山东建筑大学概率论第六章作业及答案

合集下载

概率与数理统计第六章习题参考解答

概率与数理统计第六章习题参考解答

《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩令 ⎩⎨⎧==.2211μμA A 求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx ni ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆnii x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01nii x d L p ndp pp=-=-=-∑01)(ln 1=---=∑=pnxp n dp p L d ni i解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由22()2()x f x μσ--=(1)2σ已知,似然函数22122()()2211()(,)ni i i x nx n nii i L f x e μμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x n x ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i i x n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni ixn L d d解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22ni i x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33n ii x x n θ===∑(3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:1212222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i ni i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβni i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。

山东建筑大学概率论作业及答案_图文

山东建筑大学概率论作业及答案_图文

1. 设随机变量
的分布律为
试求:(1)
(2) 在 的条件下,
的分布律;
(3)

(4)
的分布律.
解 (3)
012 0 1/8 1/4 0 1 1/8 1/4 1/4
的分布律;
(4)
40
2. (X , Y)只取下列数组中的值:
且相应的概率依次为 , , , , 列出(X , Y)的概率分
布表, 并
求出的分布律
求 和

的联合密度函数
以及条件密度函数

时,

时,
38
概率论与数理统计作业8(§2.9)
1. 设随机变量
的分布律为
试求:(1)
(2) 在 的条件下,
的分布律;
012 0 1/8 1/4 0 1 1/8 1/4 1/4
(3)

的分布律;
(4)
的分布律.
解 (1)
(2) 在 的条件下, 的分布律;
39
解 取偶数的概率为
X 服从几何分布
4
2.将一颗骰子抛掷两次,以 表示两次所得点数之和,以 表示两次中得到的较小的点数,试分别求 和
的分布律. 解
5
3.一批零件中有9个合格品与3个废品。安装机器时从中任取1个 。如果每次取出的废品不再放回去,求在取得合格品以前已 取出的废品数的概率分布和分布函数,并作出分布函数的图
)可以成为
(A)
( 是任意实数)(B)
的分布律
(C) 2. 设 与
(D) 分别为随机变量 与 的分布函数,为使
是某一随机变量的分布函数,在下列给定的各组数值中应取(A)
(A)
; (B)(C)源自; (D)3三、计算题 1. 进行某种试验,已知试验成功的概率为3/4,失败的概率为 1/4,以 表示首次成功所需试验的次数,试写出 的分布律 ,并计算出 取偶数的概率.

概率论与数理统计六七章习题答案

概率论与数理统计六七章习题答案

第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。

则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。

概率论与数理统计第六章习题答案

概率论与数理统计第六章习题答案

第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。

概率论与数理统计第六章 课外练习题(含详细答案)

概率论与数理统计第六章 课外练习题(含详细答案)

第六章 课外练习题(含详细答案)1. 21,,~(,),n X X X N μσ 设是总体的样本则 (1) 21()n i i E X X =⎧⎫-⎨⎬⎩⎭∑2221()/n i i E X X σσ=⎧⎫=-⎨⎬⎩⎭∑________.= 答案:2(1)n σ-.(2) 21()n i i D X μ=⎧⎫-⎨⎬⎩⎭∑4221()/n i i D X σμσ=⎧⎫=-⎨⎬⎩⎭∑_____.= 答案:42n σ.解:因为21,,~(,),n X X X N μσ 是总体的样本所以22222(1)(1)n S ES n σχσ-=- 且.从而(1)22((1))1S n n E σ⎛⎫=- ⎪⎝⎭-,2122()(1)(1).n i i E X X E n S n σ=⎧⎫⎡⎤-=-=-⎨⎬⎣⎦⎩⎭∑所以 或者222211()(1)()(1)(111).n n i i i i E X X n E X X n n ES n σ==⎧⎫⎧⎫-=--=--=-⎨⎬⎨⎬⎩⎭⎩⎭∑∑ (2) 由i X σμ-~(0,1)N ,则21ni i X σμ=-⎛⎫ ⎪⎝⎭∑~2()n χ,所以212n i i X D n σμ=⎡⎤-⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑ 故221112244()2.n n n i i i i i i X X D X D D n σσσσσμμμ===⎧⎫⎡⎤--⎧⎫⎪⎪⎛⎫⎛⎫-===⎢⎥⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎢⎥⎪⎪⎩⎭⎣⎦∑∑∑ 2. 12101215,,,,,(20,3){0.1}.X X X Y Y Y N P X Y -> 设与分别是正态总体的两个独立样本,求 答案:0.8886.解:由题设可知,110110i i X X ==∑~(20,)310N ,151115i i Y Y ==∑~(20,)315N 则~X Y -33(0,),1015N +~~(0,.1)X Y X Y N N -即 所以 {0.1}1{0.1}1{0.1}P X Y P X Y P X Y ->=--≤=--<1(0.14)220.5557.0.8881122 6.2P Φ-Φ≈-⎫⎡⎤=-<=-⎢⎥⎣⎦⨯==- 3. 设总体(1,4),X N 12100,...,,X X X 是来自总体X 的一个样本,已知Y b aX =+~(0,1),N 则 a = , b = .答案:5,5(5,5,5,5)a b a b a b =±===-=-= 即有两组解或.解:因为(1,4)X N 且100n =,所以样本均值X ~4(1,)100N . 又因为Y b aX =+~(0,1)N , 所以 220(4).(101)0X b X b a EY E a ba DY D aX a Db a X E ++=+==+===== 所以55,.54a a b b ==-⎧⎧⎨⎨=-=⎩⎩或4. 在总体X ~2()n χ, 12,.,,..n X X X 是来自总体X 的一个样本,则2______,______,_____.X DX E E S === 答案:2,22.,X n DX ES E n ===解:特别要注意区分样本容量和2χ分布的自由度,两者在本题中都是字母n .因为X ~2()n χ,所以,2EX n DX n ==(注意这里的n 是2χ分布中的自由度n ), 从而对11i ni X X n ==∑(注意这里的分母n 是指的样本容量的n )有: (),22,n n X EX n DX n DX n E n =====(样本容量这个是自由度)(这个是样本容量)对样本方差2S ,有22.ES DX n ==(这个n 是自由度)5. 在总体X ~2()n χ, 1210,.,..,X X X 是来自总体X 的一个样本,则2______,______,_____.X DX E E S === 答案:注意本题中自由度为n ,而样本容量是10.22,n DX 2n 10;105n .X n n n DX n E E S =====, 这个为自由度;,分子的2是总体方差,分母的为样本容量样本容量这个为自由度6. 设总体(0,1),X N 1216,.,..,X X X 是来自总体X 的样本,已知{}0.01,X P λ=≥ 则______.λ= 答案:0.58.解:因为(0,1),X N 样本容量n=16,所以1161i i X X n ==∑~(0,)116N , 即0414X X -=(0,1),N 于是{}0.01{}1{}1441(4)P X P X P X λλλλ=≥=-<=-<=-Φ,从而(4)0.99λΦ=,查表得到4 2.33,λ=故0.58.λ=。

山东建筑大学概率论第六章作业及答案

山东建筑大学概率论第六章作业及答案

15
9、设 n 个随机变量
X 1,X 2 ,…,X n
独 立 同分布 ,D( X 1 )
2 ,X
1 n
n
i 1
Xi
,S 2
n
1 1
n i 1
(
X
i
X )2


A) S 是 的无偏估计量;
B) S 是 的最大似然估计量;
C) S 是 的相合估计量(即一致估计量); D) S 与 X 相互独立.
16
i 1
i 1
n
ln L( ) nln ( 1) ln xi i 1

d
ln L( ) d
1
(
n
1)
i 1
ln
xi
0
最大似然估计为: ˆ n n
ln xi
i 1
10
6. 设总体X 服从拉普拉斯分布:f ( x; )
1
x
e , x ,
2
其中 0. 如果取得样本观测值为 x1, x2 , , xn , 求参数θ
概率论与数理统计作业16(§6.2~§6.5)
一、 填空题
1、设总体 ~ (, 2 ) , 1 ,…, n 是 的样本,则当 2 已知时,求 的置信区间所使用的统计量为
X
= n
; 服从N0,1
分布;当 2 未知时,求 的置信区间所使用的统计量
x
= s n , 服从t n 1 . 分布.
参数 p 的矩法估计量和极大似然估计。
(1) EX mp(1 p)m1 p m(1 p)m1
m1
m1
而 qm q
m1
1q
∴ mqm1
1
1

山东建筑大学6概率统计作业答案与提示2.4-2.5

山东建筑大学6概率统计作业答案与提示2.4-2.5
a a -1 a(a - 1) , 1) 不放回式: P(X=0, Y=0 )= a + b a + b - 1 (a + b)(a + b - 1) a b ab , P( X=0, Y=1 )= a + b a + b - 1 (a + b)(a + b - 1) b a ab P( X=1, Y=0 )= a + b a + b - 1 (a + b)(a + b - 1) , b b -1 b(b - 1) , P( X=1, Y=1 )= a + b a + b - 1 (a + b)(a + b - 1)
试求:(1) 常数k;(2) P( X 1.5)
4 ( )P( X Y 4) ( )分布函数 F ( x, y) 3
解:( 1)用公式

2
0
1 dx k (6 x y )dy 1, 得: k 2 8
4
X 1 , 5
(2)P ( X 1.5)
1.5 4
f ( x, y )dxdy
{ {
1 0
第一次取到的产品是次品, 第一次取到的产品是正品,
1 第二次取到的产品是次品, 0 第二次取到的产品是正品,
二位随机变量 (X,Y) 的所有可能取值为: ( 0, 0 ), ( 0, 1 ), ( 1,0 ), ( 1,1 )
a a a 1) 放回式: P(X=0, Y=0 )= , a+b a+b a+b
概率作业第三章第1—4节
X 0 1 X
pX ( xi )
Y
0

(完整版)概率论第六章答案

(完整版)概率论第六章答案

习题6-11. 若总体, 从总体X 中抽出样本X 1, X 2, 问3X 1-2X 2服从什么分布?(2,9)XN :解 3X 1-2X 2~N(2, 117).2. 设X 1, X 2, …, X n 是取自参数为p 的两点分布的总体X 的样本, 问X 1, X 2, …, X n 的联合分布是什么?解 因为总体X 的分布律为P {X =k }= p k (1-p )1-k , k =0,1,…,所以样本X 1, X 2, …, X n 的联合分布为11221111111{,}(1)(1)(1)(1).n nnniii i x x x x x x n n X n X P X x X x p p p p p p p p ==----==⋅-⋅-⋅⋅-∑∑=⋅-…,=…习题6-21. 选择题(1) 下面关于统计量的说法不正确的是( ).(A) 统计量与总体同分布. (B) 统计量是随机变量. (C) 统计量是样本的函数. (D) 统计量不含未知参数.解 选(A).(2) 已知X 1,X 2,…,X n 是来自总体的样本, 则下列关系中正确的是().2(,)X N μσ:(A) (B)().E X n μ=2().D X σ=(C)(D) 22().E S σ=22().E B σ=解 选(C).(3) 设随机变量X 与Y 都服从标准正态分布, 则().(A)X +Y 服从正态分布.(B) X 2+Y 2服从分布.2χ(C)X 2和Y 2都服从分布. (D)服从F 分布.2χ22X Y 解因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).2. 设X 1,X 2,…,X n 是来自总体X 的样本, 总体X 的均值μ已知,方差σ2未知. 在样本函数,,, nμ(++…+)中, 哪些不是统计量?1nii X=∑1nii Xμσ=-∑1nii XSμ=-∑21X 22X 2n X 解 不是统计量.1nii Xμσ=-∑3.设总体X 服从正态分布,总体Y 服从正态分布,21(,)N μσ22(,)N μσ和 分别是来自总体X 和Y 的简单随机样本, 求112,,,n X X X 212,,,n Y Y Y12221112()()2.n n i j i j X X Y Y E n n ==-+-+-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑ 解 因为 , 122111[()]1ni i E X X n σ=-=-∑222121[()]1n j j E Y Y n σ=-=-∑习题6-31.填空题(1) 设总体,是从该总体中抽取的容量为n 的样本,~(2,25)XN 12100,,,X X X 则 ; ; 统计量.()E X =()D X =~X 解 因为总体, 而是从该总体中抽出的简单随机样~(2,25)XN 12100,,,X X X 本, 由正态分布的性质知, 样本均值也服从正态分布, 又因为,1001111(()22100)nii i E E X nX =====∑∑而.1002111125(()251001)1004ni i i D D X nX ======∑∑所以.1~(2,4N X (2)X 服从正态分布,是来自X 的简单随机样本,2(,)Nμσ,n X 服从 分布;服从 分布;服从分布;服从 分布.222=12(1)()nii n SXX σσ--=∑212()nii Xμσ=-∑解 由抽样分布定理知,. 再由正态分布的标准化公式 ,服2~(,)X N nσμ从标准正态分布.由抽样分布定理知服从自由度为n -1的t 分布.由抽样分布定理知, 服从自由度为n -1的分布.22(1)n S σ-2χ由题设, 2~(,),1,2,,i X N i μσ= 所以~(0,1),1,2,.i X N i μσ-= 再由分布的定义知,服从自由度为n 的分布.2χ212()nii Xμσ=-∑2χ(3) 设,是来自正态总体的容量为n +m 的样12,,,n X X X 1,,n n m X X ++ 2(0,)N σ本, 则统计量服从的分布是 .2121ni i n mi i n m X n X =+=+∑∑解 因为=, 而,.2121nii n mii n m Xn X=+=+∑∑2121nii n mii n XnXm=+=+∑∑2212~()nii Xn χσ=∑2212~()n mii n Xm χσ+=+∑由F 分布的定义, 得到.2121~(,)ni i n mi i n m X F n m n X =+=+∑∑2. 选择题(1) 设随机变量, 则下列关系中正确的是( ).21~()(1),X t n n Y X >=(A) .(B) .2~()Yn χ2~(1)Y n χ- (C) .(D) ~(,1)Y F n ~(1,)Y F n 解 由题设知,, 其中, 于是X =2~(0,1),~()U N V n χ=,21Y X =221UV V n n U =这里, 根据F 分布的定义知故应选(C).22~(1)Uχ21~(,1).Y F n X=(2)设,(n ),,分别是标准正态分布N (0,1)、(n )分布、z α2αχ()t n α12(,)F n n α2χ分布和分布的上分位点, 在下列结论中错误的是( ).t F α(A) . (B) (n )=1-(n ).1z z αα-=-2αχ21αχ-(C) .(D) .1()()t n t n αα-=-121211(,)(,)F n n F n n αα-=解 应选(B).3. 在总体中随机抽取一个容量为36的样本,求样本均值落在50.82(52,6.3)N X到53.8 之间的概率.解因为,所以.于是, 标准化随机变量2~(,X N n σμ26.3~(52,36X N.~(0,1)N 因此(50.852)6(52)6(53.852)6{50.853.8}{}6.3 6.3 6.3X P X P -⨯-⨯-⨯=≤≤…….10.87.2()(0.82936.36.3ΦΦ-=-=4.已知是来自正态总体的样本,求概率1210,,,X X X 2(0,)X N σ:.{<2.82}P X S解 由定理1知,2229(0,1),(9),XS N χσσ::因此,(9)Xt S=:所以 { 2.82}{2.82}1{ 2.82}10.010.99.X XP XS P P S S<=<=->=-=。

概率论与数理统计+第六章+样本及抽样分布+练习题答案

概率论与数理统计+第六章+样本及抽样分布+练习题答案

Ⅲ、典型例题分析〖填空题〗例6.1(F 分布) 设随机变量X 服从自由度为),(21f f 的F 分布,则随机变量X Y 1=服从参数为 的 分布 .分析 因为服从自由度为),(21f f 的F 分布的随机变量X ,可以表示为222121f f X χχ=,1212221f f X Y χχ==, 其中2221 χχ和独立,分别服从自由度为21f f 和的2χ分布.由F 分布变量的典型模式,知Y 服从自由度为),(12f f 的F 分布.例6.2(2χ分布) 设4321,,,X X X X 是来自正态总体()22 ,0N 的简单随机样本,记()()243221432X X b X X a X -+-=,则当=a ,=b 时, 统计量X 服从2χ分布,其自由度为 .分析 由条件知4321,,,X X X X 相互独立且同正态分布()22 ,0N .因此()212X X -服从正态分布()20,0N ,而()4343X X -服从正态分布()100,0N ,并且相互独立.由2χ变量典型模式知()()10043202243221X X X X T -+-=服从自由度为2的2χ分布,从而a=1/20 , b= 1/100.例6.3(2χ分布) 设4321,,,X X X X 相互独立同服从标准正态分布,X 是算术平均值,则24X 服从参数为 的 分布.分析 熟知4321X X X X +++服从正态分布)4,0(N ,因此()44243212X X X X X +++=服从自由度为“1”的“2χ”分布.例6.4(t 分布) 假设总体)3,0(~2N X ,821,,,X X X 是来自总体X 的简单随机样本,则统计量282726254321X X X X X X X X Y ++++++=服从参数为 的 分布.分析 由于独立正态分布的随机变量的线性组合仍然服从正态分布,易见.)1,0(~6)(432143214321N X X X X X X X X X X X X U +++=++++++=D作为独立标准正态随机变量的平方和,99992822252X X X X +++=76χ服从2χ分布,自由度为4;随机变量2 χ和U 显然相互独立.随机变量Y 可以表示为()4496228222541χUX X X X X X X X Y =++++++=7632.由t 分布随机变量的典型模式,可见随机变量Y 服从自由度为4的t 分布.例6.5(F 分布) 设(1521,,,X X X )是来自正态总体()9,0N 的简单随机样本,则统计量2152122112102221 21X X X X X X Y ++++++= 的概率分布是参数为 的 分布 .分析 由2χ分布的典型模式,知99215211222102121X X X X ++=++= χχ和服从自由度相应为10和5的2χ分布,并且相互独立.从而,由F 变量的典型模式,知510 21222121521121021χχ=++++=X X X X Y 服从自由度为(10, 5)的F 分布.例6.6(F 分布) 设X 服从自由度为ν的t 分布,则2X Y =服从参数为 的 分布.分析 由自由度为ν的t 分布随机变量X 可以表示为νχν2UX =,其中2 ),1,0(~νχN U 服从自由度为ν的2χ分布,并且2νχ和U 独立.由2χ分布变量的典型模式,可见221U =χ服从自由度为1的2χ分布.因此,由F 分布变量的典型模式,可见随机变量νχχνχνν2212221===U X Y服从自由度为(1,ν)的F 分布.例6.7(F 分布) 设随机变量X 和Y 都服从标准正态分布并且相互独立,则22Y X Z =服从参数为 的 分布,.分析 由于X 和Y 都服从标准正态分布,可见2X 和2Y 都服从自由度为1的2χ分布.此外,由X 和Y 独立,可见2X 和2Y .从而,由服从F 分布的变量的典型模式,知22Y X Z =服从自由度为(1,1)的F 分布.例6.8(2χ分布) 设总体)2,(~)2,(~b N Y a N X ,并且独立;基于分别来自总体X 和Y的容量相应为n m 和的简单随机样本,得样本方差22yx S S 和,则统计量 []22)1()1(21y x S n S m T -+-=服从参数为 的 分布.分析 统计量T 服从自由度为2-+n m 的2χ分布.由(6.14)知2221)1(21 )1(21y x S n T S m T -=-=, 分别服从自由度为m -1和服从自由度为n -1的2χ分布,并且相互独立.从而,由2χ分布随m+n -2的2χ分布.机变量的可加性知,T 服从自由度为例6.9(经验分布函数) 设总体X 在区间[0,2]上服从均匀分布;()x F n 是基于来自X 的容量为n 的简单随机样本的经验分布函数,则对于任意[]2,0∈x ,()x F n E = .分析 总体X 的分布函数为()x F =x/2,若[]2,0∈x ;()x F =0,若[]2,0∉x .对于任意[]2,0∈x ,以)(x n ν表示n 次简单随机抽样事件}{x X ≤的出现的次数,则)(x n ν服从参数为()()x F n ,的二项分布,因此)()(E x nF x n =ν,从而()()2)(x x F nx x F n n ===νEE . 例6.10(经验分布函数) 设(2,1,5,2,1,3,1)是来自总体X 的简单随机样本值,则总体X 的经验分布函数()xF n = .分析 将各观测值按从小到大的顺序排列,得1,1,1, 2, 2, 3, 5,则经验分布函数为()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<≤<=.若;若;若;若若 5 , 1 53 , 76 3 2 , 75 21 , 73;1 , 08x x x x x x F例6.11 设Y X 和是两个样本均值,基于来自同一正态总体),(2σμN 的两个相互独立且容量相同的简单随机样本,则满足{}05.0≤>-σY X P 的最小样本容量≥n 8 .分析 由于总体服从正态分布),(2σμN ,可见{}.05.022≤⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=>-n YX n Y X σσP P 6832.796.1296.122≈⨯≥≥n n,.5.14 (1)3ln4(2)532(3))(12χ(4))5,10(F (5)23〖选择题〗例6.13(常用分布) 设随机变量)1,0(~),1,0(~N Y N X ,则 (A) Y X +服从正态分布. (B) 22Y X +服从2χ分布. (C) 22Y X 服从F 分布. (D) 22Y X 和服从2χ分布. [ D ]分析 因为标准正态分布变量的平方服从自由度为1的2χ分布.当随机变量Y X 和独立时可以保证选项(A),(B),(C)成立,但是题中并未要求随机变量Y X 和独立,选项(A),(B),(C)未必成立.6.14(F 分布) 设n X X X ,,,21 是来自正态总体),0(~2σN X 的简单随机样本,则服从F 分布的统计量是()()]D [ 2)D (2)C ()B ( )A (2925242322212925242322212726252424232221292524232221.. . . X X X X X X Y X X X X X X Y X X X X X X X X Y X X X X X X Y +++++=+++++=++++++=+++++=分析 本题可以直接选出正确的选项.事实上,选项(D )可以表示为636)(3)(2623292524232221χχ=+++++=X X X X X X Y . 因为随机变量,,)(1)(1292524226232221223X X X X X X +++=++=σχσχ分别服从自由度为3和6的2χ分布,并且相互独立.因此,由服从F 分布的随机变量典型模式,知随机变Y 量服从自由度为)6,3(的F 分布.例6.17(正态总体) 设总体X 的概率密度为)(x f ,而),,,(21n X X X 是来自总体X 的简单随机样本,)()1(n X X X 和,相应为n X X X ,,,21 的样本均值、最小观测值和最大观测值,则)(x f 是(A) )1(X 的概率密度. (B) )(n X 的概率密度.(C) 1X 的概率密度. (D) X 的概率密度. [C ] 分析 应选(C ).1X 作为总体X 的一个观测值,与总体X 有相同的概率密度)(x f .5.13 (1)C (2)D (3)D (4)C (5)A〖计算题〗例6.21(经验分布函数) 假设)(x F 是总体X 的分布函数,)(x F n 是基于来自总体X 的容量为n 的简单随机样本的经验分布函数.对于任意给定的)(∞<<-∞x x ,试求)(x F n 的概率分布、数学期望和方差.解 以n ν表示自总体X 的n 次简单随机抽样中,事件{}x X ≤出现的次数,则n ν服从参数为())(,x F n 的二项分布.经验分布函数)(x F n 可以表示为)()()(∞<<-∞=x nx x F n n ν.由此可见,)(x F n 的概率分布、数学期望和方差相应为:{}[][][][][].,;)(1)()()()(),,2,1,0()(1)(C )()(x F x nF x F x nF x F n k x F x F k x n k x F n n kn k k n n n -===-===⎭⎬⎫⎩⎨⎧=-D E P P νk m ki i k mi m 20C C C=∑=-.对于任意n>2,变量n X X X ,,,21 独立同服从参数为),(p m 的二项分布,则用数学归纳法容易证明n X X X +++ 21服从参数为),(p nm 的二项分布.从而,得X 的概率分布{}().mn k p p C k X X n k X k mn k kmn n ,,1,0)1(1 =-==++=⎭⎬⎫⎩⎨⎧=-P P例6.26(样本容量) 假设总体X服从正态分布)4,(μN ,由来自体X 的简单随机样本得样本均值X .试分别求满足下列各关系式的最小样本容量n :(1) {}95.010.0≥≤-μX P ; (2) 10.0≤X D ; (3) 10.0≤-μX E . 解 由于)4,(~μN X ,可见()n N X 4,~μ,从而)1,0(~2N nX U μ-=.(1) 由标准正态分布函数)(u Φ的数值表(附表1)或标准正态分布双侧分位数αu 表(附表2),可见()()()().96.196.195.005.005.0210.02--=≥--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-ΦΦΦΦμnn n n X P ; 由此,得96.105.0≥n .于是,为使{}10.010.0≤≤-μX P ,样本容量n 应满足153705.096.12≈⎪⎭⎫ ⎝⎛≥n .(2) 由于10.04≤=n X D ,可见40≥n . (3) 由于)1,0(~N U ,有. 22d e22d e21202222πππμ====⎪⎪⎭⎫⎝⎛-⎰⎰∞-∞∞--uu uu U n X u u E E由于10.0≤-μX E ,可见.,,255205.02210.022210.022≈⎪⎪⎭⎫ ⎝⎛≥≤≤⎪⎪⎭⎫ ⎝⎛-ππμn n n n X E 例6.23 假设总体X 服从正态分布)4,12(N ,而()521,,,X X X 是来自体X 的简单随机样本;X 的样本均值,)1(X 和)5(X 分别是最小观测值和最大观测值.试分别求事件{}13>X ,{}10)1(<X 和{}15)5(>X 的概率.解 设)(x Φ是标准正态分布函数.(1) 由于总体X~)4,12(N ,可见样本均值X ~()4,12N ,因此{}{}{}.1414.08686.01)12.1(112.1118.1255212521213521213=-=-=≤-=>=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧->-=>ΦU U X X X P P P P P (2) 为求事件{}10)1(<X 的概率,先求最小观测值)1(X 的概率分布.对于任意x ,有{}{}{}{}{};5515151521521)1(21211212212111],,,min[1],,,min[⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛---=⎭⎬⎫⎩⎨⎧-≤--=≤-=>-=>-=≤=≤∏∏∏===x x X x Xx Xx X X X x X X X x X i i i ii iΦP P P P P P{}()[]()[].4684.011111212101110555)1(=-=---=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=≤ΦΦΦX P (3) 为求事件{}15)5(>X 的概率,先求最大观测值)5(X 的概率分布.对于任意x ,有{}{}{}{}()[].; 2922.05.1121215115212212212],,,max[55)5(511521)5(=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=>⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=⎭⎬⎫⎩⎨⎧-≤-=≤=≤=≤∏∏==ΦΦΦX x x X x Xx X X X x X i i i iP P P P P 55〖证明题〗例6.28 设总体()2,~σμN X ,而),,,,(121+n n X X X X 是来自正态总体X 的简单随机样本;X 和2S 相应为根据),,,(21n X X X 计算的样本均值和样本方差.利用正态总体的样本均值和样本方差的性质,证明统计量11+-=+n nS X X t n 服从自由度为1-=n ν的t 分布.证明 首先对所给统计量作变换,在统计量的表达式中将分子和分母同除以σ,得1)111222121-=-=+-==+-=++n S n n n XX U Un nS X X t n n νσχσνχ,(,,由于总体()2,~σμN X ,可见()21,~σμN X n +,()n N X 2,~σμ,从而()1,0~111,0~121N n nX X U n N X X n n +-=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+-++σσ,. 熟知,对于正态总体,X 和2S 独立,随机变量222)1(σχS n -=服从自由度为1-=n ν的2χ分布.现在证明,1+n X ,X 和2S 独立.首先它们显然两两独立;其次对于任意实数w v ,,u ,有{},,,, }{}{}{}{}{212121w v w v wv ≤≤≤=≤≤≤=≤≤≤+++S X u X S X u X S X u X n n n P P P P P P 其中第一个等式成立,因为n X X ,,1 和1+n X 独立;第二个等式成立,因为正态总体的样本均值和样本方差独立.从而1+n X -X 和2S 独立.于是,由服从t 分布的随机变量的典型模式,知统计量νχ2Ut =服从自由度为1-=n ν的t 分布.例6.29(样本均值和方差的独立性) 假设总体()2,1=i X i 服从正态分布()2,i i μN σ;1X 和2X 相互独立;由来自总体()2,1=i X i 的简单随机样本,得样本均值i X 和样本方差2i S .(1) 利用正态总体样本均值和样本方差的性质,证明4个随机变量1X ,21S ,2X ,22S 相互独立.(2) 假设μμμ==21,证明()μαα=+2211X X E ,其中i α是统计量:()2,1 22212=+=i S S S i i α. 证明 (1) 由于(1X ,21S )与(2X ,22S )分别依赖于两个相互独立的样本,可见它们相互独立;此外,由于正态总体的样本均值和样本方差相互独立,可见1X 和21S 以及2X 和22S 分别相互独立.因此,对于任意实数v ,,,u t s ,有{}{}{}{}{}{}{}.;v vv≤≤≤≤=≤≤≤≤=≤≤≤≤222211222211222211 , , , , S u Xt S s X S u X t S s XS u X t S s X P P P P P P P从而1X ,21S ,2X ,22S 相互独立.(2) 由于1X ,21S ,2X ,22S 相互独立,可见1α和1X 以及2α和2X 相互独立.从而,有()()().2121221122112211μααμααμαααααα=+=+=+=+=+E E E E E E E E E E X X X X X X 例6.30(F 分布分位数) 设),(21f f F α是自由度为),(21f f 的F 分布水平α上侧分位数,证明1),(),(12121=-f f F f f F αα.证明 设随机变量X 服从自由度为),(21f f 的F 分布,则随机变量X Y 1=服从自由度为),(12f f 的F 分布(例6.7).因此,有..,ααααα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≥=----),(1),(1),(11121121121f f F X f f F X f f F X P P P由此可见),(),(121121f f F f f F --=αα,即1),(),(12121=-f f F f f F αα.例5.15 设某商店一小时内到达的顾客数X 服从参数为2的Poisson 分布, 1021,,,X X X 是来自总体X 的简单随机样本.(1) 求),,,(1021X X X 的联合分布律; (2)求X 的分布律.解:),,,(1021X X X 的联合分律为(){}∏======101102211,,,i i in x XP x X x X x X P,!!!!21101101λλλλn n x i i xe x x x ex i ii-=-∑===∏n i x i ,2,1,10,,1,0==(2)先求21X X +的概率分布()()()∑===+===+mk K X m X X P k X P m X X P 0121121|()()()λλλλ-=--=∑∑-⋅=-===e k m ek k m X P k X P mk km km k 021!!() ,2,1,0,!2!202===-=-∑m e m Cem mmk k mkλλλλ即()λ2~21p X X +,从而可用数学归纳法证明()λ10~101P Xi i∑=即∑==1011i i X n X 的分布函数为() ,3,2,1,0,!1010101==⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛=-=∑k e k n k X P k X P ki i λλ例5.16 设总体X 和Y 同服从)3,0(2N 分布, 而921,,,X X X 和921,,,Y Y Y 分别是取自总体X 和Y 的两个独立简单随机样本, 试证:统计量)9(~292929921t YY Y X X X Z ++++++=解:)9(~292929921t YY Y X X X Z ++++++=()1,0~33921N X X X ⋅+++ ,()9~3332229222221χY Y Y +++故)9(~292929921t YY Y X X X Z ++++++=例5.17 设1+n 21,,,X X X 是正态总体的简单样本,设∑==n i i X n X 11和=2n S ()∑=-n i X i X n 121(1) 试求])([))(1(2221∑=---ni i X X n μμ的分布. (2) 试求111+n +--n n S X X n的分布. 解:1+n 21,,,X X X 设他们的方差为2σ,期望为μ(1)()()()()()1~)(,1~,1,0~2222211----∑=n X X N X ni i χσμχσμσμ()1,1~)()(1)1(])([))(1(2222212221----=---∑∑==n F X X n X X n ni i ni i σμσμμμ(2) 1+n 21,,,X X X 设他们的方差为2σ,期望为μ因为()()1~,1,0~12221+n -+-n nS N nn X X nχσ()1~111221+n 1+n -+-=+--n t nS n n X X n n S X X n nσ例5.18 设921,,,X X X 和921,,,Y Y Y 分别是取自两个独立的正态总体),(21σμN 和),(22σμN 的随机样本, α和β是两个实数, 试求nmn m S n S m Y X Z nm 222221212)1()1()()(βαμβμα+-+-+--+-=的概率分布. 其中21,m S X 和22,n S Y 分别是两个总体的样本均值和样本方差.解:由正态样本总体均值与样本方差的抽样分布定理知()(),1~,1~,,~,,~222222212221--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n mS m mS n N Y m N X χσχσσμσμ 得 ()()⎪⎪⎭⎫⎝⎛+-+-n m N Y X 2221,0~σσμβμα()2~222221-++n m mS mS χσ由t 分布的定义知()2~-+n m t Z例5.19 设 4321,,,X X X X 是来自正态总体)4,0(N 的简单样本, 记243221)43(1001)2(201X X X X Y -+-=求EY 和DX .解: ()()()()02,2044442212121=-=⨯+=+=-X X E X D X D X X D()()()()043,10016943212143=-=+=-X X E X D X D X X D()()()(),1,0~10043,1,0~2024321N X X N X X --()()()()()()1~1004310043,1~20220222432432221221χχX X X X X X X X -=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛- 由2χ分布的可加性,得()2~)43(1001)2(2012243221χX X X X Y -+-=故()()4,2==Y D Y E例5.20 设n X X X ,,,21 为取自总体),(~2σμN X 的一个样本,求样本的二阶原点矩的期望与方差.解:n X X X ,,,21 为独立同分布的随机变量,∑==n i i X n A 1221()()()()()()221212122111σμ+=+==⎪⎭⎫ ⎝⎛=∑∑∑===n i i i n i i n i i X E X D n X E n X n E A E()()241212211n X D n X n D A D n i i n i i σ==⎪⎭⎫ ⎝⎛=∑∑==例5.21 设2621,,,X X X 是总体),0(~2σN X 的一个样本,求概率))16((26112101αt XXP j ji i≤∑∑==解:()(),16~,1,0~102611222101∑∑==j ji iX N Xχσσ()16~16110261122101t X Xj ji i∑∑==σσ所以αα-=≤∑∑==1))16(104(26112101t XXP j ji i例5.22 设921,,,X X X 是总体),0(~2σN X 的一个样本,试确定σ的值,使)31(<<X P 为最大.例5.23 设n X X X ,,,21 为取自总体)2,(~2μN X 的一个样本,X 为样本均值,要使1.0)(2≤-μX E 成立,则样本容量n 至少应取多少?例5.24 设总体X 服从)4,(a N 分布,Y 服从)4,(b N 分布, 而921,,,X X X 和1621,,,Y Y Y 分别是来自X 和Y 的两个独立的随机样本, 记∑=-=9121)(i i X XW ,∑=-=16122)(j iY Y W ,其中∑==9191i i X X ,∑==161161i i X Y(1) 求常数C, 使9.0)||(2=<-C W b Y P ; (2) 求)038.6709.0(12<<W WP参考答案(样本与抽样分布部分)5.15 (1) ,1,0,!!!2),,,(20102110102211101=∑====-=j x x e x x x x X x X x X P i i(2) ,2,1,0,!10)10(10===-k k e k X P k 5.17 (1))1,1(-n F (2))1(-n t ,5.18 )2(-+n m t ,5.19 2; 45.20 n4222;σμσ+,5.21 α-1,5.223ln 6,5.23 40,5.24 (1) 0.1132; (2) 0.9。

概率论与数理统计答案第六章

概率论与数理统计答案第六章

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。

解: 8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P =2628.0)]25(1[2=Φ-(2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15}=.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10}=.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i i X P解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i ii ii iX P XP χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλnX D ===[六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。

概率论课后题答案.

概率论课后题答案.

7. 人体血型的一个简化模型包括4种血型和2种抗体: A、B、AB与O型, 抗A与抗B. 抗体根据血型与人的血液以
不同的形式发生作用. 抗A只与A、AB型血发生作用, 不与
B、O型血作用, 抗B只与B、AB型血发生作用, 不与A、O
型血作用, 假设一个人的血型是O型血的概率为0.5, 是A
型血的概率为0.34, 是B型血的概率为0.12, 求: (1) 抗A, 抗B分别与任意一人的血型发生作用的概率;
求P(B).
解 由于 P(AB)=P(A)+P(B)-P(A+B)
=P(A)+P(B)-1+P(A+B) =P(A)+P(B)-1+P(A B) 所以, P(A)+P(B)-1=0 即, P(B)=1-P(A)=1-p
第一章习题1.3(第19页)
2. 在1500个产品中, 有400个次品, 1100个正品, 从
5. 进行一个试验: 先抛一枚均匀的硬币, 然后抛一个
均匀的骰子,
(1) 描述该试验的样本空间;
(2) 硬币是正面且骰子点数是奇数的概率是多少?
解 (1) 设试验是观察硬币正反面和骰子的点数, 则 ={ (正面, 1点), (正面, 2点), (正面, 3点), (正面, 4点), (正面, 5点), (正面, 6点), (反面, 1点), (反面, 2点), (反面, 3点), (反面, 4点), (反面, 5点), (反面, 6点), } (2) P=3/12=1/4=0.25
1. 某城市共发行三种报纸A, B, C, 已知城市居民订购
A的占45%, 订购B的占35%, 订购C的占30%, 同时订购A
与B的占10%, 同时订购A与C的占8%, 同时订购B与C的占 5%, 同时订购A, B, C的占3%, 求下列事件的概率: (5) 至少订购一种报纸; P{至少订购一种报纸}=P{只订购一种报纸} +P{正好订购两种报纸}+P{订购三种报纸}=0.9 或 P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC) +P(ABC)=0.9 (6) 不订购任何报纸; P{不订购任何报纸}=1-P{至少订购一种报纸} =1-0.9=0.1

概率论第六章课后习题答案

概率论第六章课后习题答案

习题六1.设总体X 的概率密度为(1)01(;)0x x f x θθθ⎧+<<=⎨⎩其它,其中1θ>-,12,,X X,n X 为来自总体X 的样本,求参数θ的矩估计量。

解:总体的一阶原点矩为21)1();()(111++=+===⎰⎰++∞∞-θθθθθdx x dx x xf X E v ,而样本的一阶原点矩为X X n A ni i ==∑=111,用样本的一阶原点矩估计总体的一阶原点矩,即有X =++21θθ,由此得θ的矩估计量为.112ˆXX --=θ 3.设总体~(0,)X U θ,现从该总体中抽取容量为10的样本,样本观测值为:0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6试求参数θ的矩估计值。

解:总体的一阶原点矩为2)(1θ==X E v ,而样本的一阶原点矩为X X n A ni i ==∑=111,用样本的一阶原点矩估计总体的一阶原点矩,即有X =2θ,由此得θ的矩估计量为X 2ˆ=θ,其矩估计值为 68.2)6.10.25.18.02.12.27.16.03.15.0(10122ˆ=+++++++++⨯==x θ6.设12,,,n x x x 为来自总体X 的一组样本观测值,求下列总体概率密度中θ的最大似然估计值。

(1)101(;)0x x f x θθθ-⎧<<=⎨⎩其它(0θ>);(2)10(;)0x x e x f x ααθθαθ--⎧>⎪=⎨⎪⎩其它(α已知); (3)⎪⎩⎪⎨⎧≤>=-000);(2222x x e x x f x θθθ解:(1)似然函数为⎪⎩⎪⎨⎧=<<==∏∏=-=),,2,1(100);()(111n i x x x f L i n i i ni i 其它,,θθθθ 因为0不是)(θL 的最大值,考虑),,2,1(10,)(11n i x x L i ni i =<<=∏=-θθθ两边取对数,得 ∑=-+=ni i x L 1]ln )1([ln ln θθ解方程 0)ln 1(ln 1=+-=∑=n i i x d L d θθ,即0ln 1=+∑=ni i x n θ解得∑=-=ni ixn1ln ˆθ,即为θ的最大似然估计值。

概率统计第六章习题参考答案

概率统计第六章习题参考答案

概率统计第六章参考答案1.~(0,)X U b 101()2bbE X x dx A X b ====⎰2bX = ,b =1.69 2. 22()()3E X x xdx X θθθθ=-==⎰, 3X θ= 3. ~(,)X B m p111(1)101()(1)(1)kkm kk k m k mm k k E X kC p p pm C pp pm ∞∞-------===-=-=∑∑=X 22()(1)(1)(1)(1)k km kk km k mm k k E X k k C p p kC p p pm p X ∞∞--===--+-=-+∑∑=2A 4.~()X πλ {}!k e P X k k λλ-==()!k k e E X kX k λλλ-∞====∑ 所以 x λ= 11()()!nii x n nii e L p x λλ=-=∑=∏, 11ln ()ln ln ()!n niii i L p x n x λλ===--∑∏1(ln ())0nii x dL p n dp λ==-=∑ 解得 X λ=且2221(ln ())0d L p dp λ=-<所以 x λ=利用此式计算(2)5.1{}(1)x P X x p p -==-,1()()(1)ni i x n n L p p p =-∑=-1ln(())()ln(1)ln ni i L p x n p n p ==--+∑1(ln ())1ni i x n d nL p dp p p=-=-+-∑=0 解得1p = 利用此式解(2)6.2~(,)X N μσ (1) 参数2σ已知,估计μ解:由于),(~2σμN X ,故其概率密度函数为:),;(σμx f =()22221σμσπ--⋅x e⇒似然函数为),;,,,(21σμn n x x x L =∏=ni 1),;(σμi x f =∏=ni 1()22221σμσπ--⋅i x e=()21221σμσπ--∑=⋅⎪⎪⎭⎫⎝⎛⋅i ni x ne=()()212122μσσπ----∑=⋅⋅i ni x n n e两边取对数有:ln L =()()()212212ln ln 2ln μσσπ----∑=++i ni x nn e=()()212221ln 2ln μσσπ-∑--=-i ni nx n(l n ())dL d μμ=2(1)0ni i x n μ=-=∑ ⇒ˆx μ= (2) 参数μ已知,估计2σ22(ln ())d L d σσ=()2130ni i x nμσσ=-∑-+=⇒()2211ˆni i x x n σ==-∑ 7. (1) /21,0()0,x xe x f x θθ-⎧>⎪=⎨⎪ ⎩其他1/1222111()(),nii i x nx i n ni L x ex x x eθθθθθ=--=∑==∏121(())2()()()/nn i i Ln L nLn nLn x x x x θθθ==-+-∑(ln ())d L d θθ=1202nii x n θθ=-+=∑ ⇒ 2X θ=(2) 32/1,0()20,x x e x f x θθ-⎧>⎪=⎨⎪ ⎩其他1/221233111()(),22nii i x nx i n n n i L x e x x x e θθθθθ=--=∑==∏2121(())23()()()/nn i i Ln L nLn nLn nLn x x x x θθθ==--+-∑(ln ())d L d θθ=1203nii x n θθ=-+=∑⇒ 3X θ= (3) ~(,)X B m p 参数m 已知估计p ,{}(1)k kn k n P X k C p p -==-()L p =1(1)ii i nx x m x ni Cp p -=-(())Ln L p =111()ln(1)i nnnx ni i i i i Ln C x Lnp nm x p ===++--∑∑(ln ())dL p dp=1101nniii i xnm x pp==--=-∑∑⇒1ni i x =∑=nmp ⇒Xp m= 8.22()2(1)L θθθθθ=- 直接对其求导数=0 得到 56θ= 9.利用第六题中的结论可知道Y Xαβαβ⎧-=⎪⎨+=⎪⎩解得 22X Y α=+, 22X Y β=-10.(1) 证明:()(2)2()E E X E X θθ===(2) ()()E Y E Y λ==22()(3)3()()()E Z E Y Y E Y E Y D Y =+=++=24λλ+(3) 22111()(3)3()()()ni i E U E Y Y E Y nE Y E Z nn==+=+⋅=∑11 .T1和T3是无偏估计量 T3最有效 22212210()36936D T θθθ=+= 222222149164()252525255D T θθθθθ=+++= 2231()40.2516D T θθ=⋅= 12.(,1296)X N μ 27,36n σ==置信区间是22(,)X Z X Z αα-+(1) 210.95, 1.96Z αα-==, (2) 210.9, 1.645Zαα-==13. (1) 用第6题结论 (2)置信区间是22(,)X Z X Z αα-+,210.95, 1.96Z αα-==14.(1)根据P140中结论计算 (2)置信区间是2((1))X n a?,230,10.9, 1.6973n t a a =-== 15.置信区间是2((1))X n a?,9.4,12,s n == 210.95, 2.1788t a a -== 16.置信区间是2((1))X n a?, 19.06875,32, 3.256x n S === 210.95, 2.1788t a a -==17.置信区间是2((1))X n a?, 214.71, 6.144,13,10.95, 2.1788x S n t a a ===-==18.置信区间是122((2)X Y t n n S a -?-其中: W S =221281.31,78.61,60.76,48.24X Y S S ====1229,15,10.95,(23) 1.7139n n t a a ==-==19. 置信区间是2211222/21221/21211(,)(1,1)(1,1)S S S F n n S F n n a a -----129,11,n n == 22120.344,0.456S S ==/212(1,1) 3.85F n n a --=, 11/212 4.3(1,1)F n n a ---=20.单侧置信上限:221122221121()(1,1)S S F n n a s s -=--其中10.95a -=,21S =6.798 , 22S = 9.627 , 112(1,1)F n n a ---=3.29单侧置信上限22121(1)(1)n S n a s c --=- 21(1)n a c --=2.16721.单侧置信下限:(1)X n a m =+- 14.71, 6.144,13,10.95,(12)x S n t a a ===-==1.782322.单侧置信上限12(2)X Y t n n S a m =-++-222112212(1)(1)2wn S n S S n n -+-=+-,221281.31,78.61,60.76,48.24X Y S S ====12(2) 1.71t n n a +-=,。

《概率论与数理统计》习题及答案 第六章

《概率论与数理统计》习题及答案  第六章

《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X ,求样本的分布.解 样本12(,,,)n X X X 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn ni ii P X k X k X k P X k ======∏1!ik ni i ek λλ-==∏112!!!nii n k n ek k k λλ=-∑=0,1,i k =,1,2,,,i n = 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。

解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.xex f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X 的密度为1121,0(,,,)0,.ni i ix nn x i n i ex f x x x eλλλλ=--=⎧∑⎪>==⎨⎪⎩∏其它 1,2,,i n = 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。

今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。

解 总体~(01)X -,即(0),(1)L M P X P X NN====于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X NN ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X NN -===⋅-若N →∞时M p N→,则1L p N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=- 012112(0,1)(1)(1)P X X p p p p +-==→-=- 102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p pp +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。

概率论课后习题第6章答案

概率论课后习题第6章答案

第六章 数理统计的基本概念1.设样本均值为X ,则由题意,有6,4.1(~2n N X ,或)1,0(~/64.1N nX −,于是由1)3(2/64.34.5/64.3/64.34.1}4.54.1{95.0−Φ=⎭⎬⎫⎩⎨⎧−<−<−=<<≤nn n X nP X P⇒ 975.03(≥Φn ⇒ 96.13≥n⇒5744.34≥n 故样本容量至少应取35. 2.由题意可知)1,0(~/2.0N na X n −,又122/2.01.0/2.0}1.0|{|95.0−⎟⎟⎠⎞⎜⎜⎝⎛Φ=⎭⎫⎩⎨⎧<−=<−≤n n n a X P a X P n n 故有 975.0)2(≥Φn ⇒ 96.12≥n⇒ 3664.15≥n 因此至少应等于16.n 3. 由正态分布的性质及样本的独立性知,212X X −和4343X X −均服从正态分布,由于,0)2(21=−X X E 20)(4)()2(2121=+=−X D X D X X D以及,0)43(43=−X X E 100)(16)(9)43(4343=+=−X D X D X X D所以,有)20,0(~221N X X −⇒)1,0(~20221N X X −)100,0(~4343N X X − ⇒)1,0(~104343N X X −于是由分布的定义知,当2χ,201=a 1001=b 时,有 ()())2(~10432024322243221243221χ⎟⎠⎞⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=−+−=X X X X X X b X X a X 4. 由正态分布的性质及样本的独立性知, ⇒ )9,0(~2921N X X X +++")1,0(~)(91921N X X X +++" 又)1,0(~3N Y i, 9,,2,1"=i 所以 )9(~)(913332292221292221χY Y Y Y Y Y +++=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛""由于两个总体是X 和Y 相互独立的,所以其相应的样本也是相互独立的,故)9(9121X X X +++"与)(21Y 912922Y Y +++"也相互独立,于是由t 分布的定义知,)9(~9/)(91)(91292191292191t Y Y X X YY X X U +++=++++=""""5.由题意知,)1,0(~2N X i,,故有 15,,2,1"=i )10(~22)(4122102121021χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X U "" )5(~22)(412215211215211χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X V ""利用样本的独立性以及F 分布的定义,有)5,10(~5/10/)(221521121021F V U X X X X Y =++++="" 6.解法1 考虑n n n n X X X X X X 22211,,,+++++",将其视为取自正态总体的简单随机样本,则其样本均值为 )2,2(2σμN X X n X X n ni i n i i n i 21)(1211==+∑∑==+样本方差为 Y n 11−由于2211σ=⎟⎠⎞⎜⎝⎛−Y n E ,所以 22)1(2)2)(1()(σσ−=−=n n Y E 解法2 记,11∑==′n i i X n X ,11∑=+=′ni i n X n X 显然有X X X ′′+′=2,因此[]⎭⎬⎫⎩⎨⎧′′−+′−=⎥⎦⎤⎢⎣⎡−+=∑∑=+=+n i i n i n i i n i X X X X E X X X E Y E 1212)()()2()( []⎭⎬⎫⎩⎨⎧′′−+′′−′−+′−=∑=++n i i n i n i i X X X X X X X X E 122)())((2)(222)1(2)1(0)1(σσσ−=−++−=n n n 7.记(未知),易见2)(σ=X D )()(21Y E Y E =, ,6/)(21σ=Y D 3/)(22σ=Y D 由于相互独立,故有21,Y Y ,0)(21=−Y Y E 236)(22221σσσ=+=−Y Y D从而 )1,0(~2/21N Y Y U σ−=,又 )2(~22222χσχS =由于与相互独立,与独立,由定理 6.3.2,与独立,所以1Y 2Y 1Y 2S 2Y 2S 21Y Y −与独立,于是由t 分布的定义,知 2S )2(~2/)(2221t USY Y Z χ=−=8.由)1(~)1(222−−n S n χσ,其中由题意知,25=n , ,于是1002=σ}12)125({)1(50)1(}50{22222>−=⎭⎬⎫⎩⎨⎧−>−=>χσσP n S n P S P975.0}12)24({2≥>=χP 上式中的不等式是查表得到的,所以所求的概率至少为0.9759. 本题要用到这样一个结论,即Γ分布),(βαΓ关于第一个参数具有可加性,即若),(~1βαΓU ,),(~2βαΓV ,且U 与V 相互独立,则),(~21βαα+Γ+V U ,其中),(βαΓ的概率密度为: ⎪⎩⎪⎨⎧=)(x f αβ>其它0,x βΓ−)(1/1e x α−0x α可利用卷积公式证明.回到本题,当λβα11=,=,分布就是参数为Γλ的指数分布,所以样本的独立性及Γ分布的可加性,有 )1,(~21λn X +X X n Γ++"即的概率密度为 ∑=ni i X 1⎪⎩⎪⎨⎧>−=−−其它00,)!1()(1x e x n x g x n nλλ 因此∑==ni i X n X 11的概率密度为 ⎪⎩⎪⎨⎧≤>−==−−0,00,)!1()()()(1y y e y n n ny ng y h ny n n λλ 10. (1) 根据正态分布的性质,与21X X +21X X −服从二维正态分布,所以要证明它们相互独立,只需它们不相关,由于0)()()])([(22212121=−=−+X E X E X X X X E 0)()(2121=−+X X E X X E 所以 0),(2121=−+X X X X Cov 即与相互独立21X X +21X X −(2) 由于0=μ,所以)2,0(~221σN X X +⇒)1,0(~221N X X σ+ ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛+X X⇒)2,0(~221σN X X −)1,0(~221N X X σ− ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛−X X由上面证明的独立性,再由F 分布的定义知)1,1(~2/2/)()(21221221221F X X X X X X X X F ⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=−+=σσ 所以 25.0}83.5{}4{4)()(221221=<<<=⎭⎬⎫⎩⎨⎧<−+F P F P X X X X P。

概率论第六章习题解答

概率论第六章习题解答

概率论第六章习题解答1、在整体 N (52,6.3 2 ) 中随机抽取一容量为 36 的样本,求样本均值 X 落在与之间的概率。

解 因为 N (52,6.3 2 ) ,所以P{50.8 X 53.8}P{ 50.852 X 52 53.8 52}6.336 6.336 6.3 36(10.8)( 7.2)(1.71)( 1.14)6.3 6.30.9564 1 0.8729 0.82932、在整体 N (12, 4) 中随机抽取一容量为 5 的样本 X 1,X 2,X 3,X 4,X 5,( 1)求样本均值与整体均值之差的绝对值大于 1 的概率。

( 2)求概率P{max( X 1, X 2 , X 3 , X 4 , X 5 )15} , P{min{(X 1, X 2, X 3, X 4, X 5) 10}解( 1)整体均值为12 ,,样本均值 X1 5X i : N (12, 4)5 i 1 5所求概率为P{| X 12|1} 1 P{| X 12 | 1}1 P{ 1 X 12 1}1 P{1X12 1 }4 54 54 51( 5 )(5 )222 2 (1.12) 2(1 0.8686) 0.2628(2) P{max( X 1 , X 2 , X 3 , X 4 , X 5 )15} 1 P{max( X 1 , X 2 , X 3 , X 4 , X 5 ) 15}1 P{ X 1 15, X2 15,X3 15, X4 15, X 515}5512} 1P{ X i 15} 1P{ X i 12 15i 1i 1221 ( (1.5))5 1 (0.9332) 50.2923 .(3) P{min{(X 1, X 2, X 3, X 4,X 5) 10}1 P{min{( X 1, X 2,X 3, X 4,X 5) 10}1P{ X110, X210, X310, X410, X 5 10}551P{ X i10}1(1 P{ X i10})i 1i15X i12 1012 1(1P{2})i 12551(1(1))1(1)i 1i11(0.8413)51042150.52853、求整体N (20,3) 的容量分别为10,15 的两个独立样本均值差的绝对值不超出的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
n
n
xi n
(2) 似然函数为:L( p)
p(1 p)xi 1 pn (1 p) i1
i 1
ln L( p) n ln p ln(1 p) n xi n
n
i1

令 d ln L( p) n i1 xi n 0

3 n
n i 1
xi2
4X2
8
5. 设总体 X 的概率密度为
x 1, 0 x 1,
f (x, ) 0,
其它.
其中 0,如果取得样本观测值为 x1, x2,L , xn ,求参数 的矩估计值和最大似然估计值.
解 (1) 矩估计法
Байду номын сангаас
Q E( x) 1 x x1dx

n i 1
xi
n xi

i 1
1 p

0
得 p的极大似然估计值为:pˆ X
7
4. 设 X ~ U (a,b) ,一个样本为 X1, X 2,L , X n ,求参数 a, b 的矩估计量.
解: E( x)
b
x
1 dx
1
b2 a2 a b
a ba ba 2
参数 p 的矩法估计量和极大似然估计。


(1) EX mp(1 p)m1 p m(1 p)m1
m1
m1


qm
q
m1
1q

∴ mqm1
1
1
m1
(1 q)2 p2

EX 1 p

1
p

1 n
n i 1
Xi
X

p的矩估计值为:pˆ

1 x
第六章 参数估计
概率论与数理统计作业15(§6.1) 概率论与数理统计作业16(§6.2~§6.5)
1
概率论与数理统计作业15(§6.1)
一、填空题
n
1. 若 X 是离散型随机变量,分布律是 P{X x} P(x; ) ,( 是待估计参数),则似然函数
i 1
p(
xi
,
)

n
X 是连续型随机变量,概率密度是 f (x; ) ,则似然函数是 f (xi ,。)
i 1
10
6. 设总体X 服从拉普拉斯分布:f ( x; )
1
x
e , x ,
2
其中 0. 如果取得样本观测值为 x1, x2 ,, xn , 求参数θ
的矩估计值与最大似然估计值.
解 (1) 矩估计法
E( X 2 ) 1
x
x2e dx 1
试求 p 的极大似然估计量.
n
n
解:似然函数为: L( p)
n
pxi (1
p)1 xi

xi p i1 (1
n xi p) i1
i 1
n
n
ln
L(
p)

(
i1
xi
)
p


n

i1
xi
ln(1
p)
n
令 d ln L( p) dp
的无偏估计量。样本方差 S 2
4. 设 总 体 X ~ P() , 其 中 0 是 未 知 参 数 , X1, , X n 是 X 的 一 个 样 本 , 则 的 矩 估 计量
为 ˆ X ,极大似然估计为 ˆ X

2
二、计算题
1. 设总体服从几何分布: PX x p1 p x1 , x 1,2,3. 如果取得样本观测值为 x1 , x2 ,, xn , 求
n
n
L( ) xi 1 n( xi ) 1
i 1
i 1
n
ln L( ) nln ( 1) ln xi i 1

d
ln L( ) d

1


(
n
1)
i 1
ln
xi

0
最大似然估计为: ˆ n n
ln xi
2
E( x2 ) b x2
1 dx
1
b3 a3 a2 ab b2
a ba ba 3
3
按矩法得方程组 a b 1 n
2 n i1 xi
a2
ab b2 3

1 n
n i 1
xi2
解得矩估计量为
aˆ 2X
3 n
n i 1
xi2
4X2
0
1
参数θ的矩估计值为
ˆ X
1 X
9
5. 设总体 X 的概率密度为
x 1, 0 x 1,
f (x, ) 0,
其它.
其中 0,如果取得样本观测值为 x1, x2,L , xn ,求参数 的矩估计值和最大似然估计值.
解 (2) 最大似然估计,似然函数为
解: (2)似然函数为:
n
n
L( ) e xi n e xi
i 1
i 1
n
ln L( ) nln xi i 1

d
ln L( ) d

n


n i 1
xi

0
极大似然估计值为: ˆ 1
X
6
3. 设总体 X 服从 0-1 分布 B(1, p),这里 0 p 1. 现从总体中抽取了一个样本 X1,, X n ,
x
x2e dx
2
0
2

x
2
e
x
d

x

0

2 (3) 2 2

E(X 2)
1 n
n
X
2 i
i 1
2 2
参数θ的矩估计值为
ˆ
1 n
n i 1
xi2
2. 若未知参数 的估计量是 ,若 E(ˆ )
i 1
称 是 的无偏估计量。设 1, 2 是未知参数 的两个
无偏估计量,若 D(ˆ 1 ) D(ˆ 2 ) 则称 1 较 2 有效。
3. 对任意分布的总体,样本均值 X 是
总体均值E(X )
是 总体方差D( X ) 的无偏估计量。
dp
p 1 p

p的极大似然估计值为:pˆ

1 x
4
2. 设总体服从指数分布 X ~ e() , 取一个样本为 X1, X2,L , Xn ,求 矩估计量和最大似 然估计量.
解: (1)矩估计
E( x) xexdx 1
0

解得矩估计量为 ˆ 1
X
5
2. 设总体服从指数分布 X ~ e() , 取一个样本为 X1, X2,L , Xn ,求 矩估计量和最大似 然估计量.
相关文档
最新文档