2005-01-3604 OBD Communication Concepts for J1939 SystemsView Document
发动机电控系统标定概述
发动机电控系统标定概述史国军博士意昂神州(北京)科技有限公司杨汉龙博士美国Caterpillar公司研究开发部发动机电控系统包括传感器、ECU硬件及控制策略、和驱动器。
其控制策略包含控制逻辑、数学模型和几千乃至上万个自由参数。
对于具体的发动机及其车型,需要依靠标准工具设备来进行大量的测试和试验,确定出这些自由参数的特定数值,从而满足车辆所要求的动力性能和排放法规。
这一过程被称之为发动机匹配标定。
匹配标定是一个复杂的系统工程。
尤其是在国内要求欧三排放之后,EOBD 更增加了其复杂程度。
如果对OBD参数标定太严格,故障指示灯容易误亮,增加车厂的保修成本;如果标定太松,故障容易漏判,可能会被政府部门调查罚款。
这无疑提高了对标定工程师工作质量的要求。
为了同国内同行对这一技术领域进行深入的交流,我们的讲座内容将主要涉及汽油发动机,主要包括:∙电控系统基本描述∙匹配标定基本概念与流程∙湿缸喷油控制(过渡过程喷油控制)∙电子节气门(ETC)的控制与标定∙VVT可变凸轮轴相位控制与标定∙EGR控制与标定∙三元催化转换器OBD原理与标定∙Misfire失火OBD原理与标定∙氧传感器OBD原理与标定∙Fuel-Trim 加油调节补偿OBD标定史国军博士:毕业于美国普渡大学(Purdue University)航空航天系,获博士学位,曾任美国通用汽车公司(General Motors)高级工程师,项目经理,八年发动机电控工作经验,拥有八项美国专利技术,三十余篇学术论文。
2004年曾到此会议在浙江湖州与国内同行作关于发动机电控技术的技术交流。
2005年任美国梦幻汽车公司发动机排放方面资深技术顾问赴奇瑞汽车公司考察访问。
同时,史博士于2003底回国在中关村创立“意昂神州(北京)科技有限公司”,在上海设有办事处,在美国底特律设有技术中心,主要从事汽车电控技术及车载网络总线技术领域的咨询,服务,和产品研发。
公司2006年被评选为中关村高科技企业50优。
OBD标准代码
OBD-II标准故障码一)OBD-II的特点:1.统一车种诊断座形状为16PIN。
2.上有数值分析资料传输功能(DATA LINK CONNECTOR简称DLC)。
3.统一各车种相同故障代码及意义。
4.具有行车记录器功能。
5.具有重新显示记忆故障码功能。
6.具有可由仪器直接清除故障码功能。
(二)DLC诊断座统一标准:1.DLC诊断座为统一16PIN脚,并装置在驾驶室,驾驶侧仪表板下方2.DLC PIN脚说明:资料传输线有两个标准:■ISO=欧洲统一标准.(INTERNATION STANDARDS利用7#,15#脚ORGANIZA TION 1941-2)■SAE=美国统一标准.(SAE-JI850)利用2#,10#脚标准PIN脚功用:-- OBD-II-DLC接头1# 提供制造厂应用9# 提供制造厂应用2# SAEJ 1850所制定的资料传输线10# SAE制造厂所制定的资料传输线3# 提供制造厂应用11# 提供制造厂应用4# 直接车身搭铁12# 提供制造厂应用5# 信号回路搭铁13# 提供制造厂应用6# 提供制造厂应用14# 提供制造厂应用7# ISO-9141-2所制定的资料传输线K 15# ISO-9141-2所制定的资料传输线L 8# 提供制造厂应用16# 直接电瓶正电源3.自1990年11月SAE定订J2054号通报-- 「诊断资料通讯标准」制定了14 个模式,简称为(DTM)-- DIAGNOSTIC TEST MODES.SAE-J2054号通报中制定的14个诊断通讯模式:模式功能模式功能0 回到正常模式7 数值指令显示1 传输诊断资料8 切断正常传输2 记忆资料清除9 连接正常传输3 检测RAM资料10 清除故障记忆4 元件控制功能11 暂停正常传输5 RAM资料下载12 依数值位置定义诊断6 RAM资料修改13 依记忆内码定义诊断4.在1991年12月SAE定订J1979号通报,并在1994年6月修定该通报为-- ?????牢???????? 「诊断测试模式标准」即为OBD系统(联邦)及OBD-II系统(加州)-- ON--BOARD DIAGNOSTIC,制定7个模式,简称为(OBD/OBD-II)SAE-J1979号通报中制定的7个诊断测试模式:MODE $01-◎目前引擎诊断数值需求◎类比输入/输出信号◎数值输入/输出信号◎系统状态资讯◎综合计算数据值MODE $03 废气相关的引擎诊断[模式3] 故障码MODE $04 废气相关的诊断系统[模式4] 清除与归零CODE $05 含氧传感器监控测试[模式5] 结果MODE $02-◎目前引擎瞬间数值需求◎类比输入/输出信号◎数位输入/输出信号◎系统状态资讯◎综合计算数据值MODE $06 电脑监控非连续性[模式6] 测试结果MODE #07 电脑监控连续性测试[模式7] 结果5.在1993年6月SAE定订J2190号通报-- 「加强诊断测试标准」该通报依据J1979号通报(诊断测试模式标准)之增订文件,并适用于「诊断通讯方面」SAE -J1850或ISO 9141-2标准。
汽车诊断与车载诊断系统(OBD)简介
汽车诊断与车载诊断系统(OBD)简介1 概述汽车诊断(Vehicle Diagnosis)是指对汽车在不解体(或仅卸下个别零件)的条件下,确定汽车的技术状况,查明故障部位及原因的检查。
随着现代电子技术、计算机和通信技术的发展,汽车诊断技术已经由早期依赖于有经验的维修人员的“望闻问切”,发展成为依靠各种先进的仪器设备,对汽车进行快速、安全、准确的不解体检测。
为了满足美国环保局(EPA)的排放标准,20世纪70年代和80年代初,汽车制造商开始采用电子控制燃油输送和点火系统,并发现配备空燃比控制系统的车辆如果排放污染超过管制值时,其氧传感器通常也有异常,由此逐渐衍生出设计一套可监控各排放控制元件的系统,以在早期发现可能超出污染标准的问题车辆。
这就是车载诊断系统(On-Board Diagnostics,缩写为OBD)。
OBD系统随时监控发动机工况以及尾气排放情况,当尾气超标或发动机出现异常后,车内仪表盘上的故障灯(MIL)或检查发动机灯(Check Engine)亮,同时动力总成控制模块(PCM)将故障信息存入存储器,通过一定的程序可以将故障码从PCM中读出。
根据故障码,维修人员能迅速准确地确定故障的性质和部位。
OBD-II是20世纪90年代推出的新的ODB标准,几乎提供了完整的发动机控制,并监控底盘、车身和辅助设备,以及汽车的诊断控制网络。
2 汽车诊断接口OBD - II的规范规定了标准的硬件接口-- 16针(2x8)的J1962插座。
OBD - II接口必须在方向盘2英尺范围内,一般在方向盘下。
SAE的 J1962定义了OBD-II接口的引脚分配如下:<?xml:namespace prefix = v /??>图1 J1962标准插座表13 与汽车诊断有关的主要通信协议20世纪90年代中期,为了规范车载网络的研究设计与生产应用,美国汽车工程师协会(SAE)下属的汽车网络委员会按照数据传输速率划分把车载网络分为Class A、Class B、Class C表2 车载网络分类目前OBD使用的通信协议主要有5种:ISO9141、KWP2000、SAEJ1850(PWM)、SAEJ1850(VPW)、CAN。
2005大众宝来Bora高尔夫Golf 1.6L四缸汽油发动机BRY BJH BJG自诊断(第一版)
—沿箭头方向拉开盖板–1–。 —将诊断线插头插到诊断接口上。 —按所需功能:
打开点火开关 或 起动发动机⇒01–2 页,可选功能表
-01-4-
更多车型分享下载更新,敬请关注: 鸿扬科技车道网
车型
发动机控制单元零件号 编码
Bora A4 手动箱 06A 096 033 DH
00031
Bora A4 自动箱 06A 096 033 EB
00033
Jetta A2 手动箱 06A 096 033 DG
00001
Jetta A2 自动箱 06A 096 033 DJ
00003
说明: 如显示的控制单元版本与汽车不符,则更换控制单元⇒请参阅 维修手册“多点喷射和点火系统”,修理组 24,更换发动机控 制单元。
BJG
Simos 7.3 欧3 有 有 快速数据传递 非易失性存储器 1) 易失性存储器 2) 1 个传感器 1 个爆震传感器 有 无 无 无
1) 与电源无关。 2) 断开电源后数据将被删除。
BJH
Simos 7.4 欧4 有 有 快速数据传递 非易失性存储器 1) 易失性存储器 2) 1 个传感器 1 个爆震传感器 有 无 无 有
BRY
Simos 7.4 欧4 有 有 快速数据传递 非易失性存储器 1) 易失性存储器 2) 2 个传感器 1 个爆震传感器 有 无 无 有
V.A.G 1551/1552 及 VAS5051 可选择的功能
下表列出了可选功能及其功能
功能
条件
V.A.G 1551/1552 及 VAS5051 的功能 发动机静止,点火 发动机怠速运转
欧洲排放法规、测试循环及OBD要求
欧洲排放法规、测试循环及OBD要求REuropean Emissions Regulations, Test Cycles, and OBDRequirements欧洲排放法规、测试循环及OBD要求Reggie ZhanSouthwest Research InstituteREU Emission Standards for * Before Euro 5, passenger vehicles > 2,500 kg were type approved as Category N 1vehicles ?Values in brackets are conformity of production (COP) limits ?Draft proposal, July 2005a -until 1999.09.30 (after that date DI engines must meet the IDI limits)b -applicable only to vehicles using lean burn DI engines0.005b0.06-0.0751.0mid -2008Euro 5?-0.08-0.101.02005.01Euro 4-0.15-0.202.302000.01Euro 3--0.5-2.21996.01Euro 2--0.97 (1.13)-2.72 (3.16)1992.07Euro 1?Petrol (Gasoline)0.0050.200.25-0.50mid -2008Euro 5?0.0250.250.30-0.502005.01Euro 40.050.500.56-0.642000.01Euro 30.10-0.9-1.01996.01a Euro 2, DI 0.08-0.7-1.01996.01Euro 2, IDI 0.14 (0.18)-0.97 (1.13)-2.72 (3.16)1992.07Euro 1?Diesel Date Tier0.060.390.46-0.742006.01Euro 40.100.780.86-0.952001.01Euro 30.20-1.60-1.51998.01a Euro 2, DI 0.17-1.20-1.51998.01Euro 2, IDI0.25-1.70-6.901994.10Euro 1N1, Class III >1760 kg0.0080.260.32-0.63mid -2008Euro 5?0.040.330.39-0.632006.01Euro 40.070.650.72-0.802001.01Euro 30.14-1.30-1.251998.01a Euro 2, DI 0.12-1.0-1.251998.01Euro 2, IDI0.19-1.40-5.171994.10Euro 1N1, Class II 1305-1760 kg0.0050.200.25-0.50mid -2008Euro 5?0.0250.250.30-0.502005.01Euro 40.050.500.56-0.642000.01Euro 30.10-0.90-1.01998.01a Euro 2, DI 0.08-0.70-1.01998.01Euro 2, IDI0.14-0.97-2.721994.10Euro 1N1, Class I <1305 kgDieselClass ?For Euro 1/2 the reference mass classes were Class I < 1250 kg,Class II 1250-1700 kg, Class III > 1700 kg.Draft proposal, July 2005a -until 1999.09.30 (after that date DI engines must meet the IDI limits)b -applicable only to vehicles using lean burn DI engines0.012b0.082-0.122.27mid -2008Euro 5?-0.11-0.162.272006.01Euro 4-0.21-0.295.222001.01Euro 3--0.80-5.01998.01Euro 2--1.70-6.901994.10Euro 1N1, Class III >1760 kg0.008b 0.075-0.101.81mid -2008Euro 5?-0.10-0.131.812006.01Euro 4-0.18-0.254.172001.01Euro 3--0.65-4.01998.01Euro 2--1.40-5.171994.10Euro 1N1, Class II 1305-1760 kg0.005b 0.060-0.0751.0mid -2008Euro 5?-0.08-0.11.02005.01Euro 4-0.15-0.202.32000.01Euro 3--0.50-2.21998.01Euro 2--0.97-2.721994.10Euro 1N1, Class I <1305 kgGasoline Tier DateUseful vehicle life for the purpose of emission regulations is:1)Euro 3 stage —80,000 km or 5 years (whichever occurs first); in lieu of anactual deterioration run, manufacturers may use the following deterioration factors: 1.2 for CO, HC, NOx (gasoline) or 1.1 for CO, NOx, HC+NOx and 1.2 for PM (diesel).2)Euro 4 stage —100,000 km or 5 years, whichever occurs first.3)Euro 5 (draft proposal) —160,000 km or 5 years, whichever occurs first.Other ProvisionsThe 2000/2005 regulation include several additional provisions, such as:1)EU Member States may introduce tax incentives for early introduction of 2005compliant vehicles.2)Requirement for low temperature emission test (-7°C) for gasoline vehicleseffective 2002 [Directive 2001/100/EC].3)The limits for cars are 15 g/km for CO and 1.8 g/km for HC, measured over theurban part of the test only.4)Introduction of onboard diagnostic (OBD) requirements for emission systems.EU Emission Standards for HD Diesel Engines, g/kW.h (smoke in m * -for engines of less than 0.75 dm 3swept volume per cylinder and a rated power speed of more than 3000 min0.50.022.00.461.52008.10Euro V0.50.023.50.461.52005.10Euro IV 0.80.10 0.13*5.00.662.1ESC & ELR2000.100.150.022.00.251.5ESC & ELR 1999.10, EEVs onlyEuro III 0.157.01.14.01998.100.257.01.14.01996.10Euro II0.368.01.14.51992, >85 kW 0.6128.01.14.5ECE R -491992, <85 kW Euro ISmokePM NOx HC CO Test Cycle Date & Category TierEmission Standards for Diesel and Gas Engines, ETC Test, g/kWha -for natural gas engines onlyb -not applicable for gas fueled engines at the year 2000 and 2005stagesc -for engines of less than 0.75 dm 3swept volume per cylinder and a rated power speed of more than 3000 min0.032.01.10.554.02008.10Euro V0.033.51.10.554.02005.10Euro IV 0.16 0.21c 5.01.60.785.45ETC2000.100.022.00.650.403.0ETC1999.10, EEVs only Euro III PM b NOx CH 4a NMHC CO Test Cycle Date & Category TierAbout the Test CyclesChanges in the engine test cycles have been introduced in the Euro III standard (year 2000).The old steady-state engine test cycle ECE R-49 is replaced by two cycles:a stationary cycle ESC (European Stationary Cycle) and a transient cycleETC (European Transient Cycle).Smoke opacity is measured on the ELR (European Load Response) test.For approval of new vehicles with diesel engines according to the Euro III standard (year 2000), manufacturers have the choice between either ofthese tests.For approval according to the Euro IV (year 2005) limit values and for EEVs, the emissions have to be determined on both the ETC and the ESC/ELR tests.E n g i n e S p e e d E n g i n e T o r q u eECE15 +EUDC / NEDC12050km/hMaximum Speed62.618.7 (with idling)km/h Average Speed 4004×195=780s Duration 6.9554×1.013=4.052km Distance EUDC ECE 15Unit Characteristics EUDC for low power vehiclesECE-15EUDC1.The ECE+EUDC test cycle is performed on achassis dynamometer. The cycle—also known as the MVEG-A cycle—is used for emission certification of LD vehicles in Europe2.The entire cycle includes four continuouslyrepeated ECE segments, followed by one EUDC segment.3.Before the test, the vehicle is allowed to soakfor at least 6 hours at a test temperature of 20-30°C.4.It is then started and allowed to idle for 40s.Effective year 2000, that idling period has been eliminated, i.e., engine starts at 0s and the emission sampling begins at the same time.5.This modified cold-start procedure is alsoreferred to as the New European Driving Cycle or NEDC.OBD is a abbreviation for On Board Diagnostics.OBD-1 is in reference to Title 13 California Code 1968 tilled "Malfunction and Diagnostic System for 1988 and Subsequent Model Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles with Three-Way CatalystSystems and Feedback Control." filed on 11-15-85.is required cars sold inCalifornia to have a on-board computer processor for on-board self diagnostics of computer sensed emission related components, fuel metering device and EGR (exhaust gas recirculation system). A partial or total malfunction thatexceeded exhaust emission standard would illuminate a MIL (malfunctionindicator light) and provide on-board identification of the malfunction location. To provide malfunction location information, codes are stored in on-board computer memory. To read codes manufactures use methods, such as flashing MIL light or various serial data protocols.OBD-2 is in reference to Title 13 California Code 1968.1 titled "Malfunction and Diagnostic System Requirements-1994 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and Engines. filed on 8-27-90 to Air Resource Board (ARB)This requires a standard electrical connector, open source standardizeddiagnostic trouble codes (DTC), data, and communication protocol with more specific self-diagnostic on-board monitoring of emission malfunctions. The 12 step system monitoring requirements:1.Catalyst2.Heated Catalyst3.Misfire and Misfire for Diesels4.Evaporative System5.Secondary Air System6.Air Conditioning System Refrigerant7.Fuel System8.Oxygen System9.Exhaust Gas Recirculation (EGR) System10.Positive Crankcase Ventilation (PCV) System11.Thermostat/doc/1cd08e6e1eb91a37f1115c90.html prehensive Component2004 or newer model year diesel vehicle sold in the European Union Commission Directive 70/220/EEC, Annex I:8.2. Vehicles with CI engines, vehicles of category M1, exceptvehicles designed to carry more than six occupants including the drivervehicles whose maximum mass exceeds 2500 kg,1) from 1/1/2003 for new types2) from 1/1/2004 for all typesmust be fitted with an on-board diagnostic (OBD) system foremission control in accordance with Annex XI.* Euro 4 threshold limits are proposed values, still under discuss ionPassenger cars category M 1> 2,500 kg or with more than 6 seats meet OBD requirements for Category N 1.-0.700.474.352005EU 4-0.800.607.302001EU 3III-0.620.383.442005EU 4-0.700.505.802001EU 3II-0.530.301.902005EU 4-0.600.403.202000EU 3IN 1-0.530.301.902005EU 4-0.600.403.202000EU 3M 1Gasoline 0.281.900.604.802006EU 40.281.900.604.802006EU 3III0.231.600.504.002006EU 40.231.600.504.002006EU 3II0.181.200.403.202005EU 40.181.200.403.202005EU 3IN 10.181.200.403.202005EU 40.181.200.403.202003EU 3M 1Diesel Diesel EOBD enforces the same threshold limits for EU 3 and 4.。
浅析OBD技术的应用与发展
浅析OBD技术的应用与发展作者:孙斌朱光来源:《中国新技术新产品》2012年第14期摘要:20世纪六七十年代至今年,随着世界汽车工业的迅猛发展,汽车保有量激增。
城市中出现了严重的机动车排放污染问题,各国为了控制尾气排放对环境的污染,在汽车上应用了车载自诊断系统。
它是可以有效地对汽车尾气排放污染进行即时监测,在车辆的降低排放污染和故障检修方面,具有非常重要的地位。
关键词:OBD;尾气排放;故障码中图分类号:U47 文献标识码:A20世纪六七十年代至今年,随着世界汽车工业的迅猛发展,汽车保有量激增。
据公安部交管局发布的最新数据,至2011年8月底,全国机动车保有量达到2.19亿辆。
仅次于美国的2.85亿辆,位居世界第二。
同时,城市中即出现了严重的机动车排放污染问题,各国不得不制定越来越严格的排放法规来控制尾气排放对环境的污染。
为适应这些法规的要求,现代汽车大多采用ECU(Electronic Control Unit)对发动机的喷油量、点火正时等参数进行精确控制,得以使排放污染得到明显下降。
但是,在发动机的技术性能下降以后,由于受各种元件和催化剂老化等因素的影响,发动机的排放污染会大大上升。
美国国家环境保护局(USEPA. U.S. Environmental Protection Agency)调查发现,轻型汽车排出的废气中,有60%的HC是从20%的排放控制系统有故障或者性能降低的汽车中排出的[1]。
但是,由于驾驶员并不会对排放污染增加过多关注,这就需要一个随车的自动诊断系统,对车辆在工作时发动机各部分的工作状况进行监测,一经发现问题,即时告知驾驶员。
为此,车载自诊断系统OBD(On-Board Diagnostics)技术得以在汽车上应运而生,它是一种有效地控制汽车尾气排放污染的即时监测技术。
它不仅能够对尾气是否超标进行监测。
而且,在车辆出现故障时,系统会将 (check engine)警告灯点亮,同时故障信息以故障码的形式存入储存器,通过汽车电脑诊断仪(例如车博仕V30或远征X431)或汽车厂家生产的专用测试设备可将故障码读出。
OBD来源
电脑控制汽车诊断技术一、电控汽车维修的发展电脑控制汽车维修的发展也就是诊断技术的发展,可分为四阶段:1、手工阶段上个世纪80年代电脑控制汽车进入中国,维修靠少量的资料和总结的经验、技巧。
2、检测仪器阶段1994-95年 OBD-II等电脑控制系统的采用,以丰田1MZ-FE发动机(ES300、AVALON、CAMRY)为标志。
3、原厂仪器阶段1997-98年,车载局域网络技术应用于防盗系统。
以日产CEFIRO A32为标志。
4、电脑网络阶段2000年,CAN-BUS车载网络的广泛应用,M-OBD系统产生。
互联网技术应用于汽车维修(远程诊断,资料更新,软件升级)。
二、随车电脑自我诊断的应用1、故障码的读取和清除:手工:OBD-I 仪器:OBD-II 、SRS等系统2、故障码的含义和维修:故障码的含义。
3、故障码不能读取的原因:*设定条件未达到(警示灯不亮);*读取程序错误;*只能仪器读取;*诊断系统不良:诊断接头、电脑不良。
三、随车电脑诊断OBDOBD的英文全称为ON-BOARD DIAGNOSTIC,翻译成中文为:随车电脑诊断。
自上个世纪80年代开始,国外各汽车制造厂开始在其生产的车辆上配备控制与诊断系统;这些新系统在车辆发生故障时,可以警示驾驶员并且维修工人在维修时可以经过由特定的方式读取故障码,以加快维修时间,汽车工业界称之为随车电脑诊断系统(OBD)。
各汽车制造厂均独立采用自行设计的诊断座及自定义的故障码,相互间无法沟通,在维修中必须采用不同的诊断系统。
(一)OBD-Ⅰ由于全球空气质量的恶化和人们对于环保意识的提高,同时汽车的尾气排放也是造成空气污染的一个重要的因素。
因此,到了1985年美国加州大气资源局(CARB)开始制定法规,要求各汽车制造厂在加州销售的车辆,必须装备OBD系统,称为BOD-Ⅰ(第一代随车电脑诊断系统)。
同时美国加州大气资源局(CARB)规定OBD-Ⅰ必须符合下列要求:1、仪表板必须有“故障警示灯”(MIL),以提醒驾驶员注意特定的车辆系统已发生故障(通常是废气控制相关系统)。
车载诊断系统 OBD
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-
-汽车工程系-。
OBDIIPU故障码
OBD-II P-U故障码动力总成系统OBD故障码: P2开头的故障码适用于所有汽车制造商-> 燃油,空气或排放控制故障码: P2000中文定义: 氮氧化物(NOx)的捕集器效率低于阈值(第1排)英文定义: NOx Adsorber Efficiency Below Threshold (Bank 1)范畴: 燃油,空气或排放控制故障码: P2001中文定义: 氮氧化物(NOx)的捕集器效率低于阈值(第2排)英文定义: NOx Adsorber Efficiency Below Threshold (Bank 2)范畴: 燃油,空气或排放控制故障码: P2002中文定义: 柴油机微粒过滤器效率低于阈值(第1排)英文定义: Diesel Particulate Filter Efficiency Below Threshold (Bank 1)范畴: 燃油,空气或排放控制故障码: P2003中文定义: 柴油机微粒过滤器效率低于阈值(第2排)英文定义: Diesel Particulate Filter Efficiency Below Threshold (Bank 2)范畴: 燃油,空气或排放控制故障码: P2004中文定义: 进气歧管通路控制卡在开的位置(第1排)英文定义: Intake Manifold Runner Control Stuck Open (Bank 1)范畴: 燃油,空气或排放控制背景知识: 进气歧管通路控制(IMRC)总成位于进气歧管和气缸盖之间。
为提高发动机性能,每个气缸对应两个进气通路,其中之一一直开通,另一个仅当转速高于一定值(比如说3000RPM)的时候才打开。
IMRC执行电机的作用是根据电控单元(ECU)的指令开/关进气通路的阀门翻板。
故障码: P2005中文定义: 进气歧管通路控制卡在开的位置(第2排)英文定义: Intake Manifold Runner Control Stuck Open (Bank 2)范畴: 燃油,空气或排放控制背景知识: 进气歧管通路控制(IMRC)总成位于进气歧管和气缸盖之间。
思创杂志05年第六期
根据车主反映和我们试车发现,车在发动机转速 2200rpm/min,车速约 110km/h 时突然 松油门车辆滑行时熄灭,但是缓慢松油门车辆滑行和冷车时则车辆不会熄灭。
接车维修时利用 OTC 故障诊断仪对系统进行检查,未发现有故障记录。接下来使用燃油压 力表对燃油压力进行测试,燃油压力怠速时约 2.8kg,断开燃油压力调节器上真空管时,燃油 压力为 3.2kg。试车故障出现时压在标准范围内,接下来利用 OTC 发动机动力分析仪对点火系 统逐缸进行点火测试,发现各缸点点火电压和燃烧电压平均值相差不大,证明点火系统正常。
数量 1
金额 8400.00
1
6720.00.00
1
3024.00
1
1680.00
1
1680.00
1
405.00
1
7560.00
1
6720.00
1
5544.00
1
1680.00
1
806.00
1
134.00
1
2352.00
1
2016.00
1
1008.00
1
1176.00
1
672.00
考虑缓慢松油门车辆滑行时则车辆不会熄灭,是否因为节气门位置传感器电压值太低?对 节气门位置传感器的输出电压进行测试,怠速时约 0.5V,参照维修资料 0.3-0.74,发现该电 压在正常内后,又对节气门体和进气歧管进行检查和清洗,故障依旧未能排除。
维修陷入困境,调整思路利用 OTC 实车对发动机在突然松油门车辆滑行时熄灭工况下的数 据流进行记录,分析发现突然松油门车辆滑行熄灭时空气流量计的进气量为 2g/s,但怠速时 测试最低值约 3g/s。替换空气流量计后故障依旧,考虑热线式空气流量计的测试数据主要取 决于进气带走热线表面的湿度而电桥为了维持平衡所产生的变量,那所有的问题就应该在热线 表面的湿度上面,重新对进气系统进行检查发现进气软管靠近节气门部位下面破损,对漏气进 行处理故障排除。
OBD协约说明(个人)
OBD协议数据流说明需要确认的问题:1、支持的车型?2、油耗、里程读取?3、OBD协议中是否支持读取和控制车门窗的状态信息?4、OBD能读取数据5、比较本人整理的ISO15031-5和北京金奔腾科技公司的OBD协议数据流答案:1、我国采用了EOBD相同的要求即ISO15031-5(道路车辆-车辆与排放诊断相关装置通信标准-5排放有关的诊断服务)协议。
所以只要该车支持ISO15031-5的OBD2标准协议中所有项,则可以通过OBD接口读取出ECU中所有信息;若该车支持标准协议中部分项,则读取出支持项信息。
(标准协议附在下面,由北京金奔腾汽车科技公司提供。
)2、在ISO15031-5协议中,油耗不能读取,只能读取燃油液位输入(读出油箱剩余油量与油箱容量的百分比)。
在车上通过燃油液位传感器实现对剩余油量检测。
OBD输出信息中跟里程相关只有:故障灯点亮后行驶的里程数、消除故障后行驶的里程数。
里程获取办法:1、虽然不能直接获得总里程,但可以总里程=安装前里程数+故障灯点亮后行驶的里程数+消除故障后行驶的里程数。
2、OBD2协议中无法直接读取仪表上数据,只有通过购买汽车厂家的OBD2协议的扩展,可获得汽车仪表系统数据获取,肯定能获取汽车总里程和车门窗信息。
由于成本太高,所以不现实。
3、在车轮处安装及车轮转过圈数的传感器4、还有通过GPS获取总里程。
3、在ISO15031-5的OBD协议中不支持读取和控制车门窗的状态信息。
4、读取信息是从ISO15031-5协议中分析出来:我们关注输出信息有:注:PID:OBD系统输出的每个参数都对应一个使用16进制表示的PID (Parameter Identification),即参数标识。
PID$01 故障码清除之后的监测状态PID$05 发动机冷却液温度PID$0C 发动机转速可以读取实时转速或者故障时转速。
数据类型:data/4 rpm (0<data<1638375)PID$0D 车速可以读取实时车速或者故障时车速。
车载自动诊断系统
车载自动诊断系统目录【何谓OBD】【OBD的工作原理】【OBD的发展】【OBD引入面临的问题】【OBD在中国】OBD是英文On-Board Diagnostics的缩写,中文翻译为“车载自动诊断系统”。
这个系统将从发动机的运行状况随时监控汽车是否尾气超标,一旦超标,会马上发出警示。
当系统出现故障时,故障(MIL)灯或检查发动机(Check Engine)警告灯亮,同时动力总成控制模块(PCM)将故障信息存入存储器,通过一定的程序可以将故障码从PCM中读出。
根据故障码的提示,维修人员能迅速准确地确定故障的性质和部位。
从20世纪80年代起,美、日、欧等各大汽车制造企业开始在其生产的电喷汽车上配备OBD,初期的OBD没有自检功能。
比OBD更先进的OBD-Ⅱ在20世纪90年代中期产生,美国汽车工程师协会(SAE)制定了一套标准规范,要求各汽车制造企业按照OBD-Ⅱ的标准提供统一的诊断模式,在20世纪90年末期,进入北美市场的汽车都按照新标准设置OBD。
OBD-Ⅱ与以前的所有车载自诊断系统不同之处在于有严格的排放针对性,其实质性能就是监测汽车排放。
当汽车排放的一氧化碳(CO)、碳氢化合物(HC)、氮氧化合物(NOx)或燃油蒸发污染量超过设定的标准,故障灯就会点亮报警。
虽然OBD-Ⅱ对监测汽车排放十分有效,但驾驶员接受不接受警告全凭“自觉”。
为此,比OBD-Ⅱ更先进的OBD-Ⅲ产生了。
OBD-Ⅲ主要目的是使汽车的检测、维护和管理合为一体,以满足环境保护的要求。
OBD-Ⅲ系统会分别进入发动机、变速箱、ABS等系统ECU(电脑)中去读取故障码和其它相关数据,并利用小型车载通讯系统,例如GPS导航系统或无线通信方式将车辆的身份代码、故障码及所在位置等信息自动通告管理部门,管理部门根据该车辆排放问题的等级对其发出指令,包括去哪里维修的建议,解决排放问题的时限等,还可对超出时限的违规者的车辆发出禁行指令。
因此,OBD-Ⅲ系统不仅能对车辆排放问题向驾驶者发出警告,而且还能对违规者进行惩罚。
OBD系统详述
OBD系统OBD的历史和未来OBD的诞生OBD的槪念最早是由通用汽车(GM)于1982年引入的,其目的是监测排放控制系统。
•旦发现故障,OBD系统会点亮仪衣板上的•个指示灯以通知驾驶员,同时在车载计算机(通常称作发动机控制单元或模块,即ECU或ECM)内记录•个代码,这个代码可通过相应设备获取以便于故障排除。
通用汽车使用了•个内部标准来实现外部设备与电控单元之间的通讯,这个通讯标准彼称之为Assembly Line Communications Link (ALCL),之后更名为Assembly Line Diagnostics Link (ALDL)c最初的ALCL协议通过PWM信号以160波特率进行通讯。
1986年,ALDL的升级版本出现,它通过半双匚UART信号以8192波特率进行通讯,此协议被命名为GM XDE-5024B,OBD-I通用汽车提出这•概念引起加州空气资源委员会()的重视oCARB于1985年采用了SAE所制定的标准,要求从MY 1988起所有在加州销售的车辆都必须具有•些基本的OBD功能。
之后,美国环保局()耍求自1991年起所有在美国销售的新车必须满足相关OBD技术妥求,这就是后来所说的OBD-LOBD-I只能监控部分部件的匸作和-些排放相关的电路故障,其诊断功能较为有限。
此外,获取OBD信息的数据通讯协议以及连接外部设备和ECU的接口仍然未被标准化。
OBD-II汽车工程师协会(SAE)对诊断接口、通讯方式等技术细节进行了进•步标准化工作,OBD-I在此基础上发展成为第二代OBD,即OBD-IL美国环境保护局(EPA)采用了这些新的技术标准,并于1990修订了《清洁空气法》(),要求自1996年1月1日起所有在美国市场销售的新车必须符合OBD-II 所定义的技术要求。
与OBD-I相比,OBD-II在诊断功能和标准化方面都有较人的进步。
故障指示灯、诊断连接口、外部设备和ECU之间的通讯协议以及故障码都通过相应标准进行J'规范。
2005东风日产天籁电路图册 OBD增补
0V
B
当将换档杆置于 “2” 位置时。
蓄电池电压
当换档杆置于其他位置时。
0V
当将换档杆置于 “D” 和 “3” 位置时。 蓄电池电压
AT
当换档杆置于其他位置时。
0V
当将换档杆置于 “R” 位置时。
蓄电池电压
D
当换档杆置于其他位置时。
0V
当将换档杆置于 “N” 或 “P” 位置时。 蓄电池电压
当换档杆置于其他位置时。
项目
状态
数据 (直流电压)
1
B
ECM 接地
[ 发动机运转中 ] ● 怠速
车身接地
EC-94
端口号 电线颜色
项目
故障诊断
状态
[ 类型 1]
数据 (直流电压)
A
大约 8V
[ 发动机运转中 ]
● 暖机状态
2
R/L
加热型氧传感器 1 加热器 (气缸侧体 2)
● 发动机转速:小于 3,600 rpm
[ 发动机运转中 ] ● 暖机状态 ● 发动机转速:大于 3,600 rpm
3
G/W 节气门控制电机继电器电源 [ 点火开关:ON]
[ 点火开关:ON]
4
L
节气门控制电机 (关闭)
● 发动机:停转
● 换档杆:D
● 加速踏板:完全释放
蓄电池电压 (11 - 14V)
蓄电池电压 (11 - 14V) 大约 2.1V
[ 点火开关:ON]
5
Y
节气门控制电机 (开启)
● 发动机:停转
● 将发动机转速迅速提高到 2,000 rpm 时
EC
C
PBIB0519E
D
E
国Ⅳ发动机系族、OBD系族、后处理系族
国Ⅳ发动机系族、OBD系族、后处理系族及源机选型申报资料一、给中机中心申请报告企业申报国Ⅳ发动机系族技术说明A.发动机系族名称B.发动机系族及其污染控制装置耐久性系族C.OBD-发动机系族名称D.污染控制装置-催化转化器型号及生产厂E.OBD 型号及生产厂一、国Ⅳ发动机申报材料1.国Ⅳ发动机采用不同技术路线及关键部件的配置说明(包括汽油机、燃气发动机)。
2.发动机系族、OBD-发动机系族、源机选型、后处理系统系族划分。
2.1发动机系族公有参数描述,依据标准GB17691-2005附件AB发动机系族的基本特点、汽车产品《备案参数表》(2010版)填写发动机系族的公有参数表,见表一。
2.2 发动机系族:依据GB17691-2005、GB14762-2008第9.1款、ISO 16185和汽车产品同一型式技术条件(2010版第5.5、5.7条),填写发动机系族型号清单和规格,见表二、表三。
2.3 发动机系族源机选型:依据GB17691-2005、GB14762-2008第9.2款和汽车产品同一型式(2010版5.77.2条)技术条件。
2.4OBD-发动机系族:依据HJ 437-2008第8条确定OBD-发动机系族和汽车产品同一型式(2010版5.79条)技术条件。
2.5后处理系统系族:依照HJ 438-2008附录A的A.2.2规定的后处理系统系族,并对后处理系族划分确定系族原机。
3.提供资料要求(发动机照片、图纸)3.1源机发动机的(左、右、前) 照片及CAD图,用CAD图标注尺寸。
3.2发动机燃烧室、活塞顶部,用CAD图标注尺寸。
3.3催化转化器的尺寸、形状,用CAD图标注尺寸。
3.4颗粒物捕集器的的尺寸、形状,再生系统图及再生方法描述,用CAD图标注尺寸。
3.5燃气发动机燃料供给系统(混合装置、燃气喷射、液态喷射、直接喷射)用CAD图标注尺寸。
二、发动机公有参数表1.XXXX系列(SCR、EGR技术路线)表一发动机系族公有参数国Ⅳ发动机数据库参数采用公告管理的QC备案参数,整车、发动机采用一套备案参数,方便整车厂申报数据的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-5760 Web: By mandate of the Engineering Meetings Board, this paper has been approved for SAE publication upon completion of a peer review process by a minimum of three (3) industry experts under the supervision of the session organizer.All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.For permission and licensing requests contact:SAE Permissions400 Commonwealth DriveWarrendale, PA 15096-0001-USAEmail: permissions@Fax: 724-772-3036Tel: 724-772-4028For multiple print copies contact:SAE Customer ServiceTel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)Fax: 724-776-1615Email: CustomerService@ISSN 0148-7191Copyright © 2005 SAE InternationalPositions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of the paper. A process is available by which discussions will be printed with the paper if it is published in SAE Transactions.Persons wishing to submit papers to be considered for presentation or publication by SAE should send the manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE. Printed in USAABSTRACTAs regulations for on-board diagnostics head toward the heavy-duty trucking industry, there are a variety of new communication concepts that will directly impact J1939 systems. ECUs on J1939 networks must support new standard diagnostic protocols and data. Vehicles must provide single-point access for concise OBD data sets that represent multiple ECUs. New technologies, such as wireless communication links, present completely new and different scenarios for diagnostic testing. Understanding these concepts and their implications is essential to designing a J1939 system that will integrate into the coming global OBD infrastructure. INTRODUCTIONThe transportation industry is steadily evolving into a global entity. Commercial vehicles using J1939 networks play a significant role in that global community and will continue to do so well into the next decade. In order to keep up with the coming demands of the global community, commercial vehicle networks will continue to evolve. This evolution will move to a higher level and go beyond the J1939 standards and OEM specifications driving progress within the vehicle today. Today, theJ1939 standard enables manufacturers of commercial vehicles to integrate electronic control units from different vendors into complete vehicle control networks. Tomorrow, new OBD networking technologies will enable manufacturers to integrate their commercial vehicles into the local, national and global infrastructures they must operate within.As the scope of integration moves from within the vehicle to the interface between the vehicle and the surrounding infrastructure, significant new players enter the picture. These organizations have responsibilities in the areas of public welfare, public infrastructure and technologies not previously applied in vehicular applications. The requirements and use cases these organizations bring to the vehicle can be met through new standards and applications for OBD communications. This paper presents an overview of the organizations driving the evolution in OBD, the new uses cases they present and the supporting technologies that will enable the evolution, with a focus on the aspects that are most likely to be new to developers of J1939 networks and control units.ORGANIZATIONS DRIVING EVOLUTION IN OBD COMMUNICATIONSBesides SAE, the organizations driving the evolution of OBD communications come from both government regulatory agencies and technical standards organizations. While each organization allows for different solutions, all organizations involved recognize that a single solution for all requirements is necessary for a variety of reasons – especially as a means of allowing system implementers to provide vehicles that can integrate into any local infrastructure. GOVERNMENT AGENCIESIn the United States, CARB (California Air Resources Board) and the EPA (Environmental Protection Agency) are long-time players and leaders in the area of OBD and emissions regulation. CARB and the EPA are extending their OBD requirements from passenger car vehicles to heavy-duty vehicles. US requirements for an OBD data link would allow heavy-duty diesel vehicles to meet OBD requirements via existing J1939 protocols and connectors supporting new monitors and data sets specifically designed for OBD.In Europe, the EU seeks a single solution that would support OBD for both light-duty and heavy-duty vehicles. While current solutions for J1939 and ISO15765 each meet EU requirements, a single common solution is sought. A new solution based on ISO15765 seems more likely as it would have less impact on the OBD requirements already in place for passenger car vehicles and appears to be more readily adapted to a J1939 network.At the global level, the United Nations seeks to define a Global Technical Regulation (GTR) that would start by defining OBD requirements for heavy-duty diesel applications, but would eventually expand to a single solution covering all OBD requirements for all vehicles. The GTR would start with the existing emissions-related diagnostics scope of OBD, but would later expand to2005-01-3604OBD Communication Concepts for J1939 SystemsMark JensenVector CANtech, Inc. Copyright © 2005 SAE Internationalinclude safety-critical systems. Besides covering the wired connection to the vehicle, the UN GTR requires a wireless connection that would enable OBD communications with vehicles in service on the road.TECHNICAL STANDARDS ORGANIZATIONSThe UN GTR tasked ISO with the responsibility of defining the OBD standard for World-Wide Harmonized On-Board Diagnostics. In response, ISO created an ad-hoc task force to create such a standard. The ad-hoc task force has been given a home in ISO Technical Committee 22 / Sub-committee 3 / Work Group 1 as Task Force 3 (ISO TC22/SC3/WG1/TF3). The task force has self-imposed a charter to meet the requirements of not just the UN GTR, but also CARB, US EPA and the EU and is working with all of these organizations to ensure proper coordination. The task force interacts directly with both the SAE Truck and Bus Council and the SAE Motor Vehicle Council to involve the heavy-duty and light-duty vehicle activities and theJ1939 community.The ISO WWH OBD task force expects to publish a new international standard for WWH-OBD communications in the coming years. The document will be an implementation specification defining the WWH-OBD use cases, a common data dictionary, a common message set, the wired physical connection, the wireless connection and conformance test requirements. At present, this activity is headed toward a solution based on ISO14229 and ISO15765. ISO14229, or Universal Diagnostic Services (UDS), is a general-purpose network-independent diagnostic protocol widely embraced by the passenger car industry. ISO14229 is currently only used for enhanced (non-legislated proprietary) diagnostics, but was built to support OBD as well and should prove sufficient for the job. ISO15765 defines, among other things, a standardized implementation of ISO14229 on CAN.A common OBD communication link that delivers performance capable of meeting expectations for the next ten years is not likely to be based on CAN alone. Solutions based on Ethernet, especially wireless Ethernet, have drawn IEEE into the vehicle networking community. ISO, SAE, IEEE, world governments, industry consortiums and transportation authorities are currently working together to define the DSRC (Dedicated Short Range Communication) standards for wireless vehicular communications. Various versions of DSRC are taking hold in different geographic regions.The US version of DSRC is known as WAVE (Wireless Access in the Vehicular Environment). IEEE 802.11p is the wireless Ethernet specification for WAVE. IEEE P1609 specifies the WAVE communications strategy, server requirements, client-server interface, message structure and security mechanisms. Supporting the WAVE activities is an SAE technical committee defining the DSRC message set and data dictionary in the new document J2735. Packing OBD messages for exchange through WAVE systems will be a key activity for this committee.Another version of DSRC aiming for a global standard is found in CALM (Continuous Air interface for Long and Medium distance). CALM is meant to cover all forms of wireless communications, including regional flavors of DSRC and cellular bands. CALM depends on an extended version of IEEE 802.11p that allows a broader and more flexible use of radio frequencies. CALM also specifies an open software architecture that provides standardized interfaces to numerous networking technologies, both wireless and wired.USE CASESThere are three commonly accepted use cases defining the scenarios future OBD systems must support.IN-SERVICE MONITORINGThis use case represents the highest level of integration with the surrounding infrastructure. Roadside wireless communication access points will interact with vehicles as they pass by. Likely locations for these wireless access points are the weigh stations and toll collection points already in place today. Future regulations could lead to access points along all roads, including urban surface streets.The exchange of in-service monitoring information is simple and concise. As a vehicle approaches a roadside access point, a wireless OBD communication link will be established. The vehicle will identify itself and provide a simple “Go/No-go” indication of its OBD status. A positive “Go” status would indicate the vehicle was in compliance with OBD regulations it was designed to meet. A negative “No-go” status would indicate that some OBD failure had been self-diagnosed by the vehicle and requires further inspection.INSPECTIONInspection involves a more detailed extraction of OBD data from the vehicle. Specific DTCs, DTC status, monitor status information and associated freeze frame data make up the inspection data set. This data must be presented as vehicle-level data and is not tied to specific ECUs.Inspection communications could occur through a traditional wired link or through a wireless link. The wireless scenario could be the resulting action taken by a roadside access point immediately after in-service monitoring detects a negative “No-go” status. Depending on local enforcement policies, the inspection data could be used to direct the vehicle operator to schedule service or to pull the vehicle off the road for handling by the local authorities. It is even conceivable that such a system could be used to automatically assess fines against the owner and/or operator of the vehicle.REPAIRRepair is the lowest level of integration with the infrastructure and is the same scenario seen today with typical diagnostic communication links. A vehicle is in a service garage for detailed diagnostics. ECU-level diagnostics are required along with working knowledge of the OBD monitors and tests. Wireless access may be helpful in this scenario, but traditional wired links are likely to be highly effective.FAULT MEMORYFault memory is the focus of OBD applications. 17 different US states use fault data alone as a means of diagnosing and testing vehicle emissions. New scenarios and regulations do not change that focus, but new specs are likely to change the structure of the fault data managed and reported by OBD ECUs.FAULT HIERARCHIESAll OBD DTCs will be categorized according to their significance with respect to emissions compliance. As the scope of OBD expands to cover safety-critical systems, these categories will be expanded to indicate significance with respect to a vehicle’s overall roadworthiness. Four fault categories have been defined in a hierarchy – a level for failures requiring legal penalties, a level for failures requiring repair, a level for failures generating operator warnings and a level for failures generating operator informational messages.A single DTC may support multiple levels of the hierarchy, but can exist at only one level at any point in time. Some DTCs might go immediately to the level requiring repairs and over time could be elevated to the level requiring a penalty. Other DTCs might start out at the level producing informational messages and over time could be elevated to higher levels.In order for these levels to produce the hierarchical effects intended, the vehicle operator must receive a simple and clear indication of the highest level fault present on the vehicle at any time. The malfunction indicator lamp (MIL) will provide this indication. MIL behavior will be tied directly to the highest level fault present on the vehicle. DTCs at the highest level might flash the MIL during normal operating conditions. DTCs at the next highest level might illuminate the MIL on solid at all times. Lower levels might flash the MIL for a period after start-up. Based on the MIL behavior, the vehicle operator could always know the roadworthiness of the vehicle with respect to the OBD requirements it was designed to meet.Where vehicle design requirements and local OBD legislation requirements are different, a potential problem arises. If the vehicle is taken into a region with different OBD requirements than those the vehicle was built to, the MIL behavior might not accurately inform the operator of the vehicle’s status with respect to local legislation. The vehicle operator must now understand the behavior of the MIL with respect to vehicle design requirements and also understand how those requirements do or do not satisfy local legislation. This is an error-prone situation at best. Smart OBD systems could use information from roadside access points to identify local requirements and modify MIL behavioral rules accordingly. However, this concept remains undefined and outside the scope of the current fault hierarchy concept.PERMANENT FAULTSPermanent faults are defined as DTCs with OBD monitors that have not passed since the last detected failure. A permanent fault can not be cleared or erased by a diagnostic test tool or a battery disconnect. A permanent DTC can only be set or cleared by the OBD monitor that determines the status of the fault. This is different than the concept of historical faults as permanent faults indicate only current and active failures as opposed to failures which may have occurred in the past but have since been resolved.Permanent DTCs enable an OBD test process that does not require the clearing and initialization of test monitors. Monitors will automatically set and clear permanent DTCs according to test results gathered during normal monitoring. If a repair to resolve an OBD failure is successful, the associated monitors will automatically detect the system is in working order and will clear the permanent DTC. Such a system eliminates the opportunity for operators to clear DTCs prior to inspection and momentarily give the deceptive appearance of a roadworthy vehicle. Repair processes may be streamlined as technicians need not clear and re-run tests for fault-free systems. Only those tests and monitors associated with failed systems need to run for the vehicle to be certified.FREEZE FRAME DATACurrent freeze frame data sets can include as much or as little data as a system implementer chooses to provide. Though diligence has current systems providing helpful freeze frame data, new regulations will require not just common standardized freeze frame data sets, but all data used by OBD monitors to be included in the freeze frame data for the DTCs the monitors detect. As a result, every freeze frame data set will begin with a minimum set of mandatory standard data values. Any additional values used by the OBD monitor will appear after the standard values.DTC HARMONIZATIONThere are several DTC formats widely used in emissions-related diagnostics today. The two leading candidates for use in WWH-OBD are the formats found in J1939 and ISO14229. Both are 24 bits in length and both are comprised of an identifier for the failed device and an identifier for the failure mode of the device. SAEJ1939 uses a 19-bit SPN and a 5-bit FMI to build a 24-bit DTC. ISO14229 uses a 16-bit root DTC and an 8-bit failure type byte (FTB) to build a 24-bit DTC. As both DTC formats are 24 bits in length, packaging either DTC format into a common message does not pose a technical challenge.Where the difficulty occurs is in the harmonization of the two fault sets. If a single solution is to be agreed upon, one format or the other must be selected and the data from both fault sets must be reconciled and combined into a single set of unique DTCs. Not only are there faults that have different representations in the two different formats, but a 19-bit SPN offers more device identifiers than a 16-bit root DTC and an 8-bit FTB offers more failure types than a 5-bit FMI. Some of these differences can only be resolved by abandoning part of one fault set to accommodate the fault format of the other. This task remains to be done and represents a significant future effort.DATA DICTIONARYFor any WWH-OBD solution to work, a data dictionary must be defined that encompasses all data standardized for OBD applications. Like with fault memory, new specs are likely to change the structure of the data managed and reported by OBD ECUsDATA IDENTIFIER HARMONIZATIONThere are several data identifier formats widely used in emissions-related diagnostics today. The two leading candidates for use in WWH-OBD are the formats found in J1939 and ISO14229. J1939 data identifiers are represented as 18-bit PGNs. ISO14429 data identifiers are represented as 16-bit Data Identifiers (DIDs). Note that the length of the identifier is not the same as the length of the data packet it represents. Both PGNs and DIDs can contain larger data packets. The identifier is the logical ID of the packet. Resolving this difference in identifier size is a difficult challenge yet to be resolved and with no clear solution.As the J1939 18-bit PGNs are longer than the ISO14229 16-bit DIDs, one might expect that ISO14229 could simply be extended to accommodate 18-bit (or 24-bit) data identifiers. This concept is being evaluated, but has some drawbacks. While PGNs appear in the CAN identifier in the header of a CAN frame, ISO14229 data identifiers appear in the data area of a CAN frame. Adding another byte to the ISO14229 data identifier uses a CAN frame byte currently available for data values. This increase in ratio of overhead to payload is undesirable and will lead to lower throughput.ODX – OPEN DATA EXCHANGE FORMATThe Open Data Exchange (ODX) format is a global initiative to define a common open diagnostic data exchange format. ODX is an XML-based format that offers significant new opportunities for different companies and organizations to exchange diagnostic data that can be read and written by commercial off-the-shelf tools.Originally proposed by the ASAM consortium for defining passenger car enhanced diagnostic data, ODX has been introduced into ISO and has found a home in the same work group as the WWH-OBD task force. It is the intent of the task force to define the WWH-OBD data dictionary in the ODX format.The ODX concept, especially as applied to OBD, tends to be confusing for the J1939 community. J1939 has always provided and supported a common standard data dictionary embraced by all commercial vehicle industry participants. A standardized and shared data dictionary eliminates the need for an open data exchange format. There is no significant use case for importing or exporting data that is already known to and implemented by any exchange partner.In the passenger car industry, diagnostic data is almost entirely proprietary. OBD data has been standardized, but represents only a small fraction of the diagnostic data supported by the typical vehicle which has many ECUs that have no emissions-related diagnostics. Exchanging diagnostic data between participants in the passenger car industry has long been a problem that ODX may be able to ease.Another advantage to the ODX concept is that it can eliminate tool dependencies on a standardized data dictionary. If OBD test tools can be driven by a plug-and-play database, changes in the standard data or proprietary data can be brought into service quickly and easily and without updating test tool software. PROTOCOLAs stated earlier, various aspects of J1939 and ISO14429/ISO15765 are the only serious candidates for the basis of any new harmonized OBD protocol supporting both light-duty passenger car vehicles and heavy-duty commercial vehicles. The differences between J1939 and ISO14229 on CAN are significant and need to be understood by all participants if a successful common solution is to be found. COMMUNICATION MODELJ1939 diagnostic messaging is done primarily through a broadcast model. An ECU will broadcast diagnostic information on the network as part of its normal operation. Other ECUs and any external test tools that might be listening can monitor the bus for most of the diagnostic information needed. Fault data is especially easy to acquire in this fashion.ISO14229 uses a request-response communication model for all diagnostic messaging. An ECU will never broadcast unsolicited diagnostic information and other ECUs have no requirement to monitor the network fordiagnostic data from other ECUs. Diagnostic information is only sent by an ECU when requested by a test device. The test device has traditionally been on off-board test tool, but recent network designs have tester functionality built into on-board ECUs that act as permanently attached test tools. The diagnostic exchange is a point-to-point conversation that must be initiated and paced by the tester. The tester is the client or master and the ECU being diagnosed is the server or slave.NETWORK ADDRESSINGOn a J1939 network, 29-bit CAN frame identifiers are used to indicate the data content of the frame and possibly also the transmitter and intended receiver. The addressing scheme and data payload formats are intertwined and are not intended to be separated. Passenger car networks use 11-bit, 29-bit or a mixture of both 11-bit and 29-bit CAN frame identifiers. The addressing scheme may conform to a standard similar to J1939 or may be proprietary. The addressing scheme and data payload formats are interdependent for normal operating messages, but not for diagnostic messages. ISO14229 is a network-independent design and has no knowledge of CAN or any CAN-based addressing scheme. The standard implementation of ISO14229 on CAN is specified in ISO15765. ISO15765 specifies both 11-bit and 29-bit addressing schemes that identify the messages as diagnostic messages, but does not indicate the exact format or nature of the data payload in the message. The content and format of the data payload is specified by ISO14229. The format of the data payload in an ISO14229 message can only be determined by examining the first byte or bytes of the data payload. The first byte of the message is the service identifier (SID). The SID will indicate the format of the remainder of the diagnostic message. This encoding of the data allows the diagnostic messages to work in any addressing scheme and naturally lends itself to a request-response communication model.It is important to note that while the J1939 network addressing scheme is incompatible with some passenger car CAN systems, the ISO15765 addressing scheme defines a means for seamlessly integrating ISO14229 messages into a J1939 network. This portability of ISO14229 makes it the current frontrunner for a new harmonized global OBD protocol serving both heavy-duty and light-duty vehicles.VOBD – VEHICLE OBDRepresenting the entire vehicle as a single OBD entity requires new functionality in the vehicle. This new functionality must allow test devices and compliance monitoring devices to identify the vehicle and gather the vehicle-wide OBD “Go/No-go” status in the minimum amount of time with the minimum amount of overhead. In order to meet this requirement, a vehicle OBD unit or VOBD is needed to manage the off-board communications.The VOBD will be a single access point providing the vehicle-wide status information in the in-service monitoring use case. The VOBD will act as a gateway allowing off-board testers to access the OBD services and data provided by the OBD ECUs in the repair use case. The VOBD may be a single access point, a gateway or some hybrid of the two in the inspection use case. The VOBD may even have diagnostic data of its own to report to off-board testers. The design and location of the VOBD will depend on the access provided to the wireless link and the J1939 network.The VOBD is not required to be a new ECU in the vehicle. Rather, it is expected that the VOBD will be implemented as a virtual software-only device that resides in an existing ECU, such as the engine control unit or the DSRC wireless unit.CONCLUSIONDiagnostic concepts are nearly identical between commercial vehicles using J1939 and passenger cars using CAN. Both systems are based on fault monitors and the supporting data they depend upon. The implementation of the diagnostic communication links are fundamentally different and pose a significant challenge to harmonize. The ISO WWH-OBD direction to build on the foundation provided by ISO14229 and ISO15765 represents a technical challenge coming to the J1939 community. The new use cases for supporting in-service monitoring, permanent faults, a vehicle-wide “Go/No-go” status indicator and wireless communications mean that OBD will no longer be about just emissions-related engine diagnostics. OBD will become more about integrating the vehicle as a whole into the public infrastructure it operates within. This strong tie to the infrastructure will mean expanding not just the OBD systems and technologies, but also the organizations that design and implement them. These organizations must support new interfaces to previously unrelated organizations that will have new and different points of view leading to new and different requirements. ACKNOWLEDGMENTSThe global OBD community is made up of many experts in the areas of vehicle diagnostics, vehicle communication technology, emissions-related legislation and standardization. These experts come from the organizations already referenced in this document and the companies that participate in the ground vehicle industries. Of special note for their expertise across all of these disciplines and their continuous support for the related standards development activities within both ISO and SAE are Mr. Gangolf Feiter and Mr. Richard Price. Their years of effort to harmonize the OBD standards and communities from the commercial vehicle and passenger car industries made possible the discussions that provided the foundation of this paper.CONTACTMark Jensen is the manager for diagnostic technologies at Vector CANtech, Inc. and is an active participant in the SAE and ISO committees for ground vehicle diagnostics and the SAE committee for the DSRC message sets and data dictionary.mailto:mark.jensen@(248)449-9290 x247Vector CANtech, Inc.Suite 550 39500 Orchard Hill PlaceNovi, MI 48375DEFINITIONS, ACRONYMS, ABBREVIATIONS CAN: Controller Area Network as defined by ISO11898 DID: Data Identifier used in ISO14229 protocol DSRC: Dedicated Short Range Communication; IEEE activity to deliver wireless networking to the vehicle environmentDTC: Diagnostic Trouble CodeFTB: Failure Type Byte; similar in nature to J1939 FMI GTR: Global Technical RegulationISO14229: ISO standard for a general-purpose network-independent ground vehicle diagnostic protocol; also known as Universal Diagnostic Services or UDSISO15765: ISO standard defining vehicle diagnostics on CAN, especially ISO14229ODX: Open Data Exchange; XML-based diagnostic data exchange formatUDS: see ISO14229WWH-OBD: World-Wide Harmonized On-Board Diagnostics。