第五讲 巧算与速算1
小学奥数总复习习题集
47.将一个等边三角形各边七等分后在连接相应的线段得到下图,问图 中共有多少个三角形?
14
48.有 20 个边长为 1 的小正方形拼成一个 4×5 的长方形中有一格有 “☆”。图中含有“☆”的所有长方形(含正方形)共有______个,他们 的面积总和是______。
18
59.如图,已知三角形 ABC 面积为 1,延长 AB 至 D,使 BD=AB,延长 BC 至 E,使 CE=2BC,延长 CA 至 F,使 AF=3AC,求三角形 DEF 的面积。
60.如图,正六边形的面积为 6,那么阴影部分的面积是多少?
61.如图,△ABC 中,BD=2DA,CE=2EB,AF=2FC,那么△ABC 的面 积是阴影三角形面积的_____倍。
11
40.在图中 1×5 的格子中填入 1,2,3,4,5,6,7,8 中的 5 个数, 要求填入的数各不相同,并且填在黑格里的数比它旁边的两个数都大,共 有_____种不同的填法。
41.七个同学照相,分别求出在下列条件下有多少种站法: (1)七个人排成一排,张明站在最左边,有多少种站法? (2)七个人排成一排,某两个同学不能站在边上有多少种站法? (3)张明和李强至少有一人站在边上,有多少种站法? (4)张明和李强必须相邻,有多少种站法? (5)张明、李强、文华、赵悦四人任意两人都不相邻,有多少种站法?
□ □ □ □ □ □
7
30.各位数字均取自 1,2,3,4,5(可重复选取),并且任意相邻两位数字 (大减小)的差都是 1 的四位数共有_______个。
31.设 A、 E 为正八边形 ABCDEFGH 的相对顶点, 顶点A处有一只青蛙, 除顶点E外, 青蛙可以从正八边形的任一顶点跳到其相邻两 个顶点中任一个,落到顶点E时青蛙就停止跳动,则青蛙从 顶点A出发恰好跳 10 次后落到 E 的方法总数为_______种。
巧算和速算方法
第一讲第二讲第三讲第四讲第五讲第六讲第七讲第八讲第九讲第十讲第十二讲第十四讲第十五讲第十六讲校本课程数学计算方法生活中几十乘以几十巧算方法常用巧算速算中的思维与方法(常用巧算速算中的思维与方法(常用巧算速算中的思维与方法(常用巧算速算中的思维与方法(常用巧算速算中的思维与方法(常用巧算速算中的思维与方法(小数的速算与巧算乘法速算乘法速算乘法速算乘法速算乘法速算乘法速算乘法速算乘法速算注:《速算技巧》1)2)3)4)5)6)-..10--..14--..16-.-.19.-.-.21.-.-.23.-.-.23.-.-.24.-.-.25.-.-.2&-.-.30.--33 -第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12 X14= ?2X4 = 812 X14=168注:个位相乘,不够两位数要用0占位。
2 .头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23 X27= ?解:2 + 1 = 32X3 = 63X7= 21 23 X27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37 X44= ?解:3+1=44X4=167X4=28 37 X44=1628注:个位相乘,不够两位数要用0占位。
4 .几十一乘几十口诀:头乘头,头加头,尾乘尾。
例:21 X41= ?解:2 X4=82+4=61 X1=121 X41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11 X23125= ?解:2+3=53+1=4 1+2=3 2+5=72和5分别在首尾 11 X 23125=254375注:和满十要进一。
6 .十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加 下一位数,再向下落。
例:13 X 326= ? 解:13个位是33X 3+2=11 3X 2+6=12 3X6=18 13 X 326=4238注:和满十要进一。
下图是由七个长5厘米、宽3厘米的...
目录第一讲速算与巧算 (2)第二讲应用题综合(一) (6)第三讲应用题综合(二) (10)第四讲行程问题初步 (14)第五讲奇数与偶数 (18)第六讲计数问题 (22)第七讲体育比赛中的数学 (25)第八讲期中测试 (28)第九讲余数与周期 (30)第十讲简单的抽屉原理 (34)第十一讲巧求周长 (37)第十二讲数字谜 (40)第十三讲趣题巧解 (43)第十四讲逻辑推理 (46)第十五讲期末测试 (49)第一讲速算与巧算亲爱的同学们,你想一见到算式就能张口说出得数吗?你想让自己变得更聪明吗?学了今天的速算技巧后你就可以梦想成真了!还等什么?来吧,一起出发!1.计算:378+26+6092.计算:1000-90-80-20-103.计算:1)63×11 ; 2) 852×114.计算:15×15 ;25×25 ;35×35在乘除运算中,要做到既正确又迅速,首先要熟练地掌握乘除的各种运算定律,性质和运算中积商的变化规律,其次要了解题目的特点,创造条件,选用合理,灵活的计算方法,下面我们通过一些例题介绍一些运算的速算和巧算的方法.【例1】 计算:456×2×125×25×5×4×8【例2】 计算:5400÷25÷4【例3】 计算:5÷(7÷11) ÷(11÷15) ÷(15÷21)【例5】53×46+71×54+82×54【例6】(873×477-198)÷(476×874+199)【例7】1111111111×9999999999【例8】计算:1+1×2×2+l×2×3×3+l×2×3×4×4+l×2×3×4×5×5【例9】计算:2006+2005-2004-2003+2002+2001-2000-1999+1998+…+5-4-3+2+1 【例10】计算:9×17+91÷17-5×17+45÷17【例11】 计算:765×213÷27+765×327÷27【例12】 计算:(123456+234561+345612+456123+561234+612345)÷7【例13】 计算:25×2626-26×25251. 25×17×32×1252. 1)57×99 ;2) 17×9993. 56000÷(14000÷16)4. 15000÷125÷15仔细看看图中有几只猴子?第二讲 应用题综合(一)春季班同学们已经学习了平均数的应用题,其中包括以两组数的平均数和它们的总平均数间的关系为内容的问题.求解时应恰当选取基准数并注意权重.暑假我们学习的平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数.解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.首先,让我们先回顾一下吧!1. 三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米.问:男生平均身高是多少?2. 小明家先后买了两批小猪,养到今年10月.第一批的3头每头重66千克,第二批的5头每头重42千克.小明家养的猪平均多重?3. 甲乙两地相距240千米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶.这辆汽车往返的平均速度是每小时多少千米?4. 小强为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题.星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道.那么,星期日要做几道题才能达到自己规定的要求?【例1】 某一幢居民楼里原有3户安装空调,后来又增加一户.这4台空调全部打开时就会烧断保险丝,因此最多同时使用3台空调.这样,在24小时内平均每户最多可使用空调几小时?【例2】一个房间里有9个人,平均年龄是25岁;另一个房间里有11个人,平均年龄是45岁.两个房间的人合在一起,他们的平均年龄是几岁?【例3】学而思三升四竞赛班50人考试,全班平均分为85分,其中有40的人及格,及格人的平均分是93分,那么不及格人的平均分是多少分?【例4】甲班51人,乙班49人,某次考试2个班全体同学的平均成绩是81分,乙班平均分比甲班高7分,那么乙班的平均成绩是多少分?下面我们要学习一类新的应用题——盈亏问题.盈亏问题就是把一定数量的物品分给若干对象,由两种分配方案产生不同的盈亏数,反过来求被分配的物品数与分配的对象数.解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的公式:分配总人数=盈亏总额÷两次分配数之差.需要注意的是,两种分配方案的结果会出现一盈一亏、两盈、两亏等情况,所以我们要灵活把握.【例5】六一儿童节到了,李老师给同学们准备了一些漂亮的贴画作礼物,如果每人分3张就会多出29张,如果每人分5张则少19张,那么李老师给几个学生发礼物呢?【例6】杨老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元.这本书的单价是多少?顾老师共带了多少元钱?【例7】学校组织四年级师生去参观清华、北大,原计划租用45个座位的客车,但这样有5人没座,如果租用同样数量的55个座位的客车,则正好多出1辆车.那么,原计划租用45座客车几辆?【例8】兰兰参加暑假的英语夏令营,老师为她们安排住宿,如果每个房间住5人,则多出18人,如果每个房间住7人,则有2个房间空着.那么,参加英语夏令营的同学有几人?【例9】海尔兄弟约好在动物园门口见面,弟弟从家去动物园,如果每分钟走30米,就要迟到5分钟,如果每分钟走40米,可以提前2分钟到动物园,那么,海尔兄弟家到动物园的距离是几米?【例10】早晨陈奶奶去超市买菜,如果她买6千克鱼肉则还差10元.如果买8千克猪肉则还剩2元.已知每千克鱼肉比猪肉贵5元.那么陈奶奶带了多少钱?【例11】百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?1. 暑假期间,小强每天都坚持游泳,并对所游的距离作了记录.如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米?2. 五个同学期末考试的数学成绩平均94分,而其中有三个同学的平均成绩为92分,另两个同学的平均成绩是多少?3. 用绳子量一口井的深度,把绳子折两折来量,多50厘米;折三折来量,还差30厘米,求绳长和井深各是多少?4. 王老师带班里的学生去颐和园春游,他们租了一些船在昆明湖上划船,如果增加1条船,正好每条船坐4人,如果减少1条船,正好每条船坐6人,那么,他们总共有几人去了颐和园?永远看得起自己有一天某个农夫的一头驴子,不小心掉进一口枯井里,农夫绞尽脑汁想办法救出驴子,但几个小时过去了,驴子还在井里痛苦地哀嚎着.这口井还是得填起来.于是农夫便请来左邻右舍帮忙一起将井中的驴子埋了,以免除它的痛苦.农夫的邻居们人手一把铲子,开始将泥土铲进枯井中.当这头驴子了解到自己的处境时,刚开始哭得很凄惨.但出人意料的是,一会儿之后这头驴子就安静下来了.农夫好奇地探头往井底一看,出现在眼前的景象令他大吃一惊:当铲进井里的泥土落在驴子的背部时,驴子的反应令人称奇──它将泥土抖落在一旁,然后站到铲进的泥土堆上面!就这样,驴子将大家铲倒在它身上的泥土全数抖落在井底,然后再站上去.很快地,这只驴子便得意地上升到井口,然后在众人惊讶的表情中快步地跑开了.第三讲 应用题综合(二)年龄问题和还原问题春季班都学习过基础的知识:年龄问题的解题要点是分析题意从表示年龄间倍数关系的条件入手理解数量关系.关键抓住“年龄差”不变.应用“差倍”、“和倍”或“和差”问题数量关系式解决;还原问题我们学习了用倒推法解单、多个变量的还原问题.今天我们再提高和拓展一下.来吧,我们出发!1. 三年前爸爸的年龄正好是儿子小刚年龄的6倍,今年父子年龄和是55岁,小刚今年多少岁?2. 兄弟二人今年相差9岁,14年前兄的年龄为弟的4倍.求今年兄弟各自的年龄.3. 小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案是多少?4. 大虎做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577,这题的正确答案应该是多少?【例1】 姐姐对妹妹说:“当我是你今年的岁数时,你才6岁.”妹妹对姐姐说:“当我的岁数是你现在的岁数时,你将2l 岁.”求姐姐和妹妹今年各几岁?【例2】小明一家有4人:爷爷、爸爸、妈妈和小明.爷爷比爸爸大26岁,妈妈比小明也大26岁.已知这家人今年的年龄之和为126岁,而5年前的年龄之和为107岁,那么小明与他爷爷的年龄之差是几岁?【例3】6年前,母亲的年龄是儿子的5倍.6年后母子年龄和是78岁.问:母亲今年多少岁?【例4】王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是18岁.王老师今年32岁,李老师今年多少岁?【例5】甲、乙、丙、丁四人现在的年龄和是64岁,甲21岁,乙17岁.甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是多少岁?【例6】一个箱子里放着乒乓球.一个小朋友往外拿乒乓球,拿的规则是:每次总是拿出箱中所有乒乓球的一半然后再放回去1个.按此规则拿了597次之后,箱子里还剩2个乒乓球.箱子里原有乒乓球多少个?【例7】新天地广场运进一批新款式彩色电视机,第一天售出总数的一半多10台,第二天售出剩下的一半多20台,还剩95台.这批新款彩电有多少台?【例8】 村姑卖蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二十个蛋.这篮鸡蛋有多少个?【例9】 A ,B ,C 三位小朋友都有若干本图书,如果A 将自己的书给B ,C ,使B ,C 的书各增加一倍i 然后B 又将现有的图书给A ,C ,使A ,C 现有的图书各增加一倍;最后C 再将自己已有的图书给A ,B ,使A ,B 的图书各增加一倍,这时三人的图书都是240本.A ,B ,C 三位小朋友原来各有图书多少本?【例10】 三人存款不等,只知如果甲给乙40元,乙又给丙30元,丙再给甲20元,给乙70元,这时三人都有240元.三人原来各有存款多少元?1. 小樱今年16岁,小桃今年11岁,几年后,小樱和小桃的年龄之和是45岁?2. 已知明明今年2岁,爸爸今年28岁,那么请问11年后爸爸的年龄是小明的年龄的多少倍?3. 小龟问老龟:“老爷爷,您今年多少岁?”老龟说:“把我的年龄加上20,再缩小2倍之后减去15,4. 小红、小芳、小明三人分苹果,小红得的比总数的一半多1个,小芳得的比剩下的一半多1个,小明得8个.问原来共有苹果多少个?老鹰和火鸡有一群火鸡看着老鹰张著翅膀自由自在地在天上翱翔,十分的羡慕.于是和老鹰的头头商量是否能够派一个教练来教他们飞行的方法,老鹰头头爽快的答应下来.老鹰教练很有耐心地教导火鸡张开翅膀学飞行:翅膀张开,用力地拍!火鸡们在老鹰教练的大力指导下拼命地张着翅膀、用力地拍,它们好高兴自己会飞了,虽然飞得不是很高,但是它们已经会飞了! 太阳西下,该是下课回家的时候了,老鹰教练对它们说:你们今天好棒!你们都飞得很好,你们可以飞了!太阳下山了,我也要回家了!结果呢?老鹰是飞着回家,火鸡仍然是走路回家.第四讲 行程问题初步在春季班时我们已经学习了简单的行程问题——相遇问题的基本类型(两人单次直线相遇),同学们,你们还记得做行程问题的基本工具是什么吗?没错,就是画“线段图”.今天我们将学习更加复杂的相遇问题.先来回顾一下相遇问题的基础知识吧!1. 甲乙两车同时从A 、B 两城相对开出,甲车的速度是54千米/时,乙车的速度是53千米/时,经5小时相遇,A 、B 两城间距离多少米?2. 胖胖和瘦瘦两家相距255千米,两人同时骑车从家出发相对而行,胖胖每小时行45千米,瘦瘦每小时行40千米.两人相遇时,胖胖和瘦瘦各行了多少千米?3. 两辆汽车同时从A 、B 两地相向开出,甲车每小时行48千米,乙车每小时行5O 千米,5小时后还相距15千米.求A 、B 两地间的距离.4. 甲乙两辆汽车分别从A 、B 两地出发相向而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行5O 千米,5小时相遇,求A 、B 两地间的距离. 【例1】 李明和王亮同时分别从两地骑车相向而行,李明每小时行18千米,王亮每小时行16千米,两人相遇时距全程中点3千米.问全程长多少千米?【例2】AB两地相距90米,遥控摩托车从A地到B地需要30秒,遥控小汽车从B地到A地需要15秒,现在遥控摩托车和遥控小汽车从A、B两地同时相向而行,相遇时遥控摩托车与B地的距离是多少米?【例3】某工程兵修铁路开凿山洞的长是300米,两个班从两端开始凿山洞,甲班每天凿出5米,乙班每天凿出6米,同时开凿多少天后,还差80米没有凿通?【例4】甲乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【例5】甲乙两人同时从两地相向而行.甲每小时行5千米,乙每小时行4千米.两人相遇时乙比甲少行3千米.两地相距多少千米?【例6】一个圆形操场跑道的周长是500米,两个学生同时同地相背而行.甲每分钟走66米,乙每分钟走59米.经过几分钟才能相遇?【例7】两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?【例8】阿呆和阿瓜同时从距离20千米的两地相向而行,阿呆每小时走6千米,阿瓜每小时走4千米.阿瓜带着一只小狗,狗每小时走10千米.这只狗同阿瓜一道出发碰到阿呆的时候,它就掉头朝阿瓜这边走,碰到阿瓜时又朝阿呆那边走,直到两人相遇,问这只小狗一共走了多少千米?【例9】 甲骑自行车每小时行18千米,乙步行每小时行6千米,如果两人同时在同一地点同一方向出发,甲走了48千米到达某地,立即按原路返回,在途中和乙相遇.问:从出发到相遇共经过多少时间?【例10】 一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行54千米.汽车每小时行48千米.两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回.汽车到甲地立即返回.两车在距离中点108千米的地方再次相遇,那么甲乙两地的路程是多少千米?1. 一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?2. 两列货车从相距450千米的两个城市相向开出,甲货车每小时行38千米,乙货车每小时行40千米,同时行驶4小时后,还相差多少千米没有相遇?3. 甲乙两列客车同时由相距680千米的两地相对出发,甲客车每小时行42千米,经过8小时后相遇.问乙列客车每小时行多少千米?4. 甲乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?相遇时两列火车各行多少千米?砌墙工人的命运三个工人在砌一堵墙. 有人过来问:“你们在干什么?” 第一个人没好气地说:“没看见吗?砌墙.” 第二个人抬头笑了笑,说:“我们在盖一幢高楼.” 第三个人边干边哼着歌曲,他的笑容很灿烂开心:“我们正在建设一个新城市.” 10年后,第一个人在另一个工地上砌墙;第二个人坐在办公室中画图纸,他成了工程师;第三个人呢,是前两个人的老板.第五讲 奇数与偶数春季班我们在学习能被2,3,5整除的数的特征时介绍能被2整除的数的个位数是0,2,4,6,8,称为偶数;不能被2整除的数的个位数是1,3,5,7,9,称为奇数.那么今天我们就具体来学习一下奇数与偶数的重要性质.1. 不算出结果,直接判断下列各式的结果是奇数还是偶数: (1)1+2+3+…+9+10; (2)1+3+5+…+21+23;2. 不算出结果,判断数(524+42-429)是偶数还是奇数?3. 1×3×5×7×9×11×12×13的积是偶数还是奇数?4. 在1~199中,有多少个奇数?有多少个偶数?其中奇数之和与偶数之和谁大?大多少?【例1】 有一根团成一团的毛线,拿剪刀任意一刀,假设剪出偶数个断口.问:这根毛线被分成的段数是偶数还是奇数?【例2】 有一本500页的书,从中任意撕下20张纸,这20张纸上的所有面码之和能否是1999?【例3】数列1,1,2,3,5,8,13,21,34,55…的排列规律:前两个数是1,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波契数列,在斐波契数列前2004个数中共有几个偶数?【例4】用数字1,3,0可以组成多少个奇数和偶数?填在这个方格中,例如a=5+3=8.问:填入的81个数字中是奇数多还是偶数多?【例6】小明爷爷钓鱼回来,小明问:“爷爷您今天钓了多少鱼呀?”爷爷说:“我今天甩出鱼杆和提起鱼杆共100次,可是有17次提起鱼杆时没钓着鱼,其余每提一次就钓了一条鱼,你说我今天钓了多少鱼呀?【例7】1+3+5+7+9+…+1997的和是奇数还是偶数?【例8】试找出两个整数,使大数与小数之和加上大数与小数之差,再加上1000等于1999.如果找得出来,请写出这两个数,如果找不出来,请说明理由.【例9】桌子上有5个开口向上的杯子,现在允许每次同时翻动其中的4个,问能否经过若干次翻动,使得5个杯子的开口全都向下?【例10】一次聚会时,大家互相握手,则握过奇数次手的人数必定是偶数.请你想一想为什么?【例11】任意交换某个三位数的数字顺序得到一个新的三位数,原三位数与新三位数之和能否等于999?【例12】有12张卡片,其中有三张上面写着1,三张写着3,三张写着5,三张写着7.问:能否从中选出五张,使它们上面的数字之和为20?为什么?1. 用数字9,8,0可以组成多少个奇数和偶数?2. 请你帮嘟嘟检查一下他算的结果对不对:25×37+38+1995-32×21=2285.3. 两个自然数的乘积是奇数,那么这两个数的和是奇数还是偶数?请说明理由.4. (古趣题)三十六口缸,分作九船装,只准装单,不准装双.问:怎样运走这些缸?有一天,著名科学家爱因斯坦先生被邀请作演讲嘉宾.他的司机对他开玩笑说:“我经常听到你在车中预备演讲,听得多了,我也可以一字不漏地背念出来.”爱因斯坦听罢就说:“那就好极了,我昨日整天都在做研究工作,疲倦得很,况且邀请我演讲的机构与我素未谋面,你大可替我演讲,我做你的司机好了.”演讲当晚,司机果然一字不漏地念出爱因斯坦惯说的演讲内容,令在场的人佩服不已,连坐在观众席最后排的爱因斯坦,也频频点头称是.可是,演讲完结后,突然有一位年青科学家,追问了一个颇为深入的问题,那当然是司机的演讲以外的资料,全场都等待着这位冒牌科学家的答复.出乎意料之外,他竟然气定神闲地开始回答说:“年青人,请恕我直言,你刚才的问题实在太简单,甚至可以说是个蠢问题,假如你不信的话,我可以证明给你看.这问题简单得连我的司机也懂得如何回答.”跟着,司机便邀请爱因斯坦上台作答,并且在掌声雷鸣之下离开会场.第六讲 计数问题今天我们要学习的计数问题,包括图形计数和数字计数等.计数问题,尤其是图形计数看起来不难,但大多数同学一做就错,通过今天的学习,相信你一定能有所收获! 【例1】 数一数:右图中线段的总条数.【例2】 数一数,右图中共有多少个角?你能用两种方法解答这个问题么?【例3】 数一数,右图中共有多少个三角形?你有什么好方法?【例4】数一数:下面三个图中长方形分别有多少个?【例5】 数一数:右图中有几个正方形?【例6】数一数,右图中共有多少条线段?【例7】数一数,右图中三角形共有几个?【例8】从1-10里取2个不同的数,使得这2个数的和大于10,请问有多少种不同的取法?【例9】一个两位数的两个数字之和是7的倍数,这样的两位数有几个?【例10】一个两位数的数字之差是4的倍数,那么这样的两位数有几个?【例11】商店里有100克的茶叶3包 300克的茶叶2包,400克的茶叶一包 500克的茶叶2包,小明要到商店给爷爷买1千克茶叶,在不打开包装的情况下,请问售货员阿姨有多少种不同的方法把茶叶交给小明?1.数一数,图4-1中共有多少条线段?2.数一数,图中有多少个三角形?3.分别数出图中各图形里长方形的个数.4.图中有多少个正方形?有一群朋友去郊游,走到一半的时候,却发现迷路了,折腾了大半天的时间,大伙又饿又累,终于看到了一个小山丘,走在前面的人很高兴地登上了山顶,向山下眺望时,隐约地看到远处有一个招牌,上面写着一个大大的“骨”字,于是他大声吆喝着:“伙伴们,前面有我们的希望,大家赶快冲啊!我看到远到了距离招牌约五十米之处时,全部的人都瘫在地上,露出失望的表情,原来招牌上写着是『接骨馆』三个字.第七讲 体育比赛中的数学我们看看下面的问题:二年级四个班进行小足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛? (如果参赛队每两队之间都要赛一场,这种比赛称为循环赛)这个问题就是我们这节课将要学习的有趣的体育比赛中的数学问题. 【例1】我们可以将上面的问题如下表述:下面的四个点,每两个点之间都连一条线段,那么,从一个点可以连出几条线段?一共可以连多少条线段? 【例2】 甲、乙、丙三人进行乒乓球循环赛,结果3人获胜的场数各不相同.问第一名胜了几场?【例3】 甲、乙、丙、丁四人进行乒乓球循环赛,结果有三人获胜的场数相同.问另一个人胜了几场?【例4】学校组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分,小明投了5个球,投进了3个.那么,他应该得多少分?【例5】 学校组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没有投进,那么大明共投了几个球?【例6】 四个足球队进行单循环比赛,规定胜一场得3分,平一场得一分,负一场得0分,有一个队没输过,但却排名倒数第一,你觉得有可能吗?如果可能,请举出这种情况何时出现,如果不可能,请你说明理由.【例7】四个人进行象棋循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,四个人的得分和加起来一定是多少?【例8】 8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?【例9】假设2032年奥运会主办权由51个国家投票,北京,纽约,东京3个城市作为侯选城市,统计其中40张选票数的结果是:北京得18票,纽约得12票,东京得10票.北京至少再得几张票,才能保证以得票数最多获得奥运会主办权?1. 二年级六个班进行拔河循环赛,每个班要进行几场比赛?一共要进行几场比赛?2. 某班举行乒乓球循环赛,小明是裁判小组的组长.妈妈问他有多少名选手参赛,小明想了想对妈妈说:“总共要进行28场比赛,您说有几名选手参加呢?”你能回答这个问题吗?3. 有8个选手进行乒乓球循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?4. 甲、乙、丙、丁四人进行乒乓球循环赛,结果甲、乙、丙三人胜的场数相同,而且知道甲胜了丁,问丁胜了几场?青蛙的故事如果把一只青蛙放在滚烫的热水中,青蛙会很快的从水中跳出.但是如果把一只青蛙放在湿水里,再慢慢地将水加热,等到青蛙发现水太烫的时候,它已经跳不出来了.。
(完整版)常用的巧算和速算方法
小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
《速算与巧算》教学设计
校本:《速算与巧算》教学设计教学内容:速算与巧算教学目标:1、掌握速算与巧算的方法,提高学生的计算能力和思维能力。
2、选用合理、灵活的计算方法,简便运算过程,化繁为简,化难为易,使计算又快又准确。
教学过程:一、巧算激趣。
1、出示三组巧算题,学生随意指,教师张口说出答案。
72―27= 34×11= 72+27=63―36= 25×11= 75+57=53―35= 36×11= 97+79=82―28= 125×11= 82+29=92―29= 215×11= 67+76=61―16= 324×11= 58+85=95―59= 1234×11= 37+73=二、导入新课。
同学们,知道老师是怎么算的吗?想和老师一样“神机妙算”吗?让我们一起步入今天的巧算天地。
(出示课题)三、探究新知。
(一)学习第一组:72―27= 63―36= 53―35= 82―28=①仔细观察,这组题有什么特征?②学生观察后,发言,说出自己的发现。
③教师介绍:倒转数的概念。
经过观察发现,被减数是81,减数是18,减数是被减数的十位和个位交换位置而得来的。
我们就把18叫做81的倒转数。
例如,23是32的倒转数,59是95的倒转数。
④学生计算这组题的答案。
⑤仔细观察答案,你发现了什么?⑥学生思考片刻,举手发言。
⑦教师引导,小结算法。
计算:721-27=(7-2)×9=45小结:一个数和它的倒转数的差,只要将将十位与个位上的两个数字的差乘以9,所得的积就是这两个数的差。
⑧学生验证。
(二)学习第二组,乘11的巧数34×11 635×11①列式计算:34×11。
②观察答案,你发现什么?通过观察34×11=374 635×11=6985的计算结果。
发现它们具有如下特点: 3 4 ×11 = 374 6 3 5 ×11 = 69853 74 6 9 8 5乘11的那个数从右边起,每相邻位上的数字相加占一位,高位和个位各占一位。
小学一年级奥数 速算与巧算 一
小学一年级奥数:速算与巧算(一)导引题1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)1+3+5+7+9+11+13+15+17+192+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+205+6+7+8+9+104、计算(改变运算顺序)10-9+8-7+6-5+4-3+2-15、计算(带着“+”、“-”号搬家)1-2+3-4+5-6+7-8+9-10+11习题1.计算:13+14+15+16+17+252.计算:2+3+4+5+15+16+17+18+203.计算:21+22+23+24+25+26+27+28+294.计算:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20 5.计算:22-20+18-16+14-12+10-8+6-4+2-06.计算:10-20+30-40+50-60+70-80+907.计算:(2+4+6+8+10)-(1+3+5+7+9)8.计算:(2+4+6+...+20)-(1+3+5+ (19)9.计算:(2+4+6+...+100)-(1+3+5+ (99)导引题详解一、凑十法:同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=102+8=103+7=104+6=105+5=10巧用这些结果,可以使计算又快又准。
题11+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:1+2=3 3+3=66+4=10 10+5=1515+6=21 21+7=2828+8=36 36+9=4545+10=55这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
小学三年级奥数试题集锦六(含答案)
小学三年级奥数试题集锦六(含答案)第一讲速算与巧算1.用简便方法求和:①536+(541+464)+459 ②588+264+148③ 8996+3458+7546 ④567+558+562+555+563解答:① 536+(541+464)+459=(536+464)+(541+459)=2000② 588+264+148=588+(12+252)+148=(588+12)+(252+148)=600+400=1000③ 8996+3458+7546=(8996+4 +(3454+7546=9000+11000(把3458分成4和=9000+110003454)=20000④ 567+558+562+555+563=560×5+(7-2+2-5+3)(以560为基准数)=2800+5=28052.用简便方法求差:① 1870-280-520 ② 4995-(995-480)③ 4250-294+94 ④ 1272-995解答:① 1870-280-520=1870-(280+520)=1870-800=1070②4995-(995-480)=4995-995+480=4000+480=4480③4250-294+94=4250-(294-94)=4250-200=4050④ 1272-995=1272-1000+5=2773.用简便方法计算下列各题:① 478-128+122-72 ② 464-545+99+345③ 537-(543-163)-57 ④ 947+(372-447)-572解答:① 478-128+122-72=(478+122)-(128+72)=600-200=400② 464-545+99+345=464-(545-345)+100-1=464-200+100-1=363③ 537-(543-163)-57=537-543+163-57=(537+163)-(543+57)=100④ 947+(372-447)-572=947+372-447-572=(947-447)-(572-372)=3004.计算下面各题:①23×1010101 ②4568×100010001③72×125 ④45×99 ⑤75×36解答:①23232323 ②456845684568 ③9000 ④4455 ⑤27005.计算下面各题:①77×83 ②56×64③134×73 ④9×11×101解答:①6391 ②3584 ③9782 ④99996.计算:9×17+91÷17-5×17+45÷17.解答:9×17+91÷17-5×17+45÷17=9×17-5×17+91÷17+45÷17=(9-5)×17+(91+45)÷17=4×17+136÷17=68+8=76第二讲数列求和1.求首项是5,末项是93,公差是4的等差数列的和。
速算与巧算——精选推荐
速算与巧算速算与巧算(⼀)加减法中的巧算⽅法:1、运⽤运算律和运算性质;2、凑整;3、拆⼩补⼤;4、找准基数;5、数列求和等等。
练习:1、147+369+353+631 32+81+157+19+682、852-39-153-161 5613-(613+261)-2393、656-289+144-111 745+(672-525)-5724、537-(543-163)-57 756-576+376+2445、659+427-727-159 1256+125+875-2566、9998+3+99+998+3+9 9+99+999+9999+999997、75+86+83+72+78+80+81+79+878、1+2+3+…+9+10+9+…+3+2+1速算与巧算⼆乘除法的巧算主要靠乘法的运算律和除法的运算性质,并进⾏适当的扩展,使计算更灵活、合理;做到算得快、准。
练习:1、125×25×8×4 125×16×52、36×98 56×2013、4400÷25÷4÷11 236+1800÷(9×25)4、720-198×25÷99×4 12000÷125+325÷255、56×165÷7÷11 123×456÷789÷456×789÷1237、9999×2222+3333×3334 54+99×99+458、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)和差问题1、和差问题基本模式:已知两个数的和与差,求两个数。
2、和差问题的基本关系式:(和+差)÷2=较⼤数(和-差)÷2=较⼩数3、解题的关键要找准两个数的和与差。
小学数学竞赛学习材料(五年级上期)
小学数学竞赛学习材料五年级上期第一讲速算与巧算(一)例1 计算72.19+6.48+27.81-1.38-5.48-0.62。
解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。
于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。
解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。
于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3 计算1999+199.9+19.99+1.999。
解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4 计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。
解:观察发现这些因数中有一些相同的部分,可以进行代换。
速算与巧算大全
一、速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。
例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。
【解答】:原式=(298+502)+(304+196)=800+500=1300二、速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。
特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。
例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。
【解答】原式=464+836-545-455=1300-(545+455)=300思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?三、速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。
例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。
【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400 例:73.15×9.9【分析】把9.9看作10减0.1的差,然后用乘法分配率可简化运算。
【解答】原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185四、速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便。
校本课程:常用的巧算和速算方法
目录第一讲生活中几十乘以几十巧算方法 (2)第二讲常用巧算速算中的思维与方法〔1〕 (4)第三讲常用巧算速算中的思维与方法〔2〕 (6)第四讲常用巧算速算中的思维与方法〔3〕 (8)第五讲常用巧算速算中的思维与方法〔4〕 (10)第六讲常用巧算速算中的思维与方法〔5〕 (14)第七讲常用巧算速算中的思维与方法〔6〕 (16)第八讲小数的速算与巧算1——凑整 (18)第九讲乘法速算1 (19)第十讲乘法速算2 (21)第十一讲乘法速算3 (22)第十二讲乘法速算4 (23)第十三讲乘法速算5 (24)第十四讲乘法速算6 (25)第十五讲乘法速算7 (27)第十六讲乘法速算8 (29)注:?速算技巧? (33)第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
四年级暑假奥数学习资料
第一讲:速算与巧算㈠速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高自己的计算能力和思维能力。
巧算方法主要是根据运算定律和运算性质,对算式适当变形,或改变运算顺序,或凑整,或改写等,从而变成一个易于算出结果的算式,使计算简便。
【例1】9+99+999+9999+99999 0.9+0.99+0.999+0。
9999+0。
99999 【例2】489+487+483+485+484+486+488 571+569+573+568+567+576+572 【例3】632―136―232 128+186+72-86【例4】248+(152-127)324―(124―97)283+(358-183)【例5】286+879-697 812-593+193练习题(一)⑴9+98+996+9997 ⑵19999+2998+396+497⑶198+297+396+495 ⑷1998+2997+4995+5994⑸19998+39996+49995+69996 ⑹9。
9+9。
99+9。
999+9。
9999+9.99999(二)⑴50+52+53+54+51⑵262+266+270+268+264⑶89+94+92+95+93+91+88+96+87⑷381+378+382+383+379⑸1032+1028+1033+1029+1031+1030⑹2451+2452+2446+2453(三)⑴1208―569―208⑵283+69-183⑶132-85+68⑷2318+625-1318+375(四)⑴348+(252-166)⑵629+(320-129)⑶462―(262―129)⑷662―(315―238)⑸5623―(623―289)+452―(352―211)⑹736+678+2386-(236+278)-186(五)⑴368+1859-859⑵582+393-293⑶632-385+285⑷2756-2478+1478+244⑸612-375+275+(388+286)⑹756+1478+346-(256+278)-246第二讲:速算与巧算㈡【例1】325÷25 30000÷625 22400÷700【例2】25×125×4×8 25×28125×56 25×5×128×125【例3】(360+108)÷36 (450-75)÷156342÷21 630÷15÷2【例4】158×61÷79×3 604×129÷302÷43【例5】103×96÷16 200÷(25÷4)(19×24×7×9)÷(8×7×9)练习题㈠450÷25 525÷25 3500÷12510000÷625 49500÷900 9000÷225㈡125×15×8×4 25×24 125×1675×16 125×25×32 25×5×64×125㈢(720+96)÷24 (4500-90)÷45 6342÷218811÷89 9000÷15÷3 73÷36+105÷36+146÷36㈣238×36÷119×5 138×27÷69×50624×48÷312÷8 406×312÷104÷203㈤612×366÷183 1000÷(125÷4)(13×8×5×6)÷(4×5×6)241×345÷678÷345×(678÷241)第三讲:速算与巧算㈢【例1】6.3×28+6。
速算与巧算
速算与巧算知识要点在各类数学竞赛中,都有一定数量的计算题。
计算题一般可以分为两类:一类是基础题,主要考查对基础知识理解和掌握的程度;另一类则是综合性较强和灵活性较大的题目,主要考查灵活、综合运用知识的能力,一般分值在10分到20分之间。
这就要求有扎实的基础知识和熟练的技巧。
1.速算与巧算主要是运用定律:加法的交换律、结合律,减法的性质,乘法的交换律、结合律和乘法对加法的分配律,除法的性质等。
2.除法运算规律:(1)A÷B=1÷B A(2)a÷b±c÷b=(a±c)÷b3.拆项法:(1)1111(1) n n n n=+++(2)11 ()dn n d n n d=-++(3)1111() ()n n d d n n d=-++(4)1111 (1)(2)2(1)(1)(2) n n n n n n n⎡⎤=-⎢⎥+++++⎣⎦(5)22(1)11111(1)11n n n nn n n n n n +++=+=-++ +++(6)将1A分拆成两个分数单位和的方法:先找出A的两个约数a1和a2,然后分子、分母分别乘以(a1+a2),再拆分,最后进行约分。
1 A =12121()()a aA a a⨯+⨯+=121212()()a aA a a A a a+⨯+⨯+=12121211()()A Aa a a aa a+⨯+⨯+4.等差数列求和:(首项+末项)×项数÷2=和5.约分法简算:将写成分数形式的算式中的分子部分与分母部分同时除以它们的公有因数或公有因式。
典例巧解例1 (第五届“希望杯”邀请赛试题)2007÷200720072008=。
点拨一被除数是2007,除数是一个带分式,整数部分和分数部分的分子都是2007,我们可以把200720072008化为假分数,再把分子用两个数相乘的形式表示,便于约分和计算。
四则运算常用速算与巧算方法
四则运算常用速算与巧算方法1.同除法运算:当除数和被除数同时除以相同的数时,商不变。
例如:计算72÷6可以转换为计算36÷3或者18÷2,这样计算起来会更简单。
2.同乘法运算:当乘数和被乘数同时乘以相同的数时,积不变。
例如:计算24×3可以转换为计算8×9或者4×6,这样计算起来会更简单。
3.分解法:将较大的数分解成更容易计算的两个数相加或相乘。
例如:计算58×12可以分解为50×12+8×12,这样计算起来会更简单。
4.加法与减法结合:利用相加和相减的关系,进行合理的组合计算。
例如:计算138+65-30可以分别计算130+60和8+5,然后再进行相加和相减,这样计算起来会更快。
5.乘法与除法结合:利用相乘和相除的关系,进行合理的组合计算。
例如:计算56÷7×6可以先计算56÷7再乘以6,这样计算起来会更方便。
6.使用九九乘法口诀表:利用九九乘法口诀表中的规律,可以快速计算乘法运算。
例如:计算7×8可以根据口诀表中7所在的行找到8所在的列,交叉点的值即为答案,所以7×8=567.使用乘法交换律和结合律:利用乘法交换律和结合律,可以改变运算顺序,简化计算过程。
例如:计算48×5可以改为5×48,这样计算起来会更方便。
8.使用近似值:如果要计算的数不是很精确的话,可以使用近似值进行计算。
以上是一些常用的四则运算速算与巧算方法,通过灵活运用这些方法,可以大大提高计算效率。
当然,不同的运算题目可能适用不同的方法,需要根据具体情况选择合适的方法进行计算。
三年级上册数学思维训练讲义--第五讲 速算与巧算(一) 人教版(含答案)
第五讲 速算与巧算(一)第一部分:趣味数学数学家的故事小朋友们,你知道中国数学史上第一位女数学院士是谁吗?你想了解有关他的资料吗?相信你看了下面的故事,一定会收获很大!中国数学史上第一位女数学院士——胡和生胡和生生于1928年出生在南京市一个艺术世家,祖父和父亲都是画家。
她从小耳濡目染,聪明好学,画感、乐感都很强,祖父和父亲特别喜欢她。
读小学和中学时,她不偏科,文理兼优,这些对她后来从事数学事业帮助很大。
胡和生虽然爱好广泛,但她的理想不是成为一位画家,而是考上大学继续深造。
抗战胜利以后,胡和生考进大学数学系,1950年毕业,又报考了浙江大学著名数学家、中国微分几何创始人苏步青教授的硕士研究生。
1952年院系调整,她转入了上海复旦大学。
复旦是以苏步青为首的我国微分几何学派的策源地,人才济济,加之老一辈数学家的鼓励指导,同行的互勉竞争,托着这颗新星冉冉升起。
1991年当选为中国科学院院士,专长微分几何物理,撰有《孤粒子理论与应用》、《微分几何学》等专著。
研究成果“经典规范场”获国家自然科学三等奖至今选出来的数学家院士,只有胡和生一人。
第二部分:奥数小练一、“凑整”先算【例题1】计算:24+44+56解: 24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来。
练习一:(1)15+51+49(2)25+38+62(3)74+43+57【例题2】计算:53+36+47解:53+36+47= 53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
练习二:(1)37+51+63(2)43+42+57(3)16+87+84【例题3】计算:96+1596+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
四年级趣味数学乘除巧算
第五讲乘除巧算例题1你有好办法算出下面各题的结果吗?(1)25×17×4 ﹙2﹚8×18×125 ﹙3﹚8×25×4 ﹙4﹚125×2×8×5[思路导航] ﹙1﹚我们知道25×4=100,因而我们要尽量把25与4放在一块计算,这样比较简便。
所以我们先算25×4=100,再与17相乘即100×17=1700.﹙2﹚因为8×125=1000,因而我们先把8与125放在一块计算8×125=1000,再乘以18∶1000×18=18000.﹙3﹚已知25×4=100,125×8=1000,因此这道题我们要通过移位的方法把25与4相乘,125与8相乘,然后再把1000与100相乘:1000×100=100000.﹙4﹚因为125×8=1000,2×5=10,因而这道题也要移一移,先计算125×8=1000,2×5=10,再计算1000×10=10000.﹙1﹚25×17×4 ﹙2﹚8×18×125 ﹙3﹚8×25×4×125=25×4×17 =8×125×18 =﹙8×125﹚×﹙25×4﹚=100×17 =1000×18 =1000×100=1700 =18000 =100000﹙4﹚125×2×8×5=﹙125×8﹚×﹙2×5﹚=1000×10=10000疯狂操练11.计算﹙1﹚25×23×4 ﹙2﹚125×27×82.计算﹙1﹚5×25×2×4 ﹙2﹚125×4×8×25 ﹙3﹚2×125×8×53.想一想,怎样算比较简便?125×16例题2你有好办法计算下面各题吗?﹙1﹚25×8 ﹙2﹚16×125 ﹙3﹚16×25×25 ﹙4﹚125×32×25[思路导航] ﹙1﹚已知25×4=100,因为8=4×2,所以我们可以把25×8转化为25×4×2,然后先算25×4=100,在算出100×2=200.﹙2﹚125×8=1000,16=8×2,因而我们可以把16×125转化为2×﹙8×125﹚,然后算出8×125=﹙3﹚因为25×4=100,16=4×4,这样可以将两个4分别与两个25相乘,所以原式就转化为﹙4×25﹚×﹙4×25﹚,再分别计算,得到结果100×100=10000.﹙4﹚因为125×8=1000,25×4=100,我们又发现32=4×8,所以可将4和8分别与25,125相乘,得到﹙125×8﹚×﹙25×4﹚,再分别算出结果为1000×100=100000.﹙1﹚25×8 ﹙2﹚16×125 ﹙3﹚16×25×25=25×4×2 =8×125×2 =﹙4×25﹚×﹙4×25﹚=100×2 =1000×2 =100×100=200 =2000 =10000﹙4﹚125×32×25=﹙125×8﹚×﹙25×4﹚=1000×100=100000疯狂操练2速算1﹙1﹚25×12 ﹙2﹚125×32 ﹙3﹚48×1252. ﹙1﹚125×16×5 ﹙2﹚25×8×53. ﹙1﹚125×64×25 ﹙2﹚32×25×25例题3你能很快算出他们的结果吗?﹙1﹚82×88 ﹙2﹚51×59[思路导航]通过观察,我们可以发现这两题都是两位数相乘两位数,被乘数与乘数十位上的数字相同,个位数字和是10,像这样的题目,我们可以将首位数字加1再乘以首位数字,得数作为积的前两位数字;将两个末位数相乘,得数作为积的末位两个数字,如果末位数字相乘的积是一位数,要在前面补一个零。
小学 奥数 数学课本 三年级 打印版
华罗庚学校数学课本:三年级上册第一讲速算与巧算(一)第二讲速算与巧算(二)第三讲上楼梯问题第四讲植树与方阵问题第五讲找几何图形的规律第六讲找简单数列的规律第七讲填算式(一)第八讲填算式(二)第九讲数字谜(一)第十讲数字谜(二)第十一讲巧填算符(一)第十二讲巧填算符(二)第十三讲火柴棍游戏(一)第十四讲火柴棍游戏(二)第十五讲综合练习题下册第一讲从数表中找规律第二讲从哥尼斯堡七桥问题谈起第三讲多笔画及应用问题第四讲最短路线问题第五讲归一问题第六讲平均数问题第七讲和倍问题第八讲差倍问题第九讲和差问题第十讲年龄问题第十一讲鸡兔同笼问题第十二讲盈亏问题第十三讲巧求周长第十四讲从数的二进制谈起第十五讲综合练习上册第一讲速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下面各题:36+87+6499+136①②+1011361③+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 188①+873 548②+996 9898③+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
速算与巧算
速算与巧算(一)【经典例题一】325÷25【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。
325÷25=(325×4)÷(25×4)=1300÷100=13【练一练1】(1)450÷25 (2)525÷25【经典例题二】计算25×125×4×8【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。
运用了乘法交换律和结合律。
25×125×4×8=(25×4)×(125×8)=100×1000=100000【练一练2】(1)125×15×8×4 (2)125×25×32【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43 【思路导航】利用乘法分配律来计算这两题(1)125×34+125×66 (2)43×11+43×36+43×52+43 =125×(34+66)=43×(11+36+52+1)=125×100 =43×100=12500 =4300【练一练3】计算下面各题:(1)125×64+125×36 (2)64×45+64×71-64×16【经典例题四】计算(1)(360+108)÷36 (2)1÷2+3÷2+5÷2+7÷2 【思路导航】两个数的和、差除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(差)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 巧算与速算
专题解析:
计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
本讲主要讲凑整法、分组法、乘法分配律等。
例题一
19199199919999199999++++
【思路导航】:运用凑整法来解十分方便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----
=20+200+2000+20000+2000005
=2222205
=222215--
练习一
1、898998999899998999998+++++=
2、799999+79999+7999+799+79+9=
3、899998+89998+8998+898+98=
A=3+6+9+12+…+2001 B =1+4+7+10+…+2002
B—A=
【思路导航】运用分组法巧妙解题。
B—A=1+(4—3)+(7—6)+(10—9)+…+(2002—2001)=1+1+1+1+…+1→?
=668
练习二
1、10099989796321
+-+-++-+
2、989796959493929190894321
+--++--++---++
3、2000+1999—1998—1997+1996+1995—1994—1993+…+8+7—6—5+4+3—2—1
计算:1234+2341+3412+4123
【思路导航】运用乘法分配律注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答:
原式=1×1111+2×1111+3×1111+4×1111
=(1+2+3+4)×1111
=10×1111
=11110
练习三
1、23456+34562+45623+56234+62345
2、45678+56784+67845+78456+84567
3、124.68+324.68+524.68+724.68+924.68
例题四答
计算:(1)28×37+36×74 (2)32×54+68×29 【思路导航】(1)题表面看没有什么简便算法,仔细观察数的特征后可知:74 = 2×36。
这样一转化,就可以运用乘法分配律了。
(2)题中54=25+29.
原式=28×37+36×74 原式=32×54+68×29 =28×37+36×2×37 =32×(25+29)+68×29
=(28+72)×37 =32×25+32×29+68×29
=37×100 =8×(4×25)+29×(32+68) =3700 =3700
.
练习四
计算:答
1. 27×19+63×19+190
2. 999×778+333×666
3. 56×246+44×121
例题五
(1)739963÷37 (2)301÷43+258÷86
练习五
(1)(47+85)÷11 (2)579971÷29
课后练习
1、999×999+1999
2、12345+23451+34512+45123+51234
3、53×46+71×54+82×54
4、0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99。