2019-2020学年山东省济南市历城区八年级(上)期末数学试卷 及答案解析
山东省济南市八年级(上)期末数学试卷(含答案)
山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼2.(4分)下列说法正确的是()A.﹣3是﹣9的平方根B.1的立方根是±1C.a是a2的算术平方根D.4的负的平方根是﹣23.(4分)下列从左到右的变形属于因式分解的是()A.2a(a+1)=2a2+2a B.a2﹣6a+9=a(a﹣6)+9C.a2+3a+2=(a+1)(a+2)D.a2﹣1=a(a﹣)4.(4分)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()5.(4分)分式,,﹣的最简公分母为()A.2xy2B.5xy C.10xy2D.10x2y26.(4分)下列二次根式中,最简二次根式是()A.B.C.D.7.(4分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A.75,70B.70,70C.80,80D.75,808.(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3249.(4分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°10.(4分)如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B逆时针旋转60°,得到△BAE,连接ED,则下列结论中:①AE∥BC;②∠DEB=60°;③∠ADE=∠BDC;④∠AED=∠ABD,其中正确结论的序号是()A.①②B.①③C.②③D.①②④11.(4分)将一组数,2,,2,,…,2,按下列方式进行排列:①,2,,2,②2,,4,3,2…若的位置记为(1,3),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)12.(4分)如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)计算:()3=.14.(4分)将多项式x2﹣2在实数范围内分解因式的结果为.15.(4分)如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=°.16.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.17.(4分)已知a,b是两个连续整数,且a<﹣1<b,则a b=.18.(4分)把两块同样大小的含45°角的三角尺按如图所示的方式放置,其中一块三角尺的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B、C、D在同一直线上,若AB=3,则CD=.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.(6分)计算:(1)+(2﹣)0;(2)﹣3﹣20.(6分)解分式方程:=2﹣.21.(6分)分解因式:(a2+1)2﹣4a2.22.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3:2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?23.(8分)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程频数频率A360.45B0.25C16bD8合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(Ⅰ)求∠ODC的度数;(Ⅱ)若OB=2,OC=3,求AO的长.26.(12分)常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2一16=(x﹣y+4)(x﹣y﹣4)这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC的形状,并说明理由.27.(12分)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC 绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B=.(2)(问题解决)如图2,在等边三角形ABC内有一点P,且P A=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;(3)(灵活运用)如图3,在正方形ABCD内有一点P,且P A=,BP=,PC=1,求∠BPC的度数.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.2.【解答】解:A.﹣9没有平方根,此选项错误;B.1的立方根是1,此选项错误;C.|a|是a2的算术平方根,此选项错误;D.4的负的平方根是﹣2,此选项正确;故选:D.3.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.4.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.5.【解答】解:分式,,﹣的最简公分母为10xy2,故选:C.6.【解答】解:A、原式=2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;B、被开方数含分母,不是最简二次根式,故本选项错误;C、原式=3,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、符合最简二次根式的定义,故本选项正确;故选:D.7.【解答】解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:=75;70出现了13次,出现的次数最多,则众数是70;故选:A.8.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.9.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.10.【解答】解:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠ABC=∠ACB=60°,∠AEB=∠BDC∵将△BCD绕着点B逆时针旋转60°,得到△BAE,∴BE=BD,∠DBE=60°,∠EAB=∠ACB=60°∴∠EAB=∠ABC=60°,△BED是等边三角形∴AE∥BC∵△BED是等边三角形∴∠DEB=60°故①②正确∵∠AEB=∠BDC,∠AEB=∠AED+∠BED,∠BDC=∠BAC+∠ABD∴∠AED=∠ABD故④正确∵∠BDC>60°,∠ADE<60°∴∠BDC≠∠ADE故③错误.故选:D.11.【解答】解:这组数据可表示为:①,,,,,②,,,,;…∵19×2=38,∴19÷5=3…4,∴为第4行,第4个数字.故选:B.12.【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠CBH+∠∠ABM+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.【解答】解:()3=﹣.故答案为:﹣.14.【解答】解:x2﹣2=,故答案为:,15.【解答】解:由题意可得:m∥n,则∠CAD+∠1=180°,可得:∠3=∠4,故∠4+∠CAD=∠2,则∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.16.【解答】解:由题意可得:空白部分一共有6个位置,白色部分只有在1或2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.17.【解答】解:∵3<<4,∴2<﹣1<3,∴a=2,b=3,∴a b=23=8,故答案为:8.18.【解答】解:过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=6,BF=AF=FC=AB=3,∵两个同样大小的含45°角的三角尺,∴AD=BC=6,在Rt△ADF中,根据勾股定理得,DF==3,∴CD=DF﹣FC=3﹣3,故答案为:3﹣3.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.【解答】解:(1)+(2﹣)0=3+1=4;(2)﹣3﹣=4﹣3×﹣=.20.【解答】解:去分母得:y﹣2=2y﹣6+1,移项合并得:y=3,经检验y=3是增根,分式方程无解.21.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.22.【解答】解:(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得:+=1,解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要10天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为4000×=1600(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.23.【解答】解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.24.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.【解答】解:(Ⅰ)由旋转的性质得,CD=CO,∠ACD=∠BCO,∵∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(Ⅱ)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°,在Rt△AOD中,由勾股定理得:AO==.26.【解答】(1)解:9a2+4b2﹣25m2﹣n2+12ab+10mn=(9a2+12ab+4b2)﹣(25m2﹣10mn+n2)=(3a+2b)2﹣(5m﹣n)2=(3a+2b+5m﹣n)(3a+2b﹣5m+n)(2)解:由2a2+b2+c2﹣2a(b+c)=0可分解得2a2+b2+c2﹣2ab﹣2ac=0利用拆项得(a2﹣2ab+b2)+(a2﹣2ac+c2)=0(a﹣b)2+(a﹣c)2=0根据两个非负数互为相反数,只能都同时等于0才成立,于是a﹣b=0,a﹣c=0所以可以得到a=b=c即:△ABC的形状是等边三角形.27.【解答】解:(1)如图1所示,连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;(2)∵△ABC是等边三角形,∴∠ABC=60°,将△BPC绕点B顺时针旋转60°得出△ABP′,如图2,∴AP′=CP=1,BP′=BP=,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴PP′=,∠BP′P=60°,∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90°,则△PP′A是直角三角形;∴∠BPC=∠AP′B=90°+60°=150°;过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30°,BM=,由勾股定理得:P′M=,∴AM=1+=,由勾股定理得:AB==.(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=(180°﹣90°)=45°,由勾股定理得:EP=2,∵AE=1,AP=,EP=2,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°;。
山东省济南市八年级(上)期末数学试卷(含解析)
山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在﹣2,6,,上中,无理数是()A.﹣2B.6C.D.2.下列各组数中,能作为直角三角形三边长的是()A.1,2,3B.C.6,8,10D.3.下列各点中,位于第二象限的是()A.(4,3)B.(﹣3,5)C.(3,﹣4)D.(﹣4,﹣3)4.下列各点中,在正比例函数y=3x的图象上的是()A.(1,3)B.(﹣1,3)C.(3,1)D.(3,﹣1)5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是8.9环,方差分别是S甲2=0.43,S乙2=0.51,则关于甲、乙两人在这次射击训练中成绩稳定性的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定D.甲、乙稳定性没法比较6.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x7.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=35°,则∠BAE的度数为()A.20°B.30°C.40°D.50°8.如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.39.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)10.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C 的坐标为(4,1),则点B的坐标为()A.(﹣2,1)B.(﹣3,1)C.(﹣2,﹣1)D.(﹣2,﹣1)11.对于平面直角坐标系中任意两点M(x1,y1),N(x2,y2),称|x1﹣x2|+|y1﹣y2|为M,N两点的直角距离,记作:d(M,N).如:M(2,﹣3),N(1,4),则d(M,N)=|2﹣1|+|﹣3﹣4|=8.若P(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P,Q)的最小值为P到直线y=kx+b的直角距离.则P(﹣1,﹣3)到y轴的直角距离d为()A.4B.3C.2D.112.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD 交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题4分,共24分.)13.9的算术平方根是.14.在电影票上如果将“8排4号”记作(8,4),那么“3排5号”记作.15.如图,已知AB∥CD,BC平分∠ABE,∠C=32°,则∠BED的度数是.16.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是.17.如图,四边形OABC为长方形,OA=1,则点P表示的数为.18.如图,连接在一起的两个等边三角形的边长都为1cm,一个微型机器人由点A开始按A→B→C →D→E→C→A→B→C…的顺序沿等边三角形的边循环移动.当微型机器人移动了2019cm后,它停在了点上.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分).20.(6分)解方程组:.21.(6分)如图,点D在△ABC边AB的延长线上,BE平分∠CBD,若∠ACB=60°,∠CAB=80°.求∠DBE的度数.22.(8分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB ∥CD.23.(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.24.(10分)某校八年级全体同学参加了“爱心一日捐ˆ捐款活动,该校随杋抽査了部分同学捐款的情况统计如图所示:(1)求出本次抽查的学生人数;(2)求出捐款10元的学生人数,并将条形图补充完整;(3)捐款金额的众数是元,中位数是.(4)请估计全校八年级1000名学生,捐款20元的有多少人?25.(10分)如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?26.(12分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.27.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在﹣2,6,,上中,无理数是()A.﹣2B.6C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.﹣2是整数,属于有理数,故本选项不合题意;B.6是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列各组数中,能作为直角三角形三边长的是()A.1,2,3B.C.6,8,10D.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22≠32,∴此组数据能不作为直角三角形的三边长,故本选项不合题意;B、∵()2+()2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项不合题意;C、∵62+82=102,∴此组数据能作为直角三角形的三边长,故本选项符合题意;D、∵()2+()2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项不合题意;故选:C.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.下列各点中,位于第二象限的是()A.(4,3)B.(﹣3,5)C.(3,﹣4)D.(﹣4,﹣3)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣3,5)故选:B.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.4.下列各点中,在正比例函数y=3x的图象上的是()A.(1,3)B.(﹣1,3)C.(3,1)D.(3,﹣1)【分析】利用一次函数图象上点的坐标特征验证四个选项中的点是否在正比例函数图象上,此题得解.【解答】解:A、当x=1时,y=3x=3,∴点(1,3)在正比例函数y=3x的图象上;B、当x=﹣1时,y=3x=﹣3,∴点(﹣1,3)不在正比例函数y=3x的图象上;C、D、当x=3时,y=3x=9,∴点(3,1)和(3,﹣1)不在正比例函数y=3x的图象上.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是8.9环,方差分别是S甲2=0.43,S乙2=0.51,则关于甲、乙两人在这次射击训练中成绩稳定性的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定D.甲、乙稳定性没法比较【分析】根据方差的定义,方差越小数据越稳定即可求解.【解答】解:因为S甲2=0.43<S乙2=0.51,方差小的为甲,所以关于甲、乙两人在这次射击训练中成绩稳定是甲,故选:A.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x【分析】将x看做常数移项求出y即可得.【解答】解:由2x﹣y=3知2x﹣3=y,即y=2x﹣3,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.7.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=35°,则∠BAE的度数为()A.20°B.30°C.40°D.50°【分析】由ED是AC的垂直平分线,可得AE=CE,继而求得∠BAE=∠C=35°,然后由在Rt △ABC中,∠B=90°,即可求得∠BAC的度数,继而求得答案.【解答】解:∵ED是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=35°,∵在Rt△ABC中,∠B=90°,∴∠BAC=90°﹣∠C=55°,∴∠BAE=∠BAC﹣∠EAC=20°.故选:A.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.8.如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.3【分析】过E作EF⊥BC于F,根据角平分线性质得出EF=DE=3,根据三角形的面积公式求出即可.【解答】解:过E作EF⊥BC于F,∵CD是AB边上的高线,BE平分∠ABC,DE=3,∴EF=DE=3,∴△BCE的面积S==,故选:C.【点评】本题考查了角平分线性质的应用,能求出BC边上的高是解此题的关键,注意:角平分线上的点到角的两边的距离相等.9.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.10.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C 的坐标为(4,1),则点B的坐标为()A.(﹣2,1)B.(﹣3,1)C.(﹣2,﹣1)D.(﹣2,﹣1)【分析】根据题意得出C,B关于直线m对称,即关于直线x=1对称,进而得出答案.【解答】解:∵△ABC关于直线m(直线m上各点的横坐标都为1)对称,∴C,B关于直线m对称,即关于直线x=1对称,∵点C的坐标为(4,1),∴=1,解得:x=﹣2,则点B的坐标为:(﹣2,1).故选:A.【点评】此题主要考查了坐标与图形的变化,得出C,B关于直线m对称是解题关键.11.对于平面直角坐标系中任意两点M(x1,y1),N(x2,y2),称|x1﹣x2|+|y1﹣y2|为M,N两点的直角距离,记作:d(M,N).如:M(2,﹣3),N(1,4),则d(M,N)=|2﹣1|+|﹣3﹣4|=8.若P(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P,Q)的最小值为P到直线y=kx+b的直角距离.则P(﹣1,﹣3)到y轴的直角距离d为()A.4B.3C.2D.1【分析】先找出P(﹣1,﹣3)到y轴最近的点的坐标,再根据直角距离公式即可得出结论.【解答】解:∵垂线段最短,∴P(﹣1,﹣3)到y轴最近的点的坐标为(0,﹣3),∴|﹣1﹣0|+|﹣3+3|=1.故选:D.【点评】本题考查的是一次函数图象上上点的坐标特点,正确理解直角距离的定义是解答此题的关键.12.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD 交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.【解答】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选:D.【点评】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.二、填空题(本大题共6个小题,每小题4分,共24分.)13.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.在电影票上如果将“8排4号”记作(8,4),那么“3排5号”记作(3,5).【分析】由于将“8排4号”记作(8,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“8排4号”记作(8,4),∴3排5号记作(3,5).故答案为:(3,5).【点评】此题主要考查了根据坐标确定点的位置,解题的关键是理解题目的规定,知道坐标与位置的对应关系.15.如图,已知AB∥CD,BC平分∠ABE,∠C=32°,则∠BED的度数是64°.【分析】根据平行线的性质得到∠ABC=∠C=32°,再根据角平分线的定义得到∠ABC=∠EBC =32°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=32°,又∵BC平分∠ABE,∴∠ABC=∠EBC=32°,∴∠BED=∠C+∠EBC=32°+32°=64°.故答案为:64°.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.16.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是.【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【解答】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故答案为:.【点评】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.17.如图,四边形OABC为长方形,OA=1,则点P表示的数为.【分析】根据勾股定理即可得到结论.【解答】解:∵OA=1,OC=3,∴OB==,故点P表示的数为,故答案为:.【点评】本题考查了实数与数轴,勾股定理,熟练掌握勾股定理是解题的关键.18.如图,连接在一起的两个等边三角形的边长都为1cm,一个微型机器人由点A开始按A→B→C →D→E→C→A→B→C…的顺序沿等边三角形的边循环移动.当微型机器人移动了2019cm后,它停在了点D上.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1cm,2019=6×336+3,行走了336圈又多3cm,即落到D点.【解答】解:∵两个全等的等边三角形的边长为1cm,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6cm,∵2019=6×336+3,即行走了336圈又3cm,∴行走2016cm后,则这个微型机器人停在A点,再走3cm,则停在D点,故答案为:D.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2019为6的倍数余数是几.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分).【分析】首先利用二次根式的乘法运算得出=×,进而化简约分得出即可.【解答】解:=×=3.【点评】此题主要考查了二次根式的乘法运算,正确把握运算公式是解题关键.20.(6分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②+①得:2x=12,解得:x=6,把x=6代入①得:y+6=10,解得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(6分)如图,点D在△ABC边AB的延长线上,BE平分∠CBD,若∠ACB=60°,∠CAB=80°.求∠DBE的度数.【分析】利用三角形外角的性质求出∠DBC即可解决问题;【解答】解:∵∠CBD=∠ACB+∠CAB,∠ACB=60°,∠CAB=80°,∴∠CBD=60°+80°=140°,∵BE平分∠CBD∴.【点评】本题考查三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(8分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB ∥CD.【分析】要证AB∥CD,可通过证∠A=∠C,那么就需证明这两个角所在的三角形全等即可.【解答】解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△AFB与△CED中,,∴△AFB≌△CED(SAS).∴∠A=∠C.∴AB∥CD.【点评】本题考查了三角形全等的判定及性质;题目采用从结论开始推理容易突破.有平行推出需要找到有关角相等,进而分析需证三角形全等.23.(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.【分析】(1)设需购买笔记本x件,水笔y件,根据从友谊超市购买笔记本和水笔共40件需花费90元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出在网店购买这些奖品所需费用,用90减去该值即可得出结论.【解答】解:(1)设需购买笔记本x件,水笔y件,根据题意得:,解得:.答:需购买笔记本25件,水笔15件.(2)在网店购买这些奖品所需费用为25×2+15×1.8=77(元),节省的钱数为90﹣77=13(元).答:从网店购买这些奖品可节省13元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据总价=单价×数量求出在网店购买这些奖品所需费用.24.(10分)某校八年级全体同学参加了“爱心一日捐ˆ捐款活动,该校随杋抽査了部分同学捐款的情况统计如图所示:(1)求出本次抽查的学生人数;(2)求出捐款10元的学生人数,并将条形图补充完整;(3)捐款金额的众数是10元,中位数是12.5.(4)请估计全校八年级1000名学生,捐款20元的有多少人?【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数;(2)将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(3)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数,求出第25、26个数据的平均数可得数据的中位数;(4)由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.【解答】解:(1)14÷28%=50(人)∴本次测试共调查了50名学生,(2)50﹣(9+14+7+4)=16(人)∴捐款10元的学生人数为16人,补全条形统计图图形如下:(3)由条形图可知,捐款10元人数最多,故众数是10元;中位数是=12.5(元),故答案为:10、12.5;(4)1000×=140(人)∴全校八年级1000名学生,捐款20元的有140人.【点评】本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.25.(10分)如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?【分析】(1)由当t=0时,y1=5,y2=0,二者做差后即可得出结论;(2)利用速度=路程÷时间,可分别求出走私船与公安艇的速度;(3)观察函数图象,找出点的坐标,利用待定系数法即可求出l1,l2的解析式;(4)利用一次函数图象上点的坐标特征,求出x=6时,y1,y2的值,做差后即可得出结论.【解答】解:(1)当t=0时,y1=5,y2=0,∴5﹣0=5,∴在刚出发时,我公安快艇距走私船5海里.(2)(9﹣5)÷4=1(海里/分钟),6÷4=1.5(海里/分钟).∴走私船的速度是1海里/分钟,公安艇的速度为1.5海里/分钟.(3)设图象l1的解析式为y1=kt+b(k≠0),将(0,5),(4,9)代入y1=kt+b,得:,解得:,∴图象l1的解析式为y1=t+5;设图象l2的解析式为y2=mt(m≠0),将(4,6)代入y2=mt,得:4m=6,解得:m=1.5,∴图象l2的解析式为y2=1.5t.(4)当t=6时,y1=6+5=11,y2=1.5×6=9,∵11﹣9=2(海里),∴6分钟时,走私船与我公安快艇相距2海里.【点评】本题考查了待定系数法求一次函数解析式、函数图象以及一次函数图象上点的坐标特征,解题的关键是:(1)观察函数图象,找出当t=0时y的值;(2)利用速度=路程÷时间求出两船的速度;(3)根据点的坐标,利用待定系数法求出一次函数解析式;(4)利用一次函数图象上点的坐标特征求出当t=6时y1,y2的值.26.(12分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=OQ=1,进而求出直线PR的解析式,即可得出结论.【解答】(1)证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则,解得∴直线PR为y=﹣x+3由y=0得,x=6∴R(6,0).【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.27.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.【分析】(1)设直线AB的解析式为y=kx+b,把A(4,2),B(6,0)代入即可求解;(2)点B(6,0)关于y轴的对称点B',∴B'(﹣6,0),连接AB'交y轴于M,此时MA+MB 最小,即可求解;(3)分AO=AN、AO=ON、AN=ON三种情况,分别求解即可.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(4,2),B(6,0)代入得:,解得:,∴直线AB的表达式为y=﹣x+6;(2)作点B(6,0)关于y轴的对称点B',∴B'(﹣6,0),连接AB'交y轴于M,此时MA+MB最小,设直线AB'的解析式为y=mx+n,将A(4,2),B'(﹣6,0)代入得:,解得:,∴直线AB'的解析式为:y=x+,当x=0时,y=,∴M(0,);(3)存在,理由:设:点N(m,0),点A(4,2),点O(0,0),则AO2=20,AN2=(m﹣4)2+4,ON2=m2,①当AO=AN时,20=(m﹣4)2+4,解得:m=8或0(舍去0);②当AO=ON时,同理可得:m=;③当AN=ON时,同理可得:m=;故符合条件的点N坐标为:(﹣2,0)或(2,0)或(8,0)或(,0).【点评】本题考查的是一次函数综合运用,涉及到等腰三角形的性质、点的对称性等,其中(3),要注意分类求解,避免遗漏.。
2019-2020学年八年级数学上学期期末原创卷A卷(山东)(参考答案)
2019-2020学年上学期期末原创卷A 卷八年级数学·参考答案13.3×10–5 14.1a -- 15.–316.617.58°或32°18.50°19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分) 20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分)(2)(x +y )2–10(x +y )+25=(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分) 又EF 平分∠AED ,∴°1542FED AED ∠=∠=,(4分) ∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°, ∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1);(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8分)24.【解析】(1)在△ABE 和△DCE 中,A DAEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分) ∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB 中,A D AB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张. 故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x++=, 解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天), 甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元). ∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DC DBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NE ME CM -=,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CME DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆, ∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
2019-2020山东济南历下区八年级上数学期末试题(图片版)
八年级数学教学质量检测试题(2020. 1)考试时间120分钟满分150分第I 卷(选择题共48分)考生须知:1. 本试卷满分120分,考试时间为120分钟.2. 答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3. 请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5. 保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中, 只有一项是符合题目要求的,)1. 点{}1,1A x --在第二象限,则x 的值可能为( )A .2B .1C .0D .1-2. 校舞蹈队10名队员的年龄情况统计如下表,则校舞蹈队队员年龄的众数是( )A .12B .13C .14D .153.下列命题是假命题的是( )A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等;C.等腰三角形的底角可能是直角;D.直角三角形的两锐角互余。
4.不等式36x ->的解集是( )A .2x >-B .2x <- C.2x > D .2x <5. 在平面直角坐标系中,一次函数y kx b =+的图像如图所示,观察图像可得( )A .0,0k b >>B .0,0k b <> C. 0,0k b >< D .0,0k b <<6. 如图,线段AB 关于y 轴对称的线段是( )A .DEB .BC C.HID .GF7. 一次函数2y x b =-+上有两点()2, 3()A m B n ,,,则下列结论成立的是( )A .m n >B .m n < C. m n = D .不能确定8. 一副三角板如图摆放,则α∠的度数为( )A .65︒B .70︒ C. 75︒ D .80︒9. 三个连续正整数的和小于14,这样的正整数有( )A.2组B.3组C.4组D.5组10.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打( )A.九折B.八折C.七折D.六折11.如图,在ABC ∆中,15,30B C MN ︒︒∠=∠=,是AB 的中垂线,PQ 是AC 的中垂线,已知BC 的长为3,则阴影部分的面积为( )2 C.3 D.3212. 我们规定:[]m 表示不超过m 的最大整数,例如:[][][]3.13,00, 3.14==-=-,则关于x 和y 的二元- -次方程组[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩的解为 ( ) A. 30.2x y =⎧⎨=⎩ B. 21.2x y =⎧⎨=⎩ C. 3.30.2x y =⎧⎨=⎩ D. 3.40.2x y =⎧⎨=⎩第II 卷(非选择题共102分)二、填空题(本大题共6个小题,每小题4分,共24分,)13.点()2,1A 到x 轴的距离是 .14. 某销售人员一周的销售业绩如下表所示,这组数据的中位数是 .15. 如图,一次函数1y kx b =+和2y mx n =+交于点A ,则kx b mx n +>+的解集为 .16.如图,若12130︒∠+∠=,则A ∠=_____度。
山东省济南市八年级(上)期末数学试卷(含答案)
山东省济南市八年级(上)期末数学试卷一、选择题(每题4分,共48分)1.(4分)下列实数中的无理数是()A.B.C.D.2.(4分)以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.3.(4分)289的平方根是±17的数学表达式是()A.=17B.=±17C.±=±17D.±=174.(4分)下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等5.(4分)已知点A(2x﹣4,x+2)在坐标轴上,则x的值等于()A.2或﹣2B.﹣2C.2D.非上述答案6.(4分)对于函数y=k2x(k是常数,k≠0),下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(,k)C.该函数图象经过二、四象限D.y随着x的增大而增大7.(4分)将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°8.(4分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为()A.4和6B.6和4C.2和8D.8和﹣29.(4分)某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是()进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)日期周一周二周三周四周五周六周日销售量30403530506050 A.该商品周一的利润最小B.该商品周日的利润最大C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D.由一周中的该商品每天进价组成的这组数据的中位数是3(元/斤)10.(4分)如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.11.(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km.正确的是()A.①②B.①③C.①④D.①③④12.(4分)如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A.B.C.D.二、填空题(每题4分,共24分)13.(4分)计算=.14.(4分)如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=153°,则∠B的度数为.15.(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是.16.(4分)定义:如图,点P、Q把线段AB分割成线段AP、PQ和BQ,若以AP、PQ、BQ为边的三角形是一个直角三角形,则称点P、Q是线段AB的勾股分割点.已知点P、Q是线段AB的勾股分割点,如果AP=8,PQ=12(PQ>BQ),那么BQ=.17.(4分)现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是.18.(4分)如图,已知在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P 的运动时间为t秒.则当t=秒时,△ODP是腰长为5的等腰三角形?三.解答题(共78分)19.(6分)(1)计算:﹣5(2)计算:620.(6分)已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.21.(6分)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.(8分)阅读理解:已知两直线,L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1,根据以上结论解答下列各题:(1)已知直线y=2x+1与直线y=kx﹣1垂直,求k的值.(2)若一条直线经过A(2,3),且与y=x+3垂直,求这条直线的函数关系式.23.(8分)如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.24.(10分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.25.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?26.(12分)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.27.(12分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A 关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S,若存在,请求出对应的点Q坐标;若不存在,请说明理由.△DPQ山东省济南市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.【解答】解:A、=2,不是无理数,故此选项错误;B、=2,是无理数,故此选项正确;C、,不是无理数,故此选项错误;D、=3,不是无理数,故此选项错误;故选:B.2.【解答】解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.3.【解答】解:289的平方根是±17的数学表达式是±=±17,故选:C.4.【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.5.【解答】解:∵点A(2x﹣4,x+2)在坐标轴上,∴当2x﹣4=0时,x=2,当x+2=0时,x=﹣2,∴x的值为±2,故选:A.6.【解答】解:对于函数y=k2x(k是常数,k≠0)的图象,∵k2>0,∴直线y=k2x经过第一、三象限,y随x的增大而增大,∵当x=时,y=k,∴直线y=k2x经过点(,k).故选:C.7.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.8.【解答】解:∵x=5是方程组的解,∴2×5﹣y=12,∴y=﹣2,∴2x+y=2×5﹣2=8,∴●是8,★是﹣2.故选:D.9.【解答】解:A.该商品周一的利润45元,最小,正确;B.该商品周日的利润85元,最大,正确;C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤),正确;D.一周中的该商品每天进价组成的这组数据的中位数是(2.8元/斤),错误;故选:D.10.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.11.【解答】解:由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,故③正确.故选:B.12.【解答】解:∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,,∴AB==3,∵AB×CE=BC×AC,∴CE==,又∵A1C=AC=4,∴A1E=4﹣=,故选:B.二、填空题(每题4分,共24分)13.【解答】解:==2,故答案为:2.14.【解答】解:∵∠1+∠EDC=180°,∠1=153°,∴∠EDC=27°,∵DE∥BC,∴∠EDC=∠C=27°,∵∠A=90°,∴∠B=90°﹣∠C=63°,故答案为63°.15.【解答】解:由题意得,(2+a+4+6+8)=5,解得:x=5,这组数据按照从小到大的顺序排列为:2,4,5,6,8,则中位数为5;故答案为:5.16.【解答】解:依题意得:AP2+BQ2=PQ2,即82+BQ2=122,解得BQ=4(舍去负值).故答案是:4.17.【解答】解:设小矩形的宽是x,长是y,,解得:.小矩形的面积为:6×10=60.故答案为:60.18.【解答】解:当OD=OP=5时,在直角△OPC中,CP==3,则t=4+3=7;当PD=OD=5时,作DE⊥BC于点E,同理,在直角△PED中,得到PE=3,则当P在E的左边时,CP=5﹣3=2,则t=4+2=6;当P在E的右边时CP=5+3=8,则t=4+8=12;或AP=3,则t=4+9+4﹣3=14;当OP=PD,CP=2.5,t=4+2.5=6.5(舍去)总之,t=7或6或12或14.故答案为:6或7或12或14.三.解答题(共78分)19.【解答】解:(1)原式=﹣﹣5=2﹣2﹣5=﹣2﹣3;(2)原式=2﹣+9﹣=9.20.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.21.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.22.【解答】解:(1)∵直线y=2x+1与直线y=kx﹣1垂直,∴2•k=﹣1,∴k=(2)∵过点A的直线与y=x+3垂直,∴可设过点A的直线解析式为y=﹣3x+b将点A(2,3)代入,得:﹣6+b=3,解得:b=9,所以过点A的直线解析式为y=﹣3x+923.【解答】解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.24.【解答】解:(1)A校平均数为:(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.25.【解答】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利=40×(40﹣30)+60×(50﹣35)=1300(元),答:商场获利1300元.26.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.27.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x+3=0,∴x=﹣4,∴A(﹣4,0);(2)∵点C是点A关于y轴对称的点,∴C(4,0),∵CD⊥x轴,∴x=4时,y=6,∴D(4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a,∴PC'=a,DP=6﹣a,在Rt△DC'P中,a2+4=(6﹣a)2,∴a=,∴P(4,);(3)设P(4,m),∴CP=m,DP=|m﹣6|,∵S△CPQ=2S△DPQ,∴CP=2PD,∴2|m﹣6|=m,∴m=4或m=12,∴P(4,4)或P(4,12),∵直线AB的解析式为y=x+3①,当P(4,4)时,直线OP的解析式为y=x②,联立①②解得,x=12,y=12,∴Q(12,12),当P(4,12)时,直线OP解析式为y=3x③,联立①③解得,x=,y=4,∴Q(,4),即:满足条件的点Q(12,12)或(,4).。
山东省济南市2019-2020学年八年级上学期期末考试数学试题(解析版)
山东省济南市2019-2020学年八年级上学期期末考试数学试题一、选择题(本大题共12小题,共48.0分)1.点的位置在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】解:点,点所在的象限是第二象限.故选:B.根据各象限内点的坐标特点,再根据M点的坐标符号,即可得出答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.2.已知,则下列不等式中不正确的是A. B. C. D.【答案】D【解析】解:A、在不等式的两边同时乘以5,不等式仍成立,即,故本选项不符合题意;B、在不等式的两边同时加7,不等式仍成立,即,故本选项不符合题意;C、在不等式的两边同时乘以,不等号方向改变,即,故本选项不符合题意;D、在不等式的两边同时减去6,不等式仍成立,即,故本选项符合题意;故选:D.根据不等式的性质解答.考查了不等式的性质:不等式两边加或减同一个数或整式,不等号的方向不变.不等式两边乘或除以同一个正数,不等号的方向不变.不等式两边乘或除以同一个负数,不等号的方向改变.3.如图,直线,将三角尺的直角顶点放在直线b上,若,则等于A. B. C. D.【答案】B【解析】解:如图,,,,.故选:B.根据平角的定义求出,再根据两直线平行,同位角相等可得.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.4.不等式的解集在数轴上表示为A. B.C. D.【答案】A【解析】解:移项得:,系数化为1得:,即不等式的解集为:,不等式的解集在数轴上表示如下:故选:A.依次移项,系数化为1,即可求得一元一次不等式的解集,再将解集在数轴上表示出来即可.本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确掌握解一元一次不等式和在数轴上表示不等式解集的方法是解题的关键.5.满足下列条件的,不是直角三角形的是A. B.C. a:b::4:5D. :::4:5【答案】D【解析】解:A、,是直角三角形,故此选项不合题意;B、,,,是直角三角形,故此选项不合题意;C、,是直角三角形,故此选项不合题意;D、:::4:5,则,不是直角三角形,故此选项符合题意,故选:D.根据勾股定理逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形;三角形内角和定理进行分析即可.此题主要考查了勾股定理逆定理,以及三角形内角和定理,关键是正确掌握如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.6.下列算式中,正确的是A. B.C. D.【答案】C【解析】解:,此选项错误;B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.根据二次根式的混合运算法则逐一计算可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.7.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A. 小时B. 小时C. 小时D. 7小时【答案】C【解析】解:小时.故这50名学生这一周在校的平均体育锻炼时间是小时.故选:C.根据加权平均数的计算公式列出算式,再进行计算即可.此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.8.函数b为常数,的图象如图所示,则关于x的不等式的解集是A.B.C.D.【答案】C【解析】解:关于x的不等式的解集为.故选:C.利用函数图象,写出直线在x轴上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.9.在中,,的角平分线AD交BC于点D,,,则点D到AB的距离是A. 2B. 3C. 4D. 5【答案】B【解析】解:,,,由角平分线的性质,得点D到AB的距离,故选:B.根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离点D到AC的距离.本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.10.如图,已知等腰,,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是A.B.C.D.【答案】C【解析】解:,,以点B为圆心,BC长为半径画弧,交腰AC于点D,,,,,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.11.已知等腰三角形周长为40,则腰长y关于底边长x的函数图象是A. B.C. D.【答案】D【解析】解:等腰三角形的周长为40,其中腰长为y,底边长为x,,,,自变量x的取值范围是,y的取值范围是.故选:D.根据三角形的周长公式即可写出y与x的函数关系式,结合x和y的取值范围,即可得出答案.此题主要考查动点问题的函数图象、一次函数关系式,掌握等腰三角形的周长公式是解题的关键.12.如图,已知:,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的长为A. B. C. D.【答案】C【解析】解:是等边三角形,,,,,,又,,,,,、是等边三角形,,,,,,,,,,,,,,,以此类推,的长为,的长为,故选:C.根据等腰三角形的性质以及平行线的性质得出,以及,得出,,,以此类推,的长为,进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出,,进而发现规律是解题关键.二、填空题(本大题共8小题,共34.0分)13.已知点在一次函数的图象上,则______.【答案】【解析】解:点在一次函数的图象上,.故答案是:.把点P的坐标代入函数解析式,列出关于a的方程,通过解方程可以求得a的值.本题考查了一次函数图象上点的坐标特征此题利用代入法求得未知数a的值.14.在平面直角坐标系中,点在第三象限,则m的取值范围是______.【答案】【解析】解:点在第三象限,点的横坐标是负数,纵坐标也是负数,即,解得,故答案为:,点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得,求不等式的解即可.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.15.如图,在中,AC的垂直平分线DE交AB于点E,交AC于点D,连接CE,若,,则______.【答案】【解析】解:的垂直平分线DE,,,,故答案为:.根据线段垂直平分线性质求出,即可得出的度数.此题考查线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是______.【答案】丁【解析】解:甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,综合平均数和方差两个方面说明丁成绩既高又稳定,丁是最佳人选.故答案为:丁.根据甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,得到丁是最佳人选.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,在中,与的平分线相交于点O,过点O作,分别交AB、AC于点M、若的周长为15,,则的周长为______.【答案】9【解析】解:如图,、OC分别是与的平分线,,,又,,,,,的周长,又,,,的周长,故答案为9.先根据角平分线的性质和平行线判断出、,也就得到三角形的周长就等于AB与AC的长度之和.本题考查了等腰三角形的性质;解答此题的关键是熟知平行线的性质,等腰三角形的性质及角平分线的性质及利用线段的等量代换.18.如图,在中,,,D是AB的中点,点E、F分别在AC、BC边上运动点E不与点A、C重合,且保持,连接DE、DF、在此运动变化的过程中,有下列结论:;四边形CEDF的面积随点E、F位置的改变而发生变化;;以上结论正确的是______只填序号.【答案】【解析】解:连接CD,是等腰直角三角形,,;在和中,,≌ ,,故正确;,定值,故错误,四边形≌ ,,,故正确,,,,,,,故正确.故答案为.连接证明 ≌ ,利用全等三角形的性质即可一一判断.本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形想的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.如图,,P为射线BC上任意一点点P和点B不重合,分别以AB,AP为边在内部作等边和等边,连结QE并延长交BP于点F,连接EP,若,,则______.【答案】【解析】解:如图:连接EP,过点E作,是等边三角形,,且,≌,,,,,,,,在中,故答案为连接EP,过点E作,由题意可得 ≌ ,可得,,可求,根据勾股定理可求,,,,可求,,,由,,可得,可求MP的长,根据勾股定理可求EP的长.本题考查了三角形综合题,全等三角形的判定和性质,勾股定理,构造直角三角形用勾股定理求线段的长度是本题的关键.20.如图,平面直角坐标系中,已知点,C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转至线段PD,过点D作直线轴,垂足为B,直线AB与直线OP交于点A,且,直线CD与直线OP交于点Q,则点Q的坐标为______.【答案】【解析】解:过点P作于E,EP的延长线交AB于F.,,四边形EOBF是矩形,,,,,,,在和中,,≌ ,,,,,,,,,设直线CD的解析式为则有,解得,直线CD的解析式为,由解得,点Q的坐标为故答案为过点P作于E,EP的延长线交AB于首先证明 ≌ ,得到,推出,由,推出,,,,,利用待定系数法求出直线CD的解析式,利用方程组即可求出点Q的坐标.本题考查一次函数的应用、待定系数法、全等三角形的判定和性质、二元一次方程组等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数,利用方程组求交点坐标,属于中考填空题中的压轴题.三、计算题(本大题共2小题,共12.0分)21.解二元一次方程组.【答案】解:,,得,,把代入,得,解得,所以原方程组的解为.【解析】利用加减消元法求解可得.本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.22.解不等式组,并把它的解集表示在数轴上.【答案】解:解不等式,得,解不等式,得,不等式组的解集是,在数轴上表示为:.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.四、解答题(本大题共7小题,共66.0分)23.在中,D是BC的中点,,,垂足分别为E、F,且.求证:是等腰三角形.【答案】证明:是BC的中点,,,,,,,≌ ,,,是等腰三角形.【解析】根据中点的定义可得到,再根据HL即可判定 ≌ ,从而可得到,根据等角对等边可得到,即是等腰三角形.此题主要考查等腰三角形的判定及全等三角形的判定与性质的综合运用.24.为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:被抽查学生阅读时间的中位数为______小时,众数为______小时,平均数为______小时已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?【答案】2 2【解析】解:,被抽查学生阅读时间的中位数为:第25和第26个学生阅读时间的平均数,众数为2,平均数,故答案为:2,2,;,答:估算该校学生一周内阅读时间不少于三小时的有540人.根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;根据总人数阅读时间不少于三小时的百分比可得结果.此题考查了众数,条形统计图,平均数、中位数及用样本估计总体,弄清题中的数据是解本题的关键.25.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?【答案】解:设购买A型学习用品x件,B型学习用品y件,由题意,得:,解得:.答:购买A型学习用品400件,B型学习用品600件;设可以购买B型学习用品a件,则A型学习用品件,由题意,得:,解得:,答:最多购买B型学习用品800件.【解析】设购买A型学习用品x件,B型学习用品y件,就有,,由这两个方程构成方程组求出其解就可以得出结论;设可以购买B型学习用品a件,则A型学习用品件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.本题考查了列二元一次方程组和一元一次不等式解实际问题的运用,解答本题时找到等量关系是建立方程组的关键.26.如图,在中,,,AD是的角平分线,,垂足为E.求证:;已知,求AC的长;求证:.【答案】证明:在中,,,是等腰直角三角形,,,是等腰直角三角形,.是的角平分线,,;解:由知,是等腰直角三角形,,,,;证明:是的角平分线,,.在与中,,≌ ,.由知,.【解析】先根据题意判断出是等腰直角三角形,故,再由可知是等腰直角三角形,故DE,再根据角平分线的性质即可得出结论;由知,是等腰直角三角形,,再根据勾股定理求出BD的长,进而可得出结论;先根据HL定理得出 ≌ ,故AE,再由可得出结论.本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.27.已知:如图一次函数与的图象相交于点A.求点A的坐标;若一次函数与的图象与x轴分别相交于点B、C,求的面积.结合图象,直接写出时x的取值范围.【答案】解:解方程组,得,所以点A坐标为;当时,,,则B点坐标为;当时,,,则C点坐标为;,的面积;根据图象可知,时x的取值范围是.【解析】将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;先根据函数解析式求得B、C两点的坐标,可得BC的长,再利用三角形的面积公式可得结果;根据函数图象以及点A坐标即可求解.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合也考查了两直线相交时交点坐标的求法以及三角形的面积.28.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:如图1,已知:在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、试猜想DE、BD、CE有怎样的数量关系,请直接写出______;组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有其中为任意锐角或钝角如果成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是角平分线上的一点,且和均为等边三角形,D、E分别是直线m上A点左右两侧的动点、E、A互不重合,在运动过程中线段DE 的长度始终为n,连接BD、CE,若,试判断的形状,并说明理由.【答案】【解析】解:,理由:,,,,,,,在和中,,≌ ,,,,故答案为:;解:结论成立;理由如下:,,,,在和中,,≌ ,,,;为等边三角形,理由:由得, ≌ ,,,,即,在和中,,≌ ,,,,为等边三角形.先利用同角的余角相等,判断出,进而判断出 ≌ ,得出,,即可得出结论;先利用等式的性质,判断出,进而判断出 ≌ ,得出,,即可得出结论;由得, ≌ ,得出,再判断出 ≌ ,得出,进而得出,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,判断出是解本题的关键.29.如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为、、过点A的直线AD与y轴正半轴交于点D,求直线AD和BC的解析式;如图2,点E在直线上且在直线BC上方,当的面积为6时,求E点坐标;在的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当周长最小时,求周长的最小值.【答案】解:,,即点D的坐标为,将点A、D的坐标代入一次函数表达式:得:,解得:,则直线AD的表达式为:,同理可得直线BC的表达式为:;设直线与BC交于点F,点E坐标为,则点F坐标为,则,解得:,即点E的坐标为;过点E点作,点E和关于直线AD对称,设直线与直线AD交于点,连接,找到点E关于x轴的对称点,连接交AD于M点、交x轴于点N,此时,周长最小,,,则点的坐标为,则:周长的最小值.【解析】,,即点D的坐标为,将点A、D的坐标代入一次函数表达式,即可求解;由,即可求解;作点E关于直线AD对称点;找到点E关于x轴的对称点,连接交AD于M 点、交x轴于点N,则周长最小,即可求解.本题考查的是一次函数综合运用,主要考查对称点的性质与用途,此类题目正确确定对称点的位置解题的关键.。
初中数学山东省济南市历城区八年级数学上学期期末考试考试题.docx
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下面有4个汽车标志图案,其中是中心对称图形的是()A.B.C.D.试题2:下列各组数值是二元一次方程x﹣3y=4的解的是()A. B. C. D.试题3:如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°试题4:位于平面直角坐标系中第三象限的点是()A.(3,﹣3) B.(﹣2,﹣2) C.(0,﹣3) D.(﹣3,5)试题5:将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位 B.关于原点对称C.将原图向右平移两个单位 D.关于y轴对称试题6:某舞蹈队10名队员的年龄如下表所示:年龄(岁)13 14 15 16人数 2 4 3 1则这10名队员年龄的众数和中位数分别是()A.16,14 B.14,14 C.14,15 D.15,14试题7:如图,以两条直线l1,l2的交点坐标为解的方程组是()A. B.C. D.试题8:如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°试题9:已知正比例函数y=kx的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B. C.D.试题10:如图,△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A=()A.25° B.65° C.50° D.75°试题11:下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个 B.2个 C.3个 D.4个试题12:如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣ B. C.﹣1 D.1试题13:如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,则直线CD的函数解析式为()A.y=﹣2x+2 B.y=2x﹣2 C.y=﹣x﹣2 D.y=﹣2x﹣2试题14:如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()试题15:﹣8的立方根是.A.8 B.12 C.4 D.6试题16:在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为.试题17:如图,AB=AC,则数轴上点C所表示的数为.试题18:在△ABC中,AB=AC,AB的垂直平分线交AC于点E,交AB于D,若△BCE的周长为8,且AC﹣BC=2,则AB= .试题19:如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.试题20:如图,已知蚂蚁沿着长为2的正方体表面从点A出发,经过3个侧面爬到点B,如果它运动的路径是最短的,则此经过3个侧面的最短路径长为.试题21:﹣试题22:()﹣1+(π﹣2016)0﹣()2试题23:解方程组试题24:已知+(x+2016y)2=0,求y x的值.试题25:如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)将△ABC沿x轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标.(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并写出点C2坐标.试题26:25.如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,AD=4,求AB的长.试题27:小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是米/分?在超市逗留了分钟?(2)求小敏从超市回家时,离家的路程y(米)和所经过的时间x(分)之间的关系式,并求小敏是几点几分返回到家的?试题28:如图,点P是正方形ABCD内一点,点P到点A,B和C的距离分别为1,2,3,将△ABP绕点B旋转至△CBP′,连接PP′.(1)求证:△BPP′是等腰直角三角形;(2)求∠APB的度数.试题29:如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.试题30:B【考点】无理数.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:A、=2,是有理数,故本选项错误;B、π是无理数,故本选项正确;C、0.38是有理数,故本选项错误;D、﹣是有理数,故本选项错误.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.试题1答案:D【考点】中心对称图形.【专题】常规题型.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.故选D.【点评】本题考查中心对称的定义,属于基础题,注意掌握基本概念.试题2答案:A【考点】二元一次方程的解.【专题】计算题.【分析】将四个选项中的x与y的值代入已知方程检验,即可得到正确的选项.【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,本选项正确;B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,本选项错误;C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,本选项错误;D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,本选项错误.故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.试题3答案:C【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.试题4答案:B【考点】点的坐标.【分析】应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标.【解答】解:∵第三象限的点的横坐标是负数,纵坐标也是负数,∴结合选项符合第三象限的点是(﹣2,﹣2).故选B.【点评】本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).试题5答案:A【考点】坐标与图形变化-平移.【分析】根据坐标与图形变化,把三角形三个顶点的横坐标都减2,纵坐标不变,就是把三角形向左平移2个单位,大小不变,形状不变.【解答】解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.【点评】本题考查了坐标位置的确定及坐标与图形的性质,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)试题6答案:B【考点】众数;中位数.【专题】探究型.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中14出现的次数最多,故这组数据的众数是14,按从小到大的数据排列是:13、13、14、14、14、14、15、15、15、16,故中位数是14,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.试题7答案:C【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.试题8答案:A【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.试题9答案:A【考点】一次函数的图象;正比例函数的性质.【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数ykx+k的图象过过一、二、三象限.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴一次函数y=x+k的图象过一、二、三象限.故选A.【点评】本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的减小而减小;当b>0,图象与y轴的正半轴相交;当b=0,图象过原点;当b<0,图象与y轴的负半轴相交.试题10答案:C【考点】三角形内角和定理;三角形的外角性质.【分析】先根据BD是∠ABC的平分线可知∠DBC=∠B,再根据CD是△ABC的外角平分线可知∠ACD=(∠A+∠ABC),再根据三角形内角和定理即可求出结论.【解答】解:∵BD是∠ABC的平分线,∴∠DBC=∠ABC,∵CD是△ABC的外角平分线,∴∠ACD=(∠A+∠ABC),∵∠D+∠DBC+∠ACB+∠ACD=180°,即∠ABC+∠ACB+(∠A+∠ABC)=155°①,∠A+∠ABC+∠ACB=180°②,∴∠ABC+∠ACB=130°,∴∠A=50°.故选C.【点评】本题考查的是三角形内角和定理及三角形外角的性质,熟知“三角形的内角和是180°”是解答此题的关键.试题11答案:A【考点】命题与定理.【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据三角形外角性质对③进行判断;根据非负数的性质对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.试题12答案:C【考点】旋转的性质.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.试题13答案:D【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,∵A(0,2)、点B(1,0)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x+2;∵将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故选D.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.试题14答案:D【考点】角平分线的性质.【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.试题15答案:﹣2 .【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.试题16答案:.【考点】方差.【专题】计算题.【分析】先计算出这组数据的平均数,然后根据方差公式求解.【解答】解:平均数=(7+8+10+8+9+6)=8,所以方差S2=[(7﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2]=.故答案为.【点评】本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.试题17答案:﹣1 .【考点】勾股定理;实数与数轴.【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故答案为:﹣1.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.试题18答案:5 .【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】计算题.【分析】根据垂直平分线的性质可得出AE=BE,再由△BCE的周长为8,则AC+BC=8,从而列出关于AC、BC的方程组,解方程组即可.【解答】解:∵AB的垂直平分线交AC于点E,交AB于D,∴AE=BE,∵△BCE的周长为8,∴BC+BE+CE=8,∴AC+BC=8,且AC﹣BC=2,∴AC=5,∵AB=AC,∴AB=5.故答案为5.【点评】本题主要考查线段垂直平分线的性质,熟练掌握性质是解题的关键.试题19答案:10 .【考点】平移的性质.【分析】根据平移的基本性质解答即可.【解答】解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.试题20答案:2.【考点】平面展开-最短路径问题.【分析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.【点评】此题考查了平面展开﹣最短路径问题,勾股定理,熟练求出AB的长是解本题的关键.试题21答案:原式=﹣=﹣=3﹣;试题22答案:原式=3+1﹣(3+1﹣2)=4﹣4+2=2;试题23答案:,①×2﹣②得,﹣7y=﹣14,解得y=2,把y=2代入①得,x﹣4=﹣1,解得x=3,故此方程组的解为;试题24答案:∵+(x+2016y)2=0,∴,解得,∴y x=(﹣1)2016=1.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、乘方的法则、非负数的性质等知识是解答此题的关键.试题25答案:【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)利用点平移的坐标特征写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和性质的性质,画出点A、C的对应点A2,C2,即可得到△A2BC2,然后写出点C2坐标.【解答】解:(1)如图,△A1B1C1为所作,点B1坐标为(0,1);(2)如图,△A2BC2为所作,点C2坐标为(0,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.试题26答案:【考点】全等三角形的判定与性质.【分析】由HL证明Rt△BDF≌Rt△ADC,得出BD=AD=4,再由勾股定理求出AB即可.【解答】解:∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴BD=AD=4,∴AB===4.【点评】本题考查了全等三角形的判定与性质;熟记斜边和一条直角边对应相等的两个直角三角形全等是解决问题的关键.试题27答案:【考点】一次函数的应用.【分析】(1)根据速度=即可解决,小敏在超市逗留的时间直接可由图象可知.(2)用待定系数法求解,到家的时间可以设y=0解决.【解答】解:(1)小敏去超市的速度==300米/分,在超市逗留的时间=40﹣10=30分钟.故答案分别为300,30.(2)设小敏离家的路程y(米)和所经过的时间x(分)之间的关系式为y=kx+b,由题意经过点(40,3000),(45,2000),故解得所以小敏离家的路程y(米)和所经过的时间x(分)之间的关系式为y=﹣200x+11000,∵y=0时,x=55,∴小敏回家的时间是8点55分.【点评】本题考查路程、速度、时间之间的关系,待定系数法求一次函数的解析式,正确运用图象的相信是解题的关键.试题28答案:【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质.【分析】(1)由旋转的性质得出△ABP≌△CBP′,得出∠PBP′=∠ABC=90°,BP=BP′=2,P′C=AP=1,即可得出结论;(2)连接PC,由等腰三角形的性质得出∠BP′P=45°,由勾股定理求出PP′,由勾股定理的逆定理证出△BP′C是直角三角形,∠PP′C=90°,即可得出结果.【解答】(1)证明:∵将△ABP绕点B旋转至△CBP′,∴△ABP≌△CBP′,∴∠PBP′=∠ABC=90°,BP=BP′=2,P′C=AP=1,∠APB=∠BP′C∴△BPP′为等腰直角三角形;(2)解:连接PC,如图所示:由(1)得:△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′==2,∵PP′2+P′C2=8+1=9=PC2,∴△BP′C是直角三角形,∠PP′C=90°,∴∠APB=∠BP′C=90°+45°=135°.【点评】本题考查了正方形的性质、旋转的性质、等腰直角三角形的判定与性质、勾股定理以及勾股定理的逆定理;熟练掌握正方形和旋转的性质,证明△BP′C是直角三角形是解决问题(2)的关键.试题29答案:试题30答案:【考点】一次函数综合题.【分析】(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B 的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.【解答】解:(1)∵经过A(0,1),∴b=1,∴直线AB的解析式是.当y=0时,,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).【点评】本题是待定系数法求函数的解析式,以及等腰直角三角形的性质的综合应用,正确求得n的值,判断∠OBP=45°是关键.。
2019-2020学年山东省济南市历城区八年级(上)期末数学试卷解析版
2019-2020学年山东省济南市历城区八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列实数:,,0.1414,中,无理数的个数是()A.1个B.2个C.3个D.4个2.(4分)6的算术平方根是()A.3B.±C.36D.3.(4分)在平面直角坐标系中,点P(3,﹣2)到y轴的距离为()A.3B.﹣3C.2D.﹣24.(4分)如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°5.(4分)下列计算正确的是()A.×=B.+=C.=2D.÷=26.(4分)如果直线y=kx+b经过一、二、四象限,则有()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<07.(4分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分,80分,85分,若依次按20%,40%,40%的比例确定成绩,则这个人的面试成绩是()A.82分B.84分C.85分D.86分8.(4分)如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若AD=4,则DC的值为()A.1B.1.5C.2D.39.(4分)如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标(2,1).将线段AB沿某一方向平移后,若点A的对应点A'的坐标为(﹣2,0).则点B的对应点B'的坐标为()A.(5,2)B.(﹣1,﹣2)C.(﹣1,﹣3)D.(0,﹣2)10.(4分)如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元一次方程组的解是()A.B..C.D.11.(4分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.6812.(4分)如图,在平面直角坐标系中,函数y=x和的图象分别为直线l1、l2,过点A1(1,)作x 轴的垂线交l1于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,……依次进行下去,则点A2019的横坐标为()A.21008B.﹣21008C.﹣21009D.21006二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)|2﹣|=.14.(4分)如图,∠ACD是△ABC的外角,若∠ACD=135°,∠A=75°,则∠B=度.15.(4分)某中学为了选拔一名运动员参加区运会100m短跑比赛,有甲、乙、丙3名运动员备选,他们100m短跑的平均成绩和方差如下表所示甲乙丙12.83秒12.85秒12.83s2 2.1 1.1 1.1如果要选择一名成续优秀且稳定的人去参赛,应派去.16.(4分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.17.(4分)如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF ∥BC,交AB于D,交AC于E,若BD=8cm,DE=3cm,求CE的长为cm.18.(4分)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题:(本大题共9小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算(1)3﹣(+)(2)÷﹣×+20.(10分)解下列二元一次方程组(1)(2)21.(6分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:AB∥DE.22.(6分)如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,求∠DBA 的度数.23.(8分)在“基善一日捐册”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成如图的统计图.(1)本次调查中,一共调查了名同学:(2)抽查学生捐款数额的众数是元,中位数是元:(3)该校共有600名学生参与捐款,请你估计该校学生捐款不少于15元的人数.24.(8分)某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?25.(8分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M40元包240小时,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,小刚和小明家正好选择了这项上网业务.(1)当x≥240时,求y与x之间的函数关系式;(2)若小刚家10月份上网200小时,则他家应付多少元上网费?(3)若小明家10月份上网费用为62元,则他家该月的上网时间是多少小时?26.(12分)如图,直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB的上的一点,若将△ABM沿M 折叠,点B恰好落在x轴上的点B′处.(1)求A、B两点的坐标;(2)求直线AM的表达式;(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.27.(12分)【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为cm.2019-2020学年山东省济南市历城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:是分数,属于有理数;0.1414是有限小数,属于有理数.无理数有,共2个.故选:B.2.【解答】解:∵的平方为6,∴6算术平方根为.故选:D.3.【解答】解:在平面直角坐标系中,点P(3,﹣2)到y轴的距离为3.故选:A.4.【解答】解:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.5.【解答】解:A、×=,符合题意;B、+,无法计算,不合题意;C、=2,不合题意;D、÷=,不合题意;故选:A.6.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:C.7.【解答】解:=84,故选:B.8.【解答】解:∵∠C=90°,∠A=30°,∴∠ABC=60°,∵DE垂直平分AB,∴AD=B4,∴∠ABD=∠A=30°,∴∠CBD=30°,∴CD=BD=2,故选:C.9.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,0),∴平移规律为横坐标减3,纵坐标减3,∴点B(2,1)的对应点的坐标为(﹣1,﹣2).故选:B.10.【解答】解:把P(m,4)代入y=x+2得m+2=4,解得m=2,所以P点坐标为(2,4),所以关于x,y的二元一次方程组的解是.故选:D.11.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EF A=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EF A=∠AGB,∠EAF=∠ABG⇒△EF A≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=F A+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选:A.12.【解答】解:∵过点A1(1,)作x轴的垂线交l1于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x 轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,……依次进行下去,∴A1与A2横坐标相同,A2与A3纵坐标相同,∴当x=1时,y=1,∴A2(1,1),∴当y=1时,x=﹣2A3(﹣2,1),同理可得:A4(﹣2,﹣2),A5(4,﹣2),A6(4,4),A7(﹣8,4),A8(﹣8,﹣8)…∴A2n﹣1的横坐标为(﹣2)n﹣1,∴点A2019的横坐标(﹣2)1009=﹣21009.故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解答】解:∵2﹣<0,∴|2﹣|=﹣2.故本题的答案是﹣2.14.【解答】解:∵∠ACD是△ABC的外角,∠ACD=135°,∠A=75°,∴∠B=∠ACD﹣∠A=135°﹣75°=60°.故答案为:60.15.【解答】解:观察表格可知,甲、丙的平均数小于乙的平均数,即甲、丙的100m短跑的平均成绩较好,∴只要比较甲、丙的方差就可得出正确结果,∵甲的方差大于丙的方差,∴丙的成绩优秀且稳定.故答案为丙.16.【解答】解:AB旋转后位置如图所示.B′(4,2).17.【解答】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCM,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCM,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=8﹣3=5,∴EC=5cm.故答案为5.18.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.三、解答题:(本大题共9小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=3﹣2﹣=;(2)原式=﹣+2=4﹣+2=4+.20.【解答】解:(1)①+②,可得3x=18,解得x=6,把x=6代入①,解得y=5,∴原方程组的解是.(2)①×3+②,可得10x=50,解得x=5,把x=5代入①,解得y=3,∴原方程组的解是.21.【解答】证明:∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,,∴Rt△ABC≌Rt△EDF(HL),∴∠B=∠D,∴AB∥DE.22.【解答】解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠DBA=∠A=35°23.【解答】解:(1)本次调查的样本容量是6+11+8+5=30(名);故答案为:30;(2)这组数据的众数为10元;中位数是10元;故答案为:10,10;(3)根据题意得:600×=260(人),答:该校学生捐款不少于15元的人数有260人.24.【解答】解:(1)设甲种节能灯进了x只,乙种节能灯进了y只,,得,答:甲、乙两种节能灯各进40只,60只;(2)由题意可得,该商场获利为:(40﹣30)×40+(50﹣35)×60=400+900=1300(元),答:该商场获利1300元.25.【解答】解:(1)设当x≥240时,y与x之间的函数关系式为y=kx+b,∵图象经过(240,50)(300,80),∴,解得,∴当x≥240时,y与x之间的函数关系式为:y=0.5x﹣70;(2)根据图象可得小刚家10月份上网200小时,应交费50元;(3)把y=62代入y=0.5x﹣70,得0.5x﹣70=62,解得x=264,答:他家该月的上网时间是264(小时).26.【解答】解:(1)当x=0时,y=8,∴B(0,8),当y=0时,﹣x+8=0,x=6,∴A(6,0);(2)在Rt△AOB中,∠AOB=90°,OA=6,OB=8,∴AB=10,由折叠得:AB=AB'=10,∴OB'=10﹣6=4,设OM=a,则BM=B'M=8﹣a,由勾股定理得:a2+42=(8﹣a)2,a=3,∴M(0,3),设AM:y=kx+b,则,解得:,∴直线AM的解析式为:y=﹣x+3;(3)在x轴上存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,如图∵M(0,3),B′(﹣4,0),∴B′M=5,当PB′=B′M时,P1(﹣9,0),P2(1,0);当B′M=PM时,P3(4,0),当PB′=PM时,作BM的垂直平分线,交x轴于P4,交B′M与Q,易证得△P4B′Q∽△MB′O,则=,即=,∴P4B′=,∴OP4=4﹣=,∴P4(﹣,0),综上,P点的坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).27.【解答】解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.。
济南市2019-2020年度八年级上学期期末数学试题(II)卷
济南市2019-2020年度八年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 有如下命题,其中假命题有().①负数没有平方根;②同位角相等;③对顶角相等;④如果一个数的立方根是这个数本身,那么这个数是0.A.0个B.1个C.2个D.3个2 . 如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24B.100π﹣48C.25π﹣24D.25π﹣483 . 在平面直角坐标系中,已知点A(4,3),则点A关于y轴的对称点的坐标()A.(3,4)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)4 . 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.5 . 如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个6 . 下列语句正确是()A.无限小数是无理数B.无理数是无限小数C.实数分为正实数和负实数D.两个无理数的和还是无理数7 . 关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8 . 如图,是的角平分线,,垂足分别为点,连接与相交于点.下列结论不一定成立的是()A.B.C.D.二、填空题9 . 如图,锐角△ABC中,∠A=45°,AB=8,BC=10,则BC边上的高为_____.10 . 把32.049取近似值,精确到十分位是___________。
11 . 如图,直线交轴于点,交轴于点.在内依次作等边三角形使一边在轴上,另一个顶点在边上,作出的等边三角形第一个是,第二个是,第三个是…(1)的边长等于________;(2)的边长等于________.12 . 如图,△ABC,∠ACB=90°,点D,E分别在AB,BC上,AC=AD,∠CDE=45°,CD与AE交于点F,若∠AEC=∠DEB,CE=,则CF=______.13 . 如图,点E为□ABCD的边BC上一点,线段AE的垂直平分线恰好经过点D且交AB于点F,△BEF和△CDE的周长分别为8和13,则□ABCD的周长为______________.14 . 若一次函数y=kx+b,当x的值减小1时,y的值减小2,则当x的值增加2时,y的值________4.(选填“增加”或“减小”)15 . 在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.16 . 已知,在Rt△ABC中,∠C=90°,AC=8,BC=6,点O为Rt△ABC三个角的角平分线的交点,那么点O到斜边的距离为______.17 . 如图,一次函数与的图象相交于点,则关于的不等式的解集为_______.18 . 4-的相反数是____________,绝对值是____________.三、解答题19 . 在直角坐标系中的位置如图所示,其,直线经过点(0, 1),并且与轴平行,与关于线对称.(1) 画出,并写出三个顶点的坐标: ;(2)观察图中对应点坐标之向的关系,写出点关于直线的对称点的坐标:.20 . 如图,在中,,,,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.21 . △ABC是等边三角形,P为其内的一点,并且满足PA=25,PB=7,PC=24,试求∠CPB的度数?22 . 求下列各式中的x的值:(1)(2x-1)2= 25 (2)3(x-4)3= -37523 . 已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.24 . 如图,在平面直角坐标系中,为坐标原点,直线:与直线,:交于点,与轴交于,与轴交于点.(1)求的面积;(2)若点在直线上,且使得的面积是面积的,求点的坐标.25 . (1)(﹣2)2+2sin 45°﹣(2)解不等式组,并将其解集在如图所示的数轴上表示出来.26 . (问题情境)张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,可得:PD=GF,PE=CG,则PD+PE=CF.(变式探究)如图③,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;(结论运用)请运用上述解答中所积累的经验和方法完成下列两题:如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.。
山东省济南市八年级(上)期末数学试卷(含解析)
山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)下列长度的三条线段能组成直角三角形的是()A.5,11,12B.2,3,4C.4,6,7D.3,4,52.(4分)下列说法不正确的是()A.0.04的平方根是士0.2B.﹣9是81的一个平方根C.9的立方根是3D.﹣=33.(4分)一组数据3,1,4,2,﹣1,则这组数据的极差是()A.5B.4C.3D.24.(4分)点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)5.(4分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.6.(4分)下列各点中,在函数y=2x﹣1的图象上的点是()A.(l,3)B.(2.5,4)C.(﹣2.5,﹣4)D.(0,1)7.(4分)下列各式中正确的是()A.=±9B.=×=C.=+=3+4D.(3.14﹣π)0=18.(4分)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2B.2,6,6C.5,5,6D.5,6,59.(4分)若是关于x、y的方程组的解,则a+b的值为()A.3B.﹣3C.2D.﹣210.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=35°,以C为旋转中心,将∠ABC 旋转到△A′B′C的位置,点B在斜边A′B′上,则∠BDC为()A.70°B.90°C.100°D.105°11.(4分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.12.(4分)如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为()A.3B.C.2D.4二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)计算的结果是.14.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则方程组的解是.15.(4分)在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.16.(4分)如图,平面直角坐标系中,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为.17.(4分)如图,在直角坐标系中,已知点A(﹣,0)、B(0,1),对△OAB连续作旋转变换,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……则三角形(2020)的直角顶点的横坐标为.18.(4分)在平面直角坐标系中,横、纵坐标都是整数的点叫作整点,直线y=kx﹣3(k >0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围是.三、解答题(本大题共9小题,共50分)19.(6分)(1)计算:2+﹣.(2)解方程组.20.(6分)△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A1,点B1、C1分别是B、C的对应点.(1)请画出平移后的△A1B1C1(不写画法);(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1(不写画法)21.(6分)已知直线l1:y=x+2与x轴交于点A,与y轴交于点B,直线l2:y=﹣2x+b 经过点B且与x轴交于点C.(1)b=;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.23.(8分)现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=,=;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上)24.(10分)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?25.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.26.(12分)如图1,直角三角形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.27.(12分)如图,A(﹣2,2)、AB⊥x轴于点B,AD⊥y轴于点D,C(﹣2,1)为AB 的中点,直线CD交x轴于点F.(1)求直线CD的函数关系式;(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;(3)求点E坐标;(4)点P是直线CE上的一个动点,求PB+PF的最小值.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)下列长度的三条线段能组成直角三角形的是()A.5,11,12B.2,3,4C.4,6,7D.3,4,5【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、52+112≠122,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、42+62≠72,不能组成直角三角形,故此选项错误;D、32+42=52,能组成直角三角形,故此选项正确.故选:D.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.(4分)下列说法不正确的是()A.0.04的平方根是士0.2B.﹣9是81的一个平方根C.9的立方根是3D.﹣=3【分析】依据平方根、算术平方根、立方根的性质解答即可.【解答】解:A、0.04的平方根是±0.2,选项A正确,故不符合题意;B、﹣9是81的一个平方根,选项B正确,故不符合题意;C、9的算术平方根是3,选项C错误,故符合题意;D、﹣=3,选项D正确,故不符合题意.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关性质是解题的关键.3.(4分)一组数据3,1,4,2,﹣1,则这组数据的极差是()A.5B.4C.3D.2【分析】极差是指一组数据中最大数据与最小数据的差,由此计算即可.【解答】解:这组数据的极差=4﹣(﹣1)=5.故选:A.【点评】本题考查了极差的知识,属于基础题,掌握极差的定义是关键.4.(4分)点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【解答】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.【点评】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.(4分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.6.(4分)下列各点中,在函数y=2x﹣1的图象上的点是()A.(l,3)B.(2.5,4)C.(﹣2.5,﹣4)D.(0,1)【分析】分别代入各点的横坐标求出y值,与该点纵坐标比较后即可得出结论.【解答】解:当x=1时,y=2x﹣1=3;当x=2.5时,y=2x﹣1=4;当x=﹣2.5时,y=2x﹣1=﹣6;当x=0时,y=2x﹣1=﹣1.故选:B.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(4分)下列各式中正确的是()A.=±9B.=×=C.=+=3+4D.(3.14﹣π)0=1【分析】本题涉及零指数幂、二次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:A、=9,故选项错误;B、==,故选项错误;C、==5,故选项错误;D、(3.14﹣π)0=1,故选项正确.故选:D.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式等知识点的运算.8.(4分)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2B.2,6,6C.5,5,6D.5,6,5【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:在这一组数据中5是出现次数最多的,故众数是5次;处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6次.平均数是:(3+15+12+14+18)÷10=6.2(次),所以答案为:5、6、6.2,故选:A.【点评】主要考查了平均数,众数,中位数的概念.要掌握这些基本概念才能熟练解题.9.(4分)若是关于x、y的方程组的解,则a+b的值为()A.3B.﹣3C.2D.﹣2【分析】把x、y值代入方程组得到关于a和b的方程组,然后①+②即可求解a+b的值.【解答】解:把代入方程组中,得到,①+②,得3a+3b=9,所以a+b=3.故选:A.【点评】本题主要考查了二元一次方程组的解,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.10.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=35°,以C为旋转中心,将∠ABC 旋转到△A′B′C的位置,点B在斜边A′B′上,则∠BDC为()A.70°B.90°C.100°D.105°【分析】利用三角形内角和定理得出∠ABC=55°,再利用旋转的性质结合等腰三角形的性质得出∠CB′B=∠B′BC,进而求出答案.【解答】解:∵∠ACB=90°,∠A=35°,∴∠ABC=55°,∵以直角顶点C为旋转中心,将△ABC旋转到△A′B′C′的位置,∴∠B′=∠CBA=55°,BC=B′C,∴∠CB′B=∠B′BC=55°,∴∠A′BD=180°﹣55°﹣55°=70°,∴∠BDC=∠A′+∠A′BD=35°+70°=105°.故选:D.【点评】此题主要考查了旋转的性质以及三角形内角和定理,正确得出∠CB′B=∠B′BC=55°是解题关键.11.(4分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.12.(4分)如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为()A.3B.C.2D.4【分析】如图,过点A作AE⊥AD交CD于E,连接BE.证明△BAE≌△CAD(SAS),∠BED=90°,利用勾股定理求出BD即可.【解答】解:如图,过点A作AE⊥AD交CD于E,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,DE=,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△BAE≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴BD===.故选:B.【点评】本题考查等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)计算的结果是﹣.【分析】直接化简二次根式,进而计算得出答案.【解答】解:原式=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.14.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则方程组的解是.【分析】一个一次函数解析式可以看做是一个二元一次方程,两个一次函数解析式可以组合成一个二元一次方程组,方程组的解就是两函数图象的交点.【解答】解:∵直线y=x+b与直线y=kx+6交于点P(3,5),∴方程组的解是:.故答案为:.【点评】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.15.(4分)在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.【点评】本题考查了勾股定理的知识,难度不大,注意细心运算即可.16.(4分)如图,平面直角坐标系中,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为2.【分析】根据点的坐标的变化分析出AB的平移方法,再利用平移中点的变化规律算出a、b的值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:根据题意:A、B两点的坐标分别为A(2,0),B(0,1),若A1的坐标为(3,b),B1(a,2)即线段AB向上平移1个单位,向右平移1个单位得到线段A1B1;则:a=0+1=1,b=0+1=1,a+b=2.故答案为:2.【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(4分)如图,在直角坐标系中,已知点A(﹣,0)、B(0,1),对△OAB连续作旋转变换,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……则三角形(2020)的直角顶点的横坐标为2019.【分析】先利用勾股定理计算出AB,从而得到△ABC的周长为3,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于2020=3×673+1,于是可判断三角形2019与三角形(3)的状态一样,然后计算673×3即可得到三角形2020的直角顶点坐标.【解答】解:解:∵A(﹣,0),B(0,1),∴OA=,OB=1,∴AB==,∴△ABC的周长=+1+=3,∵△OAB每连续3次后与原来的状态一样,∵2020=3×673+1,∴三角形2019与三角形(3)的状态一样,∴三角形2020的直角顶点的横坐标=三角形2019的直角顶点的横坐标=673×3=2019,∴三角形2020的直角顶点坐标为(2019,0).故答案为2019.【点评】本题考查了坐标与图形变化﹣旋转,规律型问题,解决本题的关键是确定循环的次数.18.(4分)在平面直角坐标系中,横、纵坐标都是整数的点叫作整点,直线y=kx﹣3(k >0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围是<k<1.【分析】直线y=kx﹣3(k>0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则这三个点是(1,﹣1),(1,﹣2),(2,﹣1),因此此时的k的取值范围应介于直线l1和直线l2的两个k值之间.【解答】解:如图:直线y=kx﹣3(k>0),一定过点(0,﹣3),把(3,0)代入y=kx﹣3得,k=1;把(3,﹣1)代入y=kx﹣3得,k=;直线y=kx﹣3(k>0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围为<k<1,故答案为:<k<1.【点评】考查一次函数的图象与系数之间的关系,利用图象确定k的取值范围介在直线l1和直线l2的两个k值之间是解决问题的关键.三、解答题(本大题共9小题,共50分)19.(6分)(1)计算:2+﹣.(2)解方程组.【分析】(1)根据二次根式的运算法则即可求出答案;(2)根据二元一次方程组的解法即可求出答案;【解答】解:(1)原式=2+3﹣=5﹣=;(2),①﹣3×②得:y=﹣3,将y=﹣3代入②中得:x=6,∴该方程组的解为【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(6分)△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A1,点B1、C1分别是B、C的对应点.(1)请画出平移后的△A1B1C1(不写画法);(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1(不写画法)【分析】(1)利用点A和点A1的位置确定平移的方向和距离,然后利用此平移规律画出B、C的对应点B1、C1即可;(2)利用网格特点和旋转的性质画出A1、B1的对应点A2、B2即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C1为所作.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.21.(6分)已知直线l1:y=x+2与x轴交于点A,与y轴交于点B,直线l2:y=﹣2x+b 经过点B且与x轴交于点C.(1)b=2;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.【分析】(1)利用一次函数图象上点的坐标特征可求出点B的坐标,由直线l2经过点B,利用一次函数图象上点的坐标特征即可求出b值;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,连接BC即可得出结论;(3)利用一次函数图象上点的坐标特征可求出点A的坐标,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:(1)当x=0时,y=x+2=2,∴点B的坐标为(0,2).∵直线l2:y=﹣2x+b经过点B,∴b=2.故答案为:2.(2)由(1)可知直线l2的解析式为y=﹣2x+2.当y=0时,﹣2x+2=0,解得:x=1,∴点C的坐标为(1,0).连接BC,则直线BC即为直线l2,如图所示.(3)当y=0时,x+2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).S=AC•OB,△ABC=(OA+OC)•OB,=×(4+1)×2,=5.【点评】本题考查了一次函数图象上点的坐标特征、一次函数的图象以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点B的坐标;(2)利用一次函数图象上点的坐标特征,求出点C的坐标;(3)利用三角形的面积公式,求出△ABC的面积.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.【点评】本题考查的是勾股定理,角平分线的性质,线段垂直平分线的概念,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23.(8分)现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=80,=80;(2)请在图中完成表示乙成绩变化情况的折线;(3)S甲2=200,请你计算乙的方差;(4)可看出乙将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上)【分析】(1)根据甲乙两人的5次测试总成绩相同,求出a的值,再根据平均数的计算公式求出乙的平均数即可;(2)根据求出的a的值,完成图中表示乙成绩变化情况的折线;(3)根据方差公式直接解答即可;(4)根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:(1)∵甲乙两人的5次测试总成绩相同,∴90+70+80+100+60=70+9090+a+70,解得:a=80,=(70+90+90+80+70)=80,故答案为:80;80;(2)根据图表给出的数据画图如下:(3)S2乙=[(70﹣80)2+(90﹣80)2+(90﹣80)2+(80﹣80)2+(70﹣80)2]=80.(4)∵S2乙<S甲2,∴乙的成绩稳定,∴乙将被选中参加比赛.故答案为:乙.【点评】本题考查的是条形统计图、方差的计算和性质,读懂条形统计图、获取正确的信息、掌握方差的计算公式是解题的关键.24.(10分)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.【分析】(1)利用待定系数法解答即可;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.【解答】解:(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=k1x,根据题意得5k1=300,解得k1=60,∴y=60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;故答案为:y=60x;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);解方程组,解得,∴当x=3.9时,轿车与货车相遇;3)当x=2.5时,y=150,两车相距=150﹣80=70>20,货由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.【点评】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.26.(12分)如图1,直角三角形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.【分析】(1)先判得出△BCO是等边三角形,得出OC=OB,∠BCO=60°,再判断出OC=OA,进而得出AB=2BC,最后用勾股定理求出AC,即可得出结论(也可以用30度角所对的直角边是斜边的一半直接求出AB);(2)①由旋转判断出AE=AB,AD=AC,∠CAE=∠CAD=60°,进而得出∠CAE=∠DAB,判断出△CAE≌△DAB,即可得出结论;②先判断出∠DAF=30°,再借助(1)的结论求出DF,再用勾股定理求出AF,最后用勾股定理计算即可得出结论.【解答】解:(1)如图1,在BA上取一点O,使BO=BC,在Rt△ABC中,∠BCA=30°,∴∠B=90°﹣∠BCA=60°,∴△BCO是等边三角形,∴OC=BO=BC,∠BCO=60°,∴∠ACO=90°﹣∠BCO=90°﹣60°=30°=∠CAB,∴OA=OC=BC,∴AB=BO+OA=2BC=2,(注:如果学习了“30度角所对的直角边是斜边的一半”这个性质,直接求出AB=2),在Rt△ABC中,根据勾股定理得,AC===;(2)①如图2,连接BD,AE是由AB顺时针旋转60°所得,∴AB=AE,∠BAE=60°,∴∠CAE=∠CAB+∠BAE=90°,AD是由AC逆时针旋转60°所得,∴AC=AD,∠CAD=60°,∴∠BAD=∠CAB+∠CAD=90°=∠EAC,∴△CAE≌△DAB(SAS),∴BD=CE;D作DF⊥AE交EA的延长线于F,由①知,∠CAE=90°,∠CAD=60°,∴∠DAE=∠CAD+∠CAE=150°,∴∠DAF=30°,由(1)知,AC=,由旋转知,AD=AC=,在Rt△ADF中,∠DAF=30°,借助(1)的结论得,AD=2DF=,∴DF=,根据勾股定理得,AF==,由①知,AE=AB=2,∴EF=AE+AF=2+=,在R△DFE中,DE===.【点评】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定,等腰三角形的判定,勾股定理,求出DF是解本题的关键.27.(12分)如图,A(﹣2,2)、AB⊥x轴于点B,AD⊥y轴于点D,C(﹣2,1)为AB 的中点,直线CD交x轴于点F.(1)求直线CD的函数关系式;(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;(3)求点E坐标;(4)点P是直线CE上的一个动点,求PB+PF的最小值.【分析】(1)首先求出D、C两点坐标,再利用待定系数法即可解决问题;(2)利用全等三角形的性质证明CD=CF,由EC⊥DF推出ED=EF,推出∠CDE=∠EFD=∠ADC即可;(3)利用相似三角形的性质求出BE的长即可解决问题;(4)如图,连接BD交直线CE于点P.由(2)可知点D与点F关于直线CE对称,推出PD=PF,因为PB+PF=PB+PD≥BD,可得PB+PF的最小值为BD的长.【解答】解:(1)∵四边形ABOD为正方形,A(﹣2,2)、∴AB=BO=OD=AD=2,∴D(0,2),∵C为AB的中点,∴BC=1,∴C(﹣2,1),设直线CD解析式为y=kx+b(k≠0),则有,解得∴直线CD的函数关系式为y=x+2;(2)∵C是AB的中点,∴AC=BC,∵四边形ABOD是正方形,∴∠A=∠CBF=90°,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴CF=CD,∵CE⊥DF,∴CE垂直平分DF,∴DE=FE,∴∠EDC=∠EFC,∵AD∥BF,∴∠EFC=∠ADC,∴∠ADC=∠EDC;(3)由(2)可BF=AD=2,且BC=1,∵∠CBF=∠CBE=∠FCE=90°,∴∠CFB+∠FCB=∠FCB+∠ECB=90°,∴∠CFB=∠BCE,∴△BCF∽△BEC,=,∴=,∴BE=∴OE=OB﹣BE=2﹣=∴E点坐标为(﹣,0);(4)如图,连接BD交直线CE于点P.由(2)可知点D与点F关于直线CE对称,∴PD=PF,∴PB+PF=PB+PD≥BD,∴PB+PF的最小值为BD的长,∵B(﹣2,0),D(0,2),∴BD=2,∴PB+PF的最小值为2.【点评】本题考查一次函数综合题、正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轴对称﹣最短问题等知识,解题的关键是灵活运用所学知识解决问题,正确寻找全等三角形或相似三角形解决问题,学会利用对称解决最短问题,属于中考压轴题.。
2019—2020学年山东省济南市历下区八年级(上)期末数学试卷(含答案解析)
2019—2020学年山东省济南市历下区八年级(上)期末数学试卷(含答案解析)八年级(上)期末数学试卷一.选择题(本大题共12小题;每小题5分;满分60分.)1.(5分)4的算术平方根()A.2 B.﹣2 C.D.±2.(5分)若a>b;则下列各式中一定成立的是()A.a﹣3<b﹣3 B.C.﹣3a<﹣3b D.am>bm3.(5分)在实数﹣;;;;;0中;无理数的个数为()A.1个B.2个C.3个D.4个4.(5分)将直角坐标系中的点(﹣1;﹣3)向上平移4个单位;再向右平移2个单位后的点的坐标为()A.(3;﹣1)B.(﹣5;﹣1)C.(﹣3;1)D.(1;1)5.(5分)已知正比例函数y=kx的图象经过点P(﹣1;2);则k的值是()A.2 B.C.﹣2 D.﹣6.(5分)下列条件中;不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5 B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.(5分)如图;将直尺与含30°角的三角尺摆放在一起;若∠1=20°;则∠2的度数是()A.50°B.60°C.70°D.80°8.(5分)小明家1至6月份的用水量统计如图所示;关于这组数据;下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是9.如果点P(x﹣4;x+3)在平面直角坐标系的第二象限内;那么x的取值范围在数轴上可表示为()A.B.C.D.10.(5分)一次函数y=kx+b满足kb>0;且y随x的增大而减小;则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(5分)关于x;y的方程组的解是;其中y的值被盖住了;不过仍能求出p;则p的值是()A.﹣B.C.﹣D.12.(5分)已知;如图点A(1;1);B(2;﹣3);点P为x轴上一点;当|PA﹣PB|最大时;点P的坐标为()A.B.C.D.(1;0)二、填空题(本大题共4个小题;每小题4分;共16分)13.﹣8的立方根是.14.如图;长方体的长为15;宽为10;高为20;点B离点C的距离为5;一只蚂蚁如果要沿着长方体的表面从点A爬到点B;需要爬行的最短距离是.15.(4分)一次函数y=3x+b和y=ax﹣3的图象如图所示;其交点为P(﹣2;﹣5);则不等式(3﹣a)x+b+3≥0的解集是.16.(4分)如图;在平面直角坐标系中;边长为1的正方形OA1B1C1的两边在坐标轴上;以它的对角线OB1为边作正方形OB1B2C2;再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3;以此类推…则正方形OB2016B2017C2017的顶点B2017坐标是为.三、解答题(本大题共8题;满分74分)17.(8分)计算(1)(2)18.(8分)(1)解不等式组;并求出它的整数解;(2)已知关于x;y的二元一次方程组的解互为相反数;求k的值.19.(8分)阅读理解;补全证明过程及推理依据.已知:如图;点E在直线DF上;点B在直线AC上;∠1=∠2;∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF(等量代换)∴∥()∴∠3+∠=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴∥()∴∠A=∠F()20.(8分)某校260名学生参加植树活动;要求每人植4~7棵;活动结束后随机抽查了若干名学生每人的植树量;并分为四种类型;A:4棵;B:5棵;C:6棵;D:7棵;将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数;并估计这260名学生共植树多少棵?21.(9分)某农场去年计划生产玉米和小麦共200吨;采用新技术后;实际产量为225吨;其中玉米超产5%;小麦超产15%;该农场去年实际生产玉米、小麦各多少吨?22.(10分)春节期间;小明一家乘坐飞机前往某市旅游;计划第二天租出租车自驾游.(1)设租车时间为x小时(0<x≤24);租用甲公司的车所需费用为y1元;租用乙公司的车所需费用为y2元;分别求出y1、y2与x间的关系式;(2)请你帮助小明计算并选择哪个公司租车合算.23.(11分)探究与发现:如图1所示的图形;像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”;(1)观察“规形图”;试探究∠BDC与∠A、∠B、∠C之间的关系;并说明理由;(2)请你直接利用以上结论;解决以下三个问题:①如图2;把一块三角尺XYZ放置在△ABC上;使三角尺的两条直角边XY、XZ恰好经过点B、C;∠A=40°;则∠ABX+∠ACX=°;②如图3;DC平分∠ADB;EC平分∠AEB;若∠DAE=40°;∠DBE=130°;求∠DCE的度数;③如图4;∠ABD;∠ACD的10等分线相交于点G1、G2…、G9;若∠BDC=133°;∠BG1C=70°;求∠A的度数.24.(12分)如图;直线AB与坐标轴交与点A(0;6);B(8;0);动点P沿路线O→B→A运动.(1)求直线AB的表达式;(2)当点P在OB上;使得AP平分∠OAB时;求此时点P的坐标;(3)当点P在AB上;把线段AB分成1:3的两部分时;求此时点P的坐标.2017-2018学年山东省济南市历下区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共12小题;每小题5分;满分60分.在每小题给出的四个选项中;只有一项是符合题目要求的)1.(5分)4的算术平方根()A.2 B.﹣2 C.D.±【分析】依据算术平方根的性质求解即可.【解答】解:4的算术平方根2.故选:A.【点评】本题主要考查的是算术平方根的性质;熟练掌握算术平方根的性质是解题的关键.2.(5分)若a>b;则下列各式中一定成立的是()A.a﹣3<b﹣3 B.C.﹣3a<﹣3b D.am>bm【分析】直接利用不等式的性质进而分析得出答案.【解答】解:A、∵a>b;∴a﹣3>b﹣3;故此选项错误;B、∵a>b;∴<;故此选项错误;C、∵a>b;∴﹣3a<﹣3b;故此选项正确;D、∵a>b;∴am>bm(m>0);故此选项错误;故选:C.【点评】此题主要考查了不等式的性质;正确把握不等式的基本性质是解题关键.3.(5分)在实数﹣;;;;;0中;无理数的个数为()A.1个B.2个C.3个D.4个【分析】根据无理数的定义:无限不循环小数叫做无理数可得答案.【解答】解:在实数﹣;;;;;0中;无理数有、这2个;故选:B.【点评】此题主要考查了无理数;关键是掌握无理数定义.4.(5分)将直角坐标系中的点(﹣1;﹣3)向上平移4个单位;再向右平移2个单位后的点的坐标为()A.(3;﹣1)B.(﹣5;﹣1)C.(﹣3;1)D.(1;1)【分析】根据向上平移纵坐标加;向右平移横坐标加;分别进行计算即可求解.【解答】解:根据题意得;﹣3+4=1;﹣1+2=1;故平移后的点的坐标是(1;1).故选:D.【点评】本题本题考查了坐标系中点的平移规律;在平面直角坐标系中;图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加;左移减;纵坐标上移加;下移减.5.(5分)已知正比例函数y=kx的图象经过点P(﹣1;2);则k的值是()A.2 B.C.﹣2 D.﹣【分析】把点P(﹣1;2)代入正比例函数y=kx;即可求出k的值.【解答】解:把点P(﹣1;2)代入正比例函数y=kx;得:2=﹣k;解得:k=﹣2.故选:C.【点评】此题考查的是用待定系数法求正比例函数的解析式;比较简单.6.(5分)下列条件中;不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5 B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确;因为a:b:c=3:4:5;所以设a=3x;b=4x;c=5x;则(3x)2+(4x)2=(5x)2;故为直角三角形;B、错误;因为∠A:∠B:∠C=3:4:5;所以设∠A=3x;则∠B=4x;∠C=5x;故3x+4x+5x=180°;解得x=15°;3x=15×3=45°;4x=15×4=60°;5x=15×5=75°;故此三角形是锐角三角形.C、正确;因为∠A+∠B=∠C;∠A+∠B+∠C=180°;则∠C=90°;故为直角三角形;D、正确;12+()2=22符合勾股定理的逆定理;故成立;故选:B.【点评】此题考查了解直角三角形的相关知识;根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.(5分)如图;将直尺与含30°角的三角尺摆放在一起;若∠1=20°;则∠2的度数是()A.50°B.60°C.70°D.80°【分析】首先根据三角形外角的性质求出∠BEF的度数;再根据平行线的性质得到∠2的度数.【解答】解:∵∠BEF是△AEF的外角;∠1=20°;∠F=30°;∴∠BEF=∠1+∠F=50°;∵AB∥CD;∴∠2=∠BEF=50°;故选:A.【点评】本题主要考查了平行线的性质;解题的关键是掌握三角形外角的性质;此题难度不大.8.(5分)小明家1至6月份的用水量统计如图所示;关于这组数据;下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是【分析】根据众数、平均数、中位数和方差的定义计算各量;然后对各选项进行判断.【解答】解:这组数据的众数为6吨;平均数为5吨;中位数为5.5吨;方差为.故选:C.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大;则平均值的离散程度越大;稳定性也越小;反之;则它与其平均值的离散程度越小;稳定性越好.也考查了平均数、众数、中位数.9.(5分)如果点P(x﹣4;x+3)在平面直角坐标系的第二象限内;那么x的取值范围在数轴上可表示为()A.B.C.D.【分析】根据点的位置得出不等式组;求出不等式组的解集;即可得出选项.【解答】解:∵点P(x﹣4;x+3)在平面直角坐标系的第二象限内;∴;解得:﹣3<x<4;在数轴上表示为:;故选:C.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集和点的坐标等知识点;能求出不等式组的解集是解此题的关键.10.(5分)一次函数y=kx+b满足kb>0;且y随x的增大而减小;则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y随x的增大而减小得:k<0;又kb>0;则b<0.再根据k;b的符号判断直线所经过的象限.【解答】解:根据y随x的增大而减小得:k<0;又kb>0;则b<0;故此函数的图象经过第二、三、四象限;即不经过第一象限.故选:A.【点评】能够根据k;b的符号正确判断直线所经过的象限.11.(5分)关于x;y的方程组的解是;其中y的值被盖住了;不过仍能求出p;则p的值是()A.﹣B.C.﹣D.【分析】将x=1代入方程x+y=3求得y的值;将x、y的值代入x+py=0;可得关于p的方程;可求得p.【解答】解:根据题意;将x=1代入x+y=3;可得y=2;将x=1;y=2代入x+py=0;得:1+2p=0;解得:p=﹣;故选:A.【点评】本题主要考查二元一次方程组的解的概念;根据方程组的解会准确将方程的解代入是前提;严格遵循解方程的基本步骤求得方程的解是关键.12.(5分)已知;如图点A(1;1);B(2;﹣3);点P为x轴上一点;当|PA﹣PB|最大时;点P的坐标为()A.B.C.D.(1;0)【分析】作A关于x轴对称点C;连接BC并延长;BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式;继而求得点P的坐标.【解答】解:作A关于x轴对称点C;连接BC并延长交x轴于点P;∵A(1;1);∴C的坐标为(1;﹣1);连接BC;设直线BC的解析式为:y=kx+b;∴;解得:;∴直线BC的解析式为:y=﹣2x+1;当y=0时;x=;∴点P的坐标为:(;0);∵当B;C;P不共线时;根据三角形三边的关系可得:|PA﹣PB|=|PC﹣PB|<BC;∴此时|PA﹣PB|=|PC﹣PB|=BC取得最大值.故选:A.【点评】此题考查了轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大;解题的关键是找到P点;注意数形结合思想与方程思想的应用.二、填空题(本大题共4个小题;每小题4分;共16分)13.(4分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8;∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a;即x的三次方等于a(x3=a);那么这个数x就叫做a的立方根;也叫做三次方根.读作“三次根号a”其中;a叫做被开方数;3叫做根指数.14.(4分)如图;长方体的长为15;宽为10;高为20;点B离点C的距离为5;一只蚂蚁如果要沿着长方体的表面从点A爬到点B;需要爬行的最短距离是25.【分析】要求正方体中两点之间的最短路径;最直接的作法;就是将正方体展开;然后利用两点之间线段最短解答.【解答】解:如图:(1)AB===25;(2)AB===5;(3)AB===5.所以需要爬行的最短距离是25.【点评】解答此题要注意以下几点:(1)将立体图形展开的能力;(2)分类讨论思想的应用;(3)正确运用勾股定理.15.(4分)一次函数y=3x+b和y=ax﹣3的图象如图所示;其交点为P(﹣2;﹣5);则不等式(3﹣a)x+b+3≥0的解集是x≥﹣2.【分析】观察图象;直线y=3x+b落在直线y=ax﹣3上方的部分对应的x的取值范围即为所求.【解答】解:∵一次函数y=3x+b和y=ax﹣3的图象交点为P(﹣2;﹣5);∴当x≥﹣2时;3x+b≥ax﹣3;∴不等式(3﹣a)x+b+3≥0的解集为x≥﹣2;故答案为x≥﹣2.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看;就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看;就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(4分)如图;在平面直角坐标系中;边长为1的正方形OA1B1C1的两边在坐标轴上;以它的对角线OB1为边作正方形OB1B2C2;再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3;以此类推…则正方形OB2016B2017C2017的顶点B2017坐标是为(21008;21008).【分析】根据给定图形结合正方形的性质可得出;点B1、B2、B3、B4、B5、…、的坐标;观察点的坐标可得知;下标为奇数的点的坐标的横纵坐标的绝对值依此为前一个点的横纵坐标绝对值的2倍;且4次一循环;由此即可得出B8n+1(24n;24n)(n为自然数);依此规律即可得出结论.【解答】解:观察;发现:B1(1;1);B2(0;2);B3(﹣2;2);B4(﹣4;0);B5(﹣4;﹣4);B6(0;﹣8);B7(8;﹣8);B8(16;0);B9(16;16);…;∴B8n+1(24n;24n)(n为自然数).∵2017=8×252+1;∴点B2017的坐标为(21008;21008).故答案为:(21008;21008).【点评】本题考查了规律型中点的坐标以及正方形的性质;根据点的坐标的变化找出变化规律“B8n+1(24n;24n)(n为自然数)”是解题的关键.三、解答题(本大题共8题;满分74分)17.(8分)计算(1)(2)【分析】(1)先化简各二次根式;再合并同类二次根式即可得;(2)根据二次根式混合运算顺序和运算法则计算可得.【解答】解:(1)原式=4﹣3+=;(2)原式=+﹣(18﹣6+1)=2+3﹣18+6﹣1=6﹣14.【点评】本题主要考查二次根式的混合运算;解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(8分)(1)解不等式组;并求出它的整数解;(2)已知关于x;y的二元一次方程组的解互为相反数;求k的值.【分析】(1)先求出两个不等式的解集;再求其公共解;从而得到它的整数解;(2)方程组两方程相加表示出x+y;根据x与y互为相反数得到x+y=0;求出k的值即可.【解答】解:(1)解不等式①;得x>2;解不等式②;得x≤4;故原不等式组的解集为2<x≤4.故它的整数解为3或4.(2);①+②得:3(x+y)=k﹣1;即x+y=;由题意得:x+y=0;即=0;解得:k=1.【点评】本题主要考查了一元一次不等式组解集的求法;其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大;同小取小;大小小大中间找;大大小小找不到(无解).19.(8分)阅读理解;补全证明过程及推理依据.已知:如图;点E在直线DF上;点B在直线AC上;∠1=∠2;∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等;两直线平行)∴∠3+∠C=180°(两直线平行;同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁内角互补;两直线平行)∴∠A=∠F(两直线平行;内错角相等)【分析】先证明BD∥CE;得出同旁内角互补∠3+∠C=180°;再由已知得出∠4+∠C=180°;证出AC∥DF;即可得出结论.【解答】解:∵∠1=∠2(已知)∠2=∠DGF (对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE (同位角相等;两直线平行)∴∠3+∠C=180°(两直线平行;同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补;两直线平行)∴∠A=∠F (两直线平行;内错角相等);故答案为:对顶角相等;BD;CE;同位角相等;两直线平行;C;两直线平行;同旁内角互补;AC;DF;同旁内角互补;两直线平行;两直线平行;内错角相等.【点评】本题考查了平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键;注意两者的区别.20.(8分)某校260名学生参加植树活动;要求每人植4~7棵;活动结束后随机抽查了若干名学生每人的植树量;并分为四种类型;A:4棵;B:5棵;C:6棵;D:7棵;将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数;并估计这260名学生共植树多少棵?【分析】(1)利用总人数20乘以对应的百分比即可求得D类的人数;从而补全直方图;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数;乘以总人数260即可.【解答】解(1)D类的人数是:20×10%=2(人).(2)众数为5棵;中位数为5棵;(3)==5.3(棵).估计260名学生共植树5.3×260=1378(棵).【点评】本题考查的是条形统计图和扇形统计图的综合运用;读懂统计图;从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(9分)某农场去年计划生产玉米和小麦共200吨;采用新技术后;实际产量为225吨;其中玉米超产5%;小麦超产15%;该农场去年实际生产玉米、小麦各多少吨?【分析】设农场去年计划生产小麦x吨;玉米y吨;利用去年计划生产小麦和玉米200吨;则x+y=200;再利用小麦超产15%;玉米超产5%;则实际生产了225吨;得出等式(1+5%)y+(1+15%)x=225;进而组成方程组求出答案.【解答】解:设农场去年计划生产玉米x吨;小麦y吨;根据题意可得:;解得:;则50×(1+5%)=52.5(吨);150×(1+15%)=172.5(吨);答:农场去年实际生产玉米52.5吨;小麦172.5吨.【点评】此题主要考查了二元一次方程组的应用;根据计划以及实际生产的粮食吨数得出等式是解题关键.22.(10分)春节期间;小明一家乘坐飞机前往某市旅游;计划第二天租出租车自驾游.(1)设租车时间为x小时(0<x≤24);租用甲公司的车所需费用为y1元;租用乙公司的车所需费用为y2元;分别求出y1、y2与x间的关系式;(2)请你帮助小明计算并选择哪个公司租车合算.【分析】(1)根据表格中两家公式给出的租车收费方式;可找出y1、y2与x间的关系式;(2)求出当y2=y1时x的值;结合一次项系数的大小;即可找出合适的租车方案.【解答】解:(1)根据题意得:y1=80+15x(0<x≤24);y2=30x(0<x≤24).(2)当y2=y1时;有30x=(80+15x);解得:x=.∵30>15;∴当x<时;选择乙公司合算;当x=时;选择两家公司的费用相同;当x>时;选择甲公司合算.【点评】本题考查了一次函数的应用以及解一元一次方程;解题的关键是:(1)根据数量之间的关系;找出y1、y2与x间的关系式;(2)求出当y2=y1时x的值.23.(11分)探究与发现:如图1所示的图形;像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”;(1)观察“规形图”;试探究∠BDC与∠A、∠B、∠C之间的关系;并说明理由;(2)请你直接利用以上结论;解决以下三个问题:①如图2;把一块三角尺XYZ放置在△ABC上;使三角尺的两条直角边XY、XZ恰好经过点B、C;∠A=40°;则∠ABX+∠ACX=50°;②如图3;DC平分∠ADB;EC平分∠AEB;若∠DAE=40°;∠DBE=130°;求∠DCE的度数;③如图4;∠ABD;∠ACD的10等分线相交于点G1、G2…、G9;若∠BDC=133°;∠BG1C=70°;求∠A的度数.【分析】(1)首先连接AD并延长至点F;然后根据外角的性质;即可判断出∠BDC=∠A+∠B+∠C.(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC;然后根据∠A=40°;∠BXC=90°;求出∠ABX+∠ACX的值是多少即可.②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB;再根据∠DAE=40°;∠DBE=130°;求出∠ADB+∠AEB的值是多少;然后根据∠DCE=(∠ADB+∠AEB)+∠DAE;求出∠DCE的度数是多少即可.③根据∠BG1C=(∠ABD+∠ACD)+∠A;∠BG1C=70°;设∠A为x°;可得∠ABD+∠ACD=133°﹣x°;解方程;求出x的值;即可判断出∠A的度数是多少.【解答】解:(1)如图(1);连接AD并延长至点F;;根据外角的性质;可得∠BDF=∠BAD+∠B;∠CDF=∠C+∠CAD;又∵∠BDC=∠BDF+∠CDF;∠BAC=∠BAD+∠CAD;∴∠BDC=∠A+∠B+∠C;(2)①由(1);可得∠ABX+∠ACX+∠A=∠BXC;∵∠A=40°;∠BXC=90°;∴∠ABX+∠ACX=90°﹣40°=50°;故答案为:50.②由(1);可得∠DBE=∠DAE+∠ADB+∠AEB;∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°;∴(∠ADB+∠AEB)=90°÷2=45°;∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;③∠BG1C=(∠ABD+∠ACD)+∠A;∵∠BG1C=70°;∴设∠A为x°;∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70;∴13.3﹣x+x=70;解得x=63;即∠A的度数为63°.【点评】此题主要考查了三角形的内角和定理;利用三角形的内角和定理和外角的性质是解答此题的关键.24.(12分)如图;直线AB与坐标轴交与点A(0;6);B(8;0);动点P沿路线O→B→A运动.(1)求直线AB的表达式;(2)当点P在OB上;使得AP平分∠OAB时;求此时点P的坐标;(3)当点P在AB上;把线段AB分成1:3的两部分时;求此时点P的坐标.【分析】(1)直接利用待定系数法即可得出结论;(2)方法1、利用角平分线判断出BC=AB=10;进而判断出△AOP∽△CBP;求出OP;即可得出结论;方法2、先判断出OP=PM;设OP=m;得出PM=m;BP=8﹣m;再求出AM=OA=6;进而得出BM=AB﹣AM=4;最后用勾股定理建立方程求解即可得出结论;(3)先判断出△BDP∽△BOA;得出;再分两种情况即可求出BD;PD即可得出结论.【解答】解:(1)设直线AB的解析式为y=kx+b;∵A(0;6);B(8;0);∴;∴;∴直线AB的解析式为y=﹣x+6;(2)方法1、如图1;∵A(0;6);B(8;0);∴OA=6;OB=8;AB=10;过点B作BC∥OA交AP的延长线于C;∴∠C=∠OAP;∵AP平分∠OAB;∴∠OAP=∠BAP;∴∠C=∠BAP;∴BC=AB=10;∵BC∥OA;∴△AOP∽△CBP;∴=;∴;∴OP=3;∴P(3;0);方法2、如图3;过点P作PM⊥AB于M;∵AP是∠OAB的角平分线;∴OP=PM;设OP=m;∴PM=m;∴BP=OB﹣OP=8﹣m易知;△AOP≌△AMP;∴AM=OA=6;∴BM=AB﹣AM=4;在Rt△BMP中;根据勾股定理得;m2+16=(8﹣m)2;∴m=3;∴P(3;0);(3)如图2;过点P作PD⊥OB于D;∴PD∥AO;∴△BDP∽△BOA∴;∵点P在AB上;把线段AB分成1:3的两部分时;①当时;即:;∴;∴BD=2;PD=1.5;∴OD=OB﹣BD=6;∴P(6;1.5);②当时;即:;同①的方法得;BE=6;P'E=4.5;∴OE=OB﹣BE=2;∴P'(2;4.5)即:符合题意的点P(2;4.5)或P(6;1.5).【点评】此题是一次函数综合题;主要考查了待定系数法;角平分线的定义;相似三角形的判定和判定;正确作出辅助线构造出相似三角形是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年山东省济南市历城区八年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.下列五个实数2√2,√4,−π,0,−1.6无理数的个数有()2A. 0个B. 1个C. 2个D. 3个2.3的算术平方根是()A. ±√3B. √3C. −√3D. 93.在平面直角坐标系中,点P(3,−2)到y轴的距离为A. 3B. −3C. 2D. −24.如图,直线l1//l2,∠1=40°,∠2=75°,则∠3等于()A. 55°B. 60°C. 65°D. 70°5.下列计算中,正确的是()A. √3+√2=√5B. √12−√3=√3C. √8÷√2=4D. √3×√2=66.已知直线y=kx+b经过第一、二、四象限,那么直线y=bx+k一定不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A. 82分B. 86分C. 85分D. 84分8.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若DE=2,则AC的值为()A. 4B. 6C. 8D. 109. 已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(−2,1),则点B 的对应点的坐标为( )A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)10. 如图,函数y =kx +b 与y =mx +n 的图象交于点P(1,2),那么关于x ,y 的方程组{y =kx +b y =mx +n的解是( )A. {x =1y =2B. {x =2y =1C. {x =2y =3D. {x =1y =3 11. 如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A. 50B. 62C. 65D. 6812. 如图,在平面直角坐标系中,函数y =2x 和y =−x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A. (21009,21010)B. (−21009,21010)C. (21009,−21010)D.(−21009,−21010) 二、填空题(本大题共6小题,共24.0分)13. 化简|2−π|=______.14. 如图,在△ABC 中,∠A =45°,∠B =60°,则外角∠ACD =_________度.15.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14s2,乙的方差是0.06s2,这5次短跑训练成绩较稳定的是.(填“甲”或“乙”)16.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为______ .17.如图,△ABC中,∠ABC与∠ACB的角平分线相交于点D,过D点的直线EF//BC且交AB于E、交AC于F,已知AB=7cm,AC=5cm,BC=6cm,则△AEF的周长为_____cm.18.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为______度.三、解答题(本大题共9小题,共78.0分)19.计算题:(1)√8+2√3−(√27−√2)(4)3√48−4√27÷2√3.(2)√23÷√223×√25(3)(3√2+2√3)(3√2−2√3)20. 解方程组:(1){2a −b =32 ①a −3b =1 ②; (2){3(x −1)=y +5x+22=y−13+1.21. 已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且AC//DF.求证:∠B =∠E .22.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于点E,交AC于点D,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.23.某校八年级全体同学参加了“爱心一日捐”捐款活动,该校随机抽査了部分同学捐款的情况统计如图所示:(1)求出本次抽查的学生人数;(2)求出捐款10元的学生人数,并将条形图补充完整;(3)捐款金额的众数是____元,中位数是____.(4)请估计全校八年级1000名学生,捐款20元的有多少人?24.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?25.某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.(1)当x≥200时,求y与x之间的函数关系式(2)若小刚家10月份上网180小时,则他家应付多少元上网费?(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?26.如图,在平面直角坐标系中,一次函数y=√3x+2√3与x轴交于点A,与y轴交于点B,将△AOB3沿过DE折叠,使点A落在y轴上的点B处,折痕交x轴于点E.(1)求点E的坐标;(2)求直线BE的表达式;(3)y轴上是否存在点P,使得△PBE是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.27.△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图1,连结BE、CD,求证:CD=BE;(2)如图2,连结BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图3,若∠BAC=∠DAE=90°,以点A为旋转中心旋转△ABC,使得点C恰好落在斜边DE上,试探究CD2、CE2、BC2之间的数量关系,并加以证明.-------- 答案与解析 --------1.答案:C解析:解:五个实数2√2,√4,−π2,0,−1.6中,无理数的有2√2,−π2这2个.故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.答案:B解析:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.利用算术平方根定义计算即可求出值.解:因为(√3)2=3,所以3的算术平方根是√3,故选B.3.答案:A解析:本题考查了点的坐标,利用点到y轴的距离是横坐标的绝对值是解题关键.根据点到y轴的距离是横坐标的绝对值,可得答案.解:由题意,得点A(3,−2)到y轴的距离为|3|=3,故选A.4.答案:C解析:解:∵直线l1//l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.设∠2的对顶角为∠5,∠1在l2上的同位角为∠4,结合已知条件可推出∠1=∠4=40°,∠2=∠5=75°,即可得出∠3的度数.本题主要考查三角形的内角和定理,平行线的性质和对顶角的性质,关键在于根据已知条件找到有关相等的角.5.答案:B解析:解:A、√2与√3不能合并,所以A选项错误;B、原式=2√3−√3=√3,所以B选项正确;C、原式=√8÷2=2,所以C选项错误;D、原式=√3×2=√6,所以D选项错误.故选B.根据二次根式的加减运算对A、B进行判断;根据二次根式的除法法则则对C进行判断;根据二次根式的乘法法则则对D进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.6.答案:B解析:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.解:已知直线y=kx+b经过第一、二、四象限,则得到k<0,b>0,那么直线y=bx+k经过第一、三、四象限,即不经过第二象限;故选B.7.答案:D解析:解:根据题意得:90×20%+80×40%+85×40%=84(分);答:这个人的面试成绩是84分.故选D.根据加权平均数的计算公式进行计算,即可得出答案.本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.8.答案:B解析:解:∵∠A=30°,DE垂直平分AB,DE=2,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠DBC=∠ABD=30°,即BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴CD=DE=2,∴AC=4+2=6,故选B.依据含30°角的直角三角形的性质,即可得到AD的长,再根据角平分线的性质,即可得到CD的长,进而得出AC的长.此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题注意掌握数形结合思想的应用.9.答案:C解析:本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可. 解:∵A(1,3)的对应点的坐标为(−2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(2,1)的对应点的坐标为(−1,−1).故选:C .10.答案:A解析:解:方程组{y =kx +b y =mx +n的解是{x =1y =2. 故选:A .利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.答案:A解析:本题考查的是全等三角形的判定的相关知识.由AE ⊥AB ,EF ⊥FH ,BG ⊥AG ,可以得到∠EAF =∠ABG ,而AE =AB ,∠EFA =∠AGB ,由此可以证明△EFA≌△AGB ,所以AF =BG ,AG =EF ,同理证得△BGC≌△CHD ,GC =DH ,CH =BG.故 FH =FA +AG +GC +CH =3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解:如下图,∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EFA =∠BGA =90°,∠EAF +∠BAG =90°,∠ABG +∠BAG =90°,∴∠EAF =∠ABG ,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG,∴△EFA≌△AGB(AAS),∴AF=BG,AG=EF.同理证得△BGC≌△CHD,得GC=DH,CH=BG,故FH=FA+AG+GC+CH=3+6+4+3=16.(6+4)×16−3×4−6×3=50.故S=12故选A.12.答案:D解析:解:A1(1,2),A2(−2,2),A3(−2,−4),A4(4,−4),A5(4,8),…由此发现规律:A2n+1[(−2)n,2×(−2)n](n是自然数),2019=2×1009+1,∴A2019[(−2)1009,2×(−2)1009],∴A2019(−21009,−21010),故选:D.写出一部分点的坐标,探索得到规律A2n+1[(−2)n,2×(−2)n](n是自然数),即可求解;本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.13.答案:π−2解析:解:|2−π|=π−2.故答案为:π−2.根据负数的绝对值等于它的相反数解答.本题考查了实数的性质,是基础题,主要利用了绝对值的性质.14.答案:105解析:本题主要考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:∵∠A=45°,∠B=60°,∴∠ACD=∠A+∠B=45°+60°=105°.故答案为105.15.答案:乙解析:本题考查的知识点是方差,根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:因为0.14>0.06,所以s甲2>s2.所以这5次短跑训练成绩较稳定的是乙.16.答案:(8,3)解析:解:由图知A点的坐标为(3,6),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′的坐标为(8,3).解题的关键是抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.本题涉及图形的旋转,体现了新课标的精神,应抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.17.答案:12解析:[分析]要求周长,就要先求出三角形的边长,这就要借助平行线及角平分线的性质把通过未知的转化成已知的来计算.[详解]∵BD是角平分线,∴∠ABD=∠CBD,∵FE//BC,∴∠DBC=∠EDB,∴∠DBE=∠EDB,∴BE=ED,同理DF=DC,∴△AED的周长=AE+AF+EF=AB+AC=5+7=12(cm)故答案为:12.[点睛]本题考查等腰三角形的性质平行线的性质角平分线的性质;有效的进行线段的等量代换是正确解答本题的关键.18.答案:108解析:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×54°=27°,又∵AB=AC,∴∠ABC=12(180°−∠BAC)=12(180°−54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC−∠ABO=63°−27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−36°−36°=108°.故答案为:108.19.答案:解:(1)原式=2√2+2√3−3√3+√2=3√2−√3;(2)原式=√23×38×25=√1010;(3)原式=(3√2)2−(2√3)2=18−12=6;(4)原式=12√3−12√3÷2√3=12√3−6.解析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)利用平方差公式计算;(4)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.答案:解:(1)由②,可得:a =3b +1③,③代入①,可得:2(3b +1)−b =32,整理,可得:5b +2=32,解得b =6,把b =6代入③,解得a =19,∴原方程组的解是{a =19b =6.(2)由{3(x −1)=y +5x+22=y−13+1,可得 {3x −y =8 ①3x −2y =−2 ②①−②,可得:y =10,把y =10代入①,可得:3x −10=8,解得x =6,∴原方程组的解是{x =6y =10.解析:(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用. 21.答案:证明:∵BF =CE ,∴BC =EF ,∵AC//DF ,∴∠ACB =∠DFE ,在△ACB 和△DFE 中,{BC =EF ∠ACB =∠DFE AC =DF ,∴△ACB≌△DFE(SAS),∴∠B=∠E.解析:先证出BC=EF,∠ACB=∠DFE,再证明△ACB≌△DFE,得出对应角相等即可.本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.22.答案:解:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5.解析:此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握等腰三角形的性质是解本题的关键.(1)由线段垂直平分线定理计算即可求出值;(2)利用等腰三角形的性质计算即可求出值.23.答案:解:(1)14÷28%=50(人)∴本次测试共调查了50名学生,(2)50−(9+14+7+4)=16(人)∴捐款10元的学生人数为16人,补全条形统计图图形如下:(3)10;12.5=140(人)(4)1000×750∴全校八年级1000名学生,捐款20元的有140人.解析:本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)由题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数;(2)将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(3)从条形统计图中可知,捐款10元的人数最多,可知众数,求出第25、26个数据的平均数可得数据的中位数;(4)由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.解:(1)见答案;(2)见答案;(3)由条形图可知,捐款10元人数最多,故众数是10元;=12.5(元),中位数是10+152故答案为:10;12.5;(4)见答案.24.答案:解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得{30x +35y =3300x +y =100, 解这个方程组,得 {x =40y =60,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利=40×(40−30)+60×(50−35)=1300(元),答:商场获利1300元.解析:此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.25.答案:解:(1)设当x ≥200时,y 与x 之间的函数关系式为y =kx +b ,∵图象经过(200,40)(220,70),∴{40=200k +b 70=220k +b, 解得{k =32b =−260, ∴此时函数表达式为y =32x −260;(2)根据图象可得小刚家10月份上网180小时应交费40元;(3)把y =52代入y =32x −260中得:x =208,答:他家该月的上网时间是208小时.解析:此题主要考查了一次函数的应用,关键是掌握待定系数法求一次函数解析式,能从图象中获取重要信息.(1)设当x ≥200时,y 与x 之间的函数关系式为y =kx +b ,然后把(200,40)(220,70)代入可得关于k 、b 的方程组,再解即可;(2)根据图象可直接得到答案;(3)把y =52代入y =32x −260中可得x 的值.26.答案:解:(1)∵一次函数y=√3x+2√3与x轴交于A点,与y轴交于B点,3∴点A(−6,0),点B(0,2√3),∴OA=6,OB=2√3,又∵∠BOA=90°,由勾股定理,得∴AB=4√3,设AE=c,∴EO=6−c,由折叠得,∠BOE=∠BDE=90°,AE=BE=c,BD=BO=2√3,∴BD=AB−AD=4,在Rt△BOE中,OE 2+OB 2=BE 2,即:(6−c)2+(2√3)2=c2,解得c=4∴AE=c=4,∴OE=AO−AE=6−4=2∴E(−2,0).(2)设直线BE解析式为y=kx+2√3(k≠0),∵点E(−2,0),在直线EB上,∴−2k+2√3=0,∴k=√3,∴直线BE解析式为y=√3x+2√3,(3)∵△PBE为等腰三角形,设点P(0,y),①当BP=BE,即:BP=4,∵OB=2√3,∴OP=4+2√3∴P1(0,4+2√3),②当EP=EB,即:EP=4,∴OP=2√3∵点P在y轴的负半轴∴P2(0,−2√3)③当PA=PB时,设OP=x,∵PB=PA=2√3−x,EP=2,又∵∠POE=90°,由勾股定理,得EO2+OP2=EP2∴22+x2=(2√3−x)2∴x=23√3,∴P3=(0,23√3)④当BP=EB时,BP=4,P4(0,2√3−4)即:点P的坐标为(0,4+2√3)、(0,−2√3)、(0,23√3)、(0,2√3−4).解析:本题考查了一次函数的综合应用,涉及了一元二次方程的根,待定系数法求函数的解析式、勾股定理、全等三角形的性质等知识点的应用,解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.(1)先求出A、B的坐标,用勾股定理求出AB的长,再由折叠性质得出AE=BE利用勾股定理求出AE的长,从而得出OE的长即可;(2)利用待定系数法直接求直线BE解析式;(3)分三种情况求解.27.答案:解:(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD,又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE;(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD=√BE2+DE2=√42+32=5;(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:如图3,连结BE,∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BE2+CE2=BC2.∴CD2+CE2=BC2.解析:本题主要考查了全等三角形的判定和性质以及勾股定理.(1)利用SAS证明△ACD≌△ABE,即可证明CD=BE;(2)连结BE,首先证明△ADE是等边三角形,求出DE=AD=3,然后利用三角形全等的性质求出BE的长,证明BE⊥DE,最后利用勾股定理即可求出BD的长;(3)连接BE,首先利用等腰直角三角形的性质和三角形全等的性质证明BE=CD,BE⊥DE,再由勾股定理可知:BE2+CE2=BC2,由此即可得到结论:CD2+CE2=BC2.。