大物复习题

合集下载

大学普通物理复习题(10套)带答案

大学普通物理复习题(10套)带答案

普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。

3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。

(选填:变大、变小、不变。

)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。

33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。

二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。

(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。

《大学物理》复习题及答案

《大学物理》复习题及答案

《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。

3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。

速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。

如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。

25:一质点沿半径为米的圆周运动,其转动方程为??2?t。

质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。

大学物理复习题100道

大学物理复习题100道

[1]. 如果在一固定容器内,理想气体分子方均根速率提高为原来的二倍,那么( ) A 、温度和压强都提高为原来的二倍B 、温度提高为原来的四倍,压强提高为原来的二倍C 、温度提高为原来的二倍,压强提高为原来的四倍D 、 温度与压强都提高为原来的四倍E 、 由于体积固定,所以温度和压强都不变化[2]. 有两个载有相同电流的通电导线,彼此之间的斥力为F ,如果它们的电流均加倍,相互之间的距离也加倍,则彼此之间的斥力将为( )A 、 4FB 、 2FC 、 FD 、2FE 、 4F[3]. 两块电荷面密度均为σ+的 “无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x变化的关系曲线为:(设场强方向向右为正、向左为负)( )[4]. 一瓶氦气和一瓶氧气,它们的压强和温度都相同,但体积不同。

下列哪些结论正确( )(1) 单位体积的分子数相同 (2) 单位体积的质量相同 (3) 分子的平均平动动能相同 (4) 分子的方均根速率相同[5]. 一密封的理想气体的温度从C 27起缓慢地上升,直至其分子速率的均方根值是C 27时的均方根值的两倍,试问气体最终的温度为多高()(B)(C)(D)(A)σ-0[6]. 半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( )[7]. 一根长为l ,质量为m 的均质链条放在光滑水平桌面上,而将其长度的5/l 悬挂于桌边下。

若将悬挂部分拉回桌面,需做功为( )[8]. 两无限长平行直导线a 、b 分别载有电流1I 和2I ,电流方向相反,如图所示。

L 为绕导线b 的闭合回路,c B为环路上c 点的磁感应强度。

当导线a 向左平行于导线b 远离时 ( )A 、 cB 减小,⎰⋅Ll B d 减小 B 、 c B 不变,⎰⋅Ll Bd 不变C 、 c B 增加,⎰⋅Ll B d 不变 D 、 c B 减小,⎰⋅Ll Bd 不变[9]. 设某种气体的分子速率分布函数为)(v f ,则速率在21~v v 区间内的分子的平均速率为( ) [10].一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的2H 和2O .开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:( )5/l[11].竖直上抛一小球,设空气阻力大小恒定。

大物复习题汇总

大物复习题汇总

【7-11】一条无限长直导线在一处弯折成半径为 R 的圆弧,
如图所示,若已知导线中电流强度为 I,试利用毕奥-萨伐
I
尔定律求:(1)当圆弧为半圆周时,圆心 O 处的磁感应强度 B;
(2)当圆弧为 1/4 圆周时,圆心 O 处的磁感应强度。
解:(1) B B左 B中 B右 因左右两边的半无限长的延迟线经
S
S
4R3 30
E R3 3r 20
当 r < R 时,同理有
S
E
E
• dS EdS
S
qr 4 0R3
cos
0
E
E dS E4 r2 q
S
qr 4 0R3
rˆ, (r
R)
r3 R3
q 4r 3 3
Ex3 静电场环路定理,电势能,电势
6-17 如图所示,A 点有电荷+q,B 点有电荷-q,AB=2l,OCD 是以 B 为中心、 l 为半径的半圆。
强 dE1
dE1i
且 dE1
dx 40 x2

La dx
L
EP1 Q dE1 i a
40 x2
i 40a(a L)

P1
点场强大小为
L 4 0 a(a
L)
,方向沿
AP1
方向。
6.5 一根玻璃棒被弯成半径为 R 的半圆形,其上电荷均匀分布,总电荷为 q,求半圆中心 O 点
的场强。
解:如图,以半圆圆心为原点、对称轴为 x 轴建立坐标系,在棒上取电荷元 dq。
q 4 0
3l
q 4 0l
q 6 0l
单位正电荷从 O 点移到 D 点,电场力做功为:
WOD

《大学物理》2017(I1)期末复习题(1)

《大学物理》2017(I1)期末复习题(1)

2017级大物期末复习题(I1)一、单项选择题1、质量为0.5m kg =的质点,在oxy 坐标平面内运动,其运动方程为25,0.5x t y t ==,从t=2s 到t=4s 这段时间内,外力对质点做的功为(B )A 、 1.5JB 、 3JC 、 4.5JD 、 -1.5J2、对功的概念有以下几种说法:①作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

②保守力作正功时,系统内相应的势能增加。

③质点运动经一闭合路径,保守力对质点作的功为零。

在上述说法中:(D )(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

3、如图3所示1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下,M 与m 间有摩擦,则 (D)A 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒。

B 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒。

C 、M 与m 组成的系统动量不守恒,水平方向动量不守恒,M 、m 与地组成的系统机械能守恒。

D 、M 与m 组成的系统动量不守恒,水平方向动量守恒,M 、m 与地组成的系统机械能不守恒。

4、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场中,另一半位于磁场之外,如图所示。

磁场的方向垂直指向纸内。

预使圆环中产生逆时针方向的感应电流,应使(C )A 、线环向右平移B 、线环向上平移C 、线环向左平移D 、磁场强度 减弱5、若尺寸相同的铁环与铜环所包围的面积中穿过相同变化率的磁通量,则在两环中( A )(A) 感应电动势相同,感应电流不同.(B) 感应电动势不同,感应电流也不同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流也相同.6、线圈与一通有恒定电流的直导线在同一平面内,下列说法正确的是(A)A 、当线圈远离导线运动时,线圈中有感应电动势B 、当线圈上下平行运动时,线圈中有感应电流C 、直导线中电流强度越大,线圈中的感应电流也越大D 、以上说法都不对7. 真空带电导体球面与一均匀带电介质球体,它们的半径和所带的电量都相等,设带电球面的静电能为W1,球体的静电能为W2,则( B )A 、W1>W 2;B 、W 1<W 2;C 、 W 1=W2D 、无法比较8. 关于高斯定理的理解有下面几种说法,其中正确的是:(D )(A)如果高斯面上E 处处为零,则该面内必无电荷(B)如果高斯面内无电荷,则高斯面上E 处处为零(C)如果高斯面上E 处处不为零,则高斯面内必有电荷(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零9.两个同心的均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r (r<R 1<R 2)处的P 点的场强大小E为:(D ) (A)20214r Q Q πε+ (B)2202210144R Q R Q πεπε+ (C)2014r Q πε (D)0 10.如图所示,螺绕环截面为矩形,通有电流I ,导线总匝数为N ,内外半径分别为R1和R2,则当 R2 >r >R1时,磁场的分布规律为(B )(A)0 (B) 02πNI r N S μ∙ (C) 0πNIr μ (D) 111. 4、一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R 1和R 2(R 1<R 2),通有等值反向电流,那么下列哪幅图正确反映了电流产生的磁感应强度随径向距离的变化关系?( C )A12、一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为( D )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π213. 带电导体达到静电平衡时,其正确结论是(D )A 、导体表面上曲率半径小处电荷密度小B 、表面曲率较小处电势较高C 、导体内部任一点电势都为零D 、导体内任一点与其表面上任一点的电势差等于零14. 在电场中的导体内部的 ( C )12R 112R 12R(A )电场和电势均为零; (B )电场不为零,电势均为零;(C )电势和表面电势相等; (D )电势低于表面电势。

大学物理c 复习题

大学物理c 复习题

大 学 物 理 C 复 习 题一、选择题:1、以下四种运动形式中,a 保持不变的运动为[ D ] (A) 单摆的运动 (B) 匀速圆周运动 (C) 变加直线运动 (D) 抛体运动2、在经典力学中,下列哪个说法是错误的[ D ](A) 质点的位置、速度、加速度都是矢量 (B) 刚体定轴转动的转动惯量是标量 (C) 质点运动的总机械能是标量 (D) 刚体转动的角速度是标量3、一均匀的细圆环质量为m ,半径为R ,对过环中心且与环面垂直的轴转动的惯量为[ A ] (A) 2/2mR (B) 4/2mR (C) 2mR (D) 必须用实验才能测定 4、当质点以频率ν,作简谐振动时,它的动能变化频率为 [ B ] (A) ν (B) 2ν (C) 4ν (D)ν215、如图一所示,一简谐振动曲线如图所示,则振动周期试[B ] (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s6、弹簧振子做简谐振动时如果振幅增为原来的两倍,而频率减少为原来的一半,他的总能量[ B ](A) 减少为原来的一半; (B) 不变;(C) 增为原来的两倍; (D) 增为原来的四倍; 7、根据电场强度的定义式 E =F /q 可知:[ C ] (A) E 正比于F ,反比于q 。

(B) 如果电场中某一点处没有试验电荷,则该点的电场强度就等于零。

(C) 和试验电荷的有无没有任何关系。

8、静电场的环路定理0=⋅⎰Ll d E 说明静电场的性质 [ B ](A) 电场线不是闭合曲线 (B) 电场力是保守力 (C) 静电场是有源场9、当机械振动在弹性介质中传播时,组成弹性介质的每一个质点:[ B ] (A) 和振动状态的传播一起流动。

(B) 只在各自的平衡位置附近作振动。

(C) 边流动边振动10、利用惠更斯原理可以确定: [ A ](A) 任意时刻波的传播方向。

(B) 沿任意方向传播的光的强度。

(C) 沿任意方向传播的光的能量。

大学物理复习题

大学物理复习题

第八章 振 动一.单项选择题1、一个轻质弹簧竖直悬挂。

当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。

则此系统作简谐振动时振动的固有角频率为(B )A .lg=ωB .lg =ω C .gl =ω D .gl =ω2、一质点作简谐振动,其振动表达式为x=0.02cos(4)2tπ+π(SI),则其周期和t=0.5s 时的相位分别为( D )A .2s 2πB .2sπ25 C .0.5s 2π D .0.5s π25 3、一弹簧振子作简谐振动,初始时具有动能0.6J ,势能0.2J 。

1.5个周期后,弹簧振子振动的总能量E=(D ) A .0.2J B .0.4J C .0.6J D .0.8J4、简谐振动的运动方程为x=Acos (ωt+ϕ),相应的x 一t 曲线如图所示,则其初相ϕ为( A ) A.2π-B.0C.2πD.π5、质点作简谐振动,振动方程x=0.06cos(3πt-2π)(SI)。

质点在t=2s 时的相位为(A)A.61π B .31π C .21π D .65π6、简谐振动的位移曲线x —t ,速度曲线V 一t ,加速度曲线a-t 在图中依次表示为( A )A .曲线I 、II 、IIIB .曲线II 、I 、IIIC .曲线III 、II 、ID .曲线I 、III 、II 7、两个同方向简谐振动的运动学方程分别为 x 1=2×10-2cos ⎪⎭⎫⎝⎛π+3t10(SI) x 2=2×10-2cos ⎪⎭⎫⎝⎛π-3t10(SI) 则合振动的运动学方程为( D ) A .x=4×10-2cos ⎪⎭⎫⎝⎛+π3210t (SI) B .x=4×10-2cos10t(SI)C .x=2×10-2cos ⎪⎭⎫⎝⎛+π3210t (SI) D .x=2×10-2cos10t(SI)8、当质点以频率ν作简谐运动时,它的动能的变化频率为( C )A ./2ν B .v C .2ν D .4ν9、一个轻质弹簧竖直悬挂。

大学物理下复习题(附答案)

大学物理下复习题(附答案)

大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。

()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。

()错电荷电量是量子化的。

()对物体所带电量可以连续地取任意值。

()错物体所带电量只能是电子电量的整数倍。

()对库仑定律只适用于真空中的点电荷。

()对电场线稀疏处的电场强度小。

()对电场线稀疏处的电场强度大。

()错静电场是有源场。

()对静电场是无源场。

()错静电场力是保守力。

()对静电场力是非保守力。

()错静电场是保守力场。

()对静电场是非保守力场。

()错电势是矢量。

()错电势是标量。

()对等势面上的电势一定相等。

()对沿着电场线的方向电势降落。

()对沿着电场线的方向电势升高。

()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。

()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。

()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。

()错电荷在电场中某点受到电场力很大,该点场强E一定很大。

()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。

()对在以点电荷为中心,r为半径的球面上,场强E处处相等。

()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。

()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。

()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。

()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。

()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。

对导体达到静电平衡时,导体内部的场强处处为零。

()对第一章填空题已一个电子所带的电量的绝对值e= C。

1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。

8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。

大学物理期末考试复习题

大学物理期末考试复习题

1.一质点作直线运动,某时刻的瞬时速度2/v m s =,瞬时加速度22/a m s =-,则1秒后质点的速度( D )(A)等于零 (B)等于2/m s - (C)等于2/m s (D)不能确定2.一质点沿半径为R 的圆周做匀速率运动,每t 时间转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为( B )(A)2R t π,2R t π (B)O, 2R t π (C)0,0 (D)2R tπ,0 3.如下图,湖中有一小船,有人用绳绕过岸上肯定高度处的定滑轮拉湖中的船向岸边运动。

设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( c )(A)匀加速运动,0cos v v θ=(B)匀减速运动,0cos v v θ= (C)变加速运动,0cos v v θ= (D)变减速运动,0cos v v θ= (E)匀速直线运动,0v v =4. 以下五种运动形式中,a保持不变的运动是( D )(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.5. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( C )(A) (B) (C) (D1.一物体作如下图的斜抛运动,测得在轨道P点处速度大小为v ,其方向与水平方向成30°角。

则物体在P点的切向加速度a τ= -0.5g ,轨道的曲率半径ρ=2v²/√3g 。

2. 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走,如人相对于岸静止,则1V 、2V 和3V 的关系是:v1+v2+v3=0____。

3.加速度矢量可分解为法向加速度和切向加速度两个重量,对匀速圆周运动,_切_向加速度为零,总的加速度等于_法向加速度。

1.如下图,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物aC A BaC A B a C A B a C A B体刚好不会被雨水淋. 解:雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,因此v 1 = v 2sin θ + v 2cos θsin α/cos α,即 12(sin cos )l v v h θθ=+.2.质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点加速度的大小;(2)t 为何值时,加速度在数值上等于b .解:(1)bt v ts v -==0d d 则 240222)(Rbt v b a a a n -+=+=τ (2)由题意应有 2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b ∴当bv t 0=时,b a = 二章 1.一个质量为m 的物体以初速度0v 从地面斜向上抛出,抛射角为θ,假设不计空气阻力,当物体落地时,其动量增量的大小和方向为( c )(A)增量为0, (B)θsin 20mv ,竖直向上;(C)θsin 20mv ,竖直向下; (D)θcos 20mv ,水平;2. 质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如下图.当它由静止开始下滑到球面上B 点时,它的加速度的大小为( d )(A))cos 1(2θ-=g a (B)θsin g a = (C)g a =(D)θθ2222sin )cos 1(4g g a +-=.3.有两个倾角不同,高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则(d )(A)物块到达斜面底端时的动量相 (B)物块到达斜面底端时的动能相等 (C)物块和斜面(以及地球)组成的系统,机械能不守恒(D)物块和斜面组成的系统水平方向上动量守恒.4. 一炮弹由于特别原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计) ( a )(A) 比原来更远 (B) 比原来更近(C) 仍和原来一样远 (D) 条件缺乏,不能判定.5. 水平公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车在转弯处不致于发生侧向打滑,汽车在该处行驶速率( b )(A)不得小于Rg μ (B)不得大于Rg μ (C)必须等于Rg μ (D)应由汽车质量决定1. 如下图,竖直放置的轻弹簧的倔强系数为k ,一质量为m 的物体从离弹簧h 高处自由下落,则物体的最大动能为kg m mgh 222+。

大物下册复习题集

大物下册复习题集

球心处电势为(设无限 。
R
O
dS
2、一平行板电容器,两极间充满各向同性均匀电介质, 已知相对介电常数为εr,若极板上的自由电荷面密度为σ , 则介质中电位移的大小D= . 电场强度的大 小 E
D
0 r
3、无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在 I 1 圆心O点的磁感应强度大小等于 R B 0 1 2R 方向为 I o 垂直纸面向里
(D)p型半导体的导电机构完全决定于满带中空穴的运动.
C
二、填空题
1、真空中有一均匀电点球面,球半径为R,总带电量为 Q(>0),今在球面上挖去一很小面积dS(连同其上电荷), 设其余部分的电荷仍均匀分布,则挖去以后球心处
QdS
的电场强度为 远处电势为零)
16 2 0 R 4 Q 4 0 R
解:设坐标原点位于杆 中心O点,x轴沿杆的方向。如图所 示。杆的 q 电荷线密度 λ 。 p 2l 2 2 a x a 在x处任取电荷元dq
dx
q dq λdx dx 2l dq dU 2 2 4πε 0 x a
ox 2l
x
整个杆上电荷产生的电 势: UP 8 l
0
q
O
A
C O
B B
6.如图,平行板电容器(忽略边缘效应)充电时,沿环路L1,L2磁场强 度的环流中,必有: C L1 ( A) H dl H dl
2 ( B ) H dl H dl (C ) H dl H dl
P
4、一半径为R圆柱形导体,筒壁很薄,可视为无限长,通以 电流I,筒外有一层厚为d,磁导率为μ的均匀顺磁性介质,介 质外为真空,画出此磁场的H-r图及B-r图 H

大学物理上册复习题1

大学物理上册复习题1

一、单项选择题 1、对质点系有以下几种说法:①质点系总动量的改变与内力无关;②质点系总动能的改变与内力无关;③质点系机械能的改变与保守内力无关。

在上述 说法中: ( B ) A. 只有①是正确的; B. ①、③ 是正确的; C. ①、②是正确的; D. ②、③ 是正确的。

2、合外力对质点所作的功一定等于质点: (B ) A. 动量的增量; B. 动能的增量; C. 角动量的增量; D. 势能增量的负值。

3、一刚体绕定轴转动的转动惯量: ( C ) A. 只与转轴位置有关; B. 只与质量分布有关,与转轴位置无关; C. 与转轴位置和质量分布都有关; D. 与转轴位置和质量分布都无关。

4、关于势能的值,下列叙述中正确的是: ( D )A.重力势能总是正的;B. 弹性势能总是正的;C.万有引力势能总是负的;D. 势能的正负只是相对于势能零点而言。

5、弹簧振子作简谐振动时,位移与加速度的关系是: ( D ) A. 大小成反比且方向相同; B. 大小反正比且方向相反;C. 大小成正比且方向相同;D. 大小成正比且方向相反。

6、一质点沿X 轴作简谐振动,其振动方程用正弦函数表示。

如果t = 0时,该质点 处于平衡位置且向X 轴正方向运动,那么它的振动初相为: ( A ) A. 0 ; B. π/2 ; C. –π/2 ; D. π 。

7、波速为2m/s 的平面余弦波沿X 轴的负方向传播。

如果这列波使位于原点的质点作y=3cos t 2π (m )的振动,那么,位于x=2m 处质点的振动方程为: ( D )A. y=3cos t 2π;B. y= -3cos t 2π;C. y=3sin t 2π;D. y= -3sin t 2π 。

8、摩尔数相同的三种气体,He 、N 2、CO 2(都作为理想气体),它们从相同的初始状态出发,都经过等体吸热过程,并且温度的升高量△T 相同,则它们吸收的热量为:( C ) A. Q He =Q N2=Q CO2 ; B. Q He ﹥Q N2﹥Q CO2 ; C. Q He ﹤Q N2﹤Q CO2 ; D. Q He =Q N2﹤Q CO2 。

大学物理复习题(包含小题答案)

大学物理复习题(包含小题答案)

一、 选择题1.已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t z ωβ=-, 则电场强度的方向____, 能流密度的方向为____。

( A )A. x ,zB. -x ,zC. x , -zD. -x , -z2.损耗媒质中的电磁波,其传播速度随媒质电导率σ的增大而 。

( B )A.不变B. 减小C. 增大D.和电导率无关3.如图所示两个载流线圈,所受的电流力使两线圈间的距离 。

( A )A.增大B.缩小C.不变D.和力无关4.在无损耗媒质中,电磁波的相速度与波的频率 。

( C )A .成正比B .成反比C .无关D .线性变化5.电位移表达式D E ε= ( C )A .在各种电介质中适用B .只在各向异性的电介质中适用C .只在各向同性的、线性的均匀的电介质中适用D .真空中适用6.恒定电流场基本方程的微分形式说明它是 ( B )A. 有散无旋场B.无散无旋场C.无散有旋场D.有散有旋场7.已知电场中一闭合面上的电移位 D 的通量不等于零,则意味着该面内 ( D )A .一定存在自由磁荷B .一定不存在自由电荷C .不能确定D .一定存在自由电荷8.下面表述正确的为 ( D )A .矢量场的散度结果为一矢量场B .标量场的梯度结果为一标量场C .矢量场的旋度结果为一标量场D .标量场的梯度结果为一矢量场9.电偶极子是_ __ ( A )A .两个相距很小的等量异号点电荷组成的系统B .两个相距很小的等量同号点电荷组成的系统C .两个相距很大的等量异号点电荷组成的系统D .两个相距很大的等量同号点电荷组成的系统10.亥姆霍兹定理表明,研究一个矢量场,必须研究它的 ,才能确定该矢量场的性质。

( A )A.散度和旋度B.散度和通量C.旋度和环量D.梯度和方向导数11.磁场强度表达式B H μ= ( C )A.在各种磁介质中适用B.只在各向异性的磁介质中适用C.只在各向同性的、线性的均匀的磁介质中适用D.真空中适用12.正弦电磁场 ( 角频率为ω ) 的磁场强度复矢量H 满足的亥姆霍兹方程为 ( A )A.22000H H ωεμ∇+=B.220r r H H ωεμ∇+=C.200r H H ωεμ∇+=D.200r H H ωεμ∇+=13.静电场中电位为零处的电场强度 ( C )A.一定为零B.最大C.不能确定D.最小14.标量场的梯度的方向为 ( B )A.等值面的切线方向B.等值面的法线方向C.标量增加的方向D.标量减小的方向15.下列关于电场(力)线表述正确的是 ( B )A.由正的自由电荷出发,终止于负的自由电荷B.由正电荷出发,终止于负电荷C.正电荷逆着电场线运动D.负电荷顺着电场线运动16.矢量场的散度在直角坐标下的表示形式为 ( A )A.y x z A A A x y z ∂∂∂++∂∂∂B.x y z Ax Ay Az e e e x y z∂∂∂++∂∂∂ C.x y z A A A e e e x y z ∂∂∂++∂∂∂ D.A A A x y z∂∂∂++∂∂∂ 17.已知自由空间一均匀平面波,其电场强度为0cos()x E e E t z ωβ=-, 则能流密度的方向____, 磁场强度的方向为____。

大物期末复习题

大物期末复习题

1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零 (B) 不一定都为零.(C) 处处不为零.(D)无法判定 .2. 下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处同. (C) 场强可由q F E / =定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确. 3.如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为:(A) 204y qεπ. (B) 202y q επ. (C) 302y qa επ. (D) 304y qa επ. [ ]4.设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]x5.有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq . (B) 04επq(C) 03επq . (D) 06εq6. 已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零.(B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零.(D) 以上说法都不对.7.半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]8. 半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ. (C) 04εσ. (D) 08εσ. 9. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带有电荷1Q , 外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r 处的P 点的场强大小E 为: q EOr (A)E ∝1/r(A) 20214r Q Q επ+. (B) 2202210144R Q R Q εεπ+π (C) 2014r Q επ. (D) 0.10. 如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在两圆柱面之间、距离轴线为r 的P 点处的场强大小E 为:(A) r012ελπ. (B) r 0212ελλπ+. (C) ()rR -π2022ελ. (D) ()1012R r -πελ.[ ]11.半径为R 的均匀带电球面,总电荷为Q .设无穷远处电势为零,则该带电体所产生的电场的电势U ,随离球心的距离r 变化的分布曲线为 [ ]12.在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M点的电势为(A) a q 04επ. (B) aq 08επ. (C) a q 04επ-. (D) a q 08επ- 13. 如图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点P 则与点电荷q 距离为r 的P'点的电势为(A)rq 04επ (B) ⎪⎭⎫ ⎝⎛-πR r q 1140ε (C) ()R r q -π04ε (D) ⎪⎭⎫ ⎝⎛-πr R q 1140ε (A) (B) (C)2 (D) 2(E)14. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c、d 处都是正电荷.(B) 顶点a 、b 处是正电荷,c 、d 处是负电荷.(C) 顶点a 、c 处是正电荷,b 、d 处是负电荷.(D) 顶点a 、b 、c 、d 处都是负电荷. [ ]15.如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (041επ=9×10-9 N m /C 2) (A) E =0,U =0.(B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V .16. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D)204r Q E επ=,R Q U 04επ=. 17. 有N 个电荷均为q 的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布.比较这两种情况下在过圆心O 并垂直于圆平面的z 轴上任一点P (如图所示)的场强与电势,则有(A) 场强相等,电势相等.(B) 场强不等,电势不等.b a(C) 场强分量E z 相等,电势相等.(D) 场强分量E z 相等,电势不等.18. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为:(A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π210114R R Q ε. (C) E =204r Q επ,U =rQ 04επ. (D) E =204r Q επ, U =104R Q επ. 19. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A) r Q Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 20.点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等.21. 在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于(A) P 1和P 2两点的位置.(B) P 1和P 2两点处的电场强度的大小和方向.(C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小.22.半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2A为:(A) ⎪⎭⎫ ⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε . (C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D) r q 04επ . 23. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε. (C) 2022S q ε. (D) 202S q ε. 24.充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2.25. 如图所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电荷+q 和-3q .今将一电荷为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04επ. (B) RQq 02επ. (C) R Qq 08επ. (D) RQq 083επ. 26. 密立根油滴实验,是利用作用在油滴上的电场力和重力平衡而测量电荷的,其电场由两块带电平行板产生.实验中,半径为r 、带有两个电子电荷的油滴保持静止时,其所在电场的两块极板的电势差为U 12.当电势差增加到4U 12时,半径为2r 的油滴保持静止,则该油滴所带的电荷为:(A) 2e (B) 4e(C) 8e (D) 16e27.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. 28. 真空中有两个点电荷M 、N ,相互间作用力为F ,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力(A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改.29. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大.(B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定.30.有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷为q 的点电荷,如图所示,则(A) 只有当q > 0时,金属球才下移.(B) 只有当q < 0时,金属球才下移.(C) 无论q 是正是负金属球都下移.(D) 无论q 是正是负金属球都不动.31. 半径分别为R 和r 的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们带电.在忽略导线的影响下,两球表面的电荷面密度之比σR / σr 为(A) R / r . (B) R 2 / r 2.(C) r 2 / R 2. (D) r / R . q 0P32. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ.(C) 0εσh .(D) 02εσh . 33. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R qεπ . (B) 204R q επ . (C) 102R q επ . (D) 20R q ε2π . 34. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为: (A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.35. 同心导体球与导体球壳周围电场的电场线分布如图所示,由电场线分布情况可知球壳上所带总电荷(A) q > 0. (B) q = 0.(C) q < 0. (D) 无法确定.36.一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+λ,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204rE ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 37. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确.38. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E .39. 在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强.(B) 高斯定理成立,但不能用它求出闭合面上各点的场强.(C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立.40. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E2,U2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E1 = E2,U1 = U2.(B) E1 = E2,U1 > U2.(C) E1 > E2,U1 > U2.(D) E1 < E2,U1 < U2.41.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U12、电场强度的大小E、电场能量W将发生如下变化:(A)U12减小,E减小,W减小.(B) U12增大,E增大,W增大.(C) U12增大,E不变,W增大.(D) U12减小,E不变,W不变.42. C1和C2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示, 则(A) C1极板上电荷增加,C2极板上电荷减少.(B) C1极板上电荷减少,C2极板上电荷增加.(C) C1极板上电荷增加,C2极板上电荷不变.(D) C1极板上电荷减少,C2极板上电荷不变.43.如果某带电体其电荷分布的体密度 增大为原来的2倍,则其电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 4倍.(D) 1/4倍.44.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q >B P >B O (C )B Q > B O > B P . (D) B O > B Q > Bp45. 一个电流元l Id 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0. (B) 2/32220)/(d )4/(z y x l Iy ++π-μ. (C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. 46. 电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. 47. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域.(E) 最大不止一个. 48. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( rⅠⅡⅢⅣ< R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有 (A) B i 、B e 均与r 成正比. (B) B i 、B e 均与r 成反比. (C) B i 与r 成反比,B e 与r 成正比. (D) B i 与r 成正比,B e 与r 成反比.49.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?50. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C) qB m y v 2-= (D) qBm y v -=. 51. 一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v . 52. α 粒子与质子以同一速率垂直于磁场方向入射到均匀磁场中,它们各自作圆周运动的半径比R α / R p 和周期比T α / T p 分别为:Bx OR(D) Bx O R(C) BxOR (E)(A) 1和2 ; (B) 1和1 ; (C) 2和2 ; (D) 2和1 .53.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将(A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab . 54. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A)R r I I 22210πμ. (B)R r I I 22210μ.(C) rR I I 22210πμ. (D) 0.55. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8.(C) 7/8. (D) 5/4. [ ] 56. 把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将 (A) 不动.O r R I 1 I 2F 1F 2F 31 A2 A3 AⅠⅡⅢI(B) 顺时针方向转动(从上往下看). (C) 逆时针方向转动(从上往下看),然后下降. (D) 顺时针方向转动(从上往下看),然后下降. (E) 逆时针方向转动(从上往下看),然后上升. 57. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=2μ. (C) B = 0. (D) I aB π=μ.58. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b端流出,则环中心O 点的磁感强度的大小为(A) 0.(B)R I40μ. (C) R I 420μ. (D) R I0μ.(E)RI820μ. 59.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 则伏特计指示的电压值为(A) 0. (B)21v Bl . (C) v Bl . (D) 2v Bl . 60. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.IaI Ib a(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D)两环中感应电动势相等.61. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. 62. 在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时 (A) 螺线管线圈中感生电流方向如A 点处箭头所示. (B) 螺线管右端感应呈S 极.(C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转.(D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ ]63.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针指向为电流正方向,且不计线圈的自感)? [ ] 64. 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]磁极磁极 0 t I0 t I0 t I 0t I(A) (B)(C) (D)c ab d N M B65. 一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E) B L 221ω.66. 自感为 0.25 H 的线圈中,当电流在(1/16) s 内由2 A 均匀减小到零时,线圈中自感电动势的大小为: (A) 7.8 ×10-3 V . (B) 3.1 ×10-2 V .(C) 8.0 V . (D) 12.0 V . 67. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使 (A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线. (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反. 68. 在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和 bb ′如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0. (C) M 1 ≠M 2,M 2 = 0.(D) M 1 ≠M 2,M 2 ≠0.B(2)69. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是 (A) 4. (B) 2. (C) 1. (D)21. 选择题答案:填空题答案:70.静电场中某点的电场强度,其大小和方向与(单位正试验电荷在该点所受的静电力相同).71.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =_______0______. 72.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为+σ +2σ.73.“无限大”均匀带电平面,σ和+2 σ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =,E B =,E C= 设方向向右为正).74.R 的均匀带电球面带有电荷Q (Q >0).今在球面上挖去非常小块的面积△S (连同电荷),如图所示,假设不影响其他处原来的挖去△S 后球心处电场强度的大小E =,其方向为_(由球心指向△S )__. 电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量).76.静电场中某点的电势,其数值等于_单位正试验电荷在该点的电势能___或 _把单位正电荷由该点沿任意路_径移到零势点时电场力所作的功__.77.图中曲线表示一种轴对称性静电场的场强大小E 的分布,r 表示离对称轴的距离,这是由_半径为R 的无限长均匀带电圆柱面___产生的电场.78.真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0= 0 ,电势U 0=.(选无穷远处电势为零)79.+Q r 1吹胀到r 2,则半径为R (r 1<R <r 2=的球面上任一点的场强大小E变为_0_;电势U 由80.,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C间另一电势为零的球面半径r = 10 cm ___.81.半径为0.1 m 的孤立导体球其电势为300 V ,则离导体球中心30 cm 处的电势U = 100V (以无穷远为电势零点).82.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =7102-⨯-.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 83.如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为S____0____________;从d 点移到无穷远处的过程中,电场力作功为.84.图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA =B 点沿半圆弧轨道BCD 移到D 点,则电功为.85.(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =-8.0×10-15 J .设A 点电势为零,则B 点电势U =-5×104V . 86.一电子和一质子相距2×10-10 m (两者静止),将此两粒子分开到无穷远距离(两者仍静止)所需要的最小能量是_7.2_eV . (041επ=9×109 N ·m 2/C 2 , 质子电荷e =1.60×10-19C, 1 eV=1.60×10-19J )87.在点电荷q 的静电场中,若选取与点电荷距离为r0的一点为电势零点,则点电荷距离为r 处的电势U 88.如图所示, 在场强为E的均匀电场中,A 、B 两点间距离为d .AB连线方向与E方向一致.从A 点经任意路径到B 点的场强线积分⎰⋅ABl Ed =Ed . 89.静电场中有一质子(带电荷e =1.6×10-19 ) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15 J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =-8×10-15 J ;若设a 点电势为零,则b 点电势U b =5×104V90.真空中,一边长为a 的正方形平板上均匀分布着电荷q ;在其中垂线上距离平板d 处放一点电荷q 0如图所示.在d 与a 满足____d >>a___条件下,q 0所受的电场力可写成q 0q / (4πε0d 2).91.一电矩为p 的电偶极子在场强为E 的均匀电场中,p与E 间的夹角为α,则它所受的电场力F=0,力矩的大小M =__pEsin α__.92.一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' .93.在一个不带电的导体球壳内,先放进一电荷为+q 的点电荷,点电荷不与球壳内壁接触.然后使该球壳与地接触一下,再将点电荷+q 取走.此时,球壳的电荷为_-q __,电场分布的范围是_球壳外的整个空间.Aa 094.带有电荷q 、半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置如图.则图中P 点的电场强度=EA 、B 连接起来,则A 球的电势U(设无穷远处电势为零)95.半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D,电场强度的大小 E96. 1、2是两个完全相同的空气电容器.将其充电后与电源断开,再将一块各向同性均匀电介质板插入电容器1的两极板间,如图所示, 则电容器2的电压U 2,电场能量W 2如何变化?(填增大,减小或不变) U 2减小,W 2减小97. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =_6.67×10-7T __,该带电轨道运动的磁矩p m.(μ0 =4π×10-7 H ·m -1)98.一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l I d ,则该电流元在(a ,0,0)__沿Z轴负向____.99.如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为_0__.100.如图所示,有两个半径相同的均匀带电绝缘体球面,O 1为左侧球面的球心,带的是正电;O 2为右侧球面的球心,它带的是负电,两者的面电荷密度相等.当它们绕21O O 轴旋转时,两球面相切处A 点的磁感强度B A =__0___.101.一长直螺线管是由直径d = 0.2 mm 的漆包线密绕而成.当它通以I = 0.5 A的电流时,其内部的磁感强度B =_T310-⨯π_.(忽略绝缘层厚度)(μ0 =4π×10-7 N/A2)102. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅lBd等于:-μ0I(对环路a).__0__(对环路b).2μ0I(对环路c).103.如图所示,一半径为R,通有电流为I的圆形回路,位于Oxy平面内,圆心为O.一带正电荷为q的粒子,以速度v 沿z轴向上运动,当带正电荷的粒子恰好通过O点时,作用于圆形回路上的力为__0______,作用在带电粒子上的力为__0______.104.两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是1:2,运动轨迹半径之比是1:2.105. 如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd(磁场以边框为界).而a、b、c三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a缺口沿ad方向射入磁场区域,若b、c两缺口处分别有电子射出,则此两处出射电子的速率之比v b/v c =1:2.106.如图,半圆形线圈(半径为R)通有电流I.线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为,方向为_在图面中向上,O107.有两个竖直放置彼此绝缘的圆形刚性线圈(它们的直径几乎相等),可以分别绕它们的共同直径自由转动.把它们放在互相垂直的位置上.若给它们通以电流(如图),则它们转动的最后状态是_两线圈平面平行(磁矩方向一致)__.108.如图所示,在真空中有一半径为a的3/4圆弧形的导线,其c以稳恒电流I,B中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为.109.一弯曲的载流导线在同一平面内,形状如图(O点是半径为R1和R2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O点磁感强度的大小是.110.在xy平面内,有两根互相绝缘,分别通有电流I3和I的长直导线.设两根导线互相垂直(如图),则在xy平面内,磁感强度为零的点的轨迹方程为111.试写出下列两种情况的平面内的载流均匀导线在给定点P处所产生的磁感强度的大小.(1) B0_______.112.一根无限长直导线通有电流I,在P点处被弯成了一个半径为R 的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为,方向为垂直于纸面向里.113.用导线制成一半径为r=10 cm的闭合圆形线圈,其电阻R=10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A,B的变化率应为d B /d t =__3.185 T/S_.114.一段导线被弯成圆心在O点、半径为R的三段圆弧ab、bc、ca,它们构成了一个闭合回路,ab位于xOy平面内,bc和ca分别位于另两个坐标面中(如图).均匀磁场B沿x轴正方向穿过圆弧bcK(K>0),则闭合回路abca弧bc中感应电流的方向是由C 流向b115.半径为a的无限长密绕螺线管,单位长度上的匝数为n,通以交变电流i =I m sinωt,则围在管外的同轴圆形回路(半径为r)上的感生电动势为)cos(2tnIamωωμπ-.116.已知在一个面积为S的平面闭合线圈的范围内,有一随时间变化的均匀磁场)(tB,则此闭合线圈内的感应电动势.yx×××××xy。

第二学期大学物理I复习题

第二学期大学物理I复习题

2004学年第二学期大学物理I 复习题第一章:质点运动学,复习题。

() 一、选择题:(每题3分)1. 根据瞬时速度矢量v v 的定义,在直角坐标系下,其大小v v可表示为( )A. drdt; B. dx dy dz dt dt dt ++;C. dx dy dz i j k dt dt dt ++v v v ;D. 12222dx dy dz dt dt dt ⎡⎤⎛⎫⎛⎫⎛⎫++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2. 质点以速度24/v t m s =+作直线运动,沿质点运动直线作Ox 轴,并已知3t s =时,质点位于9x m =处,则该质点的运动学方程为( ) A .2;x t =B .214;2x t t =+ C .31412;3x t t =+- D .314123x t t =++.3. 一质点沿x 轴运动,其运动方程为2353x t t =-,其中t 以s 为单位。

当t=2s 时,该质点正在( )A. 加速;B. 减速;C. 匀速;D. 静止。

4. 下列关于加速度的说法中错误的是( )A. 质点加速度方向恒定,但其速度的方向仍可能在不断的变化着;B. 质点速度方向恒定,但加速度方向仍可能在不断的变化着;C. 某时刻质点加速度的值很大,则该时刻质点速度的值也必定很大;D. 质点作曲线运动时,其法向加速度一般不为零,但也有可能在某时刻法向加速度为零。

5.下列表达式中总是正确的是:( )A. drv dt =v ; B. dr v dt =; C. 22d r a dt =; D. 22d r a dt =v6. 一质点沿x 轴作直线运动,其运动学方程为340x t t =-,则质点在 2.0t s =时的加速度大小和运动方向为( )A. 12m/s -2,沿x 轴正向;B. 12 m/s -2,沿x 轴负向;C. 6m/s ,沿x 轴正向;D. 6m/s ,沿x 负向运动。

二、填空题(每空2分)1. 一质点的运动学方程为(2cos2sin)22r ti tj m ππ=+vvv,则质点在第2秒末的速度vv为 ,质点的运动轨迹为 。

大物实验复习题

大物实验复习题

大物实验复习题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--物理实验复习题1.误差是 与 的差值,偏差是 与 的差值,偏差是误差的 值。

2.有效数字是由 数字和一位 数字组成,有效数字的多少反映着测量 的高低。

3.写出下列几个符号的含义(文字叙述及公式表达)(1)σx (2)S x (3)S x4.在工科物理实验中,不确定度一般取 位有效数字,相对不确定度一般取 位有效数字。

5.写出以下几个简单函数不确定度的传递公式:N=x+y U N = ,E N =N= U N = ,E N =N=x m /y n U N = ,E N =5.作图法有什么优点作图时应注意什么6.使用天平前要进行那些调节称量时应注意什么7.使用测量望远镜必须先调节,按顺序写出调节内容。

8.测量望远镜的视差是怎样形成的如何消除视差9.以下电表上所标符号的含义各是什么V mA Ω ∩ —10.系统误差的特点是具有----------------性,它来自---------------- 。

------------------- 。

-------------------随机误差 的特点是具有----------------性,其误差的大小和符号的变化是----------------的。

但它服从-------------规律。

11.测量不确定度是表征被测量的---------------------在某个-------------------------的一个评定。

A 类不确定 度分量由----------------方法求出、推出或评出。

B 类不确定度分量由不同于--------------------的其他方法求出的不确定度分量。

12.据误差限评定不确定度B 分量时,对于均匀分布u j =---------------,对于正态分布u j =---------------,13.物理实验仪器中误差限的确定或估计大体有三种情况,它们是什么14.改正下列错误:(1) M=3169+200Kg(2) D=+(3) L=12Km+100m(4) Y=×105+×103)N/㎜(5) T=+(6) h=×104+200Km15.写出下列函数 不确定度的传递公式:(1)z y x N -= (2)33121y x N -= (3) ρπh m r =16.写出下列函数 不确定度的传递公式:(1)01ρρm m m -= (2)Dd D f 422-= 17.写出下列仪器的误差限:(1) 米尺类 (2)千分尺 (3)物理天平 (4)游标卡尺(50分度值)(5)电表 (6)电阻18.下列电器元件符号各表示什么19.某圆直径测量结果为 d=+,求圆的面积,并估算不确定度。

《大学物理A》(2)期末复习题+答案

《大学物理A》(2)期末复习题+答案

大学物理2期末复习题2. 在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量s E dS ∫⋅G G 的值仅取决于高斯面内电荷的代数和,而与面外电荷无关。

G 5. 半径为R 的半球面置于场强为E 的均匀电场中,其对称轴与场强方向一致,如图所示。

则通过该半球面的电场强度通量为2R E π4. 一电量为Q 的点电荷固定在空间某点上,将另一电量为q 的点电荷放在与Q 相距r 处。

若设两点电荷相距无限远时电势能为零,则此时的电势能r14qQ W 0e πε=。

5.两同心导体球壳,内球壳带电量+q ,外球壳带电量-2q ,静电平衡时,外球壳的电荷分布为:内表面q −; 外表面q −。

7. 一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变? 【 B 】(A) 电容器的电容量;(B) 两极板间的场强;(C) 两极板间的电势差; (D) 电容器储存的能量。

1、已知一真空平行板电容器,极板面积为S,两极板间的距离为d ,极板上的电荷面密度分别为0σ±;求:(1)极板间的电场强度;(2)极板间的电势差;(3)电容;(4)电容器的储能。

2、一圆柱形真空电容器由半径分别为和的两同轴圆柱导体面所构成,单位长度上的电荷分别为1R 2R λ±,且圆柱的长度l 比半径大得多。

2R 求:(1)电容器内外的场强分布;(2)电容器内外的电势分布;(3)电容器的电容;(4)极板间的电场能量。

解:(1)电场分布:02020211=>=<<=<E R r r E R r R E R r πελ(2)电势分布:211012122023ln 2ln 20R r R U R R R r R U r r R U λπελπε<=<<=>= (3)极板间的电势差:201ln 2R U R λπε=电容:0212ln l C R R πε=(4)电场能量:2201ln 4e R l W R λπε= 3、真空中的球形电容器的内、外半径分别为和,所带电荷量分别为1R 2R Q ±。

大学物理复习题目

大学物理复习题目

练习一 质点运动学一、选择题1、一质点沿x 轴运动,其速度与时间的关系为24t υ=+(SI ),当t=3 s 时,x=9 m,则质点的运动学方程是 ( )31A 4()3x t t m ⋅=- 31B.4()3x t t m =+ 31C.412()3x t t m =+- 31D.412()3x t t m =++ 2、一质点沿X 轴的运动规律是542+-=t t x (SI),前三秒内它的 ( )A 位移和路程都是3m ;B 位移和路程都是-3m ;C 位移是-3m ,路程是3m ;D 位移是-3m ,路程是5m3、一质点在平面上运动,已知质点位置矢量的表示式为22at bt =+r i j (其中a 、b 为常量), 则该质点作 ( )A 匀速直线运动B 匀变速直线运动C 抛物线运动D 一般曲线运动4、一小球沿斜面向上运动,其运动方程245t t s -+= (SI),则小球运动到最高点的时刻是 ( )A t=4S;B t=2SC t=8S;D t=5S5、下列说法中哪一个是正确的 ( )A 加速度恒定不变时,质点运动方向也不变B 平均速率等于平均速度的大小C 当物体的速度为零时,其加速度必为零D 质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度6、某质点作直线运动的运动学方程为x =3t-5t 3 + 6 (SI),则该质点作 ( )A 匀加速直线运动,加速度沿x 轴正方向B 匀加速直线运动,加速度沿x 轴负方向C 变加速直线运动,加速度沿x 轴正方向D 变加速直线运动,加速度沿x 轴负方向7、一个质点在做匀速率圆周运动时 ( )A 切向加速度改变,法向加速度也改变B 切向加速度不变,法向加速度改变C 切向加速度不变,法向加速度也不变D 切向加速度改变,法向加速度不变8、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。

设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 ( )A.匀加速运动B.匀减速运动C.变加速运动D.变减速运动9、 质点的运动方程是r =Rcoswt i +Rsinwt j,R,w 为正的常数,从t=π/w 到t=2π/w 时间内,该质点的位移是 ( )A -2R iB 2R iC -2 jD 010、质点沿半径为R 的圆周作匀速运动,每t 秒转一圈,在2t 时间间隔中,其平均速度和平均速率的大小分别为 ( ) AtR π2; t R π B 0;0 C 0; t R π2 D t R π2; 0 二、填空题1、 质点作直线运动,其坐标x 与时间t 的关系曲线如图所示。

大物 复习题

大物 复习题

第9章 机械振动班级 学号 姓名9-1已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是[ ](A) abx F = (B) abx F -=(C) b ax F +-= (D) a bx F /-=9-2在下列所述的各种物体运动中, 可视为简谐振动的是[ ](A) 将木块投入水中, 完全浸没并潜入一定深度, 然后释放(B) 将弹簧振子置于光滑斜面上, 让其振动(C) 从光滑的半圆弧槽的边缘释放一个小滑块(D) 拍皮球时球的运动9-3对同一简谐振动的研究, 两个人都选平衡位置为坐标原点,但其中一人选铅直向上的Ox 轴为坐标系,而另一个人选铅直向下的OX 轴为坐标系,则振动方程中不同的量是[ ](A) 振幅; (B) 圆频率; (C) 初相位; (D) 振幅、圆频率。

9-4 某物体按余弦函数规律作简谐振动, 它的初相位为2/π-, 则该物体振动的初始状态为[ ](A) x 0 = 0 , v 0 > 0; (B) x 0 = 0 , v 0 < 0;(C) x 0 = 0 , v 0 = 0; (D) x 0 = -A , v 0 = 0。

9-5 一个质点作简谐振动,振幅为A ,周期为T ,在起始时刻(1) 质点的位移为A/2,且向x 轴的负方向运动;(2) 质点的位移为-A/2,且向x 轴的正方向运动;(3) 质点在平衡位置,且其速度为负;(4) 质点在负的最大位移处;写出简谐振动方程,并画出t=0时的旋转矢量图。

9-6一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为[ ] (A) 6T (B) 8T (C) 12T (D) T 1279-7 两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为)cos(1αω+=t A x 。

当第一个质点从相对于其平衡位置负的位移处回到平衡位置时,第二个平衡位置质点正处在正的最大位移处.则第二个质点的振动方程为 [ ](A )2cos()2x A t πωα=++ ; (B )2cos()2x A t πωα=+- ; (C )23cos()2x A t πωα=+-; (D )2cos()x A t ωαπ=++。

大一物理考试复习题

大一物理考试复习题

物理2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度. 解: 2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y (1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v ϖϖϖ(2)m874134)167(21)4832122(21)21(220j i j i jt a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a r ϖϖϖωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m p ϖϖϖϖωωω+-==将0=t 和ωπ2=t 分别代入上式,得 j b m p ϖϖω=1,i a m p ϖϖω-=2 ,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I ϖϖϖϖϖϖ+-=-=∆=ω2-12 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求F ϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F ϖ为恒力,∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P (3)由动能定理,J 45-==∆A E k2-23 物体质量为3kg ,t =0时位于m 4i r ϖϖ=, 1s m 6-⋅+=j i v ϖϖϖ,如一恒力N 5j f ϖϖ=作用在物体上,求3秒后,(1)物体动量的变化;(2)相对z 轴角动量的变化.解: (1) ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p ϖϖϖϖ(2)解(一) 73400=+=+=t v x x xj at t v y y 5.25335213621220=⨯⨯+⨯=+=即 i r ϖϖ41=,j i r ϖϖϖ5.2572+=10==x x v v1133560=⨯+=+=at v v y y即 j i v ϖϖϖ611+=,j i v ϖϖϖ112+=∴ k j i i v m r L ϖϖϖϖϖϖϖ72)6(34111=+⨯=⨯=k j i j i v m r L ϖϖϖϖϖϖϖϖ5.154)11(3)5.257(222=+⨯+=⨯=∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L ϖϖϖϖ 解(二) ∵dtdz M =∴ ⎰⎰⨯=⋅=∆t t t F r t M L 0d )(d ϖϖϖϖ⎰⎰-⋅⋅=+=⨯⎥⎦⎤⎢⎣⎡⨯+++=3132smkg5.82d)4(5d5)35)216()4(2ktkttjjtti tϖϖϖϖϖ题2-24图2-24 平板中央开一小孔,质量为m的小球用细线系住,细线穿过小孔后挂一质量为1M的重物.小球作匀速圆周运动,当半径为r时重物达到平衡.今在1M的下方再挂一质量为2M 的物体,如题2-24图.试问这时小球作匀速圆周运动的角速度ω'和半径r'为多少?解: 在只挂重物时1M,小球作圆周运动的向心力为gM1,即21ωmrgM=①挂上2M后,则有221)(ω''=+rmgMM②重力对圆心的力矩为零,故小球对圆心的角动量守恒.即vmrmvr''=ωω''=⇒22rr③联立①、②、③得211213212111)(rMMMgmMMrMMMmrgMmrgM⋅+='+='+='=ωωω2-27计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M,半径为r,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m=50kg,2m=200 kg,M=15 kg, r=0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图2-28 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg= ∴ lg23=β(2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ lg θωsin 3=4-4 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t4-6 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E 4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆ ∴合振幅 0=A5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同?解: 取驻波方程为vt x A y απλπcos 2cos2=,则可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律可表示为x A λπ2cos2.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.5-8 已知波源在原点的一列平面简谐波,波动方程为y =A cos(Cx Bt -),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.5-11 一列平面余弦波沿x 轴正向传播,波速为5m ·s-1,波长为2m ,原点处质点的振动曲线如题5-11图所示. (1)写出波动方程;(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.解: (1)由题5-11(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴230πφ=, 又5.225===λυuHz ,则ππυω52== 题5-11图(a)取 ])(cos[0φω+-=uxt A y , 则波动方程为)]235(5cos[1.0ππ+-=x t y m (2) 0=t 时的波形如题5-11(b)图题5-11图(b) 题5-11图(c) 将5.0=x m 代入波动方程,得该点处的振动方程为)5cos(1.0)235.05.055cos(1.0πππππ+=+⨯-=t t y m 如题5-11(c)图所示.5-17 一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为18.0×10-3J ·m -2·s -1,频率为300 Hz ,波速为300m ·s -1,求 :(1)波的平均能量密度和最大能量密度? (2)两个相邻同相面之间有多少波的能量?解: (1)∵ u w I =∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅ 4max 102.12-⨯==w w 3m J -⋅(2) νπλπωud w d wV W 224141=== 7251024.9300300)14.0(41106--⨯=⨯⨯⨯⨯=πJ5-21 一驻波方程为y =0.02cos20x cos750t (SI),求:(1)形成此驻波的两列行波的振幅和波速;(2)相邻两波节间距离. 解: (1)取驻波方程为t uxA y πυπυ2cos 2cos 2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅(2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离157.02==∆λx m6-5 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比. (2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数. (4)⎰vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.6-13 试说明下列各量的物理意义.(1)kT 21 (2)kT 23 (3)kT i2(4)RT i M M mol 2 (5)RT i 2 (6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 21T . (2)在平衡态下,分子平均平动动能均为kT 23. (3)在平衡态下,自由度为i 的分子平均总能量均为kT i2. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT iM M 2mol .(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2. (6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.6-18 设有N 个粒子的系统,其速率分布如题6-18图所示.求(1)分布函数)(v f 的表达式; (2)a 与0v 之间的关系;(3)速度在1.50v 到2.00v 之间的粒子数.(4)粒子的平均速率.(5)0.5v到1v区间内粒子平均速率.题6-18图解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2()()2()()0(/)(vvvNfvvvavNfvvvavvNf⎪⎩⎪⎨⎧≥≤≤≤≤=)2()2(/)0(/)(vvvvvNavvNvavvf)(vf满足归一化条件,但这里纵坐标是)(vNf而不是)(vf故曲线下的总面积为N,(2)由归一化条件可得⎰⎰==+00232ddv vv vNaNvaNvvavN(3)可通过面积计算NvvaN31)5.12(=-=∆(4) N个粒子平均速率⎰⎰⎰⎰+===∞∞022ddd)(1d)(vvvvavvvavvvvNfNvvvfv220911)2331(1vavavNv=+=(5)5.0v到1v区间内粒子平均速率⎰⎰==05.0115.0ddvvvvNNvNNNNvv⎰⎰==05.05.0211dd)(vvvvvNvavNNvvvfNN2471)243(1d1213315.021avNvavvavNvvavNv vv=-==⎰05.0v 到01v 区间内粒子数N av v v a a N 4183)5.0)(5.0(210001==-+=9767020v N av v ==7-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功?(1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆=吸热 )(2)(1212V T T R iT T C E Q -=-=∆=υυ 25.623)300350(31.823=-⨯⨯=∆=E Q J 对外作功 0=A(2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ 吸热 75.1038)300350(31.825=-⨯⨯=Q J )(12V T T C E -=∆υ 内能增加 25.623)300350(31.823=-⨯⨯=∆E J 对外作功 5.4155.62375.1038=-=∆-=E Q A J7-18 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算(1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少? (3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少? 解:(1)卡诺热机效率 121T T -=η %7010003001=-=η (2)低温热源温度不变时,若 %8030011=-=T η要求 15001=T K ,高温热源温度需提高500K (3)高温热源温度不变时,若 %80100012=-=T η 要求 2002=T K ,低温热源温度需降低100K7-21 如题7-21图所示,1 mol 双原子分子理想气体,从初态K 300,L 2011==T V 经历三种不同的过程到达末态K 300,L 4022==T V . 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.题7-21图解:21→熵变 等温过程 AQ d d =, V p A d d =RT pV =⎰⎰==-21111221d 1d V V V VRT T T Q S S76.52ln ln!212===-R V V R S S J 1K -⋅ 321→→熵变⎰⎰+=-312312d d TQT Q S S32V 13p V p 12ln ln d d 2331T TC T T C T T C TT C S S T T T T +=+=-⎰⎰31→等压过程 31p p =3211T V T V =1213V V T T =23→等体过程2233T p T p = 3232p p T T = 1232p p T T = 12V 12P 12ln lnp pC V V C S S +=- 在21→等温过程中 2211V p V p = 所以 2ln ln ln ln1212V 12P 12R V VR V V C V V C S S ===- 241→→熵变⎰⎰+=-412412d d TQT Q S S41p 42p p 12ln lnd 024T TC T T C TT C S S T T ==+=-⎰41→绝热过程111441144111----==γγγγV V T T V T V T γγγγ/121/141144411)()(,p pp p V V V p V p === 在21→等温过程中 2211V p V p =γγγ/112/121/14114)()()(V Vp p p p V V === γγ11241)(-=V VT T2ln ln 1ln12P 41P 12R V V C T T C S S =-==-γγ。

大学物理期末考试题

大学物理期末考试题

大学物理期末考试题
一、选择题
1. 下列哪个单位不属于物理学基本单位制中的国际单位制?
A. 米
B. 千克
C. 厘米
D. 秒
2. 以下哪个量是矢量量?
A. 质量
B. 速度
C. 时间
D. 温度
3. 牛顿第一定律又称为惯性定律,下列哪个说法是错误的?
A. 物体如果在静止状态下,会保持静止状态
B. 物体如果在匀速直线运动中,会保持匀速直线运动
C. 物体受到的合外力为零时,物体将保持原来的状态
D. 物体受到的合外力与重力方向相同
4. 当一个物体处于平衡状态时,下列说法正确的是?
A. 物体的速度为零
B. 物体的加速度为零
C. 物体的重力为零
D. 物体的重力和支持力相等
5. 一个高度为10米的物体从静止自由下落,求下落到地面时的速度?
A. 10 m/s
B. 20 m/s
C. 30 m/s
D. 40 m/s
二、填空题
1. 牛顿第二定律的公式是F=______。

2. 物体运动的轨迹为直线运动时,可以用_____来描述其位移。

3. 功的单位是_____。

4. 做功的标准单位是_____。

5. 功率的公式是P=______。

三、计算题
1. 一辆汽车质量为1000千克,速度为20 m/s,求其动能?
2. 一个物体质量为2千克,受力20牛顿,如果作用力方向与加速度方向相反,求其加速度大小?
3. 一个力为80牛顿的物体斜坡下滑,斜度为30度,摩擦系数为0.2,求其加速度大小。

以上为大学物理期末考试题,请同学们按要求完成考试。

愿大家取得优异成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档