岩土体物理力学参数参考

合集下载

(完整版)岩土力学参数大全

(完整版)岩土力学参数大全

基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值

东向南向西向北向γφ C

BC DE CD EF FA AB

填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220

常用岩土材料力学参数

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要

5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

中弹性常量:E 1, E 3,ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3,ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向

异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间

步长很小,并且,力学收敛性也较差。在FLAC 3D

中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

常用岩土材料参数和岩石物理力学性质一览表

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

岩土力学参数大全

岩土力学参数大全

基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值

东向南向西向北向γφ C

BC DE CD EF FA AB

填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220

常用岩土材料力学参数

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要

5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G )的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7。2)

当ν值接近0。5的时候不能盲目的使用公式3。5,因为计算的K 值将会非常的高,偏离实际值很多.最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值.

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7。1

土的弹性特性值(实验室值)(Das ,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23.这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3。7给出了各向异性岩石的一些典型的特性值.

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性—-用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa.其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减.这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n,渗透系数k 以及K f 有如下关系:

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

(E, ν与) (K, G) 的转换关系如下:

K

E

3(1 2 )

G

E

(7.2)

2(1 )

当 ν值接近

0.5 的时候不能盲目的使用公式 3.5,因为计算的 K 值将会非常的高,偏离

实际值很多。最好是确定好

K 值 (利用压缩试验或者

P 波速度试验估计 ),然后再用 K 和 ν

来计算 G 值。

表 7.1 和 7.2 分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值) (Goodman,1980) 表 7.1

干密度 (kg/m 3)

E(GPa) ν K(GPa)

G(GPa)

砂岩 19.3 0.38 26.8 7.0 粉质砂岩

26.3

0.22 15.6 10.8

石灰石 2090 28.5 0.29 22.6 11.1

页岩 2210-257

11.1

0.29

8.8

4.3

大理石 2700

55.8 0.25 37.2 22.3

花岗岩

73.8

0.22

43.9

30.2

土的弹性特性值(实验室值) (Das,1980)

表 7.2

松散均质砂土 密质均质砂土

松散含角砾淤泥质砂土 密实含角砾淤泥质砂土

硬质粘土 软质粘土 黄土

软质有机土

冻土

3

弹性模量 E(MPa)

泊松比 ν 干密度 (kg/m ) 1470 10-26

0.2-0.4

1840 34-69

0.3-0.45

1630

1940

0.2-0.4

1730 6-14 0.2-0.5 1170-1490 2-3

0.15-0.25

1380

610-820 2150

各向异性弹性特性——作为各向异性弹性体的特殊情况,

横切各向同性弹性模型需要5 中弹性常量: E E 3 , ν12 , ν 和 G 13 ;正交各向异性弹性模型有

岩土力学重要参数取值大全

岩土力学重要参数取值大全

常用岩土材料力学重要参数

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E1, E3,ν12,ν13和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3,ν12,ν13,ν23,G12,G13和G23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

'

f f k K n

t ∝

∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。

常用岩土材料参数和岩石物理力学性质一览表

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下:

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量

K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

各岩土层主要物理力学指标参数统计结果及建议值表(广东省)

各岩土层主要物理力学指标参数统计结果及建议值表(广东省)

各岩土层主要物理力学指标参数统计结果及建议值表

层序号岩土性状态

推荐承载力

特征值

f ak

(kPa)

天然

重度

γ

kN/m

压缩模

E s1-2

(MPa)

变形模

E0

(MPa)

直接快剪

凝聚力

C

(kPa)

内摩擦

Φ

(°)

1素填土松散~稍压

90~11018.5 4.0*/12~1712~13

2-1粉质粘土可塑13018.0 4.52017.514.0

2-2中砂稍密14020.5/27.0028.0 3粉质黏土可塑17019.0 5.5*282520 4全风化砂岩土状22019.07.5*752823

注:1、砂层内摩擦角是根据广东省标准《建筑地基基础设计规范》(DBJ15-31-2016)第4.4.7条按标贯校正击数标准值估算而得。

2、砂层的压缩模量Es值参考《高层建筑岩土工程勘察标准》(JGJ/T72-2017)表F.0.2中经验关系换算而得(适用前应根据地区资料进行验证),中砂、粗砂系数取1.5。

3、填土压实地段参数取高值。

4、*为经验值。

岩土力学重要参数取值大全

岩土力学重要参数取值大全

常用岩土材料力学重要参数

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=E K )1(2ν+=

E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980)表7.1

土的弹性特性值(实验室值)(Das,1980)表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3,ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3,ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室)表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

(完整版)岩土力学参数大全

(完整版)岩土力学参数大全

常用岩土材料力学参数

(E, ν与) (K, G) 的转换关系如下:

E

3(1 2 )

G (7.2)

2(1 )

当ν值接近0.5 的时候不能盲目的使用公式3.5 ,因为计算的K 值将会非常的高,偏

离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν 来计算G 值。

表7.1 和7.2 分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980)表7.1

5 中弹性常量:E1, E3, ν12, ν13 和G13;正交各向异性弹性模型有9 个弹性模量E1,E2,E3, ν12, ν13, ν23,G 12,G 13 和G23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7 给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室)表7.3

7.3 固有的强度特性

在 FLAC 3D

中,描述材料破坏的基本准则是摩尔 - 库仑准则,这一准则把剪切破坏面看 作直线破坏面:

其中 N φ (1 sin )/(1 sin )

1 ——最大主应力 ( 压缩应力为负 );

3 ——最小主应力

——摩擦角

c ——粘聚力

当f s 0时进入剪切屈服。 这里的两个强度常数 φ和 c 是由实验室的三轴实验获得的。 当主应力变为拉力时,摩尔 -库仑准则就将失去其物理意义。简单情况下, 当表面的在拉应 力区域发展到 3 等于单轴抗拉强度的点时, t

常用岩土材料参数和岩石物理力学性质一览表

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

常用岩土材料参数和岩石物理力学性质一览表,附详细表格

常用岩土材料参数和岩石物理力学性质一览表,附详细表格

(E, ν) 与(K, G)的转换关系如下:

)21(3ν-=

E K

)

1(2ν+=E G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ t f 与孔隙度n ,渗透系数k 以及K f 有如下关系:

常用岩土材料参数和岩石物理力学性质一览表

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下:

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980)

表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3,

ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G )的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7。2)

当ν值接近0。5的时候不能盲目的使用公式3。5,因为计算的K 值将会非常的高,偏离实际值很多.最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值.

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7。1

土的弹性特性值(实验室值)(Das ,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23.这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3。7给出了各向异性岩石的一些典型的特性值.

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性—-用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa.其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减.这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n,渗透系数k 以及K f 有如下关系:

常用地岩土和岩石物理力学全参数

常用地岩土和岩石物理力学全参数

(E, ν) 与(K, G)的转换关系如下:

)

21(3ν-=

E

K

)

1(2ν+=

E

G (7.2)

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980) 表7.2

中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间

步长很小,并且,力学收敛性也较差。在FLAC 3D

中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表 5-12 结构面工程地质分类及参数取值表

——中小型水利水电工程地质勘察规范(SL55-2005)

水利水电工程地质勘察规范(GB50287-99) 表 5-13 岩体结构面抗剪断峰值强度

——工程岩体分级标准(GB50218-94) 表5-14 国内部分水电工程软弱结构面强度参数

——小湾、溪落渡、糯扎渡、拉西瓦等水电站表5-15国内部分滑坡滑带土物理力学参数

相关文档
最新文档