统动态安全分析ꎻ张师(1989-)ꎬ男ꎬ硕士ꎬ主要研究方向:风电并网系统稳定性分析ꎮ。

统宝光电推出适用于行动显示装置之嵌入玻璃式环境亮度感测技术

统宝光电推出适用于行动显示装置之嵌入玻璃式环境亮度感测技术

黑 暗 传 感 器 可 以为 AL S系统 本 身 提供 内部 调 整 的 标 准 , 除温度 变 化所 造成 的偏 移 , 免 并将 整体 亮度 感
测 的灵敏 度 提升 到 3l x以下 。 u
统 宝光 电 AL S技 术 介ห้องสมุดไป่ตู้绍
透 过感 测环 境 亮度 ,终 端 使用者 可 以 自行 决 定 调 整显 示背 光 与按键 盘 的亮度来 减 少耗 电,延 长 手 机 与其他 行 动 显示 设备 的电池 使用 时间 。在环 境 亮 度 高 的场 合 , 如 阳光 下 , 端 使用者 可 以提高 背 光 例 终 强 度来 改善 行动 显 示设 备 的阅读 清晰 度 : 反之 , 在环 境 亮度较 低 的场 合 ,则 可 以降低 背光 强度 来取 得 较 佳 的画质 。因此 , 用者 可 以依 所 处环境 的照明情 况 使 将 显示 亮度调 整 到 最适合 、 适 的状态 , 宝 光 电的 舒 统 AL S技 术 为统 宝光 电与 飞利浦 实验 室 (hlsR — P i e i p
拟输 出信 号 非 晶硅 AL S系统 比较 , 以大 幅 改善 整 可
体 AL S的稳 定度 。 驱 动 I 能 够 在传 感 器 输 出信 C则 号后 , 透过符 合客 户设 计要 求 的接 口将数 据送 出。 统 宝 光 电 目前 已经吸 引 多家 一线 手机 制造 商 的 高度 兴
趣 , 划在新 的产 品上 采用 AL 计 S技 术。 统宝光 电的 AL S技 术提供客户讹 多北能 , 包括从
步提 出了具 备 先天优 势 的嵌 入 式 L P S解决 方 T SAL
技术 ,系统 可 以测量 环境 照 明 的强度 并将 背 光 亮度 随 之调 整 ,这样 不仅 能够 降低 行 动 显示 装置 成本 并

磷屏成像的计量性能测试及其在大面积平面源均匀性评价中的应用

磷屏成像的计量性能测试及其在大面积平面源均匀性评价中的应用

磷屏成像的计量性能测试及其在大面积平面源均匀性评价中的应用符燕;梁珺成;邹宇;杨志杰;唐泉;张明;刘皓然;赵清【摘要】According to the application requirement of the phosphor screen imaging technology in the field of radioactivity measurement,tests of the repeatability,consistency and linearity with time and radioactivity involving the imaging of phosphor screen are carried out under laboratory conditions.The results show that the repeatability of imaging gray value is 8.6% (k=2),the response of a phosphor screen imaging to point source in the sensitive area o f 190 mm×200 mm is equivalent,the gray value of imaging phosphor screen becomes proportional with the exposuretime,and the gray value created by the equal exposure time is proportional to the emission rate of the source.Based on these performance as well as strictly respecting to the uniformity evaluation rules of ISO 8769 ∶2010,the uniformity measurement to a large area source of 150 mm× 100 mm is executed,the quantitative and intuitive expression method to the uniformity of a plane source is established,so as to develop a reference method of improving the preparation process to pIane source in accordance with the ISO 8769 ∶ 2010 international standard.%针对磷屏成像技术在放射性活度计量领域的应用需求,开展了磷屏成像响应的重复性、一致性、时间线性与活度线性研究.结果表明:成像灰度值重复性为8.6%(k=2),190mm×200 mm的磷屏成像区域对于点状源的响应一致;磷屏成像的灰度值与照射的时间成正比,相同照射时间所产生的灰度值与源的发射率也成正比.以这些计量性能结果为基础,严格按照ISO 8769:2010的均匀性评价规则对150 mm×100 mm 的大面积源进行了均匀性测量,建立了定量和直观表达平面源均匀性的方法,从而为改善平面源的制备工艺,建立符合国际标准的大面积源计量器具提供了参考评估方法.【期刊名称】《核化学与放射化学》【年(卷),期】2017(039)001【总页数】7页(P83-89)【关键词】磷屏成像;计量性能;大面积平面源;均匀性【作者】符燕;梁珺成;邹宇;杨志杰;唐泉;张明;刘皓然;赵清【作者单位】南华大学核科学技术学院,湖南衡阳421001;中国计量科学研究院电离辐射计量科学研究所,北京100029;中国计量科学研究院电离辐射计量科学研究所,北京100029;中国计量科学研究院电离辐射计量科学研究所,北京100029;北京大学化学与分子工程学院,北京100871;中国计量科学研究院电离辐射计量科学研究所,北京100029;南华大学核科学技术学院,湖南衡阳421001;中国计量科学研究院电离辐射计量科学研究所,北京100029;中国计量科学研究院电离辐射计量科学研究所,北京100029;中国计量科学研究院电离辐射计量科学研究所,北京100029【正文语种】中文【中图分类】R144磷屏成像技术相比于其他成像方法,具有位置灵敏、可重复使用、不需要对化学药品和有毒废弃物进行处理、成像速度快、线性动态范围宽、可以数字化定量成像等优点,因此在全身放射自显影[1-2]、受体放射自显影[3]、高分辨率凝胶分析、DNA测序、Western杂交和DNA微矩阵分析等领域得到了广泛应用。

太阳诱导叶绿素荧光卫星遥感技术研究进展

太阳诱导叶绿素荧光卫星遥感技术研究进展

第43卷第2期航天返回与遥感2022年4月SPACECRAFT RECOVERY & REMOTE SENSING45太阳诱导叶绿素荧光卫星遥感技术研究进展仝迟鸣鲍云飞黄巧林王钰(北京空间机电研究所,北京100094)摘要陆地植被生态系统碳汇能力的定量评估对更好的理解全球碳循环,实现碳达峰、碳中和目标至关重要。

卫星反演的太阳诱导叶绿素荧光(SIF)作为一种快速、直接、非侵入性的植被光合性能指标应用日益广泛,为估算区域到全球尺度陆地植被生态系统的碳汇水平提供了一种新的光学手段。

文章首先回顾了用于卫星SIF反演的传感器及其反演SIF产品的特点;其次,综述了卫星SIF在陆地植被生态系统碳汇监测中的研究进展;最后,针对陆地碳循环遥感的应用需求,讨论分析了未来卫星SIF遥感发展的难点与重点。

文章对卫星SIF遥感在陆地植被生态系统碳汇监测中的应用分析,可为生态系统碳源/汇管理、气候预测和卫星研制提供一定参考。

关键词总初级生产力太阳诱导叶绿素荧光碳循环卫星遥感中图分类号: V19文献标志码: A 文章编号: 1009-8518(2022)02-0045-11DOI: 10.3969/j.issn.1009-8518.2022.02.005Progress on Solar-induced Chlorophyll Fluorescence of SatelliteRemote SensingTONG Chiming BAO Yunfei HUANG Qiaolin WANG Yu(Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China)Abstract Quantifying terrestrial vegetation ecosystem carbon sink is essential for better understanding the global carbon cycle and achieving the goals of peak carbon dioxide emissions as well as carbon neutrality. Solar-induced chlorophyll fluorescence (SIF) is widely used as a rapid, direct and non-invasive indicator of the function and status of vegetation. Satellite SIF provides a new optical method for estimating carbon sink of terrestrial vegetation ecosystems at scales from regions to the globle. Firstly, we review the characteristics of satellite platforms/sensors for SIF retrieval and its products. Secondly, we present an overview of the application of satellite SIF in the terrestrial ecosystem carbon sink. At last, we discuss the challenges of satellite SIF remote sensing in terrestrial carbon cycle according to their needs. This comprehensive review on terrestrial vegetation ecosystem carbon monitoring of satellite SIF application can benefit carbon management, climate projections, and satellite design.Keywords gross primary production (GPP); solar-induced chlorophyll fluorescence (SIF); carbon cycle; satellite remote sensing收稿日期:2022-01-18基金项目:国际(地区)合作与交流项目(41611530544)引用格式:仝迟鸣, 鲍云飞, 黄巧林, 等. 太阳诱导叶绿素荧光卫星遥感技术研究进展[J]. 航天返回与遥感, 2022, 43(2): 45-55.TONG Chiming, BAO Yunfei, HUANG Qiaolin, et al. Progress on Solar-induced Chlorophyll Fluorescence of46航天返回与遥感2022年第43卷0 引言工业革命导致CO2、CH4等温室气体排放增加,气候变暖进程加快,将造成极端气象事件频发、冰川融化、海平面上升等灾害性后果。

DS4072 技术数据手册说明书

DS4072 技术数据手册说明书

Product featuresTVSATransient voltage ESD suppressor•Lead free, halogen free and RoHS compliant forglobal applications•Single-line, bi-directional device for placement flexibility•Silicon based chip•Low capacitance to meet the needs for high speed single transient voltage protection•Provides ESD protection with fast response time (<1ns) allowing equipment to pass IEC 61000-4-2level 4 test•Low profile designs for board space savings•Low leakage current reduces power consumption •Low clamping voltage•Solid-state silicon-avalanche technologyPbApplications•Computers and peripherals •Digital cameras •Mobile phones •DVD/Media Players•MP3/Multimedia players •A-V Equipment •External storage •DSL Modems •Set top boxes •Docking systemsV18C001Product Family SizeWorking DC Voltage Capacitance in pF** Part numbers use “R” to denote decimal point for decimal values of pico farads.TVSA 04Packaging•Size 0201: 15,000 pieces per reel - EIA (EIAJ)•Size 0402: 10,000 pieces per reel - EIA (EIAJ)Surface Mount Device 12EatonElectronics Division 1000 Eaton Boulevard Cleveland, OH 44122United States/electronics© 2017 EatonAll Rights Reserved Printed in USA Publication No. DS 4072 BU-SB13279 June 2017Eaton is a registered trademark.All other trademarks are property of their respective owners.Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.Technical Data DS4072Effective June 2017TVSATransient voltage ESD suppressorDimensions - mmWHLC Size LW H C 02010.60±0.050.30±0.050.30±0.050.20±0.100402 1.00±0.150.50±0.100.50±0.100.25±0.15Recommended Pad Layout - mm (in)Size b a c d 02010.230.300.450.83(0.009)(0.012)(0.018)(0.033)04020.510.610.51 1.70(0.020)(0.024)(0.020)(0.067)Tape Packaging Specifications - mmTime (seconds)T e m p e r a t u r e (°C )Soldering Recommendations•Compatible with lead and lead-free solder reflow processes •Peak reflow temperatures and durations:-IR Reflow = 260°C max for 30 sec. max.-Wave Solder = 260°C max. for 10 sec. max.•Recommended IR Reflow Profile:。

液闪仪-TopCount-PerkinElmer-天池凯源

液闪仪-TopCount-PerkinElmer-天池凯源

Drug DiscoveryResearch Clinical ScreeningHTS Instrument ServicesNeed A Hand with FDA’s 21 CFR Part 11?PerkinElmer Can Help!21 CFR Part 11 Compatible Software Now Available for TopCount ®!PerkinElmer Life Sciences is firmly committed to meeting your needs in the demanding, ever-changing pharmaceutical and biotechnology industries. Toassist in your compliance planning, we would like to announce 21 CFR Part 11 Compatible Software for TopCount which includes instrument access security,electronic record (data) security and audit logs functionality.Instrument Access Security:Supports User ID and passwordauthentication. User manager allows set up of user groups with varying rights for individual users.Electronic Record (Data)Security:All data are automatically stored in a secured directory until archived from the system.Audit Logs:Creates a separate protected file that records user log-in, changes in assay parameters as well as creation,modification or deletion of data.For more information on 21CFR Part 11software compatibility, please contact your localPerkinElmer sales representativeN o w A va i l ab l e !!!l t Ow.d oc u -t r a c k.cC i c kob u yN wwomWorldwide Headquarters:PerkinElmer Life Sciences,Inc.,549 Albany Street,Boston,MA 02118-2512 USA (800) 551-2121European Headquarters:PerkinElmer Life Sciences,Inc.,Imperiastraat 8,BE-1930 Zaventem BelgiumTechnical Support: in Europe:techsupport.europe@ in US and Rest of World:techsupport@Belgium:Tel:0800 94 540• France:Tel:0800 90 77 62• Netherlands:Tel:0800 02 23 042• Germany:Tel:0800 1 81 00 32• United Kingdom:Tel:0800 89 60 46Switzerland:Tel:0800 55 50 27• Italy:Tel:800 79 03 10• Sweden:Tel:020 79 07 35• Norway:Tel:800 11 947• Denmark:Tel:80 88 3477• Spain:Tel:900 973 255Windows is a registered trademark of Microsoft Corporation. All other trademarks or registered trademarks are the property of PerkinElmer Life Sciences, Inc.S4171 10/02© 2002 PerkinElmer Life Sciences, Inc.Instrument Access SecurityWindows operating system features used -Directory permission to provide securedsubdirectories for acquired data, metadata, etc.-Creation and management of users and groups -Authentication of User IDs and passwords-Single ID and password access for user control for both desktop and instrument via the operating systemSecuring the instrument access after timeoutElectronic Record (Data) SecuritySecured local subdirectory-Accessible only to system administrator-Contains metadata, instrument support files,raw data, result data and calibration informationAdditional data security-Create hash value (fingerprint) for each file that contains or affects acquired data -All hash values are stored in a table and encrypted (128-bit encryption scheme)-All files and encrypted hash table in secured subdirectory can be "zipped" into a file bundle -File bundle can be moved off the local drive for archiving-Data verification program to ensure data bundles cannot be tampered with (even outside of secured environment)Audit LogAssay run logAssay definition revision log System log Service log ASCII formatTopCount 21 CFR Part 11 Compatibility Software- Key FeaturesOrdering Information:Part No.Description700198821 CFR Part 11 security option for TopCount NXT systems (installed with new instrument orders only)Contains 21 CFR Part 11 security option program anddistributable data verification program installed and on CD,manual, license ID key for 21 CFR Part 11 security, license to use the program on one TopCount.700198921 CFR Part 11 security option field upgrade for TopCount NXT systems (software only)This upgrade requires the computer to meet (or exceed)the minimum specifications.Contains 21 CFR Part 11 security option program and distributable data verification program on CD, manual, license ID key for 21CFR Part 11security, license to use the program on one TopCount,system inspection, field upgrade installation and training.700199021 CFR Part 11 security option field upgrade forTopCount NXT systems (software and computer upgrade)This includes a new computer system that meets (or exceeds)the minimum specifications.Contains 21 CFR Part 11 security option program anddistributable data verification program on CD, manual, license ID key for 21 CFR Part 11 security, license to use the program on one TopCount, a new computer system that meets or exceeds the minimum specification, system inspection, field upgrade installation and training.As the trusted partner of researchers worldwide, PerkinElmer understands you require faster and easier solutions to meet the FDA's regulations. Not only does TopCount now have compatible software for the 21 CFR Part 11 regulation, you can have your existing instrument upgraded in your laboratory , or order a new instrument with this option. Now that's faster! The software has recognizable Windows ®features, making it easy to use, too. Read on for all the new features and how they meet the 21 CFR Part 11 regulation.l t Ow.d oc u -t r a c k .c C i c kob u yN wwomTCA-003AbstractThe Packard TopCount Microplate Scintillation and Luminescence Counter employs a unique form of pulse discrimination which distinguishes between unwanted background “noise” and true scintillation events. Unlike classical scintillation counting, which utilizes two photomultiplier tubes (PMTs) operating in coincidence to reject this noise, TopCount uses a patented single PMT method. This paper summa-rizes conventional coincidence counting and describes the theory of the TopCount pulse discrimi-nation circuit. Results are presented which illustrate the performance of the circuit with a variety of scintillators, radionuclides and samples. Counting efficiencies similar to conventional liquid scintilla-tion counting (LSC) are achieved for both liquid and solid scintillators. The key benefit of the TopCount single-PMT counting system is the ability to count samples deposited on a non-transparent support such as solid scintillators, filters and membranes, or contained in low cost, opaque microplates.Basic Scintillation TheoryRadioactivity can be quantitated by the conversion of the energy from beta or gamma decays into detect-able light photons. This conversion can occur in either liquid or solid scintillants. Liquid scintillation counting is accomplished with a liquid scintillation cocktail, consisting of an organic solvent and soluble organic scintillators. An energetic electron from a radioactive decay event excites solvent molecules to higher energy states. The solvent transfers energy to the primary organic scintillator, which in turn,transfers it to a secondary scintillator. When the secondary scintillator molecules return to their ground state, a packet of photons is released with an optimal wavelength for detection by PMTs.Solid scintillators can also be used to convert radio-nuclide decay energy into photons of the appropriate wavelength. Solid scintillators are usually inorganic compounds (calcium fluoride or yttrium silicate)which contain small amounts of heavy elements such as europium or cerium. Decay energy is absorbed by these compounds and reemitted as light of the correct wavelength for detection by PMTs.Characteristics of ScintillatorsTwo characteristics of the scintillator, liquid or solid,are critical to the detection and pulse discrimination process. First, scintillators have specific energy ab-sorption and emission wavelengths. Energy absorbed by the scintillators must be efficiently converted to photons with wavelengths optimal for detection with PMTs.Second, the scintillator emits the photon packet over a period of time (the decay period). The detection of individual photons results in a number of narrow electrical pulses from the PMT. Scintillators with short decay constants, such as organic scintillators found in conventional LSC cocktails, are fast scintillators. They release virtually all of their stored energy in a brief, intense burst of 2.5 nanoseconds or less (the prompt pulse). This is illustrated in Figure 1.Theory of TopCount ® OperationScintillators with long decay periods of more than 50 nanoseconds, such as inorganic or solid scintillators, release only a portion of their energy in the prompt pulse. The remaining energy is emitted slowly over a longer period as a series of pulses (the delayed pulses). This is illustrated in Figure 2. Solid scintillators have decay periods ranging up to several microseconds.The combination of these two scintillator character-istics determines how efficiently a beta or gamma decay event can be detected. These characteristics also play a role in the Time-Resolved Liquid Scintillation technique (TR-LSC) used to distin-guish between true scintillation events and background noise.1Characteristics of Background Noise Electronic pulses which are not due to true beta decay events are considered noise. There are several sources of these pulses, including:•PMT thermal noise•Chemiluminescence•Photoluminescence•Cosmic radiationThe largest single source of background noise is the PMT itself. Thermally excited electrons at the photosensitive surface of the PMT are amplified to produce noise pulses.A large percentage of these pulses can be filtered out by setting a threshold just above the single photoelec-tron (SPE) level. This threshold is the minimum voltage generated by a single photon. Pulses smaller than the threshold are ignored by the electronics. However, some PMT noise pulses exceed the thresh-old voltage. They can be detected, along with true scintillation pulses and can increase the background count rate.Background noise pulses must be filtered out to accurately measure the actual sample radioactivity. There are two methods for filtering out noise:1) Conventional dual-PMT coincidence counting2) Single-PMT time-resolved pulse discriminationDual-PMT Coincidence Counting Conventional liquid scintillation counters employ the dual-PMT coincidence counting technique wherein the sample is placed between two diametri-cally opposed PMTs. A packet of photons produced by a true scintillation event travels isotropically. Therefore, portions of the photon packet are detected by both PMTs at the same time. The coincidence circuit monitors the output from each PMT for the presence of pulses arriving at both PMTs within a very short time window. This window or coincidence resolving time is typically 18 nanoseconds. Pulses detected in both PMTs within the coincidence re-solving time are assumed to originate from a true decay event, and are accepted by the circuit (see Figure 3). The pulses are then summed and analyzed for pulse height (energy).Figure 1.Scintillation event from a fast scintillator.Figure 2.Scintillation event from a slow scintillator.Noise pulses are random events, and are detected only by the PMT in which they occur. The probabil-ity is extremely small that both PMTs will generate noise pulses within the coincidence resolving time window. Therefore, most noise pulses are rejected by the coincidence circuit (see Figure 3). Coincidence counting requires very fast scintillators. By using cocktails which are optimized for coincidence counting, most background noise is filtered out, and excellent radionuclide counting efficiencies are achieved. Further background re-duction in coincidence counting may be achieved with time-resolved liquid scintillation counting, which detects and characterizes afterpulses caused by background events.2Single-PMT Time-Resolved Scintillation CountingThe single-PMT time-resolved scintillation count-ing technique,2,3 employed in the TopCount Microplate Scintillation and Luminescence Counter, uses pulse counting to distinguish between true de-cay events and background noise. It eliminates the requirement for two PMTs to count each sample and the associated heavy lead shielding. It facilitates close physical alignment of multiple PMTs for si-multaneous counting of up to 12 samples directly in microplates. More importantly, it solves the problem of counting samples contained in standard, non-transparent microplates or deposited on solid Single-PMT counting uses scintillators with rela-tively long decay periods. As described earlier, scintillators emit energy absorbed from a beta decay event by releasing photons. A scintillator with a long decay constant will emit photons over a long time, until all of the absorbed energy has been released. Each photon results in a discrete pulse at the PMT. Therefore, each decay event produces a photon packet followed by a series of pulses. In contrast, PMT noise consists of single pulses.The characteristics of a pulse are determined by observing the PMT output for a period of time after the initial packet has been detected. If it is followed by one or more additional pulses, the pulse probably results from a true decay event, and it is accepted. If no additional pulses are detected within the resolving time period, the initial pulse was probably back-ground noise, and it is rejected (see Figure 4). Rec-ognition of either two or three pulses is sufficient to distinguish valid pulses from background noise for all of the long lifetime scintillators used with the TopCount system.Figure 3.Two-PMT coincidence pulse discrimination.Figure 4.Single-PMT time-resolved pulse discrimination.which exceeds the SPE threshold will trigger the resolving time circuit. The number of pulses above the SPE level during the resolving time period are counted. If multiple pulses are counted, the event is considered valid, and is analyzed further in the pulse height analyzer as in conventional LSC. If multiple pulses are not detected within the resolving time period, the triggering pulse is rejected as background noise (see Figure 4).The probability that a background noise event will produce two, three, or more pulses in the resolving time period is extremely low. Therefore, the count-ing efficiencies and background of TopCount are comparable to those of conventional LSC. Applied Single-PMT Time-Resolved CountingModes of OperationThe TopCount Microplate Scintillation and Lumi-nescence Counter is capable of counting a variety of beta and gamma labeled samples using either liquid or solid scintillators. The time-resolved scintillation counting technique using single PMTs may also be optimized to provide either maximum counting efficiency or maximum sensitivity (maximized efficiency/background). Therefore, there are two counting modes in TopCount:1.High Efficiency Mode. Only two pulses withinthe resolving time period are required to accept an event. Counting efficiency is maximized, and background levels are comparable to or only slightly higher than conventional LSC. This mode is most often used for liquid sample counting with the Packard MicroScint TM-20 scintillation cocktails or scintillation proximity assay (SPA) counting with plastic scintillator beads.2.Normal Efficiency Mode. Three pulses are re-quired within the resolving time period. This dramatically lowers background but maintains acceptable counting efficiency. This mode provides the maximum sensitivity, particularly for solid scintillators. The Normal Efficiency Mode is generally used for counting samples on solid scintillators such as Packard LumaPlates TM or for SPA counting with inorganic glass scintillator beads.Important Note:When TCA-003 was first published, there were two counting modes for the TopCount. In 1996, a third mode was added, and the names of the counting modes were changed. Older TopCount software can be upgraded to the current three counting modes. Table 1 shows the relationships of the counting modes and pulse discrimination for older and current TopCounts, including the new TopCount NXT TM. The experimental data shown here in TCA-003 are relevant to both early and current TopCount models, although the text and tables use the nomenclature of the early TopCount models. To use these data for evaluating current TopCount performance, you must switch the Normal Count Mode with the High Effi-ciency Mode, and switch the High Efficiency Count Mode with the Normal Efficiency Mode. Please refer to TopCount Topics TCA-029 for information and data which compare the current High Efficiency Count Mode (HECM) to the current Normal Count Mode (NCM).Table 1.Scintillators and Counting Efficiency TopCount’s unique time-resolved pulse counting technique provides maximum performance with slowly decaying scintillators, such as yttrium sili-cate, special scintillating plastic beads, and the Packard MicroScint line of scintillation cocktails. The slow decays of these scintillators maximizes the probability that multiple pulses will occur, thereby maximizing counting efficiency and minimizing background noise.Experimental ResultsThree different types of scintillators were chosen for study:1.OptiFluor®, a conventional LSC cocktail (fastscintillator).2.MicroScint-20 liquid cocktail, a specially formu-lated scintillator having the extended decay constant (slower scintillator).3.Yttrium silicate, a long decay constant solidscintillator (slowest scintillator).Each cocktail was dispensed into a separate set offour wells of a microplate (250 microliters per well).Yttrium silicate was placed into four wells of anotherplate (0.012 g/well). Approximately 50,000 DPM of 3H thymidine, 14C thymidine, or 32P ATP were added to three of the wells. The fourth well of each scintil-lator was used to assess background levels. Dupli-cate samples were prepared in LSC vials for DPMassay in a conventional LSC. The samples containedin the liquid cocktails were thoroughly mixed.The samples added to the yttrium silicate werethoroughly dried.All samples were counted in TopCount using boththe High Efficiency and Normal Efficiency Modes.Data obtained from the LSC were used to calculatecounting efficiencies for TopCount.The results (Table 2) indicate that for 3H it is highlypreferable to use a scintillator with a long decayconstant. 3H efficiencies for the MicroScint-20cocktail are much higher using the High EfficiencyMode than they are for the Normal Efficiency Mode.Yttrium silicate provided acceptable efficiencies for 3H in either mode, because of its extremely long decay characteristics.Table 2.Efficiency, background and figure of merit data(optimized counting regions).14C and 32P,These nuclides will count efficiently even with fast scintillators.Background is lower in the Normal Efficiency Mode by as much as a factor of two to three. Although the efficiency is less than in the High Efficiency Mode,the resulting figure of merit (E 2/B) is greater.ConclusionsThe TopCount Microplate Scintillation and Lumi-nescence Counter is a new approach to scintillation counting. TopCount employs single-PMT technol-ogy and time-resolved pulse counting for noise re-duction to allow counting in opaque standard format microplates. Up to 12 samples can be counted simul-taneously with counting efficiencies and sensitivi-ties that rival conventional LSC. The use of opaque microplates can reduce optical crosstalk to negligible levels.Solid scintillators, for counting dried samples with-out liquid radioactive waste, may be used in TopCount in a much more efficient manner than previously possible. This results in considerable savings for sample preparation and radioactive waste disposal.Samples on non-transparent filters and membranes can also be counted, thus opening a new field of possible applications.The use of the standard microplate format and the capability to count non-transparent samples such as solid scintillation samples with TopCount facilitates automated sample processing with standard microplate processing equipment and reduces operating costs.1U.S. patent 4,651,006.2U.S. patent 4,528,450.3U.S. patent 5,198,670.。

CF-LCoS投影光引擎杂散光分析、散热设计及测试的开题报告

CF-LCoS投影光引擎杂散光分析、散热设计及测试的开题报告

CF-LCoS投影光引擎杂散光分析、散热设计及测试的开题报告一、选题背景CF-LCoS(Color Filter Liquid Crystal on Silicon)技术是目前投影仪市场上广泛应用的光学技术之一。

CF-LCoS光引擎是由光学引擎,液晶模组,光学传感器,驱动电路和散热系统等组成的。

CF-LCoS技术在实际应用中会产生杂散光,影响成像质量,同时高功率LED光源的过热问题也会影响投影仪的稳定性和寿命。

因此,对CF-LCoS投影光引擎的杂散光分析、散热设计及测试研究具有重要意义。

二、研究内容和意义1.杂散光分析通过实验测试和数值模拟手段分析CF-LCoS光引擎中产生的各种杂散光,如球差、像差、散射、色散等,了解其规律和产生机理,找出影响光引擎成像质量的因素,为光引擎的优化设计提供理论基础。

2.散热设计针对CF-LCoS光引擎中高功率LED光源的散热问题,设计和改进光学引擎和散热系统,提高其散热性能,保证投影仪的稳定性和寿命。

3.测试验证通过实验测试和模拟验证对光引擎的改进和优化效果,并得到可靠的散热性能测试数据,为产品设计和性能评估提供有效依据。

本研究将通过理论分析、实验测试和数值模拟手段对CF-LCoS投影光引擎的杂散光、散热设计等问题进行深入研究,为提高光引擎的成像质量和增强其稳定性提供技术支撑,具有重要意义。

三、研究方法1.杂散光分析采用Zernike多项式理论分析CF-LCoS光引擎中产生的球差、像差等各种杂散光,建立数学模型并进行仿真计算,得到光引擎的杂散光分布和对光学性能的影响规律。

2.散热设计采用FLUENT软件模拟CF-LCoS光引擎的散热性能,分析散热系统中散热结构和材料的热传导性质和流体力学特性,改进光学引擎和散热系统的结构和布局,提高散热性能,保证光引擎的稳定性。

3.测试验证采用热像仪等测试仪器对CF-LCoS光引擎的散热性能进行实验测试,验证散热性能的可靠性,同时对优化后的光引擎进行成像性能测试和稳定性测试,确定其优化效果和性能指标。

一种可识别工况的空压机节能联控系统

一种可识别工况的空压机节能联控系统

读取当前 启动台数n
气压判断
正常 n=n
超压
定时器
n=n-a
图2 联控系统PLC逻辑
由于工厂生产设备的用气量随生产状况而波动,压 缩空气的流量会随时间剧烈变化,因此PLC的控制策略
需要根据当前工况调整。当用气量较平稳时,一般只需 增加或减少1台空压机供气,则将图2中变量a的值置为 1。当用气量急剧增大或减小时,需要实时增加或减少 多台空压机,则图2中变量a的值需要赋值为大于1的正 整数。此时,变量a的值大小应与用气量变化剧烈程度 有关。同时,末端变频运行空压机的PID参数也需根据 气量变化程度作相应变化。
3 工况识别与控制参数调整
上一节中,需要增加或减少的空压机台数a,以及 末端空压机变频器的PID参数,都需要随工况调整。为 实现上述变量的实时调整,需要识别用气量的变化特 征。因此,联控系统采集出口流量的时域信号,并求取 该时域信号的数值微分。一阶微分数值p′可以表征当 前用气量变化程度,p′<0则说明用气量逐渐减小,p′ >0则说明用气量逐渐增加,p′接近于0则说明用气量波 动较小。二阶微分数值p″可以表征用气量变化趋势, p″<0即时域信号曲线为凹形,p″<0即时域信号曲线 为凸形。结合一阶微分数值,可以判断当前工况。当用 气量开始增加且趋势区域剧烈,则需要增加启动多台空 压机才可满足用气量逐渐加剧的增加需求,同时末端补 偿空压机的PID变频控制程序需要增大比例系数P、减小 积分时间I。当用气量增加,但增加趋于缓和,则只需增 加启动1台空压机,末端空压机的变频控制程序需要减小 比例系数、增大积分时间。其他工况控制参数调整情况 类同。详细工况判断,及相应的调整策略如表1所示。
由于当前用气量大于n-1台空压机满负荷输出,小 于n台空压机满负荷输出。为便于控制,当前启动的空 压机中,除编号最后一位的空压机变频运行外,其他空 压机均满负荷工频运行。变频运行的空压机中,变频器 当前频率由PLC的模拟量输出控制,PLC模拟量输出值 由PLC中Pn=n+a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

emission of tritium to be detected. The MultiSensitive (MS) screen replaces the MultiPurpose (MP) screen, a durable all-purpose screen and the SuperSensitive (ST) screen. The MS screen has the sensitivity of the ST screen with better resolution and the durability of the MP screen.
Introduction
The Cyclone® Plus Storage Phosphor System is an affordable personal imaging system for quantitative image analysis, designed to replace the more qualitative methods in film autoradiography. The storage phosphor screens used to capture the activity of the sample have a number of advantages over film. Phosphor screens have a much longer linear dynamic range, improved response to isotopes for much shorter exposure times, the
Methods Sensitivity
To determine the comparative response to high-energy isotopes, 14 spots of relatively equal amounts
Байду номын сангаас
of 32P-labeled material were spotted onto vellum paper. Each screen type was exposed to the source for 10 minutes and then scanned in the Cyclone Plus at 300 dpi resolution. Quantitation was performed using OptiQuant software (group of regions templates). Fourteen identical elliptical regions were drawn around the spots of activity as well as 20 background regions of the same size. Signal, signal-tonoise ratios and comparative ratios were calculated.
Several types of storage phosphor screens are available for use with Cyclone Plus. The Super Resolution (SR) screen is formulated from a fine grain crystal, providing the best possible resolution. The Tritium Sensitive (TR) screen uses high grade crystals, but is also uncoated to allow the low energy
Previous studies did not include the MS screen.4 TR screens are used solely for the detection of tritium labeled samples, and were therefore not included in the comparative analysis of performance with high energy isotopes. The following describes the comparative performance of the SR and MS screens relative to the performance of the discontinued MP and ST screens and most appropriate applications for all screen types.
Red laser, 633 nm scanning
Unstable State, Eu3+
Energy stored in bromine vacancies
Beta energy stored during exposure
Ground State
Eu3+
Figure 1. Schematic representation of the storage phosphor process.
APPLICATION NOTE CYCLONE PLUS STORAGE PHOSPHOR SYSTEMS
Cyclone Plus Storage Phosphor Screen Performance and Application Guide
Cyclone Plus Storage Phosphor System
ability to be erased and used 1,000 times, and the convenience of scanning and obtaining data without developing chemicals.1 Cyclone Plus screens are available in a variety of sizes designed to suit application and budget requirements. Smaller screens require a smaller investment and fit many smaller gels, blots, arrays and tissue sections. Longer screens cover the length of a sequencing gel, or fit multiple tissue sections or arrays.
The MS screens accumulate about 12 – 15% more signal than the MP and SR screens, respectively and accumulate about 3% less signal than the ST screens for a ten minute exposure to 32P. However, the signal-to-noise ratio provides a better measure of sensitivity and ability to detect low activity samples, because it takes into account the accumulation of background signal and the variation that exists in the background. The signal-tonoise ratio for the MS screen is about four times greater than the SR screen, about 1.5 times greater than the MP screen, and is about equal to the ST screen as shown in Figure 2. In addition the MS screen has the same durable coating available on the MP and SR screens.
To determine the comparative sensitivity with a lower energy isotope, each phosphor screen was exposed to 14C microscales (Sigma Chemicals, St Louis, MO) for one hour and scanned in the Cyclone Plus at 300 dpi resolution. A template was created in OptiQuant to include rectangular boxes within each of the 16 microscale levels and 20 background regions. Net digital light units or DLU/mm2 and signal-to-noise ratios for each screen were calculated.
Authors Jeanne Raccio and Charles J. Passo, Jr.
PerkinElmer Life and Analytical Sciences
w w w. p e r k i n e l m e r. c o m
Radiolabeled samples are exposed to the phosphor screens, which store energy in the photostimulable crystals (BaFBr:Eu2+) by the mechanism shown in Figure 1. The energy of the radioisotope ionizes the Eu2+ to Eu3+ liberating electrons to the conduction band of the phosphor crystals. The electrons are trapped in the bromine vacancies, which are introduced during the manufacturing process to form temporary “F centers”.2 Exposure to stimulating laser light at 633 nm releases photons at about 390 nm, which are detected by a high quantum efficiency PMT, such as the one in the Cyclone Plus.3
相关文档
最新文档