七年级下册数学培优训练题5

合集下载

七年级(下)数学培优提高题(5)

七年级(下)数学培优提高题(5)

七年级(下)数学培优提高题(5)班级 姓名一、精心选一选:1、已知:x +y =-6, x -y =5,则下列计算正确的是 ( )A 、(x +y )2 =-36B 、(y -x) 2 =-10C 、xy =2.75D 、x 2-y 2 =252、已知三角形的三边的长依次为5,9,x ,则x 的取值范围是( )A .5<x <9B .4<x <9C .4<x <14D .5<x <143、计算(-a -b )2的结果是( )A 、-a 2-2ab -b 2B 、a 2-2ab +b 2C 、a 2+2ab +b 2D 、-a 2-2ab +b 24、已知10,3==-xy y x ,则2)(y x +的值为 ( )A 、 49B 、 39C 、29D 、19 5、如图,直线AB ∥CD ,∠B=25°,∠D=37°,则∠E=( )A .25°B .37°C .62°D .12°二、细心填一填:6、已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是_____ _ 。

7、有一种原子的直径约为0.00000053米, 用科学记数法表示为 .8、 若a m = 2,a n = 3,则a 2m+n =9、一个角的补角等于这个角的2倍, 则这个角的度数是 .10、若a 2+2ka+16是一个完全平方式,则k 等于 .11、若4a 2+2ka +9是一个完全平方式,则k 等于 。

12、若._________1,3122的值为则mm m m +=+ 13、如图,在△ABC 中,∠C=900,AC=BC ,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若AB=10,则△BDE 的周长为三、耐心解一解:14、计算题:-32+|-8|-(π-2009)0-1÷(-2)-115、先化简,再求值:(a 2b ﹣2ab 2﹣b 3)÷b ﹣(a+b )(a ﹣b ),其中a=,b=﹣1.16、已知a + b=3,ab= - 12,求下列各式的值(1)a 2- ab +b 2 (2)(a-b )2.17、 (1) 如图,已知:∠2=∠3,∠1+∠3=180°,求证:EF ∥GH. AB ∥CD 证明: ∵∠2=∠3, ∠1+∠3=180°(已知)∴∠1+∠2=180°(理由: )所以EF ∥GH. (理由: ) ∵∠2=∠3(已知)∴AB ∥CD (理由: )(2)如图,已知:AB ∥CD ,AE ∥BD ,试说明∠ABD=∠E. 证明:∵ (已知),∴∠ABD=∠ BDC ( 根据: )由AE ∥BD.得∠BDC=∠E .(根据: ).再根据:等量代换得:∠ABD=∠EC ED 2 31 A BC D E F G H18、已知:如图, 点E 、F 在BC 上,CF BE =,DC AB =,C B ∠=∠。

七年级下数学培优试卷

七年级下数学培优试卷

一、选择题(每题5分,共25分)1. 下列各组数中,有理数中最小的是()A. -1.5B. -2C. 0D. 1.52. 下列各式中,正确的是()A. 3a + 2b = 3(a + b)B. 3a - 2b = 3(a - b)C. 3a + 2b = 3(a + 2b)D. 3a - 2b = 3(a - 2b)3. 下列各式中,绝对值最大的是()A. |a| = -2B. |a| = 2C. |a| = 0D. |a| = -34. 已知x + y = 5,x - y = 1,则x的值为()A. 3B. 4C. 2D. 15. 若a、b、c是等差数列,且a + b + c = 18,则a的值为()A. 4B. 6C. 8D. 10二、填空题(每题5分,共25分)6. 已知x = 3,则x² - 2x + 1的值为__________。

7. 若a² = 9,则a的值为__________。

8. 在直角坐标系中,点P(-3,4)关于原点的对称点坐标为__________。

9. 若等腰三角形的底边长为6,腰长为8,则该三角形的周长为__________。

10. 若一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = 0,则该方程有两个__________。

三、解答题(每题10分,共30分)11. 已知数列{an}中,a1 = 3,an = an-1 + 2(n ≥ 2),求该数列的前5项。

12. 已知一元二次方程x² - 3x + 2 = 0,求该方程的解,并说明该方程的根与系数的关系。

13. 已知正方形ABCD的边长为a,求对角线AC的长度。

四、证明题(15分)14. 证明:若a、b、c是等差数列,且a + b + c = 18,则ab + bc + ca = 54。

五、应用题(15分)15. 小明骑自行车从A地到B地,全程为30千米。

初一数学培优经典试题及答案

初一数学培优经典试题及答案

初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。

试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。

因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。

试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。

试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。

答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。

试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。

答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。

《第5章相交线与平行线》期末复习培优训练(附答案) 2020-2021学年七年级数学人教版下册

《第5章相交线与平行线》期末复习培优训练(附答案) 2020-2021学年七年级数学人教版下册

2021年人教版七年级数学下册《第5章相交线与平行线》期末复习培优训练(附答案)1.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转45°,再左转45°B.先左转45°,再右转135°C.先左转45°,再左转45°D.先右转45°,再右转135°2.两个角的一组对应边同向平行,另一组对应边反向平行,且这两个角的度数比是5:31,则两个角的度数是()A.150°30°B.140°40°C.25°155°D.135°45°3.如图所示,将一张长方形纸片ABCD沿着直线EF折叠,A、B两点分别落在A′、B′处,若∠AEA′=70°,则∠BFE的角度为()A.40°B.35°C.45°D.30°4.如图,AB∥DE,BC⊥CD,则以下说法中正确的是()A.α,β的角度数之和为定值B.α,β的角度数之积为定值C.β随α增大而增大D.β随α增大而减小5.如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EF∥HC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①AD∥BC;②GK平分∠AGC;③∠E+∠EAG+∠HCK=180°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有()A.4个B.3个C.2个D.1个6.某学生上学路线如图所示,他总共拐了三次弯,最后行车路线与开始的路线相互平行,已知第一次转过的角度,第三次转过的角度,则第二次拐弯角(∠1)的度数是()A.55°B.70°C.80°D.90°7.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.从C村到D村的公路平行于从A村到B村的公路,则C,D两村与B,C两村公路之间夹角的度数为()A.100°B.80°C.75°D.50°8.如图所示,∠1=∠2=∠3=55°,则∠4的补角的度数为()A.55°B.75°C.105°D.125°9.如图,AB∥DC,∠ABD=30°,∠ADB=85°,求∠ADC和∠A的角度.10.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.11.如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.12.如图,AB∥CD,∠1=50°,∠2=110°,求∠3的度数.13.如图,CD平分∠ACB,DE∥BC,∠AED=46°,求∠CDE的度数.14.如图,AC∥ED,AB∥FD,∠A=64°,求∠EDF的度数.15.如图,AC∥DF,AB∥EF,点D,E分别在AB,AC上.若∠2=50°,求∠1的大小.16.如图,∠B、∠D的两边分别平行.(1)在图①中,∠B与∠D的数量关系是什么?为什么?(2)在图②中,∠B与∠D的数量关系是什么?为什么?(3)由(1)(2)可得结论;(4)应用:若两个角的两边两两互相平行,其中一个角比另一个角的2倍少30°,求这两个角的度数.17.直线AB∥CD,E、F分别是直线AB、CD上的点.(1)如图1,若G是在直线AB和直线CD内部,在EF的右侧一点,证明:∠G=∠GEB+∠GFD.(2)如图2,EF⊥AB,射线EI从射线EB位置出发,绕着点E以10度/秒的角速度顺时针旋转.射线FH从射线FD位置出发,绕着点F以15度/秒的角速度逆时针旋转.两条射线同时出发,当射线FH转完一周的时候两射线同时停止.请问在保证射线FH和射线EI有交点G的前提下,过几秒钟时,∠EGF=50°?18.如图,已知AM∥BN.C为直线BN上一点,且∠MAC=70°,∠ABC=80°.点P从A出发,沿AM方向运动,∠P AC与∠PBC的角平分线相交于点D.探究一:①当∠ABP=20°时,求角ADB的度数;聪明的小华看到这一问题,采用了如下解题方法:如图2,过点D作DE∥AM,于是,他很快就得到了正确答案,即∠ADB=.探究二:设∠ABP=α,∠ADB=β,试探究:①若β不小于α,求α的取值范围;②若点P运动的过程中,是否会出现α与β互补的情况?若会,请求出α与β的值;若不会,请说明理由.19.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)若∠DCE=40°,则∠ACB的度数为;(2)如图1,∠ACE=∠;若点E在AC的上方,设∠ACB=α(90°<α<180°),则∠DCE的度数为.(用含α的式子表示)(3)当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE的位置,但始终保持两个三角尺的顶点C重合①当BE∥AC(如图2)时,直接写出∠ACE的度数是度.②当BC∥DA时,直接写出∠ACE的度数是度.(4)在(3)的条件下,当∠ACE<180°且点E在直线AC的上方,(3)中的两种情况除外,这两块三角板是否还存在一组边互相平行,若存在请直接写出此时∠ACE所有可能的角度数值为度,若不能请说明理由.20.(1)如图1,AB∥CD,点P在AB、CD外部,若∠B=60°,∠D=30°,则∠BPD =°;(2)如图2,AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图2中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图3,若∠BPD=86°,∠BMD=40°,求∠B+∠D的度数.参考答案1.解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于方向仍与原来相同,所以平行前进,可以得到∠1=∠2.故选:A.2.解:如图,BC∥ED,AB∥EF,∠B:∠E=5:31,∴∠B=∠1,∠1+∠E=180°,∴∠B+∠E=180°,∵∠B:∠E=5:31,设∠B=5x,∠E=31x,∴5x+31x=180°,解得:x=5,∴∠B=25°,∠E=155°,故选:C.3.解:由平行线的性质得,∠AEA'=∠1=70°,∵AD∥BC,∴∠1=∠BFB'=70°,由折叠性质得,∠BFE=∠EFB'=∠BFB'=35°,故选:B.4.解:过C点作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠α=∠BCF,∠β+∠DCF=180°,∵BC⊥CD,∴∠BCF+∠DCF=90°,∴∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,∴β随α增大而增大,故选:C.5.解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;延长EF交AD于P,延长CH交AD于Q,∵EF∥CH,∴∠EPQ=∠CQP,∵∠EPQ=∠E+∠EAG,∴∠CQG=∠E+∠EAG,∵AD∥BC,∴∠HCK+∠CQG=180°,∴∠E+∠EAG+∠HCK=180°;故③正确;∵∠FGA的余角比∠DGH大16°,∴90°﹣∠FGA﹣∠DGH=16°,∵∠FGA=∠DGH,∴90°﹣2∠FGA=16°,∴∠FGA=∠DGH=37°,设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.6.解:如图,延长ED交BF于C,∵BA∥DE,∴∠BCD=∠B=120°,∠FCD=60°,又∵∠FDE是△CDF的外角,∴∠1=∠FDE﹣∠DCF=150°﹣60°=90°,故选:D.7.解:由题意可得:AN∥FB,DC∥BE,∴∠NAB=∠FBE=75°,∵∠CBF=25°,∴∠CBE=100°,则∠DCB=180°﹣100°=80°.故选:B.8.解:∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴a∥b,∴∠3=∠6=55°,∴∠4的补角的度数为55°,故选:A.9.解:∵AB∥DC,∠ABD=30°,∴∠BDC=∠ABD=30°,∵∠ADB=85°,∴∠ADC=∠ADB+∠BDC=115°,∠A=180°﹣(∠ADB+∠ABD)=65°.10.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.11.解:∵DE∥BC∴∠1=∠2=65°∵AB∥DF∴∠2+∠3=180°,∴∠3=180°﹣65°=115°.故答案为∠2=65°,∠3=115°.12.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠4=∠1,∠3+∠4=∠2,∴∠3=∠2﹣∠1=110°﹣50°=60°.13.解:∵DE∥BC,∠AED=46°,∴∠ACB=∠AED=46°,∵CD平分∠ACB,∴∠BCD=∠ACB=23°,∵DE∥BC,∴∠CDE=∠BCD=23°.14.解:∵AC∥ED,∴∠BED=∠A=64°,∵AB∥FD,∴∠EDF=∠BED=64°.15.解:∵AC∥DF,∴∠2=∠F,∵AB∥EF,∴∠1=∠F,∴∠1=∠2=50°16.解:(1)∠B=∠D.理由:∵AB∥CD,BE∥DF,∴∠B=∠1,∠1=∠D,∴∠B=∠D.(2)∠B+∠D=180°,理由:∵AB∥CD,BE∥DF,∴∠B=∠1,∠1+∠D=180°,∴∠B+∠D=180°.(3)由(1)(2)可得结论:若两个角的两边两两互相平行,则这两个角相等或互补.故答案为:若两个角的两边两两互相平行,则这两个角相等或互补.(4)设一个角为x°,则另一个角的(2x﹣30)°,若相等:x=2x﹣30,解得:x=30,则这两角分别为:30°,30°;若互补,则x+2x﹣30=180,解得:x=70,则这两角分别为:70°,110°;答:这两个角的度数分别为:30°,30°或70°,110°.17.解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠BEG=∠HGE,∠DFG=∠HGF,∴∠EGF=∠HGE+∠HGF=∠BEG+∠DFG;(2)设过t秒钟时,∠EGF=50°,由题可得∠BEG=10t°,∠DFG=15t°,如图2,当点G在EF右侧时,由(1)可得,∠EGF=∠BEG+∠DFG,即50°=10t°+15t°,解得t=2;如图3,当点G在EF的左侧时,过G作PG∥AB,∵AB∥CD,∴GP∥AB∥CD,∴∠AEG=∠PGE,∠CFG=∠PGF,∴∠EGF=∠PGE﹣∠PGF=∠AEG﹣∠CFG,又∵∠AEG=180°﹣10t°,∠CFG=15t°﹣180°,∴50°=(180°﹣10t°)﹣(15t°﹣180°),解得t=12.4,综上所述,过2秒或12.4秒时,∠EGF=50°.18.解:探究一:①如图2,∵AM∥BN,DE∥AM,∴BN∥DE,∴∠1=∠2,∠3=∠4,∵∠P AC与∠PBC的角平分线相交于点D,∴=35°,∠3=∠PBC=(80°﹣20°)=30°,∴∠ADB=∠2+∠4=∠1+∠3=65°,故答案为:65°;探究二:①如图2,∵AM∥BN,DE∥AM,∴BN∥DE,∴∠1=∠2,∠3=∠4,∵∠P AC与∠PBC的角平分线相交于点D,∴=35°,∠3=∠PBC=(80°﹣α)=40°﹣,∴∠ADB=∠2+∠4=∠1+∠3=75°﹣=β,∵β≥α,∴75°﹣≥α,∴0<α≤50,∴α的取值范围是:0<α≤50.②不会,理由:∵75°﹣=β,假设α+β=180°,则75°﹣+α=180°,解答α=210°>180°,∴不会出现α与β互补的情况.19.解:(1)由互余∠ACE=90°﹣∠DCE=90°﹣40°=50°,由角的和差得∠ACB=∠ACE+∠BCE=50°+90°=140°,故答案为:140°;(2)∵∠ACE+∠DCE=90°,∠DCB+∠DCE=90°,∴∠ACE=∠DCB;∴∠ACE=∠ACB﹣∠ECB=α﹣90°,∴∠DCE=90°﹣∠ACE=90°﹣(α﹣90°)=180°﹣α,故答案为:DCB,180°﹣α;(3)①当BE∥AC时,∵BE∥AC,∴∠ACE=∠E=45°;②当BC∥DA时,∵BC∥DA,∴∠BCD=∠D=30°,∴∠ACB=90°+30°=120°,∴∠ACE=∠ACB﹣∠BCE=120°﹣90°=30°.故答案为:①45;②30;(4)①当AD∥CE时,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;②当BE∥CD时,∴∠ACE=90°+45°=135°;③当BE∥AD时,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°∴∠ACE=90°+75°=165°.故答案为:120或135或165.20.解:(1)如图1,∵AB∥CD,∠B=60°,∴∠BOD=∠B=60°,∴∠BPD=∠BOD﹣∠D=60°﹣30°=30°.故答案为:30°;(2)∠BPD=∠B+∠D.如图2,过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(3)延长BP交CD于点E,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=86°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=86°﹣40°=46°。

第5章 相交线与平行线 人教版七年级数学下册过关测试培优卷(含答案)

第5章 相交线与平行线 人教版七年级数学下册过关测试培优卷(含答案)

第五章 相交线与平行线(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)1.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A .B .C .D .【答案】B 【分析】根据中点的定义,平行线的定义判断即可.【详解】解:过AC 的中点D 作AB 的平行线,正确的图形是选项B ,故选:B .【点睛】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.2.如图,直线,被所截得的同旁内角为,,要使,只要使( )A .B .C .D .,【答案】C 【分析】由同旁内角互补两直线平行即可判定出,变形后即可得到正确的选项.【详解】解:当,即时,,故C 正确.故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.3.在同一平面内,两条直线的位置关系可能是( )A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【答案】C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.4.(2021·安徽·统考中考真题)设a,b,c为互不相等的实数,且,则下列结论正确的是()A.B.C.D.【答案】D【分析】举反例可判断A和B,将式子整理可判断C和D.【详解】解:A.当,,时,,故A错误;B.当,,时,,故B错误;C.整理可得,故C错误;D.整理可得,故D正确;故选:D.【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.5.已知直线a、b、c在同一平面内,则下列说法错误的是( )A.如果a∥b,b∥c,那么a∥cB.a⊥b,c⊥b,那么a∥cC.如果a与b相交,b与c相交,那么a与c一定相交D.如果a与b相交,b与c不相交,那么a与c一定相交【答案】C【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行,同一平面内,垂直于同一条直线的两直线平行进行分析即可.【详解】A.如果a∥b,b∥c,那么a∥c,说法正确;B.a⊥b,c⊥b,那么a∥c,说法正确;C.如果a与b相交,b与c相交,那么a与c一定相交,说法错误;D.如果a与b相交,b与c不相交,那么a与c一定相交,说法正确.故选C.【点睛】此题主要考查了平行公理及推论,关键是熟练掌握所学定理.6.一副直角三角尺叠放如图所示,现将30°的三角尺固定不动,将45°的三角尺绕顶点B逆时针转动,点E始终在直线的上方,当两块三角尺至少有一组边互相平行时,则所有符合条件的度数为()A.45°,75°,120°,165°B.45°,60°,105°,135°C.15°,60°,105°,135°D.30°,60°,90°,120°【答案】A【分析】分DE∥AB,DE∥AC,BE∥AC,AC∥BD,分别画出图形,根据平行线的性质和三角板的特点求解.【详解】解:如图,①DE∥AB,∴∠D+∠ABD=180°∴∠ABD=90°∴∠ABE=45°;②DE∥AC,∵∠D=∠C=90°,∴B,C,D共线,∴∠ABE=∠CBE+∠ABC=180°-45°+30°=165°;③BE∥AC,∴∠C=∠CBE=90°,∴∠ABE=∠ABC+∠CBE=120°;④AC∥BD,∴∠ABD=180°-∠A=120°,∴∠ABE=∠ABD-∠DBE=75°,综上:∠ABE的度数为:45°或75°或120°或165°.【点睛】本题考查了三角板中的角度计算,平行线的性质,解题的关键是注意分类讨论,做到不重不漏.二、填空题(每小题3分,共18分)7.“若,则,”_____命题(选填“是”或“不是”).【答案】是【分析】根据命题的定义判断即可.【详解】若,则,是一个命题.故答案为:是.【点睛】本题主要考查了命题的判断,掌握定义是解题的关键.即是表示判断一件事情的句子是命题. 8.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是1.根据以上信息,可以确定密码是__.【答案】127【分析】先根据第一个数字不是7,得出第一个数字是1或2,再根据1和2相邻,进而得出第三个是7,即可得出结论.【详解】解:∵三个数字分别是7,2,1,但第一个数字不是7,∴第一个数为1或2,∵1和2的位置相邻,∴前两个数字是1,2或2,1,第三位是数字7,∵中间的数字不是1,∴第一个数字只能是1,第二个数字为2,即密码为127,故答案为:127【点睛】此题主要考查了推理与论证,判断出第三个数是7是解本题的关键.9.(2022秋·黑龙江佳木斯·七年级校考期中)将直角梯形平移得梯形,若,则图中阴影部分的面积为_________平方单位.【答案】36【分析】根据图形可知图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.【详解】根据平移的性质得S梯形ABCD =S梯形EFGH,DC = HG = 10,MC= 2,MG = 4,DM = DC - MC = 10 - 2 = 8,S阴影= S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD=S梯形HGMD==×(8+10)×4= 36.故答案为:36.【点睛】主要考查了梯形的性质和平移的性质,要注意平移前后图形的形状和大小不变,本题的关键是能得到:图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.10.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)【答案】如果两个角是两个相等角的余角,那么这两个角相等. 真【分析】根据命题由题设和结论组成,把条件“两个角是同角的余角”写在如果的后面,把结论“这两个角相等"写在那么的后面即可【详解】命题“同角的余角相等”改写成“如果..,那么."的形式是“如果两个角是同角的余角,那么这两个角相等”如果两个角是同角的余角,那么这两个角相等是真命题【点睛】此题考查命题与定理,掌握三角形的性质是解题关键11.如图所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.【答案】8【分析】图中阴影部分的面积等于大三角形的面积减小三角形的面积,根据面积公式计算即可.【详解】解:∵∠C=90°,AC=BC=5,平移的距离为2,∴BC′=DC′=3∴阴影面积=5×5÷2-3×3÷2=8.故答案为8.【点睛】本题考查平移的性质,比较简单,解答此题的关键是利用平移的性质得出小三角形的底和高.12.(2022秋·重庆·七年级重庆市綦江中学校考阶段练习)如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连接AB.∠ABM的平分线BC交PQ于点C,连接AC,过点A作AD⊥PQ交PQ 于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.【答案】##27度【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°,然后结合图形,利用各角之间的关系求解即可.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,∵MN∥PQ,∴∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,∴∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,∴∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°,故∠ACD的度数是27°,故答案为:27°.【点睛】本题利用平行线、垂直、角平分线综合考查角度的计算,理解题意,综合运用这些知识点是解题关键.三、解答题(每小题6分,共30分)13.(2022秋·福建福州·七年级统考期末)如图,已知,.(1)试判断BF与DE的位置关系,并说明理由;(2)若,,求的度数.【答案】(1),理由见解析;(2)【分析】(1)根据已知条件,先证明FG//BC ,继而得∠1=∠3 ,根据∠1+∠2=180° 等量代换得∠3+∠2=180° ,从而得证;(2)由(1)的结论,求得∠1 ,再根据BF⊥AC ,求得∠1 的余角即可.【详解】解:,理由如下:,,,,,;,,,,,,.【点睛】本题考查了平行线的性质与判定,求一个角的余角,熟练平行线的性质与判定是解题的关键.14.学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB和CD被直线EF所截,∠2=∠3,AB CD 吗?说明理由.现请你补充完下面的说理过程:答:AB CD理由如下:∵∠2=∠3(已知)且()∴∠1=∠2∴AB CD()【答案】∠1=∠3;对顶角相等;同位角相等,两直线平行【分析】根据已知条件及对顶角相等得出∠1=∠2,由同位角相等,两直线平行即可证明.【详解】解:AB CD理由如下:∵∠2=∠3(已知)且∠1=∠3(对顶角相等)∴∠1=∠2∴AB CD(同位角相等,两直线平行),故答案为:∠1=∠3;对顶角相等;同位角相等,两直线平行.【点睛】题目主要考查对顶角相等及平行线的判定,理解题意,熟练掌握平行线的判定是解题关键.15.如图,己知点P、Q分别在的边上,按下列要求画图:(1)画射线;(2)过点P画垂直于射线的线段,垂足为点C;(3)过点Q画直线平行于射线.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图,分别P画垂直于射线OB的射线PC,垂足为点C;过点Q画直线平行于射线.【详解】(1)如图,射线PQ为所求;(2)如图,线段PC为所求;(3)如图,直线QM为所求【点睛】此题主要考查了基本作图,正确把握相关定义是解题关键.16.指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.【答案】(1)题设:如果两个角的和等于平角时,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,反例见解析;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【分析】(1)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平角的定义可得该命题是真命题;(2)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是假命题;利用相交直线被第三条直线所截,内错角不相等可举反例;(3)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是真命题;.【详解】(1)题设:如果两个角的和等于平角,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,如图∠1与∠2是内错角,∠2>∠1;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【点睛】本题考查了命题与定理的相关知识.将命题写成“如果…,那么…”的形式,就是要明确命题的题设和结论,“如果”后面写题设,“那么”后面写结论.关键是明确命题与定理的组成部分,会判断命题的题设与结论.17.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.四、解答题(每小题8分,共24分)18.如图,点是直线AB上一点,OD平分∠AOC,∠BOE=3∠COE,∠DOE=81°,求∠BOE,∠AOD的度数.【答案】∠BOE=27°,∠AOD=72°.【分析】设∠COE=x,则∠AOD=81°-x,则∠BOE=3x,∠AOC=2 ∠AOD,由∠AOC+∠BOC=180° ,列方程2+4x=180°,解方程求解即可.【详解】解:设∠COE=x,∵∠BOE=3∠COE,OD平分∠AOC,∠DOE∠BOE=3∠COE,则∠BOE=3x,∠AOC=2,∵O是直线AB上一点,∴∠AOC+∠BOC=180° ,∴2+4x=180°,解得∠AOD=81°-∴∠BOE=27°,∠AOD= 72°.【点睛】本题考查的是角平分线的定义,角的和差运算,邻补角的含义,解本题的关键是运用方程的思想解决几何问题.19.如图,直线AB,CD相交于点O,OB平分∠EOD.(1)若∠BOE:∠EOC=1:4,求∠AOC的度数;(2)在(1)的条件下,画OF⊥CD,请直接写出∠EOF的度数.【答案】(1)(2)或【分析】(1)设,则,先根据角平分线的定义可得,,再根据邻补角的定义求出的值,从而可得的度数,然后根据对顶角相等即可得;(2)先求出,再分①点在的上方和②点在的下方两种情况,根据角的和差即可得.【详解】(1)解:由题意,设,则,平分,,,,,解得,,由对顶角相等得:.(2)解:由(1)可知,,,,由题意,分以下两种情况:①如图,当点在的上方时,则;②如图,当点在的下方时,则;综上,的度数为或.【点睛】本题考查了与角平分线有关的计算、对顶角相等、一元一次方程的应用,较难的是题(2),正确分两种情况讨论是解题关键.20.如图,已知直线上的点M,N,E满足,的平分线交于G,作射线.(1)直线与平行吗?为什么?(2)若,求的度数.【答案】(1)平行,理由见解析(2)【分析】(1)利用已知条件和三角形内角和定理,通过等量代换可得,由同旁内角互补,两直线平行,可得;(2)利用,求出,再利用角平分线的定义求出,再证,利用两直线平行,同旁内角互补,即可求出.(1)解:.理由如下:∵,∴,∴,∵,,∴,∵,,∴,∴;(2)解:∵,∴,∵平分,∴,∵,∴.∴,∴.【点睛】本题考查平行线的判定与性质,角平分线的定义,三角形内角和定理,垂直的定义等,熟练掌握平行线的判定定理和性质定理是解题的关键.五、解答题(每小题9分,共18分)21.如图,,平分,设为,点E是射线上的一个动点.(1)若时,且,求的度数;(2)若点E运动到上方,且满足,,求的值;(3)若,求的度数(用含n和的代数式表示).【答案】(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.【详解】解:(1),,,平分,,,又,;(2)根据题意画图,如图1所示,,,,,,,又平分,,;(3)①如图2所示,,,平分,,,又,,,解得;②如图3所示,,,平分,,,又,,,解得.综上的度数为或.【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.22.如图,,在的右侧,平分,平分,所在直线交于点,.(1)若,求的度数;(2)将线段沿方向平移,使得点在点的右侧,其他条件不变,若,求的度数.【答案】(1)65°;(2)20°或160°【分析】1)作,如图1,利用角平分线的定义得到,,利用平行线的性质得到,,从而得到的度数;(2)作,如图2,利用角平分线的定义得到,,利用平行线的性质得到,,从而得到的度数;如图3,利用得到,然后根据三角形外角性质可计算出.【详解】解:(1)作,如图1,平分,平分,,,,,,,;(2)作,如图2,平分,平分,,,,,,,.如图3,平分,平分,,,,,,.如图4,平分,平分,,,,,,而,.综上所述,的度数为或.【点睛】本题考查了平移的性质:解题的关键是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.也考查了平行线的性质.六、解答题(本大题共12分)23.(2022秋·贵州黔西·七年级校考阶段练习)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.【答案】(1)见解析;(2)见解析;(3)60°【分析】(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M作MR∥AB,可得AB∥CD∥MR.进而可以证明;(3)如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,过点H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,进而可得结论.【详解】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【点睛】本题考查了平行线的判定与性质,对顶角的性质,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.。

人教版七年级数学下册培优好卷:第5章《相交线与平行线》 含答案

人教版七年级数学下册培优好卷:第5章《相交线与平行线》   含答案

2021年人教版七年级数学下册培优好卷:第5章《相交线与平行线》一.选择题1.若两条直线被第三条直线所截,有一对同位角相等,则其中一对同旁内角的角平分线()A.互相垂直B.互相平行C.相交或平行D.不相等2.下列命题中,是真命题的有()①同位角相等;①对顶角相等;①同一平面内,如果直线l1①l2,直线l2①l3,那么l1①l3;①同一平面内,如果直线l1①l2,直线l2①l3,那么l1①l3.A.0个B.1个C.2个D.3个3.如图,直线AB①DE,AB与DF相交于点C,CE①DF,①FCB=33°,则①E的度数是()A.33°B.47°C.53°D.57°4.如图,①1=①2,AC平分①DAB,且①D:①DAB=2:1,则①D的度数是()A.120°B.130°C.140°D.150°5.如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm6.如图,把一张上下两边平行的纸条沿EF折叠,若①2=132°,则①1的度数为()A.48°B.84°C.24°D.96°7.如图,AB①DE,那么①BCD=()A.180°+①1﹣①2B.①1+①2C.①2﹣①1D.180°+①2﹣2①18.如图,①BCD=90°,AB①DE,若①a=40°,则①β的大小为()A.40°B.50C.130°D.140°二.填空题9.“等角的补角相等”的条件是,结论是.10.如图,直线AB,CD相交于点O,EO①AB,垂足为点O,若①AOD=132°,则①EOC =°.11.如图,①1和①3是直线和被直线所截而成的角;图中与①2是同旁内角的角有个.12.如图,若①1=①3,①2=60°,则①4的大小为度.13.如图,点E在AC的延长线上,给出四个条件:①①1=①2;①①3=①4:①①A=①DCE;①①D+①ABD=180°.其中能判断AB①CD的有.(填写所有满足条件的序号)14.如图,a①b,①2=95°,①3=150°,则①1的度数是.15.直线AB与射线OC相交于点O,OC①OD于O,若①AOC=60°,则①BOD=度.三.解答题16.如图,在方格纸中,每个小正方形的边长均为1个单位长度.有一个①ABC,它的三个顶点均与小正方形的顶点重合.(1)将①ABC先向右平移3个单位长度,再向下平移1个单位长度得到①A1B1C1.请在方格纸中画出①A1B1C1;(2)求出①A1B1C1的面积.17.如图所示,①B=25°,①D=42°,①BCD=67°,试判断AB和ED的位置关系,并说明理由.18.完成下面的证明:如图,BE平分①ABD,DE平分①BDC,且①α+①β=90°,求证:AB①CD.证明:①BE平分①ABD()①①ABD=2①α ()①DE平分①BDC(已知)①①BDC=()①①ABD+①BDC=2①α+2①β=2(①α+①β)()①①α+①β=90°(已知)①①ABD+①BDC=180°()①AB①CD()19.如图,已知AD①EF,①2=50°.(1)求①3的度数;(2)若①1=①2,问:DG①BA吗?请说明理由;(3)若①1=①2,且①DAG=20°,求①AGD的度数.20.如图,直线CB①OA,①C=①OAB=100°,E、F在CB上,且满足①FOB=①AOB,OE 平分①COF(1)求①EOB的度数;(2)若平行移动AB,那么①OBC:①OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使①OEC=①OBA?若存在,求出其度数;若不存在,说明理由.参考答案一.选择题1.解:如图,①①APE=①CQE,①AB①CD,①①BPQ+①DQP=180°,①PM平分①BPQ,QN平分①DQP,①①BPQ=2①MPQ,①DQP=2①NQP,①①MPQ+①NQP=90°,①①POQ=90°,即PM①QN,故选:A.2.解:①两直线平行,同位角相等,原命题是假命题;①对顶角相等,是真命题;①同一平面内,如果直线l1①l2,直线l2①l3,那么l1①l3;是真命题;①同一平面内,如果直线l1①l2,直线l2①l3,那么l1①l3.是真命题;故选:D.3.解:①AB①DE,①FCB=33°,①①D=①FCB=33°,又①CE①DF,①①DCE=90°,①①D+①E=90°,则①E=90°﹣①D=57°,故选:D.4.解:①AC平分①DAB,①①1=①CAB,①①1=①2,①①CAB=①2,①DC①AB,①①D+①DAB=180°,又①①D:①DAB=2:1,①①D=180°×=120°,故选:A.5.解:①①ABE的周长=AB+BE+AE=10(cm),由平移的性质可知,BC=AD=EF=1(cm),AE=DF,①四边形ABFD的周长=AB+BE+EF+DF+AD=10+1+1=12(cm).故选:A.6.解:①一张上下两边平行的纸条沿EF折叠,①①1=180°﹣2(180°﹣132°)=84°.故选:B.7.解:过点C作CF①AB,如图:①AB①DE,①AB①DE①CF,①①BCF=①1①,①2+①DCF=180°①,①①+①得,①BCF+①DCF+①2=①1+180°,即①BCD=180°+①1﹣①2.故选:A.8.解:过C作CF①AB,①AB①DE,①AB①CF①DE,①①1=①α=40°,①2=180°﹣①β,①①BCD=90°,①①1+①2=40°+180°﹣①β=90°,①①β=130°.故选:C.二.填空题9.解:等角的补角相等的条件是如果两个角都是某一个角的补角,结论是这两个角相等.故答案为两个角都是某一个角的补角,这两个角相等.10.解:①①AOD=132°,①①COB=132°,①EO①AB,①①EOB=90°,①①COE=132°﹣90°=42°,故答案为:42.11.解:①1和①3是直线AB和AC被直线DE所截而成的内错角;图中与①2 是同旁内角的角有①6、①5、①7,共3个,故答案为:AB、AC、DE、内错,3.12.解:①①1=①3,①AB①CD,①①2=①5,①①2=60°,①①5=60°,①①4=180°﹣①5=120°,故答案为:120.13.解:①①①1=①2,①AB①BC,根据内错角相等,两直线平行即可证得AB①BC;①①3=①4,根据内错角相等,两直线平行即可证得BD①AC,不能证AB①CD;①①A=①DCE,根据同位角相等,两直线平行即可证得AB①CD;①①D+①ABD=180°,根据同旁内角互补,两直线平行,即可证得AB①CD.故答案为:①①①.14.解:过点C作CD①a,①a①b,①CD①a①b,①①1+①ECD=180°,①3+①DCF=180°,①①2=95°,①3=150°,①①1+①2+①3=360°,①①1=360°﹣①2﹣①3=360°﹣150°﹣95°=115°,故答案为:115°.15.解:根据题意画图如下,情况一:如图1,①OC①OD,①AOC=60°,①①AOD=①COD﹣①AOC=90﹣60°=30°,①①COD=180°﹣①AOD=180°﹣30°=150°;情况二:如图2,①OC①OD,①AOC=60°,①①AOD=①COD+①AOC=90°+60°=150°,①①COD=180°﹣①AOD=180°﹣150°=30°,故答案为:150或30.三.解答题16.解:(1)如图,①A1B1C1即为所求.(2)=2×4﹣×1×2﹣×1×4﹣×2×2=8﹣1﹣2﹣2=3.17.解:AB①ED,理由:如图,过C作CF①AB,①①B=25°,①①BCF=①B=25°,①①DCF=①BCD﹣①BCF=42°,又①①D=42°,①①DCF=①D,①CF①ED,①AB①ED.18.证明:BE平分①ABD(已知),①①ABD=2①α(角平分线的定义).①DE平分①BDC(已知),①①BDC=2①β (角平分线的定义)①①ABD+①BDC=2①α+2①β=2(①α+①β)(等量代换)①①α+①β=90°(已知),①①ABD+①BDC=180°(等量代换).①AB①CD(同旁内角互补,两直线平行).故答案为:已知,角平分线的定义,2①β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.19.解:(1)①AD①EF,①①3=①2=50°;(2)DG①BA,理由如下:①①1=①2,①3=①2,①①3=①1,①DG①BA;(3)①①1=①2=50°,①3=①2,①①3=①1=50°,①DG①BA,①①AGD=①CAB,①①CAB=①DAG+①3=20°+50°=70°,①①AGD=①CAB=70°.20.解:(1)①CB①OA,①①AOC=180°﹣①C=180°﹣100°=80°,①OE平分①COF,①①COE=①EOF,①①FOB=①AOB,①①EOB=①EOF+①FOB=①AOC=×80°=40°;(2)①CB①OA,①①AOB=①OBC,①①FOB=①AOB,①①FOB=①OBC,①①OFC=①FOB+①OBC=2①OBC,①①OBC:①OFC=1:2,是定值;(3)在①COE和①AOB中,①①OEC=①OBA,①C=①OAB,①①COE=①AOB,①OB、OE、OF是①AOC的四等分线,①①COE=①AOC=×80°=20°,①①OEC=180°﹣①C﹣①COE=180°﹣100°﹣20°=60°,故存在某种情况,使①OEC=①OBA,此时①OEC=①OBA=60°.。

七下数学大培优参考答案

七下数学大培优参考答案

七下数学大培优参考答案七下数学大培优参考答案数学作为一门学科,对于学生来说是一个既令人头疼又充满挑战的科目。

而七年级下册的数学课本更是如此,其中的一些题目难度较大,需要学生进行深入思考和分析。

为了帮助学生更好地理解和掌握课本知识,以下是一些七下数学大培优题的参考答案。

一、有理数的运算1. 计算下列各式的值:a) $(-3)^2 + (-5) \times (-2)$答案:$(-3)^2 + (-5) \times (-2) = 9 + 10 = 19$b) $(-4) \times (-3) + 6 \times (-2)$答案:$(-4) \times (-3) + 6 \times (-2) = 12 + (-12) = 0$c) $(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right)$答案:$(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right) = -\frac{7}{2} + \frac{3}{4} = -\frac{11}{4}$二、代数式与方程1. 化简下列各式:a) $3x + 2x - 5x + 4x$答案:$3x + 2x - 5x + 4x = 4x$b) $2a - 3b + 4a + b - 5a + 2b$答案:$2a - 3b + 4a + b - 5a + 2b = a$2. 解方程:a) $2x - 3 = 7$答案:$2x - 3 = 7 \Rightarrow 2x = 10 \Rightarrow x = 5$ b) $3y + 5 = 2y - 1$答案:$3y + 5 = 2y - 1 \Rightarrow y = -6$三、图形的认识1. 计算下列各图形的面积:a) 长方形,长为5cm,宽为3cm答案:面积 = 长× 宽= 5cm × 3cm = 15cm²b) 正方形,边长为8cm答案:面积 = 边长× 边长= 8cm × 8cm = 64cm²c) 圆形,半径为6cm答案:面积= π × 半径² = 3.14 × 6cm × 6cm ≈ 113.04cm²四、概率与统计1. 求下列各组数的平均数:a) 75, 80, 85, 90, 95答案:平均数= (75 + 80 + 85 + 90 + 95) ÷ 5 = 85b) 2, 4, 6, 8, 10答案:平均数= (2 + 4 + 6 + 8 + 10) ÷ 5 = 62. 求下列各组数的众数:a) 3, 5, 2, 5, 7, 5答案:众数 = 5b) 9, 8, 7, 6, 5, 4, 3, 2, 1答案:众数 = 没有众数以上是一些七下数学大培优题的参考答案。

最新北师大版七年级下册数学培优训练阶段专项提升练五 等腰三角形“三线合一”的综合运用

最新北师大版七年级下册数学培优训练阶段专项提升练五 等腰三角形“三线合一”的综合运用

阶段专项提升练五等腰三角形“三线合一”的综合运用·类型一利用“三线合一”求角的度数【典例1】(2021·宁德期末)如图,在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.【解析】∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=130°,∴∠CDE=50°,∴∠DCE=90°-∠CDE=40°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=80°.又∵AB=AC,∴∠B=∠ACB=80°,∴∠BAC=180°-(∠B+∠ACB)=20°.【变式1】如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,CE平分∠BCA交AB于点E,AD,CE相交于点F,则∠CF A的度数是(C)A.100°B.105°C.110°D.120°【变式2】如图,△ABC中,AB=AC,∠BAC=50°,AD是中线,BE⊥AC,垂足为E,AD与BE交于点F,则∠BF A=__115°__.【变式3】如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.则∠3=__22.5__°.【变式4】在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=________(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=________(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:________(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.【解析】见全解全析·类型二利用“三线合一”求线段的长度【典例2】如图,等腰三角形ABC底边BC的长为4 cm,面积是12 cm2,D为BC边上的中点,腰AB的垂直平分线EF交AD于M,交AC于点F,则BM+DM的值为__6__cm.【变式1】如图,AD是等腰直角三角形ABC的顶角平分线,AD=4,则CD等于(B)A.8 B.4 C.3 D.2【变式2】如图,△ABC中,点D为BC边上的一点,且BD=BA,连接AD,BP平分∠ABC交AD于点P,连接PC,若△ABC面积为2 cm2,则△BPC的面积为(B)A.0.5 cm2B.1 cm2C.1.5 cm2D.2 cm2【变式3】如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E,BF⊥AC 于点F,DE=2,则BF的长为(B)A.3 B.4 C.5 D.6【变式4】如图,△ABC中,AB=AC,∠1=∠2,BC=6 cm,那么BD的长__3__cm.·类型三利用“三线合一”证明线段相等【典例3】如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E,F.请用两种方法证明:DE=DF.【证明】连接AD,∵∠B=∠C,∴AB=AC.∵D是BC的中点,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF.【变式1】如图,在△ABC中,AB=AC,∠BAC的平分线AD与∠ABC的平分线BG相交于点E,过点E向AB边作垂线EF,DE与EF相等吗?说明你的理由.【解析】见全解全析【变式2】如图,在△ABC中,AB=AC,D是边BC的中点,连接AD,点E是BC延长线上一点,CF平分∠ACE,连接AF,且AF=AC.(1)若∠CAD=36°,求∠B的度数;(2)求证:AF∥BE.【解析】见全解全析。

七年级初中数学培优试卷

七年级初中数学培优试卷

一、选择题(每题3分,共30分)1. 下列数中,是正数的是:A. -2B. 0C. 1/3D. -52. 下列代数式中,正确的是:A. 3x + 2 = 5B. 2(x + 3) = 8C. 4x - 2 = 10D. 5x + 6 = 03. 下列图形中,是平行四边形的是:A. 矩形B. 正方形C. 等腰三角形D. 等边三角形4. 下列等式中,正确的是:A. a + b = cB. a - b = cC. a × b = cD. a ÷ b = c5. 下列数中,是偶数的是:A. 7B. 10C. 11D. 136. 下列图形中,对边相等的是:A. 梯形B. 平行四边形C. 等腰三角形D. 等边三角形7. 下列代数式中,正确的是:A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²8. 下列数中,是质数的是:A. 2B. 3C. 4D. 59. 下列图形中,是圆的是:A. 矩形B. 圆形C. 三角形D. 正方形10. 下列数中,是整数的是:A. 2.5B. 3C. 2.75D. 4.5二、填空题(每题5分,共25分)11. 若a = 5,b = -3,则a + b = _______。

12. 若a = 4,b = 2,则2a - b = _______。

13. 若一个长方形的周长是24厘米,宽是4厘米,则其长是 _______厘米。

14. 若一个圆的半径是5厘米,则其直径是 _______厘米。

15. 若一个三角形的底是6厘米,高是4厘米,则其面积是 _______平方厘米。

三、解答题(每题10分,共30分)16. 解方程:3x - 4 = 11。

2020-2021学年七年级数学下册尖子生同步培优题典 专题5

2020-2021学年七年级数学下册尖子生同步培优题典 专题5

专题5.2探索轴对称的性质姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•铜梁区校级期中)如图,在△ABC中,将△ABC沿直线m翻折,点B落在点D的位置,若∠B=30°,∠2=25°,则∠1的度数是()A.55°B.65°C.75°D.85°【分析】设直线m交AB于点E,交BC于点F,利用折叠的性质可得出∠BEF=∠DEF,∠BFE=∠DFE,∠D=∠B=30°,由邻补角互补及∠2的度数,可求出∠DFE的度数,在△DEF中利用三角形内角和定理可求出∠DEF的度数,再结合∠BEF+∠DEF+∠1=180°,即可求出∠1的度数.【解析】设直线m交AB于点E,交BC于点F,如图所示.由折叠可知:∠BEF=∠DEF,∠BFE=∠DFE,∠D=∠B=30°.∵∠BFE+∠CFE=180°,∠DFE=∠CFE+∠2=∠CFE+25°,∴∠DFE(∠BFE+∠CFE+∠2)(180°+25°)=102.5°,∴∠DEF=180°﹣∠D﹣∠DFE=180°﹣30°﹣102.5°=47.5°.又∵∠BEF+∠DEF+∠1=180°,∴∠1=180°﹣∠BEF﹣∠DEF=180°﹣2×47.5°=85°.故选:D.2.(2020秋•天河区期中)如图,若△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O.则下列说法中不一定正确的是()A.∠ABC=∠A'B'C′B.AA'⊥MNC.AB∥A′B′D.BO=B′O【分析】根据轴对称的性质解决问题即可.【解析】∵△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O,∴△ABC≌△A'B'C′,AA′⊥MN,OB=OB′∴∠ABC=∠A′B′C′,故A,B,D正确,故选:C.3.(2020秋•玄武区期中)如图,△ABC和△AB'C'关于直线l对称,l交CC'于点D,若AB=4,B'C'=2,CD=0.5,则五边形ABCC′B'的周长为()A.14 B.13 C.12 D.11【分析】直接利用轴对称的性质得出AB=AB′,BC=B′C′,DC=DC′,再用周长公式即可得出答案.【解析】∵△ABC和△AB'C'关于直线l对称,l交CC'于点D,∴AB=AB′,BC=B′C′,DC=DC′,∵AB=4,B'C'=2,CD=0.5,∴AB′=4,BC=2,DC′=0.5,∴五边形ABCC′B'的周长为:4+2+0.5+0.5+2+4=13.故选:B.4.(2020春•招远市期末)如图,将一张长方形纸片ABCD沿AE折叠,若∠BAD'=28°,则∠AED'等于()A.28°B.59°C.66°D.68°【分析】根据折叠可得∠D′=∠D=90°,∠DAE=∠D′AE∠DAD′(90°﹣28°)=31°,进而根据直角三角形的性质可以求解.【解析】根据折叠可知:∠D′=∠D=90°,∠D′AE∠DAD′(90°﹣28°)=31°,∴∠AED′=90°﹣31°=59°.故选:B.5.(2020春•郫都区期末)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解析】∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.6.(2020春•双阳区期末)如图,正方形的边长为2,则图中阴影部分的面积为()A.2 B.4 C.8 D.无法确定【分析】正方形是轴对称图形,根据对称性可以将图形中带阴影的图形面积等于正方形面积的一半,进而得出答案.【解析】如图所示:图中阴影部分的面积为正方形面积一半:22=2.故选:A.7.(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解析】∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.8.(2020•天河区一模)如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE=4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm【分析】由折叠的性质得AD=BD,BE=AE=4,△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD ﹣AD=AB,即可得出结果.【解析】∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,BE=AE=4,∴AB=BE+AE=4+4=8,∴△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD﹣AD=AB+BD﹣AD=AB=8(cm),故选:C.9.(2020春•丹阳市期末)△ABC中,∠BAC>∠B,∠C=50°,将∠B折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.40°或25°B.25°或32.5°C.40°或25°或32.5°D.65°或80°或50°【分析】分三种情形分别求解即可.【解析】当∠APC=∠C=50°时,∵∠B=∠P AB,∠APC=∠B+∠P AB=50°,∴∠B=25°,当∠P AC=∠C=50°时,∠APC=180°﹣50°﹣50°=80°,∴∠B∠APC=40°,当∠CAP=∠CP A(180°﹣50°)=65°时,∠B∠CP A=32.5°,故选:C.10.(2020•台安县一模)如图,点P是∠AOB内任意一点,OP=8cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是8cm,则∠AOB的度数是()A.30°B.40°C.50°D.60°【分析】分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解析】分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB∠COD,∵△PMN周长的最小值是8cm,∴PM+PN+MN=8,∴DM+CN+MN=8,即CD=8=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•白云区期末)如图,把一张长方形的纸沿对角线折叠,请写出一对相等的锐角:∠ADB=∠CBD或∠EBD=∠CBD或∠ADB=∠EBD(不增加字母,写出一对符合条件的角即可).【分析】由平行线的性质得出∠ADB=∠CBD,由折叠的性质得∠EBD=∠CBD,则可得出答案.【解析】∵四边形ABCD是长方形,∴AD∥BC,∴∠ADB=∠CBD,由折叠的性质得:∠EBD=∠CBD,∴∠ADB=∠EBD,故答案为:∠ADB=∠CBD或∠EBD=∠CBD或∠ADB=∠EBD.12.(2020秋•南关区校级期末)如图,三角形纸片ABC中∠A=80°,∠B=60°,将纸片一角折叠,使点C落在△ABC的内部C′处,若∠2=38°,则∠1=42°.【分析】首先证明∠1+∠2=2∠C,利用这个结论解决问题即可.【解析】设折痕为EF,连接CC′.∵∠2=∠ECC′+∠EC′C,∠1=∠FCC′+∠FC′C,∠ECF=∠EC′F,∴∠1+∠2=2∠ECF,∵∠C=180°﹣∠A﹣∠B=180°﹣80°﹣60°=40°,∴∠1=80°﹣38°=42°,故答案为:42°.13.(2020秋•中山区期末)如图,三角形纸片ABC中,∠ACB=90°,在BC边上取一点P,沿AP折叠,使点B与AC延长线上的点D重合,∠CPD=40°,则∠P AC=20°.【分析】由折叠的性质是出∠DAP=∠BAP,∠D=∠B,求出∠B=50°,则可得出答案.【解析】∵△APB沿AP折叠,∴∠DAP=∠BAP,∠D=∠B,∵∠CPD=40°,∠ACB=90°,∴∠D=∠ACB﹣∠CPD=90°﹣40°=50°,∴∠B=50°,∴∠DAB=90°﹣∠B=90°﹣50°=40°,∴∠P AC∠DAB40°=20°.故答案为:20.14.(2020秋•盐都区期末)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为100度.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解析】∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故答案为:100.15.(2020秋•大武口区期末)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为 4.5cm.【分析】由轴对称的性质可知:PM=MQ,PN=RN,先求得QN的长度,然后根据QR=QN+NR即可求得QR的长度.【解析】由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.16.(2020秋•淮南期末)如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为100°.【分析】如图,由三角形内角和定理求出∠B+∠C=40°;证明∠ADE+∠AED=2(α+β)=80°,即可解决问题.【解析】如图,∵∠BAC=140°,∴∠B+∠C=180°﹣140°=40°;由题意得:∠B=∠DAB(设为α),∠C=∠EAC(设为β),∴∠ADE=2α,∠AED=2β,∴∠DAE=180°﹣2(α+β)=180°﹣80°=100°,故答案为100°.17.(2020秋•南岗区校级月考)如图,∠AOB=30°,P1、P2两点关于边OA对称,P2、P3两点关于边OB 对称,若OP2=3,则线段P1P3=3.【分析】如图,连接OP1,OP2.证明△OP1P3是等边三角形即可.【解析】如图,连接OP1,OP2.∵P1、P2两点关于边OA对称,P2、P3两点关于边OB对称,∴OP2=OP1=OP3=3,∠AOP2=∠AOP2,∠BOP2=∠BOP3,∵∠AOB=30°,∴∠P1OP3=2∠AOB=60°,∴△P1OP3是等边三角形,∴P1P3=OP1=3,故答案为:3.18.(2020秋•讷河市期末)如图∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是15.【分析】根据题意画出符合条件的图形,求出OD=OE=OP,∠DOE=60°,得出等边三角形DOE,求出DE=5,求出△PMN的周长=DE,即可求出答案.【解析】作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB于N,连接PM,PN,则此时△PMN的周长最小,连接OD,OE,∵P、D关于OA对称,∴OD=OP,PM=DM,同理OE=OP,PN=EN,∴OD=OE=OP=15,∵P、D关于OA对称,∴OA⊥PD,∵OD=OP,∴∠DOA=∠POA,同理∠POB=∠EOB,∴∠DOE=2∠AOB=2×30°═60°,∵OD=OE=15,∴△DOE是等边三角形,∴DE=15,即△PMN的周长是PM+MN+PN=DM+MN+EN=DE=15,故答案为15.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•延边州期末)如图,把直角三角形放置4×4方格纸上,三角形的顶点都在格点上.在方格纸上用三种不同的方法画出与已知三角形成轴对称的三角形.(要求:画出的三角形的顶点都在格点上,不涂黑)【分析】直接利用轴对称图形的性质进而得出符合题意的答案即可.【解析】如图1,2,3所示,即为所求;.20.(2020春•江阴市期末)如图,直角三角形纸片ABC中,∠C=90°,将纸片沿EF折叠,使得A点落在BC上点D处,连接DE,DF.△CDE中有两个内角相等.(1)若∠A=50°,求∠BDF的度数;(2)若△BDF中也有两个内角相等,求∠B的度数.【分析】(1)依据∠C=90°,且△CDE中有两个内角相等,可得∠CED=∠CDE=45°,再根据折叠的性质,即可得到∠BDF的度数;(2)设∠EDF=∠EAF=x°,即可得到∠BDF=180°﹣45°﹣x°=(135﹣x)°,∠B=(90﹣x)°,∠BFD=180°﹣(135﹣x)°﹣(90﹣x)°=(2x﹣45)°,再分三种情况讨论,即可得到∠B的度数可能为45°或30°.【解析】(1)∵∠C=90°,且△CDE中有两个内角相等,∴∠CED=∠CDE=45°,∵△EDF是由△EAF翻折得到,∠A=50°,∴∠EDF=∠A=50°,∴∠BDF=180°﹣∠CDE﹣∠EDF=180°﹣45°﹣50°=85°;(2)设∠EDF=∠EAF=x°,∴∠BDF=180°﹣45°﹣x°=(135﹣x)°,∠B=(90﹣x)°,∴∠BFD=180°﹣(135﹣x)°﹣(90﹣x)°=(2x﹣45)°,∵△BDF中有两个内角相等,可分三种情况讨论:①当∠BDF=∠B时,令135﹣x=90﹣x,则方程无解,∴此情况不成立,舍去;②当∠BFD=∠B时,令2x﹣45=90﹣x,解得x=45,∴∠B=90°﹣45°=45°;③当∠BFD=∠BDF时,令2x﹣45=135﹣x,解得x=60,∴∠B=90°﹣60°=30°,综上所述,若△BDF中也有两个内角相等,则∠B的度数可能为45°或30°.21.(2020秋•肇源县期末)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为多少.【分析】根据轴对称的性质得到OA垂直平分PQ,OB垂直平分PR,则利用线段垂直平分线的性质得QM=PM=2.5cm,RN=PN=3cm,然后计算QN,再计算QN+RN即可.【解析】QR=4.5cm,理由如下:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR.∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,NQ=MN﹣MQ=4﹣2.5=1.5(cm).∴QR=RN+NQ=3+1.5=4.5(cm).22.(2020秋•洮北区期末)如图,点P关于OA、OB轴对称的对称点分别为C、D,连结CD,交OA于M,交OB于N.(1)若CD的长为18厘米,求△PMN的周长;(2)若∠C=21°,∠D=28°,求∠MPN的度数.【分析】(1)直接利用轴对称图形的性质进而得出对应线段关系即可得出答案;(2)直接利用轴对称图形的性质进而得出对应角关系即可得出答案.【解析】(1)∵点P关于OA,OB的轴对称点分别为C、D,连接CD,交OA于M,交OB于N,∴PM=CM,ND=NP,∵△PMN的周长=PN+PM+MN,PN+PM+MN=CD=18cm,∴△PMN的周长为:18cm;(2))∵P关于OA、OB的对称,∴OA垂直平分PC,OB垂直平分PD,∴CM=PM,PN=DN,∴∠C=∠MPC,∠D=∠NPD,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∠CPD+∠O=180°,∵∠D+∠C+∠CPD=180°,∴∠C+∠D=∠O=49°,∴∠MPN=180°﹣49°×2=82°.23.(2020秋•西陵区校级期中)如图的三角形纸板中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB边的点E处,折痕为BD.(1)求△AED的周长;(2)若∠C=100°,∠A=50°,求∠BDE的度数.(1)先根据折叠的性质可得BE=BC,DE=CD,再求出AE的长,然后求出△ADE的周长=AC+AE,【分析】即可得出答案;(2)由折叠的性质可得∠C=∠DEB=100°,∠BDE=∠CDB,由三角形的外角性质可得∠ADE=50°,即可求解.【解析】(1)由折叠的性质得:BE=BC=6cm,DE=DC,∴AE=AB﹣BE=AB﹣BC=8﹣6=2(cm),∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+AE=5+2=7(cm);(2)由折叠的性质得∠C=∠DEB=100°,∠BDE=∠CDB,∵∠DEB=∠A+∠ADE,∴∠ADE=100°﹣50°=50°,∴∠BDE=∠CDB65°.24.(2020秋•和平区期中)在△ABC中,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC 所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E.(1)如图①,求∠ACD,∠E的大小;(2)如图②,连接BE,求证AB⊥BE.【分析】(1)由三角形内角和定理可求∠ACB=120°,由折叠的性质可得∠B=∠ADC=45°,∠CAD =∠BAC=15°,∠ACB=∠ACD=120°,由三角形的外角性质可求解;(2)由周角的性质可得∠BCE=120°=∠ACB,由“SAS”可证△ABC≌△EBC,可得∠ABC=∠EBC =45°,可得结论.【解析】(1)∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠B=∠ADC=45°,∠CAD=∠BAC=15°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC=15°,∴∠E=∠ADC﹣∠DAE=30°;(2)∵∠CAE=∠CAD+∠DAE=30°,∴∠E=∠CAE=30°,∴AC=CE,∵∠ACB=∠ACD=120°,∴∠BCE=120°=∠ACB,在△ABC和△EBC中,,∴△ABC≌△EBC(SAS),∴∠ABC=∠EBC=45°,∴∠ABE=90°,∴AB⊥BE.。

衡水中学七年级数学下册第五章《相交线与平行线》经典测试题(培优练)

衡水中学七年级数学下册第五章《相交线与平行线》经典测试题(培优练)

一、选择题1.下列说法不正确的是( )A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行D解析:D【分析】根据平行线的概念对选项A 进行判断;根据平行线的性质对选项B 进行判断; 根据平行线的公理和判定定理对选项C 和D 进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A 正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B 选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C 正确;D. 同旁内角互补,两直线平行,所以选项D 错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.2.下列语句不是命题的是( ).A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等B 解析:B【分析】根据“判断一件事情的语句叫做命题”进行判断即可得到答案.【详解】解:A 、两直线平行,同位角相等,是命题,不符合题意;B 、作直线AB 垂直于直线CD 是描述了一种作图的过程,故不是命题,符合题意;C 、正确,是判断语句,不符合题意;D 、正确,是判断语句,不符合题意.故选:B .【点睛】主要考查了命题的概念.判断一件事情的语句叫做命题.3.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.4.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C 解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.5.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°C解析:C【解析】分析:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC ﹣∠1=25°.∵GH ∥EF ,∴∠2=∠AEC=25°.故选C.7.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质8.如图所示,已知 AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.如图,将△ABE向右平移50px得到△DCF,如果△ABE的周长是400px(1px=0.04cm),那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm C解析:C【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm,∴50px=2cm,400px=16cm,∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF.∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.下列各命题中,原命题成立,而它逆命题不成立的是()A.平行四边形的两组对边分别平行B.矩形的对角线相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.二、填空题11.如图,已知点O是直线AB上一点,过点O作射线OC,使∠AOC=110°.现将射线OA 绕点O以每秒10°的速度顺时针旋转一周.设运动时间为t秒.当射线OA、射线OB、射线OC中有两条互相垂直时,此时t的值为__________.920或27【分析】分4种情况确定垂直关系可得OA的旋转角度从而可求出t的值【详解】解:①当射线OA绕点O顺时针旋转20°时如图1则∠COA=110°-20°=90°故OA⊥OC此时t=20°÷10解析:9、20或27【分析】分4种情况确定垂直关系,可得OA的旋转角度,从而可求出t的值.【详解】解:①当射线OA绕点O顺时针旋转20°时,如图1,则∠COA=110°-20°=90°,故OA⊥OC,此时,t=20°÷10°=2;②当射线OA绕点O顺时针旋转90°时,如图2,则∠AOB=180°-90°=90°,故OA⊥OB,此时,t=90°÷10°=9;③当射线OA绕点O顺时针旋转200°时,如图3,则∠COA=200°-110°=90°,故OA ⊥OC ,此时,t=200°÷10°=20;④当射线OA 绕点O 顺时针旋转270°时,如图4,则∠BOA=270°-180°=90°,故OA ⊥OB ,此时,t=270°÷10°=27,故答案为:2,9,20或27.【点睛】本题主要考查了角的有关计算,注意在分类讨论时要做到不重不漏.12.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.13.在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________;45°或135°【分析】根据垂直关系可得∠AOC=90°再由∠AOC :∠AOB=2:3可得∠AOB 然后再分两种情况进行计算即可【详解】解:如图∠AOC 的位置有两种:一种是∠AOC 在∠AOB 内一种是在解析:45°或135°【分析】根据垂直关系可得∠AOC=90°,再由∠AOC:∠AOB=2:3,可得∠AOB,然后再分两种情况进行计算即可.【详解】解:如图,∠AOC的位置有两种:一种是∠AOC在∠AOB内,一种是在∠AOB外.∵OA⊥OC,∴∠AOC=90°,①当∠AOC在∠AOB内,如图1,∵∠AOC:∠AOB=2:3,∠AOC=45°,∴∠BOC=12②当∠AOC在∠AOB外,如图2,∵∠AOC:∠AOB=2:3,∠AOC=135°,∴∠AOB=32∴∠BOC=360°-∠AOB-∠AOC=135°.故答案为:45°或135°.【点睛】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.14.过直线AB上一点O作射线OC、OD,使OC⊥OD,当∠AOC=50°时,则∠BOD的度数__.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.【详解】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=50°时,∠BOD=180°-50°-90°=40°;如图2,当∠AOC =50°时,∠AOD=90°-50°=40°,此时,∠BOD =180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.15.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC ;图中当时CE//AB 图中当时DE//BC 故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题 解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.16.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .(1)3555;(2)与【分析】(1)由可得所以所以已知的度数即可得出与的度数;(2)由(1)可得的余角是与要求的补角即要求的补角的补角是【详解】(1);(2)由(1)可得的余角是与的补角是的补角是解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 17.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC 是直角即可得出结果【详解】解:如图所示∵a ∥b ∴∠1+∠3=180°则∠3=180°-∠1∵b ∥c ∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a ∥b ,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.18.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是________平方米.79【分析】可以根据平移的性质此小路相当于一条横向长为50米与一条纵向长为30米的小路道路的面积=横纵小路的面积-小路交叉处的面积计算即可【详解】由题意可得道路的面积为:(30+50)×1−1=79解析:79【分析】可以根据平移的性质,此小路相当于一条横向长为50米与一条纵向长为30米的小路,道路的面积=横纵小路的面积-小路交叉处的面积,计算即可.【详解】由题意可得,道路的面积为:(30+50)×1−1=79(m2).故答案为79.【点睛】此题考查生活中的平移现象,解题关键在于掌握运算公式.19.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.60或120【分析】根据题意分两种情况如图所示(见解析)再分别根据平行线的性质即可得【详解】由题意分以下两种情况:(1)如图1(两直线平行同位角相等)(两直线平行内错角相等);(2)如图2(两直线平解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//∴=∠=PDB∠︒(两直线平行,同位角相等),AOB60∴=∠=∠︒(两直线平行,内错角相等);PDB60CPD(2)如图2,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),180120C P B P D D ∠=︒-∴∠=︒(两直线平行,同旁内角互补);综上,CPD ∠的度数为60︒或120︒,故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.解析:(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒,∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠,∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】 本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.22.在一张地图上有、、A B C 三地,但地图被墨迹污染,C 地具体位置看不清楚,但知道C 地在A 地的北偏东30°方向,在B 地南偏东45°方向.(1)根据以上条件,在地图上画出C 地的位置;(2)直接写出ACB ∠的度数.解析:(1)见详解;(2)105°.【分析】 (1)过点A 、B 作正北方向,再据方位角的含义画射线BX 和AY ,两射线之交点即是C 地;(2)记过点A 的正北方向线与射线BX 之交点为D ,先求得∠CDA 的度数,最后由三角形内角和为180°计算得∠ACB 的度数.【详解】(1)如下图,第一步过B 作m 的平行线BS ,以B 为顶点作射线BX ,使∠SBX=45°; 第二步过A 作m 的平行线AN 交BX 于点D ,以A 为顶点作射线AY ,使∠NAY=30°; 则射线BX 与射线AY 的交点就是C 地.(2)如上图,由C地在B地南偏东45°方向得∠SBX=45°∵SB∥m,AN∥m∴SB∥AN∴∠ADC=∠SBX=45°由C地在A地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.23.请将下列题目的证明过程补充完整:⊥于点如图,F是BC上一点,FG AC于点,G H是AB上一点,HE ACE∠=∠,,12DE BC.求证://证明:连接EF.∴⊥⊥,FG AC HE AC,∴∠=∠=.FGC HEC︒90FG∴_______().//∴∠=∠_______().3∠=∠,又12=∠+∠,∴______24=∠.即∠_________EFC∴(___________).//DE BC解析:HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行【分析】∠=∠,再证明∠DEF=∠EFC,再连接EF,根据垂线定义和平行线的判定与性质可证得34根据平行线的性质即可证得结论.【详解】证明:连接EF,⊥⊥,FG AC HE AC∴∠=∠=.90FGC HEC︒FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 24.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.解析:(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.25.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.解析:(1)CD与EF平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.26.如图,∠1=∠2,∠3=∠D,∠4=∠5,运用平行线性质和判定证明:AE∥BF,要求写出具体的性质或判定定理.解析:证明见解析【分析】由∠1=∠2,根据平行线的判定得出AB∥DF,再根据平行线的性质得出∠3=∠BCE,结合已知条件∠3=∠D,得出∠D=∠BCE,进而根据平行线的判定得出AD∥BC,再根据平行线的性质得出∠6=∠5,然后根据等量代换得出∠4=∠6,最后根据平行线的判定得出结论.【详解】证明:∵∠1=∠2,∴AB∥DF(内错角相等,两直线平行),∴∠3=∠BCE,(两直线平行,内错角相等),又∵∠3=∠D,∴∠D=∠BCE,∴AD∥BC,(同位角相等,两直线平行),∴∠6=∠5,(两直线平行,内错角相等),又∵∠4=∠5,∴∠4=∠6,∴AE∥BF(内错角相等,两直线平行).【点睛】本题考查了平行线的判定,关键是根据平行线的判定和性质解答.27.如图,直线AB,CD相交于O,OE⊥CD于O,OF是∠BOE的平分线,∠DOF=25°.求∠AOC的度数.解析:∠AOC =40°.【分析】利用垂直定义结合条件可得∠EOF =65°,然后再利用角平分线定义可得∠BOF =∠EOF =65°,然后再计算∠BOD 的度数,进而可得∠AOC 的度数.【详解】解:∵OE ⊥CD 于O ,∴∠EOD =90°,∵∠DOF =25°,∴∠EOF =65°,∵OF 是∠BOE 的平分线,∴∠BOF =∠EOF =65°,∴∠BOD =65°﹣25°=40°,∴∠AOC =40°.【点睛】此题主要考查了垂线,关键是理清图中角之间和差的关系.28.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.解析:BC ∥DE ;理由见解析【分析】根据角平分线的定义和已知条件可得∠CBE =∠BED ,再根据平行线的判定即得结论.【详解】解:BC ∥DE ;理由如下:因为BE 平分ABC ∠,所以∠ABE =∠CBE ,因为ABE BED ∠=∠,所以∠CBE=∠BED,所以BC∥DE.【点睛】本题考查了角平分线的定义和平行线的判定,属于基础题目,熟练掌握基本知识是解题的关键.。

初一培优数学试题及答案

初一培优数学试题及答案

初一培优数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 120°C. 180°D. 240°答案:A4. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 以上都是答案:D5. 一个三角形的两个内角分别是30°和60°,那么第三个内角的度数是:A. 90°B. 60°C. 30°D. 120°答案:A6. 计算下列表达式的值:(3x - 2) + (2x + 1) =A. 5x - 1B. 5x + 1C. 3x - 1D. 3x + 1答案:B7. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 36答案:C8. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B9. 一个数的倒数是1/2,那么这个数是:A. 2B. -2C. 1/2D. 1答案:A10. 一个数的平方根是4,那么这个数是:A. 4B. -4C. 16D. -16答案:C二、填空题(每题4分,共20分)1. 一个数的立方等于它本身,这个数是_______。

答案:0或1或-12. 如果一个数的绝对值是它本身,那么这个数是_______。

答案:非负数3. 一个数的相反数是它本身,这个数是_______。

答案:04. 一个数的平方等于它本身,这个数是_______。

答案:0或15. 一个数的立方等于它本身,这个数是_______。

答案:0或1或-1三、解答题(每题10分,共50分)1. 计算:(2x + 3)(x - 4) = _______。

浙教版七下数学培优强化训练(五)(含答案)

浙教版七下数学培优强化训练(五)(含答案)

……O PE DCBA 数学培优强化训练(五)1.点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是 ( ) A .AC =BC B .AC +BC= AB C .AB =2ACD .BC =21AB2.下列等式一定成立的是 ( )A .3x+3y=6xyB .16y 2 -7y 2 =9C .-(x -6)=-x+6D .3(x -1)=3x -13.某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体 ( ) A.3块 B.4 块 C.5块D.6块4.已知代数式x+2y 的值是3,则代数式2x+4y+3值是 ( ) A. 9 B. 6 C. 7 D. 不能确定5.如图,甲.乙.丙.丁四人分别面对面坐在一张四方形桌子旁边。

桌上一张纸上写着数字“9”,甲说他看到的是“ 6 ”,乙说他看到的是“ ”,丙说他看到的是“ ”,丁说他看到的是“ 9 ”则下列正确的是 ( ) A.甲在丁的对面,乙在甲的左边,丙在丁的右边 B.丙在乙的对面,丙的左边是甲,右边是丁C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边6.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色地砖_____________块。

7.(本题满分18分)如图,直线AB 与CD 相交于点O , OP 是∠BOC 的平分线,OE ⊥AB ,OF ⊥CD. (1)如果∠AOD =40°①那么根据 ,可得∠BOC = 度。

②那么∠POF 的度数是 度。

(2)图中除直角外,还有相等的角吗?请写出三对: ① ; ② ;③ 。

主 视 图左 视 图俯视图668.(12分)计算:① ()312624-⨯-÷-- ② (1876597+-)()()84182-÷-+⨯9.(12分)① 计算:)3()2()232(323323223y y x x y xy x xy y x x -+-++----②解方程1615312=--+x x10.(本题满分12分)已知关于x 的方程1232=-x a ,在解这个方程时,粗心的小王误将x3-看成了x 3+,从而解得3=x ,请你帮他求出正确的解。

七年级下册数学培优训练题.docx

七年级下册数学培优训练题.docx

七年级数学训练题5姓名:一、选择题 1、若4表示一个整数,则整数 x 可取值共有 ( ).x 1个B.4 个 C.5 个D.6 个2、若 |a|=4 ,|b|=2 ,且 |a+b|=a+b, 那么 a-b 的值只能是 ( ).B.2C.6 或63、下列说法正确的是 ( )A. 两点之间的距离是两点间的线段;B. 同一平面内,过一点有且只有一条直线与已知直线平行;C. 同一平面内,过一点有且只有一条直线与已知直线垂直;D. 与同一条直线垂直的两条直线也垂直 .4、方程 xxx2008 的解是 ()2 2 32008 200915、已知代数式 3x 24x 6 的值为 9 ,那么 x 24 x 6 的值为()A. 1D.336、下列属平移现象的是()A. 山水倒映。

B. 时钟的时针运转。

C. 扩充照片的底片为不同尺寸的照片。

D .人乘电梯上楼。

7、对任意四个有理数 a ,b ,c ,d 定义新运算:ab=ad-bc ,已知2x4 =18,则 x=( )c dx1A. 4B. 3C. 2D. -18. 同时都含有字母 a 、b 、c ,且系数为 1 的 7 次单项式共有( )个(A )4 (B )12 (C )15 (D )259. 若单项式 2a x b 5 x 和 32 a 2b 3 x 的次数相同,则 x 的整数值等于( )(A )1 (B )-1 (C ) 1(D ) 1以外的数10. 乘积 (112 )(112 )L(112 )(112 ) 等于()23910A . 5B.111 . 712220 10二、填空题1. 钟表上 7 点 20 分,时针与分针的夹角为.°.2. 如右图,已知 AB 、CD 相交于点 O ,OE ⊥AB ,∠ EOC=28,则∠ AOD=3. 某商场经销一种商品, 由于进货价格比原来预计的价格降低了 %,使得销售利润增加了 8个百分点,那么原来预计的利润率是 . 4. 若b2 , c 3, 则 a b.a b b c5. 图中的□、△、○各代表一个数字,且满足以下三个等式:□+□+△+○=17 ;□ +△+△+○=14 ;□ +△ +○ +○ =13 □代表的数字是 ______.6.若 a、b、c 是自然数,且 a<b,a+b=719,c-a=915, a+b+c 的所有可能中最大的一个是______.7.某船往返于 A、 B 两地之 , 船在静水中的速度不 , 那么 , 当水的流速增大 , 船往返一次所用的 ______.( 用增加、减少或不填写 )8.已知 3 1=3,3 2= 9,33=27,3 4= 81,3 5=243,3 6= 729, 3 7=2187,3 8=6561⋯⋯,你推 3 20的个位数是。

《易错题》初中七年级数学下册第五章《相交线与平行线》经典练习(培优练)

《易错题》初中七年级数学下册第五章《相交线与平行线》经典练习(培优练)

一、选择题1.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°C解析:C【分析】 先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键. 2.下列语句中不是命题的有( )(1)两点之间,线段最短;(2)连接A 、B 两点;(3)鸟是动物;(4)不相交的两条直线叫做平行线;(5)无论a 为怎样的有理数,式子a 2+1的值都是正数吗?A .1个B .2个C .3个D .4个C解析:C【分析】根据命题的定义对各语句进行判断.【详解】两点之间,线段最短,所以(1)为命题;连接A 、B 两点,它为描述性语言,所以(2)不是命题;鸟是动物,所以(3)为命题;不相交的两条直线叫做平行线,所以(4)为命题;无论a 为怎样的有理数,式子a 2+1的值都是正数吗?它为疑问句,所以(5)不是命题. 故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,故选:B .【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.4.下列哪个图形是由图1平移得到的( )A .B .C .D . B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.5.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.6.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.7.下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.3B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质9.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°B解析:B【解析】试题分析:由AB ∥DE ,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°,故选B .考点:平行线的性质10.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2B解析:B【详解】 解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .二、填空题11.如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.【分析】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 根据点到直线垂线段最短可知AB >ADAB >BH 可得最大【详解】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.12.高兴同学在学习了全等三角形的相关知识后发现:只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB且与射线OA交于点M,另一把直尺压住射线OA且与第一把直尺交于点P,则OP平分∠AOB.若∠BOP=32°,则∠AMP=_____°.64【分析】由长方形直尺可得MP//OB再根据作图过程可知OP平分∠AOB进而可得∠AMP的度数【详解】解:∵OP平分∠AOB∴∠MOB=2∠BOP=64°由长方形直尺可知:MP//OB∴∠AMP=解析:64【分析】由长方形直尺可得MP //OB ,再根据作图过程可知OP 平分∠AOB ,进而可得∠AMP 的度数.【详解】解:∵OP 平分∠AOB ,∴∠MOB =2∠BOP =64°,由长方形直尺可知:MP //OB ,∴∠AMP =∠MOB =64°,故答案为:64.【点睛】此题主要考查了基本作图,关键是掌握角平分线的作法.13.如图,斜边长12cm ,∠A=30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至''A B C 的位置,再沿CB 向左平移使点B'落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为_____.(结果保留根号)cm 【分析】作B′D//BC 与AB 交于点D 故三角板向左平移的距离为B′D 的长利用直角三角形的性质求出BC=B′C=6cmAC=cm 进而根据相似三角形对应线段成比例的性质即可求解【详解】如图作B′D/ 解析:(623-cm【分析】作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长,利用直角三角形的性质求出BC=B′C=6cm ,AC=63,进而根据相似三角形对应线段成比例的性质即可求解.【详解】如图,作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长.∵AB=12cm ,∠A=30°,∴BC=B′C=6cm ,AC=3cm ,∵B′D//BC , ∴AC D BC B AB ='',即(6636(623)63BC C B A AB D ⨯=='-'=cm , 故三角板向左平移的距离为(623-cm .【点睛】本题考查直角三角形的性质、相似三角形的性质,旋转和平移的性质,解题的关键是作辅助线构造相似三角形.14.如图,直线//m n ,点A B 、在直线n 上,点C F 、在直线m 上,连接,CA CB CD 、平分ACB ∠交AB 于点D ,平面内有点E ,连接,2180EC ECB BCF ︒∠+∠=,过点F 作//FG CE 交CD 于点,9,4G FGC ADC CAB ABC ︒∠-∠=∠=∠,则ACB =∠____________.【分析】根据条件找到等量关系计算即可;【详解】设∵∴∴∵∴∵ABD 在同一直线上∴∴在△ABC 中∴联立方程组:解得:度度度故答案是:【点睛】本题主要考查了平行线的综合应用结合三元一次方程组求解是解题的 解析:2707【分析】根据条件2180︒∠+∠=ECB BCF ,9︒∠-∠=FGC ADC ,4∠=∠CAB ABC 找到等量关系计算即可;【详解】设2ABC x ∠=∠,1ACE ∠=∠,∵//m n ,∴BCF ABC ∠=∠,12ECB ECA ACB x ∠=∠+∠=∠+∠,∴()212180x ABC ∠+∠+∠=︒,∵//FG CE ,∴1FGC ECD x ∠=∠=∠+∠,∵A ,B ,D 在同一直线上,∴ADC ABC DCB ABC x ∠=∠+∠=∠+∠,∴()1119x ABC x x ABC x ABC ∠+∠-∠+∠=∠+∠-∠-∠=∠-∠=︒, 在△ABC 中,1802CAB x ABC ∠=︒-∠-∠,∴18024x ABC ABC ︒-∠-∠=∠,联立方程组:()2121801918024x ABC ABC x ABC ABC ⎧∠+∠+∠=︒⎪∠-∠=︒⎨⎪︒-∠-∠=∠⎩, 解得:1987ABC ∠=度,26117∠=度,2707x ∠=度. 故答案是:2707. 【点睛】本题主要考查了平行线的综合应用,结合三元一次方程组求解是解题的关键. 15.“等腰三角形的两条边相等”的逆命题是________________.(填真命题或假命题)真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考 解析:真命题【分析】交换命题的题设和结论即可得到该命题的逆命题,根据等腰三角形的定义判断即可.【详解】“等腰三角形的两条边相等”的逆命题是:两条边相等的三角形是等腰三角形;它是真命题,故答案为:真命题.【点睛】本题考查了命题的真假判断、逆命题的概念,掌握等腰三角形的定义是解题的关键. 16.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a >b 则a 2>b 2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.17.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B ∴AB ∥CD 故本小题正确;②∵∠2=∠5∴AB ∥CD 故本小题正确;③∵∠3=∠4∴AD ∥BC 故本小题错误;④∵∠1解析:①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B ,∴AB ∥CD ,故本小题正确;②∵∠2=∠5,∴AB ∥CD ,故本小题正确;③∵∠3=∠4,∴AD ∥BC ,故本小题错误;④∵∠1=∠D ,∴AD ∥BC ,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB ∥CD ,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.如图,已知直线AB 与CD 相交于点40O OE CD AOC OF ︒⊥∠=,,,为AOD ∠的角平分线.(1)求EOB ∠的度数;(2)求EOF ∠的度数.解析:(1)50EOB ∠=︒;(2)160EOF ∠=︒【分析】(1)由对顶角相等的性质得40BOD AOC ∠=∠=︒,再由90EOD ∠=︒,即可求出EOB ∠的度数;(2)先求出AOD ∠的度数,再由角平分线的性质得到FOD ∠的度数,即可求出EOF ∠的度数.【详解】解:(1)OE CD ⊥,∴90EOD ∠=︒,∵40BOD AOC ∠=∠=︒,50EOB EOD BOD ∴∠=∠-∠=︒;(2)∵直线AB 与CD 相交于点O ,40AOC BOD ∴∠=∠=︒,∴180140AOD BOD =︒-=︒∠∠, OF 为AOD ∠的角平分线,70AOF FOD ∴∠=∠=︒,160EOF EOD FOD ∴∠=∠+∠=︒.【点睛】 本题考查角度求解,解题的关键是掌握对顶角的性质,垂直的性质,以及角平分线的性质.22.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.解析:(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠, 1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.23.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)ABC 关于x 轴对称图形为111A B C △,画出111A B C △的图形;(2)将ABC 向右平移4个单位,再向下平移3个单位,得到图形为222A B C △,画出222A B C △的图形;(3)求ABC 的面积.解析:(1)详见解析;(2)详见解析;(3)2.【分析】(1)分别作出A 、B 、C 关于对称轴x 的对应点A 1、B 1、C 1,再顺次连接即可得所求图形;(2)分别将A 、B 、C 三点向右平移4个单位,再向下平移3个单位,得到对应点A 2、B 2、C 2,再顺次连接即可得所求图形为222A B C △;(3)利用构图法即可求解;【详解】(1) ;(2) ;(3)ABC S =2×3-1112⨯⨯-1222⨯⨯-1132⨯⨯ 136222=--- 64=-2=.【点睛】本题考查作图—轴对称及平移变换,还涉及到三角形面积公式,解题的关键是熟练掌握轴对称的性质及平移的性质.24.如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.解析:55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠, 1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】 本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.25.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.(1)与BOF ∠互余的角是______;(2)求EOF ∠的度数.解析:(1)∠BOD 、∠AOC ;(2)54°【分析】(1)根据垂直的定义得到∠FOD =90°,于是得到∠BOF +∠BOD =90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∠BOD=36°,∴∠BOE=12∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.26.如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,作出△ABC向下平移3格后的△A1B1C1;(2)求△ABC的面积;(3)已知点Q为y轴上一点,若△ACQ的面积为8,求点Q的坐标.解析:(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ的长,即可确定点Q的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.27.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.解析:BC ∥DE ;理由见解析【分析】根据角平分线的定义和已知条件可得∠CBE =∠BED ,再根据平行线的判定即得结论.【详解】解:BC ∥DE ;理由如下:因为BE 平分ABC ∠,所以∠ABE =∠CBE ,因为ABE BED ∠=∠,所以∠CBE =∠BED ,所以BC ∥DE .【点睛】本题考查了角平分线的定义和平行线的判定,属于基础题目,熟练掌握基本知识是解题的关键.28.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠解析:(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键.。

七年级数学培优试卷答案

七年级数学培优试卷答案

1. 下列各数中,有理数是()A. √3B. πC. -1/2D. 0.101001001…答案:C解析:有理数包括整数和分数,其中分数可以表示为两个整数的比。

在给出的选项中,只有-1/2是分数,因此选C。

2. 若a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. 2a < 2bD. a^2 < b^2答案:A解析:由不等式的性质,如果两边同时加上或减去同一个数,不等号的方向不变。

因此,A选项正确。

3. 下列各组数中,成比例的是()A. 2, 4, 8, 16B. 3, 6, 9, 12C. 1, 2, 3, 4D. 0, 0, 0, 0答案:D解析:成比例意味着比值相等。

在给出的选项中,只有D选项中的四个数都是0,比值都是0,因此选D。

4. 下列各图中,是圆的是()A. 正方形B. 等腰三角形C. 等边三角形D. 椭圆答案:D解析:圆的定义是平面上到一个固定点距离相等的点的集合。

在给出的选项中,只有椭圆符合这个定义,因此选D。

5. 若一个长方形的长是6cm,宽是4cm,那么它的面积是()A. 10cm²B. 12cm²C. 24cm²D. 36cm²答案:C解析:长方形的面积计算公式是长乘以宽。

因此,6cm乘以4cm等于24cm²,选C。

6. -3的相反数是______,3的绝对值是______。

答案:3,3解析:一个数的相反数是指与这个数相加等于0的数,因此-3的相反数是3。

一个数的绝对值是指这个数去掉符号的值,所以3的绝对值是3。

7. 如果a = 2,那么a² - a的值是______。

答案:2解析:将a的值代入表达式,得到2² - 2 = 4 - 2 = 2。

8. 若m和n是方程2m + 3n = 12的解,那么m和n的可能值是______。

北师大版七年级数学下册培优练习附答案:5.2 探索轴对称的性质

北师大版七年级数学下册培优练习附答案:5.2 探索轴对称的性质

5.2 探索轴对称的性质一、选择题(共15小题)1. 如图是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面部分展开后的图形是A. B.C. D.2. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是A. B. C. D.3. 下图中序号()()()()对应的四个三角形,都是这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是A. ()B. ()C. ()D. ()4. 下列说法正确的是A. 如果图形甲和图形乙关于直线对称,则图形甲是轴对称图形B. 任何一个图形都有对称轴,有的图形不止一条对称轴C. 平面上两个大小、形状完全一样的图形一定关于某直线对称D. 如果和成轴对称,那么它们的面积一定相等5. 分别以直线为对称轴,所作轴对称图形错误的是A. B.C. D.6. 现有全等的两个三角形、两个四边形和两个圆,其中一定能组成一个轴对称图形的是A. 两个三角形B. 两个四边形C. 两个圆D. 以上都不对7. 下面是四位同学作关于直线对称的,其中正确的是A. B.C. D.8. 钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是A. B.C. D.9. 下列四个图形中,对称轴最多的图形是A. B.C. D.10. 如图,将平行四边形沿对角线折叠,使点落在点处.若,则为A. B. C. D.11. 如图是一个经过改造的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是A. 一号袋B. 二号袋C. 三号袋D. 四号袋12. 我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化.如图2,窗框的一部分所展现的图形是一个轴对称图形,其对称轴有A. 条B. 条C. 条D. 条13. 如图,由四个小正方形组成的田字格中,的顶点都是小正方形的顶点.在田字格上画与成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含本身)共有A. 个B. 个C. 个D. 个14. 下列电视台的台标中,是轴对称图形的是A. B.C. D.15. 下面四个图形分别是节能、绿色食品、节水和低碳标志,在这四个标志中,是轴对称图形的是A. B.C. D.二、填空题(共8小题)16. 下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是(填序号).17. 在上学的路上,小刚从电瓶车的后视镜里看到一辆汽车,车顶字牌上的字在平面镜中的像是IXAT,则这辆车车顶字牌上的字实际是.18. 如图,把一张长方形纸片沿折叠,点,分别落在点的位置上,交于点,已知,那么.19. 如图,在由四个小正方形组成的田字格中,的顶点都是小正方形的顶点.在田字格上画与成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形共有个.20. 如图,在的正方形网格中,已有个小方格涂成了灰色,现在要从其余白色小方格中选出一个也涂成灰色,使整个灰色部分的图形构成轴对称图形,这样的白色小方格有个.21. 如图,将一张纸条折叠,若,则的度数为.22. 如图,将放在每个小正方形的边长为的网格中,点,点,点均落在格点上.(I)的面积等于;(II)请在如图所示的网格中,用无刻度的直尺,以所在直线为对称轴,作出关于直线对称的图形,并简要说明画图方法(不要求证明).23. 如图,,,与关于直线对称,则.三、解答题(共6小题)24. 画出关于直线的对称图形.25. 我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图所示,将长方形笔记本活页纸片的一角折过去,使角的顶点落在处,为折痕.若,求的度数.(2)在()条件下,如果又将它的另一个角也斜折过去,并使边与重合,折痕为,如图所示,求和的度数.(3)如果在图中改变的大小,则的位置也随之改变,那么()中的大小会不会改变?请说明.26. (1)图(8)是边长为的小正方形组成的网格,观察①④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:;;(2)借助图中⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图①④的图案不能重合).27. 如图所示,与关于直线对称,与的交点在直线上.(1)指出此两个三角形中三个顶点的对称点.(2)在不另加字母和线段的情况下,图中还有成轴对称的三角形吗?28. 把图中的图形补成轴对称图形,其中,为各图形的对称轴.29. 资料:小球沿直线撞击水平格档反弹时(不考虑垂直撞击),撞击路线与水平格档所成的锐角等于反弹路线与水平格档所成的锐角.以图(1)为例,如果黑球沿从到方向在点处撞击边后将沿从到方向反弹,根据反弹原则可知,即.如图(2)和(3),是一个长方形的弹子球台面,有黑白两球和,小球沿直线撞击各边反弹时遵循资料中的反弹原则.(回答以下问题时将黑白两球均看作几何图形中的点,不考虑其半径大小)(1)探究(1):黑球沿直线撞击台边哪一点时,可以使黑球经台边反弹一次后撞击到白球?请在图(2)中画出黑球的路线图,标出撞击点,并简单证明所作路线是否符合反弹原则,(2)探究(2):黑球沿直线撞击台边哪一点时,可以使黑球先撞击台边反弹一次后,再撞击台边反弹一次撞击到白球?请在图(3)中画出黑球的路线图,标出黑球撞击边的撞击点,简单说明作法,不用证明.答案1. D2. D3. A4. D5. C6. C7. B8. A9. B10. C【解析】因为,,由于折叠,,在中,.11. B12. B13. C14. A15. B16. ①③17. TAXI18.19.20.21.22. ,如图,取格点,,连接.取格点,作直线与相交,得点,.则即为所求23.【解析】与关于直线对称,,,,.24. 如图所示,即为所求.25. (1),,;(2)由()的结论可得,由折叠的性质可得,,;(3)不变,由折叠的性质可得,,,所以,不变,永远是平角的一半.26. (1)都是轴对称图形;面积都是(2)(答案不唯一)27. (1)点的对称点是点,点的对称点是点,点的对称点是点.(2)在不另加字母和线段的情况下,与,与也都关于直线成轴对称.28. 如图所示:29. (1)作法:如图以直线为对称轴作点的对称点,连接交于点,连接,则点为撞击点,和为黑球的路线.证明:因为和关于直线对称,点在上,所以和也关于对称,因为和是对应角,所以,又(对顶角相等),所以,即符合反弹原则,(2)以直线为对称轴作点的对称点为对称轴作点的对称点,连接交于点,连接交于点,连接.则点为边的撞击点,,,为球的路线.第11页(共11 页)。

苏科版七年级数学下册《多项式的因式分解》强化提优专题培优训练【含答案】

苏科版七年级数学下册《多项式的因式分解》强化提优专题培优训练【含答案】

苏科版七年级数学下册《多项式的因式分解》强化提优专题培优训练(时间:60分钟 满分:100分)1.选择题(共20题;共40分)1.下列多项式是完全平方式的是( )A .x 2-4x -4B .x 2+x +C .4a 2-10ab +9b 2D .-a 2-6a +9142.如果x 2+mx +9是一个完全平方式,则m 的值为( )A .3B .6C .±3D .±63.已知9x 2-30x +m 是一个完全平方式,则m 的值等于( )A .5B .10C .20D .254.把多项式x 2-6x +9分解因式,结果正确的是( )A .(x -3)2B .(x -9)2C .(x +3)(x -3)D .(x +9)(x -9)5.分解因式后结果是-3(x -y )2的多项式是( )A .-3x 2+6xy -3y 2B .3x 2-6xy -y 2C .3x 2-6xy +3y 2D .-3x 2-6xy -3y 26 把代数式3x 3-12x 2+12x 分解因式,结果正确的是( )A .3x (x 2-4x +4)B .3x (x -4)2C .3x (x +2)(x -2)D .3x (x -2)27.将多项式ax 2-4ax +4a 分解因式,下列结果中正确的是( )A .a (x -2)2B .a (x +2)2C .a (x -4)2D .a (x +2)(x -2)8.下列各式中,不能用完全平方公式分解因式的是 ( )A .x 2-2xy -y 2B .x 2-2xy +y 2C .x 2+y 2+2xyD .-x 2+2xy -y 29.下列各式:①a 2-a +;②x 2+xy +y 2;③m 2+m +1;④x 2-xy +y 2;⑤m 2+4n 2+2mn ;⑥a 4141161414b 2-a 2b +1.其中,形如a 2±2ab +b 2的多项式有 ( )A .2个B .3个C .4个D .5个10.如果a 2+16与一个单项式的和可以用完全平方公式分解因式,这个单项式可以是( )A .4aB .±8aC .±4aD .-4a 11.下列因式分解中,错误的是( )A .x 2-y 2=(x +y )(x -y )B .x 2+6x +9=(x +3)2C .x 2+xy =x (x +y )D .x 2+y 2=(x +y )212.若4x 2-M xy +9y 2是两数和的平方,则M 的值是( )A .36 B .±36 C .12D .±1213.若m +n =3,则2m 2+4mn +2n 2-6的值为( )A.12 B.6 C.3 D.014.下列各式中能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+9 15.下列各式:①a2-a+;②x2+xy+y2;③116m2+m+1;④x2-xy+14y2;⑤m2+4n2+2mn;⑥14a4b2-a2b+1.其中,形如a2±2ab+b2的多项式有( )A.2个B.3个C.4个D.5个16.把x2y-2y2x+y3分解因式正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)217.把多项式x2-4x+4分解因式,所得结果是( )A.x(x-4)+4 B.(x-2)(x+2) C.(x-2)2D.(x+2)218.如果多项式x2-kx+16可以因式分解为(x-4)2,那么k的值是( )A.4 B.-4 C.8 D.-819.将9(a-b)2+12(a2-b2)+4(a+b)2分解因式的结果是( )A.(5a-b)2B.(5a+b)2 C.(3a-2b)(3a+2b) D.(5a-2b)220.已知x,y为有理数,设M=x2+y2,N=2xy,则M与N之间的大小关系为( ) A.M≤N B.M≥N C.M<N D.M>N2.填空题(共9题;共18分)21.填空:x2+6x+________=(x+________)2;x2-3x+________=(x-________)2. 22.分解因式:4a2-4a+1=________.23.已知x=3.2,y=6.8,则x2+2xy+y2=________.24.若一个正方形的面积是9m2+24mn+16n2(m>0,n>0),则这个正方形的边长是_______.-1002×4+4=(______________)2=_______.26若100x2+kxy+49y2可以分解成(10x-7y)2,则k的值为_______.27.分解因式:(2a+b)2-8ab=_______.28.如果a2-8ab+16b2=0,且b=2.5,那么a=_______.29.因式分解:(a-b)(a-4b)+ab=____.3、解答题(共6题;共42分)30.(12分)因式分解:(1)(2a-x)2+4(x-2a)+4;(2)8(a2+1)-16a;(3)4b2c2-(c2+b2)2.(4)2x 3-4x 2+2x ; (4)-x 2y +6xy -8y ; (6)(x 2+y 2)2-4x 2y 2.31.(6分)利用因式分解计算:(1) 38.92-2×38.9×48.9+48.92; (2) 562+68×56+342.32.(6分)已知a -b =-2,求 -ab 的值.a 2+b 2233.(6分)已知x 、y 为任意有理数,若M =x 2+y 2 ,N =2xy ,你能确定M .N 的大小吗?为什么?34.(6分)观察下列各式:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,……请写出一个具有普遍性的结论,并说明理由,35 (6分)阅读下列问题:分解因式:x 2+4x +3.解:原式=x 2+4x +4-4+3=(x 2+4x +4)-1=(x +2)2-1=(x +2+1)(x +2-1)=(x +3)(x +1).上述分解因式的方法称为配方法.请仿照上述配方法的解题步骤将下列各式分解因式:(1)x 2-6x +5; (2)4x 2+4x -15.苏科版七年级数学下册《多项式的因式分解》强化提优专题培优训练1. 选择题(共20题;共40分)1.下列多项式是完全平方式的是( B )A .x 2-4x -4B .x 2+x +C .4a 2-10ab +9b 2D .-a 2-6a +9142.如果x 2+mx +9是一个完全平方式,则m 的值为( D )A .3B .6C .±3D .±63.已知9x 2-30x +m 是一个完全平方式,则m 的值等于( D )A .5B .10C .20D .254.把多项式x 2-6x +9分解因式,结果正确的是( A )A .(x -3)2B .(x -9)2C .(x +3)(x -3)D .(x +9)(x -9)5.分解因式后结果是-3(x -y )2的多项式是( A )A .-3x 2+6xy -3y 2B .3x 2-6xy -y 2C .3x 2-6xy +3y 2D .-3x 2-6xy -3y 26 把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D )A .3x (x 2-4x +4)B .3x (x -4)2C .3x (x +2)(x -2)D .3x (x -2)27.将多项式ax 2-4ax +4a 分解因式,下列结果中正确的是( A )A .a (x -2)2B .a (x +2)2C .a (x -4)2D .a (x +2)(x -2)8.下列各式中,不能用完全平方公式分解因式的是 ( A )A .x 2-2xy -y 2B .x 2-2xy +y 2C .x 2+y 2+2xyD .-x 2+2xy -y 29.下列各式:①a 2-a +;②x 2+xy +y 2;③m 2+m +1;④x 2-xy +y 2;⑤m 2+4n 2+2mn ;⑥a 4141161414b 2-a 2b +1.其中,形如a 2±2ab +b 2的多项式有 ( B )A .2个B .3个C .4个D .5个10.如果a 2+16与一个单项式的和可以用完全平方公式分解因式,这个单项式可以是( B )A .4aB .±8aC .±4aD .-4a11.下列因式分解中,错误的是 ( D )A .x 2-y 2=(x +y )(x -y )B .x 2+6x +9=(x +3)2C .x 2+xy =x (x +y )D .x 2+y 2=(x +y )212.若4x 2-M xy +9y 2是两数和的平方,则M 的值是 ( D )A .36B .±36C .12D .±1213.若m +n =3,则2m 2+4mn +2n 2-6的值为 ( A )A .12B .6C .3D .014.下列各式中能用完全平方公式进行因式分解的是( D )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-6x +915.下列各式:①a 2-a +14;②x 2+xy +y 2;③116m 2+m +1;④x 2-xy +14y 2;⑤m 2+4n 2+2mn ;⑥14a 4b 2-a 2b +1.其中,形如a 2±2ab +b 2的多项式有( B )A .2个B .3个C .4个D .5个16.把x 2y -2y 2x +y 3分解因式正确的是( C )A .y (x 2-2xy +y 2)B .x 2y -y 2(2x -y )C .y (x -y )2D .y (x +y )217.把多项式x 2-4x +4分解因式,所得结果是 ( C )A .x (x -4)+4B .(x -2)(x +2)C .(x -2)2D .(x +2)218.如果多项式x 2-kx +16可以因式分解为(x -4)2,那么k 的值是( C )A .4B .-4C .8D .-819.将9(a -b )2+12(a 2-b 2)+4(a +b )2分解因式的结果是( A )A .(5a -b )2B .(5a +b )2C .(3a -2b )(3a +2b )D .(5a -2b )220.已知x ,y 为有理数,设M =x 2+y 2,N =2xy ,则M 与N 之间的大小关系为( B )A .M ≤NB .M ≥NC .M <ND .M >N二.填空题(共9题;共18分)21.填空:x 2+6x +________=(x +________)2; x 2-3x +________=(x -________)2.9 3 [解析] 第一项化成平方后,底数乘2得到一个积,用中间项除以这个积,9432得到另一个平方项的底数.22.分解因式:4a 2-4a +1=________.(2a -1)2 [解析] 4a 2-4a +1=(2a -1)2.23.已知x =3.2,y =6.8,则x 2+2xy +y 2=________.100 [解析] 当x =3.2,y =6.8时,原式=(x +y)2=(3.2+6.8)2=100.24.若一个正方形的面积是9m 2+24mn +16n 2(m >0,n >0),则这个正方形的边长是_______.3m +4n [解析] 正方形的面积为9m 2+24mn +16n 2=(3m +4n)2,又因为m>0,n>0,所以正方形的边长为3m +4n.-1002×4+4=(______________)2=_______.1002-26若100x 2+kxy +49y 2可以分解成(10x -7y )2,则k 的值为_______.-14027.分解因式:(2a +b )2-8ab =_______.(2a -b )228.如果a 2-8ab +16b 2=0,且b =2.5,那么a =_______.1029.因式分解:(a -b )(a -4b )+ab =____.(a -2b )2 (a -b )(a -4b )+ab =a 2-4ab -ab +4b 2+ab =a 2-4ab +4b 2=(a -2b )2.三.解答题(共6题;共42分)30.(12分)因式分解:(1)(2a -x )2+4(x -2a )+4;(2)8(a 2+1)-16a ; (3)4b 2c 2-(c 2+b 2)2.(4)2x 3-4x 2+2x ; (4)-x 2y +6xy -8y ; (6)(x 2+y 2)2-4x 2y 2.解:(1)原式=(x -2a )2+4(x -2a )+4=(x -2a +2)2;(2)原式=8[(a 2+1)-2a ]=8(a -1)2;(3)原式=[2bc -(c 2+b 2)][2bc +c 2+b 2]=-(b +c )2(b -c )2.(1)2x 3-4x 2+2x ; (2)-x 2y +6xy -8y ; (3)(x 2+y 2)2-4x 2y 2.(4)原式=2x (x 2-2x +1)=2x (x -1)2;(5)原式=-y (x 2-6x +8)=-y (x -2)(x -4);(6)原式=(x 2+y 2-2xy )(x 2+y 2+2xy )=(x +y )2(x -y )2.31.(6分)利用因式分解计算:(1) 38.92-2×38.9×48.9+48.92; (2) 562+68×56+342.解:(1)原式=(38.9-48.9)2=(38.9-48.9)2 =(-10)2 =100(2)原式=562+2×34×56+342=(56+34)2=902=8100.32.(6分)已知a -b =-2,求-ab 的值.a 2+b 22解:-ab ====2.a2+b22a2+b2-2ab 2(a -b )22(-2)2233.(6分)已知x 、y 为任意有理数,若M =x 2+y 2 ,N =2xy ,你能确定M .N 的大小吗?为什么?解:M-N=x 2+y 2 -2xy=(x -y )2≥0 所以M ≥N 。

七年级数学培优班试卷下册

七年级数学培优班试卷下册

一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. -32. 已知 a > 0,b < 0,则下列不等式中正确的是()A. a > bB. -a < -bC. a < -bD. a < b3. 下列各组数中,成等差数列的是()A. 2, 4, 8, 16, 32B. 1, 3, 5, 7, 9C. 3, 6, 9, 12, 15D. 4, 7, 10, 13, 164. 如果函数 f(x) = x² - 4x + 3 的图象与 x 轴相交于点 A、B,且 AB = 2,则A、B 两点的坐标分别是()A. (1, 0),(3, 0)B. (2, 0),(4, 0)C. (0, 2),(4, 0)D. (0, 3),(4, 0)5. 已知等腰三角形 ABC 中,AB = AC,AD 是底边 BC 的中线,E 是 AD 的中点,则三角形 ADE 与三角形 ABD 的面积比是()A. 1:2B. 2:1C. 1:3D. 3:16. 下列函数中,在其定义域内单调递增的是()A. y = x²B. y = -x²C. y = x³D. y = -x³7. 在平面直角坐标系中,点 P 的坐标为 (2, -3),点 Q 在直线 y = -x 上,且PQ = 5,则点 Q 的坐标是()A. (3, -2)B. (-3, 2)C. (-2, 3)D. (2, 3)8. 若一个数的平方等于它本身,则这个数是()A. 0 或 1B. 0 或 -1C. 0 或 2D. 0 或 -29. 已知 a, b 是实数,且 (a - b)² = 0,则 a + b 的值是()A. 0B. 1C. -1D. 不确定10. 在直角三角形 ABC 中,∠A = 90°,AB = 3,AC = 4,则 BC 的长度是()A. 5B. 6C. 7D. 8二、填空题(每题5分,共50分)11. 已知等差数列的前三项分别是 2,5,8,则该数列的公差是 _______。

人教版七年级数学培优试卷

人教版七年级数学培优试卷

人教版七年级数学培优试卷一、选择题(30分)1.直角梯形ABCD 在直角坐标系中的位置如图,若AD=5,A 点坐标为(-2,7),则D 点坐标为( )A.(2,2)B.(2,12)C.(3,7) D (7,7)2. 在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--, B .(25)--, C .(25)-, D .(25)-,3.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) A.43- B.43C.34D.34-4.如图,用8块相同的长方形地砖拼成一个矩形,则每个长方形地砖的面积是( ).A.200cm 2B.300 cm 2C.600 cm 2D.2400 cm 25. 如图,矩形ABCD 的边长为16,宽为12,BD=20,沿着对角线BD 剪开,得两个三角形,将这两个三角形拼出各种凸四边形,设这些四边形中周长最大为m ,周长最小为n ,则m+n 的值为( )A.120B.128C.136D.1446、如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2、100 cm 2,且甲容器装满水,乙容器是空的。

若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8 cm ,求甲的容积为何?( )A 1280cm 3B 2560cm 3C 3200cm 3D 4000cm 340cm 甲 乙二、填空题(30分)7.如图,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=740,那么吸管与易拉罐下部夹角∠2= 度. 8.如果2|2|(3)0x x y -+-+=,那么2()x y +的值为 .9.若1233211115,7,x y z x y z x y z++=++=++=则 . 10.如图△ABC 中,∠A=800,剪去∠A 后,得到四边形BCED ,则∠1+∠2= .11. 如图,梯形ABCD 被对角线分为4个小三角形,已知△AOB 和△BOC 的面积分别为25cm 2和35cm 2,那么梯形的面积是 cm 2.12.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50°B .30°C .20°D .15°三、解答题(60分)13.已知,A 、B 、C 、O 四点的坐标分别是(5,3)(5,4)(6,2)(0,0),(1)请建立平面直角坐标系并画出四边形ABCO(2)求出四边形ABCO 的面积14.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队8700元;乙、丙两队合做10天完成,厂家需支付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的23,厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说时理由.15.深受海内外关注的沪杭磁悬浮交通项目近日获得国务院批准,沪杭磁悬浮线建成后,分为中心城区段与郊区段两部分,其中中心城区段的长度为60千米,占全长的40%,沪杭磁悬浮列车的票价预定为0.65元/千米~0.75元/千米,请你估计沪杭磁悬浮列车全程预定票价的范围.16.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元,若要求每种广告播放不少于2次.问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益大?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学训练题5
姓名:
一、选择题
1、若14+x 表示一个整数,则整数x 可取值共有( ). 个 B. 4个 C. 5个 D. 6个
2、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).
B. 2
C. 6 或6
3、下列说法正确的是 ( )
A.两点之间的距离是两点间的线段;
B.同一平面内,过一点有且只有一条直线与已知直线平行;
C.同一平面内,过一点有且只有一条直线与已知直线垂直;
D.与同一条直线垂直的两条直线也垂直.
4、方程20082009
20083221=⨯++⨯+⨯x x x Λ的解是( )
5、已知代数式2346x x -+的值为9-,那么2463
x x -+的值为( ) A.1- D.3-
6、下列属平移现象的是( )
A.山水倒映。

B.时钟的时针运转。

C.扩充照片的底片为不同尺寸的照片。

D .人乘电梯上楼。

7、对任意四个有理数a ,b ,c ,d 定义新运算:a b
c d =ad-bc ,已知24
1x x -=18,则x=( )
A. 4
B. 3
C. 2
D. -1
8.同时都含有字母a 、b 、c ,且系数为1的7次单项式共有( )个
(A )4 (B )12 (C )15 (D )25
9.若单项式x x b a 52-和x b a -3223的次数相同,则x 的整数值等于( )
(A )1 (B )-1 (C )1± (D )1±以外的数
10. 乘积22221111(1)(1)(1)(1)23910
----L 等于( ) A .125 B.21 2011.10
7
二、填空题
1.钟表上7点20分,时针与分针的夹角为 .
2.如右图,已知AB 、CD 相交于点O ,OE ⊥AB ,∠EOC=280,则∠AOD= °.
3.某商场经销一种商品,由于进货价格比原来预计的价格降低了%,使得销售利润增加了8个百分点,那么原来预计的利润率是 .
4.=++==c
b b a b
c a b 则若,3,2 . 5. 图中的□、△、○各代表一个数字,且满足以下三个等式:
□+□+△+○=17 ;□+△+△+○=14 ;□+△+○+○=13
则□代表的数字是______.
6.若a、b、c是自然数,且a<b,a+b=719,c-a=915,则a+b+c的所有可能值中最大的一个是______.
7.某轮船往返于A、B两地之间,设轮船在静水中的速度不变,那么,当水的流速增大时,轮船往返一次所用的时间______.(用增加、减少或不变填写)
8.已知31=3,32=9,33=27,34=81,35=243,36=729, 37=2187,38=6561……,请你推测320的个位数是。

9.已知实数x、y满足22
244690
x xy y x
-+-+=,则18xy的平方根为_______.
10.如图,B、C、D依次是线段AE上三点,已知AE=,BD=3cm,则图中以A、B、C、D、E
这五个点为端点的所有线段长度之和等于_______.
11.若2008
2007
3
2
1-
-
-
-
-
-

M,2
2
2
2
22008
2007
4
3
2
1-
+
+
-
+
-

N,则N
M,的大小关系是________(填“>”、“<”、或“=”).
12.把能表示成两个正整数平方差的这种正整数,从小到大排成一列:
123
,,,,
n
a a a a
L,例
如:222222
123
213325437
a a a
=-==-==-=
,,,22
4
318
a=-=L,.那么
2008
a=______.13.甲、乙两人相距千米,分别以每小时千米和5千米的速度相向而行,同时甲所带的小狗以每小时千米的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙,……直到甲、乙相遇,小狗所走的路程_____。

三.解答题
1.小明解方程
2
1
5
1
2a
x
x+
=
-
+
,去分母时方程左边的1没有乘以10,由此求得方程的解为x=4,试求a的值,并正确求出方程的解。

2.正整数按规律排成下表:
1
23
456
78910
L L L L L
问:①第199行从左往右数第20个数是多少
②2016是第几行从左往右数的第几个数
3.为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号的设备,其 A 型 B 型
价 格(万元/台) 12 10
处理污水量(吨/月) 240 200
年消耗费(万元/台) 1 1
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元(注:企业处理污水的费用包括购买设备的资金和消耗费)
4.设,,,321x x x …2016,x 是整数,且满足下列条件:
①-1≤n x ≤2,n =1,2,3, (2016)
②+++321x x x …2002016=+x ;
③+++2322
21x x x …201622016=+x . 求 +++333231x x x …32016x + 的最小值和最大值.
5.已知关于x,y的二元一次方程,06)52()3(=-+-+-a y a x a 当a每取一个值时就有一个方程,这些方程有一个公共解.
(1)求出这个公共解;
(2)请说明,无论a取何值,这个公共解都是二元一次方程,06)52()3(=-+-+-a y a x a 的解
6.方方与同学做游戏,他把一张纸剪成9块,再从所得的纸片中任取一块再剪成9块;然后再从所得的纸片中任取一块,再剪成9块;……这样类似地进行下去,能不能在第n 次剪出的纸片恰好是2016块,若能,求出这个n 值;若不能,请说明理由。

相关文档
最新文档