计量经济学 第九章 虚拟变量回归模型

合集下载

虚拟变量回归模型:计量经济学3

虚拟变量回归模型:计量经济学3
E( yi D2 0, D3 0) 1 xi
3、虚拟变量的实际应用
(1)虚拟变量可以用于研究制度变迁的影响

如:研究2001年中国加入WTO事件对中国进出 口贸易的影响,可以建立如下方程:
+d 主要贸易伙伴国 GDP+e DWTO
中国的进出口贸易总值 =a b 人民币汇率 c 中国GDP
计量经济学专题:
虚拟变量的回归与Probit模型、 Logit模型
1、虚拟变量的性质


与有明确尺度量化了的变量(GDP、产 量、价格、成本、汇率等)不同,虚拟 变量是一种定性性质的变量,如性别、 种族、国籍等只涉及“是”与“非”两 种状态的变量。 虚拟变量的取值只取0或1。1表示某种性 质出现,0表示某种性质不出现。

(3)对一个普通变量与两个两分虚拟变 量的回归

例:种族及性别差异对薪金的影响。 假定薪金除了受工作年限、性别的影响 之外,还受种族的影响。
yi 1 2 D2i 3D3i xi ui

yi 为某人的工资水平,xi 为工作年限。

yi 1 2 D2i 3D3i xi ui 虚拟变量模型:

白人女性的工资水平:
E( yi D2 0, D3 1) (1 3) xi

yi 1 2 D2i 3D3i xi ui 虚拟变量模型:

其他人种男性的平均工资:
E( yi D2 1, D3 0) (1 2) xi

其他人种女性的平均工资:
Pi P r(Y 1) P r(I i * I i ) F ( I i ) 1 2 1 2

Ii

计量经济学虚拟变量

计量经济学虚拟变量

在实际分析当中,根据T检验的结 果,将不显著的季度虚拟变量从模型 中消除,用剩下的显著的虚拟变量对 模型进行估算就足够。
(2), 没有常数项的时候,可以设第4季 度的季度虚拟。
Yi 1D1 2D2 3D3 4D4 ui
(3),虚拟变量的陷阱
Yi a 1D1 2D2 3D3 4D4 ui
2,存在结果性变化。 3,需要对难以量化的数据进行处理。
• 计量经济中的虚拟变量,在明确其引入理 由基础上,被用于很多的多元回归模型。
二,虚拟变量的类型
1,临时虚拟
临时虚拟,也称为突发性虚拟。为了更好的对模型进行估算,经常需 要在回归模型中排除一些由突发性事件产生的异常值(outlier),及其对 模型的影响,例如战争,地震,内乱,罢工等。
• 第一季度到第四季度的常数项为:
第一季度:a 1
Yi (a 1) X i ui
第三季度:a 3
Yi (a 3 ) X i ui
第四季度: a
Yi a X i ui
• 现在第四季度是基准,分别表示第 四季度与各季度之差。
数虚拟变量和常数虚拟变量。
Yi a 1X i 2D ui
1 异常时期 D=
0 平时
Yi a 1Xi 2D1 3D2 ui
1
D1= 0
发生地震的年份 其他年份
1
D2= 0
发生水灾的年份 其他年份
2,定性数据的虚拟处理
学历,性别,人种等定性的差异
3,季度虚拟
(1),定义:季度虚拟是通过回归模型的常 数项的变化(斜率回归系数一定)来掌握 季度和月度等季节变化,因此,从技术角 度成为“常数项虚拟”。
这种“量化”通常是通过引入“虚拟变量” 来完成。根据这些因素的属性类型,构造只取 “0”或“1”的人工变量,通常称为虚拟变量 (dummy variables),记为D。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(虚拟变量回归模型)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(虚拟变量回归模型)【圣才出品】

第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。

一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。

虚拟变量也可以放到回归模型中。

这种模型被称为方差分析(ANOVA)模型。

2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。

所有的虚拟变量都用字母D表示。

(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。

对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。

②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。

所有其他的组都与基准组进行比较。

③截距值(β1)代表了基准组的均值。

④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。

⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。

⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。

因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。

但要确定做这个回归时,一定要使用回归软件包中的无截距选项。

⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。

为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。

计量经济学10虚拟变量回归模型

计量经济学10虚拟变量回归模型
把定性因素“定量化”的一个方法是建立人 工变量(也称为虚拟变量,Dummy variable),并赋值0和1:
0:不具备某种性质; 1:具备某种性质。 虚拟变量常用变量D表示。
10-4
例如,反映文化程度的虚拟变量可取为: 1, 本科学历
D= 0, 非本科学历
10-5
一般地,在虚拟变量的设置中:
品消费支出对的回归模型
回归模型如公式10-8,10-9 对模型的解释:
虚拟变量的统计显著; 常数统计显著; 对定量变量回归统计的解释。
对比没有虚拟变量的模型
10-13
例:一个以性别虚拟变量考察企业职工薪 水的模型:
Yi=B1+B2Xi+B3Di+ui
其中:Yi为企业职工的薪金,Xi为工龄, Di=1,若是男性,Di=0,若是女性。
研究类型、肯定类型取值为1; 基准类型,否定类型取值为0。
称虚拟变量也为二元变量binary variable
10-6
方差分析模型(Analysis of variance models,ANOVA):仅包含定性变量或 虚拟变量的回归模型,其形式如下: Yi=B0+B1Di+ui
假定Y:每年食品支出(美元);Di=1表示 女性;Di=0表示男性,则:
• D2=1表东北和中北部地区,D2=0为其它地区; • D3=1表南部地区,D3=0为其它地区
这是将西部地区看成是基准类。
10-15
再考虑政府机构用于每个学生的花费和地区对 教师平均年薪水的影响: AASi=B1+B2D2i+B3D3i+B4PPSi
对模型的解释:
D2显著,而D3不显著,表明原模型存在设定误差; PPS的系数的含义

计量经济学课件虚拟变量

计量经济学课件虚拟变量
提高模型精度和预测能力
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。

计量经济学回归分析模型

计量经济学回归分析模型

计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。

其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。

回归分析模型中的关系可以是线性的,也可以是非线性的。

线性回归模型是回归分析中最为常见和基础的模型。

它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。

回归模型的核心是确定回归系数。

通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。

最小二乘法通过使得误差的平方和最小化来估计回归系数。

通过对数据进行拟合,我们可以得到回归系数的估计值。

回归分析模型的应用范围非常广泛。

它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。

此外,回归分析模型还可以用于政策评估和决策制定。

通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。

在实施回归分析模型时,有几个重要的假设需要满足。

首先,线性回归模型要求因变量和自变量之间存在线性关系。

其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。

此外,回归模型要求误差项具有同方差性和独立性。

在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。

显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。

此外,还可以通过确定系数R^2来评估模型的拟合程度。

R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。

总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。

在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。

虚拟变量回归模型:计量经济学

虚拟变量回归模型:计量经济学
在实时经济分析和决策支持方面,虚拟变量回归模型可以结合实时数据流进行 动态更新和预测,为政策制定者和市场参与者提供及时、准确的经济分析和决 策支持。
对未来研究的展望
拓展模型应用领域
未来研究可以进一步拓展虚拟变 量回归模型的应用领域,如环境 经济学、劳动经济学、金融经济 学等,以更深入地揭示经济现象 背后的规律。
宏观经济学领域应用
经济增长研究
引入虚拟变量以刻画不同国家或地区的经济增 长模式,并分析各种因素对经济增长的贡献。
通货膨胀与货币政策研究
利用虚拟变量回归模型,探讨通货膨胀的成因、 传导机制及货币政策的效应。
国际贸易研究
通过构建虚拟变量,分析贸易自由化、关税壁垒等因素对国际贸易流量的影响。
金融学领域应用
线性问题,影响模型的稳定性和解释性。
预测能力有限
03
对于具有复杂关系的数据,虚拟变量回归模型可能无法提供准
确的预测。
与其他模型的比较
01
与线性回归模型的比较
虚拟变量回归模型是线性回归模型的一种扩展,通过引入 虚拟变量来处理分类变量。线性回归模型则主要关注连续 变量的影响。
02 03
与逻辑回归模型的比引言 • 虚拟变量回归模型基本原理 • 虚拟变量回归模型应用举例 • 虚拟变量回归模型优缺点分析 • 虚拟变量回归模型在实证研究中的应用 • 虚拟变量回归模型的发展趋势和前景
01 引言
计量经济学简介
1 2
计量经济学定义
计量经济学是应用数学、统计学和经济学方法, 对经济现象进行定量分析的学科。
完善模型理论和方法
在模型理论和方法方面,未来研 究可以进一步完善虚拟变量回归 模型的理论基础和方法体系,提 高模型的解释力和预测能力。

计量经济学实验教学案例实验9_虚拟变量

计量经济学实验教学案例实验9_虚拟变量

实验九虚拟变量【实验目的】掌握虚拟变量的设置方法。

【实验内容】一、试根据表9-1的1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数;资料来源:据《中国统计年鉴1999》整理计算得到二、试建立我国税收预测模型(数据见实验一);资料来源:《中国统计年鉴1999》三、试根据表9-2的资料用混合样本数据建立我国城镇居民消费函数。

资料来源:据《中国统计年鉴》1999-2000整理计算得到【实验步骤】一、我国城镇居民彩电需求函数 ⒈相关图分析;键入命令:SCAT X Y ,则人均收入与彩电拥有量的相关图如9-1所示。

从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:⎩⎨⎧=低收入家庭中、高收入家庭1D图9-1 我国城镇居民人均收入与彩电拥有量相关图⒉构造虚拟变量;方式1:使用DATA 命令直接输入; 方式2:使用SMPL 和GENR 命令直接定义。

DATA D1 GENR XD=X*D1 ⒊估计虚拟变量模型: LS Y C X D1 XD再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。

按照以上步骤,虚拟变量模型的估计结果如图9-2所示。

图7-2 我国城镇居民彩电需求的估计我国城镇居民彩电需求函数的估计结果为:i i i i XD D x y 0088.08731.310119.061.57ˆ-++==t (16.249)(9.028) (8.320) (-6.593)2R =0.9964 2R =0.9937 F =366.374 S.E =1.066虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明我国城镇居民低收入家庭与中高收入家庭对彩电的消费需求,在截距和斜率上都存在着明显差异,所以以加法和乘法方式引入虚拟变量是合理的。

计量经济学第九章虚拟变量

计量经济学第九章虚拟变量

虚拟变量的类型
季节虚拟变量
用于反映季节变动对经济活动的影响。
政策虚拟变量
用于反映某项政策实施前后对经济活 动的不同影响。
地区虚拟变量
用于反映不同地区之间经济活动的差 异。
行业虚拟变量
用于反映不同行业之间经济活动的差 异。
虚拟变量的引入原因
解决遗漏变量问题
01
当某些重要变量无法直接观测或获取时,可以通过引入虚拟变
在模型中引入虚拟变量与解释变量的交互项,通过 改变斜率的值来反映不同组别之间的差异。
斜率变动模型的应用
适用于研究不同组别之间在某一解释变量上 的边际效应差异,如不同教育水平对收入的 影响等。
含有多个虚拟变量的模型
含有多个虚拟变量的模型的定义
当模型中引入多个虚拟变量时,称为含有多个虚拟变量的模型。
含有多个虚拟变量的模型的设定
VS
使用计算变量功能
可以使用SPSS的计算变量功能手动创建虚 拟变量。在数据视图中,点击“转换”菜 单下的“计算变量”选项。在弹出的对话 框中,输入虚拟变量的名称和标签,并在 计算表达式中输入相应的逻辑表达式。例 如,对于分类变量`industry`,可以使用如 下表达式生成虚拟变量
SPSS中实现虚拟变量的方法
截距变动模型的设

在模型中引入虚拟变量,通过改 变截距项的值来反映不同组别之 间的差异。
截距变动模型的应

适用于研究不同组别之间在某一 解释变量上的平均差异,如不同 性别、不同地区等。
斜率变动模型
斜率变动模型的定义
当虚拟变量不仅影响模型的截距项,还影响 解释变量的斜率时,称为斜率变动模型。
斜率变动模型的设定
通过比较政策虚拟变量的系数,可以分析 出政策变动对市场需求的影响程度。

古扎拉蒂《计量经济学基础》第9章

古扎拉蒂《计量经济学基础》第9章

虚拟变量数量的设置规则
1.若定性因素具有m(m≥2)个相互排斥
属性(或几个水平),当回归模型有截距项时, 只能引入m-1个虚拟变量;
2.当回归模型无截距项时,则可引入m个 虚拟变量;否则,就会陷入“虚拟变量陷阱”。 (为什么?)
若对两个相互排斥的属性 “性别属性”, 仍然引入m=2个虚拟变量,则有
E Yi | Di = 0 = 0
Yi ( 0 1) i 女 性
Yi 0 i
男性
(2)一个定性解释变量(两种属性)和一
个定量解释变量的情形
模型形式 Yi = f(Di,Xi )+μi 0 1Di
例如:Yi =0 1Di +Xi +μi
其中:Y-支出;X-收入;
Di
1 0
女性 支出
例:比较改革开放前、后我国居民(平 均)“储蓄-收入”总量关系是否发生了变 化?模型的设定形式为:
Yt 1 2 Dt 1X t 2 (Dt X t ) ut
其中 : Yt为储蓄总额,X t为收入总额。
D
1
0
改革开放后 改革开放前
回归方程:
改革开放后 EYt | Xt , D 1 (1 2)(1 2)Xt 改革开放前 EYt | Xt , D 0 1 1Xt
夏季、农村居民
E Yi | X i ,D1 = 1, D2 = 0 =( 0 + 1)+ X i
冬季、城市居民
E Yi | X i , D1 0, D2 1 (0 2 )+ X i
冬季、农村居民
E Yi | X i , D1 0, D2 0 0 X i
Y
D1 1,D2 1
基准:四季度
(4)两个定性解释变量(均为两种属性) 和一个定量解释变量的情形

第9章 虚拟变量回归

第9章 虚拟变量回归
32
不同截距、斜率的组合图形
重合回归:截距斜率均相同
平行回归:截距不同斜率相同
共点回归:截距相同斜率不同
交叉(不同)回归:截距斜率均不同
33
三、虚拟解释变量综合应用
所谓综合应用是指将引入虚拟解释变量的加法方 式、乘法方式进行综合使用。 基本分析方式仍然是条件期望分析。 本课主要讨论
3
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量
●虚拟解释变量的回归
●虚拟被解释变量的回归(选讲,不包括)
4
第一节 虚拟变量
本节基本内容:
●基本概念 ●虚拟变量设置规则
5
一、基本概念
定量因素:可直接测度、数值性的因素。 定性因素:属性因素,表征某种属性存在与否的 非数值性的因素。
基本思想:
直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
6
虚拟变量的定义
计量经济学中,将取值为0和1的人工变量称为虚 拟变量。虚拟变量也称:哑元变量、定性变量等 等。通常用字母D或DUM加以表示(英文中虚拟 或者哑元Dummy的缩写)。 对定性变量的量化可采用虚拟变量的方式实现。
7
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量 数量的关系 3.虚拟变量在回归分析中的角色以及作用等 方面的问题
D1 0, D2 0
X
上述图形的前提条件是什么?
27
运用OLS得到回归结果,再用t检验讨论因素
是否对模型有影响。
加法方式引入虚拟变量的一般表达式:

许振宇《计量经济学原理与应用》闯关习题答案

许振宇《计量经济学原理与应用》闯关习题答案

第一章计量经济学概述一、单项选择题1-5 CACAA 6-10 CDABA二、简述题1.什么计量经济学模型计量经济学模型包括哪三个要素计量经济模型(The model of Econometrics)是表示经济现象及其主要因素之间数量关系的方程式,通常用随机性的数学方程加以描述,数学方程式主要由经济变量、参数以及随机误差三大要素组成。

2.计量经济学模型的构建步骤反馈第二章一元线性回归模型一、单项选择题1-5 ACACC 6-10 CBCDA二、简述题答案见教材三、软件操作题参考教材31页第三章多元线性回归模型一、单项选择题1-5 ADBBD 6-10 CACAC二、简述题答案见教材三、软件操作题 参考教材47页和49页第四章 异方差性问题一、单项选择题 1-5 CBADA 6-10 BACBB 二、判断题 1-5三、简述题1.简述戈德菲尔德-夸特检验法(G-Q 检验法)基本步骤①将样本观察值按观察值Xi 的大小排队;②将序列中间的c=n/4个观察值除去,并将剩下的观察值划分相同的两个子样本,每个子样样本容量均为(n-c)/2;③对每个子样分别进行OLS 回归,并计算各自的残差平方和;④提出假设。

即H0:两部分数据的方差相等。

构造F 统计量F=RSS2/RSS1若F 大于临界值,则认为模型存在异方差,如果小于临界值,则认为模型不存在异方差。

2.加权最小二乘法的基本思路和具体步骤基本思路:对较小的残差平方给予较大的权重,对较大的残差平方给予较小的权重。

具体步骤:(1)选择权重w(2)计算∑we 2,并使其达到最小,计算参数估计值。

四、计算分析题1.(1)用GQ 检验法检验模型是否存在异方差。

求F 统计量为22217811.1895.69244831372.202e F e ===åå给定0.05a =,查F 分布表,得临界值为0.05(6,6) 4.28F =。

比较临界值与F 统计量值,有F =>0.05(6,6) 4.28F =,说明该模型的随机误差项存在异方差。

计量经济学回归模型的扩展虚拟变量部分详解演示文稿

计量经济学回归模型的扩展虚拟变量部分详解演示文稿

反映性别的虚拟变量可取为:
1 D 0
男性 女性
第6页,共32页。
4、虚拟变量中“0”,“1”选取原则
要从分析问题的目的出发予以界定
0—代表基期,比较的基期,参照组 1—代表报告期,被比较的效应,实验组
第7页,共32页。
二、虚拟变量引入方式
虚拟变量做为解释变量引入模型有两种基本方式: 加法方式和乘法方式。
例:研究学历(本科及以上,本科以下),性别(男、女)对员工 工资的影响。
在例1基础上,再引入代表学历的虚拟变量D2:
1 男性 D1 0 女性
本科及以上学历
本科以下学历
职工薪金的回归模型可设计为:
Yi 0 1 X 2 D1 3 D2 i
第16页,共32页。
于是,不同性别、不同学历职工的平均薪金分别为:
第18页,共32页。
•注意:加法方式引入虚拟变量,考察了截距的不同。
但同时注意到,此时不同性别的人的学历差距对工资的影 响一样。这是一个较强的约束。 有可能当学历不同时,性别对于工资的影响不同 或者,性别不同时,学历对工资的影响不同
即:某变量的边际影响受到其他变量的调节作用。如何 体现这种交互效应?
检验)
第28页,共32页。
三、虚拟变量的引入原则
若定性因素具有m个(m>=2)个相互排斥的属性(或
水平)
当回归模型有截距项时,只能引入 m-1 个虚拟 变量
当回归模型无截距项时,可引入m个虚拟变量 否则就会陷入“虚拟变量陷阱”
第29页,共32页。
例:虚拟变量陷阱
居民住房消费支出和居民可支配收入之间的数量 关系的回归模型为:
2
第31页,共32页。
如果引入两个虚拟变量:

第九章:虚拟解释变量

第九章:虚拟解释变量

[计量经济学讲义] 第九章:虚拟解释变量本章及下一章将变量类型由定量变量拓展到定性变量。

§1虚拟变量的性质1、变量的分类:定量变量:如收入、产量、价格、成本、高度等取值在一定分为内连续变化;定性变量:如性别、种族、肤色、宗教、国际、战争、地震、沿海省份等。

“量化”:将定性变量量化,可以根据其不同情况取值0或1。

2、虚拟变量(dummy variable ):取值为0、1等这样的变量。

虚拟变量有时也称为二值变量(binary variable)、二分变量(dichotomous variable)、定性变量(qualitative variable)、指标变量(indicator variable )3、ANOV A (方差分析analysis of variance ):解释变量全为虚拟变量例:i Y =α+βi D +i u其中i Y 表示教授年薪,i D =1,男教授i D =0,女教授(假定年龄、学位和经验可以忽略)女教授的平均年薪为:E(i Y |i D =0)=α;男教授的平均年薪为:E(i Y |i D =1)=α+β;一个例子(略)§2 一个定量变量和一个二分定性变量1、例子:i Y =1α+2αi D +βi X +i u其中i Y 表示教授年薪,i X 表示年龄,则有:女教授的平均年薪为:E(i Y |i X ,i D =0)=1α+βi X ;男教授的平均年薪为:E(i Y |i X ,i D =1)= 1α+2α+βi X ;(假设共同斜率)2、问:有截距项的情况下,区分两个类别要几个虚拟变量?答案是一个,否则有完全贡献性。

结论:有截距项的情况下,若一个定性变量有m 个类别,则仅引入m-1个虚拟变量。

3、0与1的分配问题。

4、基准(benchmark ):0类别的情况5、级差截距系数:D 的系数§3 一个定量变量和一个多分变量例子:假设在横截面数据的基础上,做个人保健支出对个人收入和教育水平的回归。

计量经济学-虚拟变量回归共71页文档

计量经济学-虚拟变量回归共71页文档
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
计量经济学-虚拟变量回归
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0















66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章:虚拟Байду номын сангаас量回归模型
9.1 虚拟变量的性质
比率尺度 区间尺度 序数尺度 名义尺度
取值0和1的变量被称为虚拟变量,这种变量实质上就是一个将 数据区分为相互排斥类别的工具。 包含回归元为虚拟变量的回归模型被称为方差分析模型。
9.2 ANOVA模型
使用虚拟变量需要考虑: 1. 若定性变量有m个类别,则只需引入m-1个虚拟变量。 2. 不指定虚拟变量的那一组被称为基组,基准组等。 3. 截距值代表了基准组的均值。 4. 虚拟变量的系数被称为级差截距系数。
9.4 同时含有定性和定量回归元的回归: ANCOVA模型
9.5 邹至庄检验的虚拟变量方法
级差截距
级差斜率系数 (斜率漂移因子)
9.6 使用虚拟变量的交互效应
交互虚拟变量
9.7 季节分析中虚拟变量的应用
季节性 虚拟变量不仅可以去掉Y中的季节性,也能去掉X中的季节性, 一石二鸟。
9.8 分段线性回归
5. 基准组的选择完全取决于研究者。
6. 如果不使用截距项,那么可以引入与定性变量的类别相同数 量的虚拟变量。
7. 引入截距项和m-1个虚拟变量的方法更好。
9.3 含有两个定性变量的ANOVA模型
一旦遇到多于一个定性变量,就必须密切注意基组, 因为所有其他组都是与基组进行比较,在有几个定性 回归元,而且每个回归元又有几个类别时这一点就特 别重要。

相关文档
最新文档