北京市17各县区2015年中考二模数学试题(word版,含答案)
2015年北京中考二模汇编——10题word 有答案
丰台10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是 A B C D10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1≤m ≤1 D. 0<m <1昌平区10.如图,正方形ABCD 的边长为5,动点P 的运动路线为AB →BC ,动点Q 的运动路线为BD .点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发,当一个点到达终点停止运动时另一个点也随之停止.设点P 运动的路程为x ,△BPQ 的面积为y ,则下列能大致表示y 与x 的函数关系的图象为朝阳区10. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D东城区10. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记P A =x ,点D 到直线P A 的距离为y ,则y 关于x 的函数图象大致是A .B .C .D .丰台区10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为,△MNO 的面积为,那么下列图象中,能表示与的函数关系的图象大致是 A B C D海 淀 区10.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是门头沟区10.在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M ,N ,直线m 运动的时间为t (秒).设△OMN 的面积为S ,那么能反映S 与t 之间函数关系的大致图象是( )B x y y x t y OMAB C Nm石景山区10.在平面直角坐标系中,四边形是菱形,其中点的坐标是(0,2),点的坐标是(34,2),点和点是两个动点,其中点从点出发沿以每秒1个单位的速度做匀速运动,到点后停止,同时点从点出发沿折线→以每秒2个单位的速度做匀速运动,如果其中一点停止运动,则另一点也停止运动,设、两点的运动时间为,BMN 的面积是,下列图象中能表示与的函数关系的图象大致是ABC D顺义区10.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,大小正方形重叠部分的面积为y ,则下列图象中,能表示y与x 的函数关系的图象大致是( )ABCD B D M N M B BA A N B BC CD M N x y y x C.B.A.D.图③图②图①。
2015北京西城中考二模数学答案(纯WORD)
北京市西城区2015年初三二模数学试卷参考答案及评分标准2015. 6二、填空题(本题共18分,每小题3分) 三、解答题(本题共30分,每小题5分) 17.证明:如图1. ∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB =∠ABC =60°.………………………………… 1分 ∵D ,E 两点分别在AB ,BC 的延长线上, ∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D .…………………………………………………… 5分18.解: 1012cos 30()1(3)3π-++-2311=+-- ………………………………………………4分 1=. …………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………2分 =224252x x x --+-=256x x -+-.……………………………………………………3分∵ 2540x x --=, ∴ 254x x -=.…………………………………………………… 4分 ∴ 原式=2(5)64610x x ---=--=-.………………………………5分 20.解:去分母,得 3(3)2x x --=.………………………………………… 1分 去括号,得 332x x -+=. …………………………………………2分 整理,得 21x =-.…………………………………………… 3分解得 12x =-. ……………………………………………………… 4分经检验,12x =-是原方程的解. ………………………………………5分所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩……………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………… 3分(124125)88-⨯=(盒). ……………………………………………… 4分 答:第三天卖出牙膏8盒.…………………………………………………5分 22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点.………………………………… 1分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.…………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m --±+=.∴ 11x =-,23x m=. …………………………………………… 3分∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形, ∴ AD ∥BC . ∴ 32∠=∠. ∴ 13∠=∠. ∴ AE =AF∴ AF =EC . 又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.……………………………… 2分 又AE =AF ,∴ 四边形AFCE 为菱形.……………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°. ∵点D 的落点为点D ′ ,折痕为EF ,∴D F DF '=. ∵四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =. ∵在Rt △AGB 中,∠AGB=90°,∠B =45°,AB =∴AG =GB =6. ∵ 四边形AFCE 为平行四边形, ∴ AE ∥FC . ∴ ∠4=∠5=60°.∵ 在Rt △AGE 中,∠AGE =90°,∠4=60°, ∴ tan60AGGE ==︒∴6BE BG GE =+=+.∴6D F '=+…………………5分 24.解:(1)③④.………………………………… 2分 (2)补全统计图见图4. ………………… 3分 1055万人. ………………………… 4分(3)1.3%. …………………………… 5分25. 解:(1)补全图形如图5所示. …………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A . ∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE , ∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径, ∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB , ∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点,∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==∴tan 4PG CG GCP =⋅∠==. ………………… 5分26.解:(1)CADBC . …………………………………………… 3分1tan α.………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点.………………………………… 5分方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………… 1分∴ 1211-=x y . …………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.……………… 3分(2)①当25=a 时,4522+-=x x y .………………………… 4分 如图10,因为10y >且2y ≤0,由图象得2<x ≤4. … 6分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分 证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1. ∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .……………………………………… 5分 ∴ CH=AB .…………………………………… 6分(3)3.………………………………………………7分29.解:(1)点A .………………………………………1分 画图见图12.(画出一个即可)………… 2分△AMN (或△AJK ). …………………… 3分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线, ∴ OL 即为线段EF 关于点O 的τ型三角形的高. ∵线段EF 关于点O 的τ型三角形的面积为,∴OL =. ……………………………… 4分 ∵ 2OE =,OF m =,∴EL ==∴cos 1EL OE ∠== ∴cos 2cos 1OL OLOF ===∠∠∴m =…………………………………………………………6分(3)n ≤54-.………………………………………………………8分。
2015年区二模数学答案
3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
【VIP专享】2015年北京市海淀区初三数学二模试题及答案1
对于“想一想”中的问题,下列回答正确的是:
A.根据“边边边”可知,△ C 'O ' D ' ≌△ COD ,所以∠ A'O ' B ' =∠ AOB B.根据“边角边”可知,△ C 'O ' D ' ≌△ COD ,所以∠ A'O ' B ' =∠ AOB C.根据“角边角”可知,△ C 'O ' D ' ≌△ COD ,所以∠ A'O ' B ' =∠ AOB D.根据“角角边”可知,△ C 'O ' D ' ≌△ COD ,所以∠ A'O ' B ' =∠ AOB
A
B
1
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
北京市2015年中考数学二模试题
2015年中考数学二模试题学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.某种埃博拉病毒(EBV )长0.000 000 665nm 左右.将0.000 000 665用科学记数法表示 应为A .0. 665×10-6B .6.65×10-7C .6.65×10-8D .0. 665×10-92A C 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是A B C D4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若23AD DB ,AE =6,则EC 的长为 A . 6 B. 9 C. 15 D. 185.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是A . 10 B. 14 C. 16 D. 406.某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如下表 所示:设甲、乙两人射击成绩的平均数分别为x 甲、x 乙,射击成绩的方差分别为2s 甲、2s 乙,则 下列判断中正确的是A .x 甲<x 乙,2s 甲>2s 乙B .x 甲=x 乙,2s 甲<2s 乙C .x 甲=x 乙,22=s s 甲乙D .x 甲=x 乙,2s 甲>2s 乙7.一个隧道的横截面如图所示,它的形状是以点O 为圆心, 5为半径的圆的一部分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =6,则隧道的高(ME 的 长)为A .4B .6C .8D .98.某数学课外活动小组利用一个有进水管与出水管的容器 模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出 水,在随后的10分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则第12分钟容器内的 蓄水量为A. 22B. 25C. 27D. 289. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将 矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若 此时BN CN =13,则△AMD′ 的面积与△AMN 的面积的比为 A .1:3 B .1:4 C .1:6 D .1: 910. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分) 11.若分式162+-x x 的值为0,则x 的值为 .12.分解因式:22312x y -.13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .14. 如图,△ABC 中,AB=AC ,AD 是BC 边中线,分别以点A 、C 为圆心,以大于12AC 长为半径画弧,两弧交点分别为点E 、F ,直线EF 与AD 相交于点O ,若OA =2,则△ABC 外接圆的面积为 .(第14题) (第15题)15.如图,点B 在线段AE 上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD ,那么这个条件可以是 (要求:不在图中添加其他辅助线,写出一个条件即可 ). 16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .17.已知:如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D . 求证:BE=CD .18.计算:-2018cos60(2π⎛⎫- ⎪⎝⎭.19.解不等式12212333x x --≥,并把它的解集在数轴上表示出来.20.已知a b -2(2)(2)4(1)a b b a a -+-+-的值.21.如图,一次函数y kx b =+()0≠k 的图象与反比例函数 my x=()0≠m 的图象交于A (-3,1),B (1,n )两点. (1)求反比例函数和一次函数的表达式;(2)设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标.22.列方程或方程组解应用题:23.如图,点F 在□ABCD 的对角线AC 上,过点F 、 B 分别作AB 、AC 的平行线相交于点E ,连接BF ,∠ABF=∠FBC+∠FCB . (1)求证:四边形ABEF 是菱形; (2)若BE=5,AD=8,21sin =∠CBE ,求AC 的长.24.某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:(说明:40---55分为不合格,55---70分为合格,70---85分为良好,85---100分为优秀) 请根据以上信息,解答下列问题: (1)表中的a = ,b= ;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为 .25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,PA ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:PA 是⊙O 的切线; (2)若BC =4 ,求AD 的长.正正正 正26.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O ,AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .图1 图2图328.数学活动课上,老师提出这样一个问题:如果AB =BC ,∠ABC =60°,∠APC =30°,连接PB ,那么PA 、PB 、PC 之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P 在BA 延长线上(如图1),得到了一个猜想:PA 2+PC 2=PB 2 .小东:我假设点P 在∠ABC 的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB 后得到△P′C B ,并且可推出△PBP′ ,△PCP ′ 分别是等边三角形、直角三角形,就能得到猜想和证明方法. 这时老师对同学们说,请大家完成以下问题: (1)如图2,点P 在∠ABC 的内部,①PA =4,PC=PB= .②用等式表示PA 、PB 、PC 之间的数量关系,并证明.(2)对于点P 的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON . (1)求该二次函数的表达式; (2)若点P 的坐标是(-6,3),求△OPN 的面积;(3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.图1图2草稿纸北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2015.6一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠ 16. 8或10(写出一个正确结果给1分)三、解答题(本题共30分,每小题5分) 17. 证明:∵BE ⊥CE ,AD ⊥CE ,∴∠BEC=∠CDA =90°. ………………………1分 ∴∠EBC +∠ECB =90°. 又∵∠DCA +∠ECB =90°,∴∠EBC=∠DCA . ………………………………2分 又∵BC=AC ,……………………………………3分∴△BEC ≌△CDA . ………………………………………………………………4分 ∴BE =CD . ………………………………………………………………………5分18. 解:原式 =1218324-⨯-+. ………………………………………………………4分 =132-. ……………………………………………………………………5分19. 解:2443-≥-x x .……………………………………………………………………1分4243+-≥-x x .……………………………………………………………………2分2≥-x . …………………………………………………………………………3分解得2-≤x . ………………………………………………………………………4分 …………………………5分20. 解:)1(4)2()2(2-+-+-a a b b a=4424422-+-++-a ab b a a . ……………………………………………3分 =ab b a 222-+=2)(b a -.……………………………………………………………………………4分 ∵2=-b a ,∴原式=2)2(2=. ………………………………………………………………5分21. 解:(1)把A (-3,1)代入,有31-=m, 解得3-=m .∴反比例函数的表达式为xy 3-=. ……………………………………1分 当1=x 时,313-=-=y . ∴B (1,-3). …………………………………………………………2分 把A (-3,1),B (1,-3)代入b kx y +=,有⎩⎨⎧+=-+-=b k bk 331, 解得⎩⎨⎧-=-=21b k .∴一次函数的表达式为2--=x y . ……………………………………3分 (2)(4,0)或(-2,0). ……………………………………………………5分22. 解:设小白家这两年用水的年平均下降率为x . …………………………………………1分由题意,得1264000)1(%3630002=-⋅x . ………………………………………2分 解得 8.11=x ,2.02=x . ……………………………………………3分 ∵8.1=x 不符合题意,舍去. ………………………………………………4分 ∴%.20=x答:小白家这两年用水的年平均下降率为%.20 ………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形.∵∠ABF=∠FBC +∠FCB ,∠AFB=∠FBC +∠FCB ,∴∠ABF=∠AFB . …………………………………………………………………1分 ∴AB =AF .∴□ABEF 是菱形. ………………………………………………………………2分 (2)解:作DH ⊥AC 于点H ,∵21sin =∠CBE , ∴︒=∠30CBE . ∵BE ∥AC , ∴CBE ∠=∠1. ∵AD ∥BC , ∴12∠=∠.∴︒=∠=∠302CBE .Rt△ADH 中,342cos =∠⋅=AD AH .………………………………………………3分42sin =∠⋅=AD DH .∵四边形ABEF 是菱形,∴CD= AB=BE=5,Rt△CDH 中,322=-=DH CD CH . ………………………………………………4分 ∴334+=+=CH AH AC .…………………………………………5分24.(1)18,50%. …………………………………………………………………………2分(2)…………………………………………4分(3)120. ………………………………………………………………………………5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分∵PA ∥BC ,∴∠PAO =∠BEO =90°.∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分(2)解:根据(1)可得CE =21BC=2. Rt△ACE 中,122=-=CE AC AE . ………………………………3分 ∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分又∵∠D =∠C ,∴AD =52tan =DAB .………………………………………………………5分 26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°,∴AE =12m . ∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -. ∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ···················· 1分=4.即0∆>.∴方程有两个不相等的实数根. ··················2分 (2) 解:由求根公式,得2(1)22a x a -±=. ∴1x =或21x a=-. ······················· 3分 0a >,1x >2x ,11x ∴=,221x a=-. ······················· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分 证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2.∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分∴PA =P ′C ,∠A =∠BCP ′.在四边形ABCP 中,∵∠ABC =60°,∠APC =30°,∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形.∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例:如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分29.(1)解:设二次函数的表达式为4)4(2++=x a y ,把点(0,0)代入表达式,解得41-=a . ………………………………………1分 ∴二次函数的表达式为4)4(412++-=x y , 即x x y 2412--=. ……………………………………………………………2分 (2)解:设直线OP 为y kx =,将P (-6,3)代入y kx =,解得12k =-, ∴12y x =-. 当4-=x 时,2=y .∴M (-4,2). ……………………………………………………………………3分 ∵点M 、N 关于点A 对称,∴N (-4,6).∴MN =4.∴12=+=∆∆∆PMN O MN PO N S S S . ……………………………………………………4分(3)①证明:设点P 的坐标为)241,(2t t t --, 其中4-<t ,设直线OP 为x k y '=,将P )241,(2t t t --代入x k y '=,解得'=k ∴x t y 48+-=. 当4-=x 时,8+=t y .∴M (-4,8+t ).∴AN =AM =)8(4+-t =4--t .设对称轴l 交x 轴于点B ,作PC ⊥l 于点C 则B (-4,0),C )241,4(2t t ---. ∴OB =4,NB =)4(4--+t =t -,PC =-4NC =)241(2t t t ----=t t +241. 则44412t t t t PC NC -=--+=,44t t OBNB -=-=. ∴OBNB PC NC =. 又∵∠NCP =∠NBO =90°,∴△NCP ∽△NBO .∴∠PNM =∠ONM . …………………………………………………………………6分 ② (4,244---). ………………………………………………………………8分其他正确解法,请参考标准给分.。
2015年北京西城初三二模数学试题及答案(word版)
北京市西城区2015年初三二模试卷数 学 2015.6一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为( )A. 90.1210⨯B. 71.210⨯C. 81.210⨯D. 71210⨯2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于( )A. 75°B. 80°C. 100°D. 120°3.64的立方根是( )A. 8±B. 4±C. 8D. 4 4.函数2y x =-中,自变量x 的取值范围是( ) A.2x ≠ B. x ≥2 C. x >2 D. x ≥2-5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为( ) A. 3 B. 4 C. 9 D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示. 节电量(千瓦时) 20 30 40 50 户数(户)20303020那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是( )A. 35B. 26C. 25D. 20 7. 若一个正六边形的半径为2,则它的边心距等于( ) A. 2 B. 1 C. 3 D. 238.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于( ) A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为(1,3),则点C 的坐标为( )A .(3,1)B .(1,3)-C .(3,1)-D .(3,1)--10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是( )A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <1二、填空题(本题共18分,每小题3分)11.若2(2)10m n ++-= 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = . 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如下装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰 所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式:_____________.15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线ny x =(n ≠0)在第一象限的公共点是(1,)P m .小明说:“从图象上可 以看出,满足3nx x>的x 的取值范围是1x >.”你同意他的 观点吗?答: .理由是 .16.如图,在平面直角坐标系xOy 中,点D 为直线2y x =上且在第一象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 的右侧 作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 为边在 2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以 3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 .三、解答题(本题共30分,每小题5分)17.如图,△ABC 是等边三角形,D ,E 两点分别在AB ,BC的延长线上,BD =CE ,连接AE ,CD . 求证:∠E =∠D .18.计算:1012cos 30()13(3)3π-++---.19.已知2540x x --=,求代数式(2)(2)(21)(2)x x x x +----的值.20.解方程:231233x x x x-=--.21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:商品 时间 第一天 第二天 第三天 牙膏(盒) 7 14 ? 牙刷(支) 13 15 12 营业额(元)121187124求第三天卖出牙膏多少盒.22.已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.四、解答题(本题共20分,每小题5分)23.如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′ ,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=62,求线段D′F的长.24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG . (1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论; (2)如图2,当E 为半径OA 的中点,DG ∥AB ,且=23OA 时,求PG 的长.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题: 在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠. 请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a的取值范围.8.正方形ABCD 的边长为3,点E ,F 分别在射线DC ,DA 上运动,且DE=DF .连接BF ,作EH ⊥BF 所在直线于点H ,连接CH .(1)如图1,若点E 是DC 的中点,CH 与AB 之间的数量关系是 ; (2)如图2,当点E 在DC 边上且不是DC 的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E ,F 分别在射线DC ,DA 上运动时,连接DH ,过点D 作直线DH的垂线,交直线BF 于点K ,连接CK ,请直接写出线段CK 长的最大值.29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形. (1)如图1,已知点(0,3)A -,(3,0)B ,以原点O 为圆心的⊙O 的半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ型三角形的面积为439,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.北京市西城区2015年初三二模数学试卷参考答案及评分标准2015. 6一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 CBDBBACACA二、填空题(本题共18分,每小题3分) 11 12 13 14 15163- 83221y x x =-+(答案不唯一)不同意x 的取值范围是10x -<<或1x >(或其他正确结论)23y x =1415y x =三、解答题(本题共30分,每小题5分) 17.证明:如图1.∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB =∠ABC =60°.……………………………………………… 1分∵ D ,E 两点分别在AB ,BC 的延长线上,∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D . (5)分18.解: 1012cos 30()13(3)3π-++---3233112=⨯++-- ………………………………………………………………4分 231=+. ………………………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………………………2分 =224252x x x --+-=256x x -+-.………………………………………………………………………3分图1∵ 2540x x --=,∴ 254x x -=.…………………………………………………………………… 4分 ∴ 原式=2(5)64610x x ---=--=-.……………………………………………5分 20.解:去分母,得 3(3)2x x --=.…………………………………………………… 1分 去括号,得 332x x -+=. ………………………………………………………2分整理,得 21x =-.……………………………………………………………… 3分解得 12x =-. …………………………………………………………………… 4分经检验,12x =-是原方程的解. …………………………………………………5分所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩…………………………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………………………… 3分(124125)88-⨯=(盒). ………………………………………………………… 4分 答:第三天卖出牙膏8盒.………………………………………………………………5分22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点. (1)分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.……………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m--±+=.∴ 11x =-,23x m=. ……………………………………………………… 3分 ∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………………5分四、解答题(本题共20分,每小题5分)23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形,∴ AD ∥BC .∴ 32∠=∠.∴ 13∠=∠. ∴ AE =AF .…………………………………………………………………1分∴ AF =EC .又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.………………………………………… 2分又AE =AF ,∴ 四边形AFCE 为菱形.………………………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°.∵ 点D 的落点为点D ′ ,折痕为EF ,∴D F DF '=. ∵四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =. ∵在Rt △AGB 中,∠AGB=90°,∠B =45°,AB =62,∴AG =GB =6. ∵ 四边形AFCE 为平行四边形,∴ AE ∥FC .∴ ∠4=∠5=60°.∵ 在Rt △AGE 中,∠AGE =90°,∠4=60°,∴23tan60AG GE ==︒. ∴ 623BE BG GE =+=+.∴ 623D F '=+.…………………5分图2图324.解:(1)③④.………………………………… 2分(2)补全统计图见图4. ………………… 3分1055万人. ………………………… 4分 (3)1.3%. …………………………………………………………………………… 5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG ,∴ ∠1=∠2.又∵OG =OA ,∴ ∠3=∠A .∵ CD ⊥AB 于点E ,∴ ∠A +∠AFE =90°.又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分即 OG ⊥PG .∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG .∵ CD ⊥AB 于点E ,∴ ∠OEC =90°.∵ DG ∥AB ,∴∠GDC =∠OEC =90°.∵∠GDC 是⊙O 的圆周角,∴ CG 为⊙O 的直径.∵ E 为半径OA 的中点,∴ 22OA OC OE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,243CG OA ==,∴3tan 4343PG CG GCP =⋅∠=⨯=. …………………………… 5分 26.解:(1)CAD ,3,BC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与图5 图6 图7 图42m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P , 则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分(2)结论成立.………………………………… 2分证明:如图11,连接BE . 图8图9 图10在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°.∵ DE=DF ,∴ AF=CE .在△ABF 和△CBE 中, ,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上.∴ ∠3=∠2.∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°,∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分(3)323+.………………………………………………………………………7分29.解:(1)点A .………………………………………1分画图见图12.(画出一个即可)………… 2分△AMN (或△AJK ). …………………… 3分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线,∴ OL 即为线段EF 关于点O 的τ型三角形的高.∵线段EF 关于点O 的τ型三角形的面积为439, ∴233OL =. ……………………………… 4分 ∵ 2OE =,OF m =, ∴222223262()33EL OE OL =-=-=. ∴ 6cos 13EL OE ∠==. ∴ 2cos 2cos 1OL OL OF ===∠∠. 图13 图11图12∴2m=.………………………………………………………………………6分(3)n≤54 -.……………………………………………………………………………8分。
2015北京中考数学试卷及答案解析(word版)
2015北京中考数学试卷及答案解析(word版)2015年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的1.(3分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104 B.1.4×105C.1.4×106D.14×106考点:科学记数法—表示较大的数.专题:计算题.分析:将140000用科学记数法表示即可.解答:解:140000=1.4×105,故选B.2.(3分)(2015•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A .B .C .D .考点: 概率公式. 专题: 计算题. 分析: 直接根据概率公式求解. 解答:解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B .点评: 本题考查了概率公式:随机事件A 的概率P(A )=事件A 可能出现的结果数除以所有可能出现的结果数.3.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .考点: 轴对称图形. 分析: 根据轴对称图形的概念求解. 解答:解:A 、不是轴对称图形,B .不是轴对称图形,C .不是轴对称图形,D .是轴对称图形,故选:D .点评: 本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.4.(3分)(2015•北京)如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A . 26°B . 36°C . 46°D . 56°考点: 平行线的性质. 分析: 如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.解答: 解:如图,∵直线l 4∥l 1,∴∠1+∠AOB=180°,而∠1=124°, ∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B .点评: 该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.5.(3分)(2015•北京)如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开.若测得AM 的长为1.2km ,则M ,C 两点间的距离为( )A . 0.5kmB . 0.6kmC . 0.9kmD . 1.2km考点: 直角三角形斜边上的中线. 专题:应用题. 分根据直角三角形斜边上的中线等于斜边的析: 一半,可得MC=AM=1.2km .解答: 解:∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=AB=AM=1.2km .故选D .点评: 本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.6.(3分)(2015•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A . 21,21B . 21,21.5C . 21,22D . 22,22考点: 众数;条形统计图;中位数. 专数形结合.题:分析: 根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解. 解答: 解:这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22.故选C .点评: 本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.7.(3分)(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )A . 景仁宫(4,2)B . 养心殿(﹣2,3)C . 保和殿(1,0)D . 武英殿(﹣3.5,﹣4)考点: 坐标确定位置. 分析: 根据平面直角坐标系,找出相应的位置,然后写出坐标即可. 解答: 解:根据表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1), 可得:原点是中和殿,所以可得景仁宫(2,4),养心殿(﹣2,3),保和殿(0,1),武英殿(﹣3.5,﹣3),故选B点评: 此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x ,y 轴的位置及方向.8.(3分)(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元) A 类50 25 B 类200 20 C 类 400 15 例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )A . 购买A 类会员年卡B . 购买B 类会员年卡C . 购买C 类会员年卡D . 不购买会员年卡考一次函数的应用.点:分析: 设一年内在该游泳馆游泳的次数为x 次,消费的钱数为y 元,根据题意得:y A =50+25x ,y B =200+20x ,y C =400+15x ,当45≤x ≤50时,确定y 的范围,进行比较即可解答.解答: 解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y 元, 根据题意得:y A =50+25x ,y B =200+20x ,y C =400+15x ,当45≤x ≤50时,1175≤y A ≤1300;1100≤y B ≤1200;1075≤y C ≤1150;由此可见,C 类会员年卡消费最低,所以最省钱的方式为购买C 类会员年卡.故选:C .点评: 本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.9.(3分)(2015•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )A . A →O →BB . B →A →C C . B →O →CD .C →B →O考点: 动点问题的函数图象. 分析: 根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案. 解答: 解:A 、从A 点到O 点y 随x 增大一直减小到0,故A 不符合题意;B .从B 到A 点y 随x 的增大先减小再增大,从A 到C 点y 随x 的增大先减小再增大,但在A 点距离最大,故B 不符合题意;C .从B 到O 点y 随x 的增大先减小再增大,从O 到C 点y 随x 的增大先减小再增大,在B 、C 点距离最大,故C 符合题意;D .从C 到M 点y 随x 的增大而减小,一直到y 为0,从M 点到B 点y 随x 的增大而增大,明显与图象不符,故D 不符合题意;故选:C .点评: 本题考查了动点问题的函数图象,利用观察点与动点P 之间距离的变化关系得出函数的增减性是解题关键.二、填填空题(本题共18分,每小题3分)10.(3分)(2015•北京)分解因式:5x 3﹣10x 2+5x=5x (x ﹣1)2 .考点:提公因式法与公式法的综合运用.分析: 先提取公因式5x ,再根据完全平方公式进行二次分解. 解答: 解:5x 3﹣10x 2+5x=5x (x 2﹣2x+1)=5x (x ﹣1)2.故答案为:5x (x ﹣1)2. 点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.(3分)(2015•北京)如图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360° .考点:多边形内角与外角.分析: 首先根据图示,可得∠1=180°﹣∠BAE ,∠2=180°﹣∠ABC ,∠3=180°﹣∠BCD ,∠4=180°﹣∠CDE ,∠5=180°﹣∠DEA ,然后根据三角形的内角和定理,求出五边形ABCDE 的内角和是多少,再用180°×5减去五边形ABCDE 的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.解答: 解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE )+(180°﹣∠ABC )+(180°﹣∠BCD )+(180°﹣∠CDE )+(180°﹣∠DEA )=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.点评: 此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和=(n ﹣2)•180 (n ≥3)且n 为整数).(2)多边形的外角和指每个顶点处取一个外角,则n 边形取n 个外角,无论边数是几,其外角和永远为360°.12.(3分)(2015•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程.组为由实际问题抽象出二元一次方程组.点:分析: 根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组. 解答: 解:根据题意得:, 故答案为:.点评: 本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.13.(3分)(2015•北京)关于x 的一元二次方程ax 2+bx+=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a= 4 ,b= 2 .考点: 根的判别式. 专题:开放型.分析: 由于关于x 的一元二次方程ax 2+bx+=0有两个相等的实数根,得到a=b 2,找一组满足条件的数据即可.解答: 关于x 的一元二次方程ax 2+bx+=0有两个相等的实数根,∴△=b 2﹣4×a=b 2﹣a=0,∴a=b 2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.点评: 本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.14.(3分)(2015•北京)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约980 万人次,你的预估理由是 根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升 .考点: 用样本估计总体;折线统计图. 分析: 根据统计图进行用样本估计总体来预估即可. 解答: 解:预估2015年北京市轨道交通日均客运量约980万人次,根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升, 故答案为:980;根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升.点评: 此题考查用样本估计总体,关键是根据统计图分析其上升规律.15.(3分)(2015•北京)阅读下面材料: 在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是 到线段两个端点距离相等的点在线段的垂直平分线上 .考点: 作图—基本作图. 专题: 作图题. 分析: 通过作图得到CA=CB ,DA=DB ,则可根据线段垂直平分线定理的逆定理判断CD 为线段AB 的垂直平分线.解答: 解:∵CA=CB ,DA=DB ,∴CD 垂直平分AB (到线段两个端点距离相等的点在线段的垂直平分线上)故答案为:到线段两个端点距离相等的点在线段的垂直平分线上.点评: 本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.16.(5分)(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.考点: 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 分析: 原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果. 解答: 解:原式=4﹣1+2﹣+4×=5+. 点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(5分)(2015•北京)已知2a 2+3a ﹣6=0.求代数式3a (2a+1)﹣(2a+1)(2a ﹣1)的值.考整式的混合运算—化简求值.点:专题: 计算题. 分析: 原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解答: 解:∵2a 2+3a ﹣6=0,即2a 2+3a=6, ∴原式=6a 2+3a ﹣4a 2+1=2a 2+3a+1=6+1=7. 点评: 此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)(2015•北京)解不等式组,并写出它的所有非负整数解.考点: 解一元一次不等式组;一元一次不等式组的整数解. 专题: 计算题. 分析: 分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.解答: 解:,由①得:x ≥﹣2;由②得:x <,∴不等式组的解集为﹣2≤x <,则不等式组的所有非负整数解为:0,1,2,3.点评: 此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.19.(5分)(2015•北京)如图,在△ABC 中,AB=AC ,AD 是BC 边上的中线,BE ⊥AC于点E .求证:∠CBE=∠BAD .考点: 等腰三角形的性质. 专证明题.题:分析: 根据三角形三线合一的性质可得∠CAD=∠BAD ,根据同角的余角相等可得:∠CBE=∠CAD ,再根据等量关系得到∠CBE=∠BAD .解答: 证明:∵AB=AC ,AD 是BC 边上的中线,BE ⊥AC , ∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD ,∴∠CBE=∠BAD .点评: 考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.(5分)(2015•北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?考点: 分式方程的应用. 分析: 根据租赁点的公租自行车数量变化表示出2013年和2015年平均每个租赁点的公租自行车数量,进而得出等式求出即可.解答: 解:设到2015年底,全市将有租赁点x 个,根据题意可得:× 1.2=,解得:x=1000,经检验得:x=1000是原方程的根,答:到2015年底,全市将有租赁点1000个.点评: 此题主要考查了分式的方程的应用,根据题意得出正确等量关系是解题关键.21.(5分)(2015•北京)在▱ABCD 中,过点D作DE ⊥AB 于点E ,点F 在边CD 上,DF=BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF=3,BF=4,DF=5,求证:AF 平分∠DAB .考点: 平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定. 专题: 证明题. 分析: (1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB ,根据等腰三角形的判定与性质,可得∠DAF=∠DFA ,根据角平分线的判定,可得答案.解答: (1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE=DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB=90°,∴四边形BFDE 是矩形;(2)解:∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA=∠FAB .在Rt △BCF 中,由勾股定理,得 BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA ,∴∠DAF=∠FAB ,即AF 平分∠DAB .点评: 本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA 是解题关键.22.(5分)(2015•北京)在平面直角坐标系xOy中,直线y=kx+b (k ≠0)与双曲线y=的一个交点为P (2,m ),与x 轴、y 轴分别交于点A ,B .(1)求m 的值;(2)若PA=2AB ,求k 的值.考点: 反比例函数与一次函数的交点问题. 分析: (1)将点P 的坐标代入反比例函数的解析式即可求得m 的值; (2)作PC ⊥x 轴于点C ,设点A 的坐标为(a ,0),则AO=﹣a ,AC=2﹣a ,根据PA=2AB 得到AB :AP=AO :AC=1:2,求得a 值后代入求得k 值即可. 解答: 解:∵y=经过P (2,m ),∴2m=8,解得:m=4;(2)点P (2,4)在y=kx+b 上,∴4=2k+b ,∴b=4﹣2k ,∵直线y=kx+b (k ≠0)与x 轴、y 轴分别交于点A ,B ,∴A (2﹣,0),B (0,4﹣2k ),如图,∵PA=2AB ,∴AB=PB ,则OA=OC , ∴﹣2=2,解得k=1;点评: 本题考查了反比例函数与一次函数的交点问题,解题的关键是表示出A 的坐标,然后利用线段之间的倍数关系确定k 的值,难度不大.23.(5分)(2015•北京)如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,弦CD ∥BM ,交AB 于点F ,且=,连接AC ,AD ,延长AD 交BM 于点E .(1)求证:△ACD 是等边三角形;(2)连接OE ,若DE=2,求OE 的长.考切线的性质;等边三角形的判定与性质.点: 分析: (1)由AB 是⊙O 的直径,BM 是⊙O 的切线,得到AB ⊥BE ,由于CD ∥BE ,得到CD ⊥AB ,根据垂径定理得到,于是得到,问题即可得证;(2)连接OE ,过O 作ON ⊥AD 于N ,由(1)知,△ACD 是等边三角形,得到∠DAC=60°又直角三角形的性质得到BE=AE ,ON=AO ,设⊙O 的半径为:r 则ON=r ,AN=DN=r ,由于得到EN=2+,BE=AE=,在R t △DEF 与R t △BEO 中,由勾股定理列方程即可得到结论. 解答: (1)证明:∵AB 是⊙O 的直径,BM 是⊙O 的切线,∴AB ⊥BE , ∵CD ∥BE , ∴CD ⊥AB , ∴, ∵=, ∴,∴AD=AC=CD ,∴△ACD是等边三角形;(2)解:连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,∴∠DAC=60°∵AD=AC,CD⊥AB,∴∠DAB=30°,∴BE=AE,ON=AO,设⊙O的半径为:r,∴ON=r,AN=DN=r,∴EN=2+,BE=AE=,在R t△DEF与R t△BEO中,OE2=ON2+NE2=OB2+BE2,即=r2+,∴r=2,∴OE 2=+25=28,∴OE=2.点本题考查了切线的性质,垂径定理,等边三评:角形的判定,直角三角形的性质,勾股定理,过O作ON⊥AD于N,构造直角三角形是解题的关键.24.(5分)(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次. 根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为 40 万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来. 考点:条形统计图;统计表.分析: (1)2013年的人数乘以(1+25%)即可求解;(2)求出2014年颐和园的游客接待量,然后利用统计表即可表示. 解答: 解:(1)2014年,玉渊潭公园的游客接待量是:32×(1+25%)=40(万人).故答案是:40;(2)2013年颐和园的游客接待量是:26.4﹣4.6=21.8(万元).玉渊潭公颐和园 北京动物园园2013年 32 21.8 14.9 2014年 40 26.2 22 2015年382618点评: 本题考查了数据的分析与整理,正确读懂题意,从所列的数据中整理出2013﹣2015年三年中,三个公园的游客数是关键.25.(5分)(2015•北京)有这样一个问题:探究函数y=x 2+的图象与性质. 小东根据学习函数的经验,对函数y=x 2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整: (1)函数y=x 2+的自变量x 的取值范围是 x ≠0 ;(2)下表是y 与x 的几组对应值. x … ﹣3 ﹣ 2 ﹣1﹣ ﹣ 1 2 3 … y … ﹣ ﹣ ﹣m …求m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值 .考点: 二次函数的图象;反比例函数的图象;反比例函数的性质;二次函数的性质.分析: (1)由图表可知x ≠0; (2)根据图表可知当x=3时的函数值为m ,把x=3代入解析式即可求得;(3)根据坐标系中的点,用平滑的直线连接即可;(4)观察图象即可得出该函数的其他性质.解答: 解:(1)x ≠0,(2)令x=3, ∴y=×32+=+=; ∴m=; (3)如图(4)该函数的其它性质: ①该函数没有最大值; ②该函数在x=0处断开; ③该函数没有最小值;④该函数图象没有经过第四象限. 故答案为该函数没有最大值. 点评: 本题考查了二次函数的图象和性质,反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.26.(7分)(2015•北京)在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线y=x ﹣1交于点A ,点A 关于直线x=1的对称点为B ,抛物线C 1:y=x 2+bx+c 经过点A ,B .(1)求点A ,B 的坐标;(2)求抛物线C 1的表达式及顶点坐标; (3)若抛物线C 2:y=ax 2(a ≠0)与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围.考点: 二次函数的性质;待定系数法求二次函数解析式.分析: (1)当y=2时,则2=x ﹣1,解得x=3,确定A (3,2),根据AB 关于x=1对称,所以B (﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C 1:y=x 2+bx+c 得,求出b ,c 的值,即可解答;(3)画出函数图象,把A ,B 代入y=ax 2,求出a 的值,即可解答. 解答: 解:(1)当y=2时,则2=x ﹣1, 解得:x=3,∴A (3,2),∵点A 关于直线x=1的对称点为B , ∴B (﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C 1:y=x 2+bx+c 得:解得:∴y=x 2﹣2x ﹣1. 顶点坐标为(1,﹣2).(3)如图,当C 2过A 点,B 点时为临界,代入A (3,2)则9a=2, 解得:a=,代入B (﹣1,2),则a (﹣1)2=2, 解得:a=2, ∴ 点评: 本题考查了二次函数的性质,解集本题的关键是求出二次函数的解析式,并结合图形解决问题.27.(7分)(2015•北京)在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C 、D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于H ,连接AH ,PH . (1)若点P 在线段CD 上,如图1. ①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线段CD 的延长线上,且∠AHQ=152°,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果)考点: 四边形综合题. 分析: (1)①根据题意画出图形即可;②连接CH ,先根据正方形的性质得出△DHQ 是等腰直角三角形,再由SSS 定理得出△HDP ≌△HQC ,故PH=CH ,∠HPC=∠HCP ,由正方形的性质即可得出结论;(2)根据四边形ABCD 是正方形,QH ⊥BD可知△DHQ 是等腰直角三角形,再由平移的性质得出PD=CQ .作HR ⊥PC 于点R ,由∠AHQ=152°,可得出∠AHB 及∠DAH的度数,设DP=x,则DR=HR=RQ,由锐角三角函数的定义即可得出结论.解:(1)①如图1;解答:②如图1,连接CH,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ是等腰直角三角形.∵DP=CQ,在△HDP与△HQC中.∵,∴△HDP≌△HQC(SSS),∴PH=CH,∠HPC=∠HCP.∵BD是正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴∠AHP=180°﹣∠ADP=90°,∴AH=PH,AH⊥PH.(2)如图2,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ 是等腰直角三角形.∵△BCQ 由△ADP 平移而成,∴PD=CQ .作HR ⊥PC 于点R ,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°.设DP=x ,则DR=HR=RQ=. ∵tan17°=,即tan17°=,∴x=.点评: 本题考查的是四边形综合题,涉及到正方形的性质、图形平移的性质、全等三角形的判定与性质等知识,难度适中.28.(8分)(2015•北京)在平面直角坐标系xOy 中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P 的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.考点: 圆的综合题. 分析: (1)①根据反称点的定义,可得当⊙O 的半径为1时,点M (2,1)关于⊙O 的反称点不存在;N (,0)关于⊙O 的反称点存在,反称点N ′(,0);T (1,)关于⊙O 的反称点存在,反称点T ′(0,0); ②由OP ≤2r=2,得出OP 2≤4,设P (x ,﹣x+2),由勾股定理得出OP 2=x 2+(﹣x+2)2=2x 2﹣4x+4≤4,解不等式得出0≤x ≤2.再分别将x=2与0代入检验即可;(2)先由y=﹣x+2,求出A (6,0),B(0,2),则=,∠OBA=60°,∠OAB=30°.再设C (x ,0),分两种情况进行讨论:①C 在OA 上;②C 在A 点右侧.解答: 解:(1)当⊙O 的半径为1时.①点M (2,1)关于⊙O 的反称点不存在;N (,0)关于⊙O 的反称点存在,反称点N ′(,0);T (1,)关于⊙O 的反称点存在,反称点T ′(0,0);②∵OP ≤2r=2,OP 2≤4,设P (x ,﹣x+2), ∴OP 2=x 2+(﹣x+2)2=2x 2﹣4x+4≤4,∴2x 2﹣4x ≤0,x (x ﹣2)≤0,∴0≤x ≤2.当x=2时,P (2,0),P ′(0,0)不符合题意;当x=0时,P (0,2),P ′(0,0)不符合题意;∴0<x <2;(2)∵直线y=﹣x+2与x 轴、y 轴分别交于点A ,B ,∴A (6,0),B (0,2), ∴=,∴∠OBA=60°,∠OAB=30°.设C (x ,0).①当C 在OA 上时,作CH ⊥AB 于H ,则CH ≤CP ≤2r=2,所以AC ≤4,C 点横坐标x ≥2(当x=2时,C 点坐标(2,0),H 点的反称点H ′(2,0)在圆的内部);②当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,所以C 点横坐标x ≤8.综上所述,圆心C 的横坐标的取值范围是2≤x ≤8.点评:本题是圆的综合题,其中涉及到一次函数图象上点的坐标特征,特殊角的三角函数值,勾股定理,一元二次不等式的解法,利用数形结合、正确理解反称点的意义是解决本题的关键.。
2015北京中考数学二模试题28题汇编及答案
2015北京中考数学二模试题28题汇编及答案28.如图1,在△ABC中,AB=AC,∠ABC =α,D是BC边上一点,以AD为边作△ADE,使AE=AD,DAE∠+BAC∠=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.图1 图2 图328.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH 的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.28. 如图1,在ABC Rt △中,90ACB ∠=︒,E 是边AC 上任意一点(点E 与点A ,C 不重合),以CE 为一直角边作ECD Rt △,90ECD ∠=︒,连接BE ,AD . (1) 若CA CB =,CE CD =,①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1中的ECD Rt △绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2) 若8CA =,6CB =,3CE =,4CD =,ECD Rt △绕着点C 顺时针旋转锐角α,如图3,连接BD ,AE ,计算22BD AE +的值.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE = °;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N . ①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.图3EAC图1 图228.如图1,点O 为正方形ABCD 的中心.(1)将线段OE 绕点O 逆时针方向旋转︒90,点E 的对应点为点F ,连结EF ,AE ,BF ,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE 与BF 的关系;(3)如图2,点G 是OA 中点,△EGF 是等腰直角三角形,H 是EF 的中点,︒=∠90EGF,AB =2=GE ,△EGF 绕G 点逆时针方向旋转α角度,请直接写出旋转过程中BH 的最大值.ECCBH EFGODA图1图228.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么P A、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想: P A2+PC2=PB2 .小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段特点,可以利用旋转解决问题,旋转△P AB后得到△P′CB ,并且可推出△PBP′ ,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①P A=4,PC=PB= .②用等式表示P A、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.图1 图228.如图,△ABC中,∠BAC=90°,AB=AC,边BA绕点B顺时针旋转α角得到线段BP,连结PA,PC,过点P作PD⊥AC于点D.(1)如图1,若α=60°,求∠DPC的度数;(2)如图2,若α=30°,直接写出∠DPC的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC的度数.EF OA BCD28.在△ABC 中,AB =BC=2,∠ABC =90°,BD 为斜边AC 上的中线,将△ABD 绕点D 顺时针旋转α(0°<α<180°)得到△EFD ,其中点A 的对应点为点E ,点B 的对应点为点F . BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________; (2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN = 22FC ;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系: .28.如图,在平行四边形ABCD 中,AB =5,BC =12,对角线交于点O ,∠BAD 的平分线交BC 于E 、交BD 于F ,分别过顶点B 、D 作AE 的垂线,垂足为G 、H ,连接OG 、OH . (1)补全图形; (2)求证:OG =OH ;(3)若OG ⊥OH ,直接写出∠OAF 的正切值.图3CDD图2图1ABPCBCPA图2图1图328.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70°,∠B =80°.则∠C = 度,∠D = 度. (2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60°,∠ABC =90°,AB =5,AD =4.求对角线AC 的长.28.如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE . (1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,AB =2,如果PD =1,∠BPD =90°,请直接写出点A到BP 的距离.图1 图2DAB CPDC AB图1图228.如图①,∠MON =60°,点A ,B 为射线OM ,ON 上的动点(点A ,B 不与点O 重合),且AB =34,在∠MON 的内部、△AOB 的外部有一点P ,且AP =BP ,∠APB =120°. (1)求AP的长;(2)求证:点P 在∠MON 的平分线上;(3)如图②,点C ,D ,E ,F 分别是四边形AOBP 的边AO ,OB ,BP ,P A 的中点,连接CD ,DE ,EF ,FC ,OP .当A B ⊥OP 时,请直接..写出四边形CDEF 周长的值.图① 图②OO答案28.(本小题满分7分) (1)∠ADE=90α︒-.…………………………………………………………… ……………………….…1分(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC , ∴BD =CD .……………………………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF . ∴EAC C α∠=∠=.……………………………………………………………………………………………5分由(1)知,2DAE α∠=, ∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠.α∴AD =CD . ∵AD =AE =BF , ∴BF =CD . ∴BD =CF .………………………………………………………………………………………………………7分28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分 证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分 (3)3.………………………………………………………………………7分28.(1)①解: BE AD =,BE AD ⊥;……2分 ②BE AD =,BE AD ⊥仍然成立;证明:设BE 与AC 的交点为点F ,BE 与AD 的交点为点G ,如图1. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠. 在ACD △和BCE △中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴ACD BCE △≌△.∴AD BE =,CAD CBE ∠=∠.……3分∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BE AD ⊥.……4分(2)证明:设BE 与AC 的交点为点F ,BE 的延长线与AD 的交点为点G ,如图2. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠.∵8CA =,6CB =,3CE =,4CD =,∴43CA CD CB CE ==. ∴ACD BCE △∽△.……5分∴CAD CBE ∠=∠.∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒,∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BG AD ⊥.……6分 ∴90AGE BGD ∠=∠=︒.∴222AE AG EG =+,222BD BG DG =+. ∴222222BD AE AG EG BG DG +=+++. ∵222AG BG AB +=,222EG DG ED +=,∴22222222125BD AE AB ED CA CB CD CE +=+=+++=.……7分28. 解:(1)°70ADE ∠=;…….1分(2)①见右图;…….2分②EM EN =.…….3分 证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠. ∴°902EDA ACB α∠=∠=-.∵BA BC =, ∴ACB BAC ∠=∠,即EDA BAC ∠=∠. ∴EA ED = . …….4分 ∵E 是AC 中点,∴EA EC =. ∴EA EC ED ==. ∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=. ∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分 ∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN , ∴ ∠AED=∠MEN ,∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED . ∴ ΔEAM ≌ΔEPN . ∴ EM=EN .…….7分28.解:(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分 ∵O 为正方形ABCD 的中心, ∴OB OA =,∠AOB =90……3分∵OE 绕点O 逆时针旋转90角得到OF ∴OF OE =∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分 在△EOA 和△FOB 中,OF OE =,OB OA =,∠EOA =∠FOB ,∴△EOA ≌△FOB ∴BF AE =.……5分 ∴∠OEA =∠OFB ∵∠OEA +∠OHA ∴∠OFB +∠FHG =90 ∴AE ⊥BF ……6分(3)BH 的最大值为25+……8分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP ′. …………………………4分 ∴PA =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分28.解:(1)∵边BA 绕点B 顺时针旋转α角得到线段BP , ∴BA = BP ,∵α=60°,∴△ABP 是等边三角形,..................................1分 ∴∠BAP =60º,AP = AC , 又∵∠BAC =90°,∴∠PAC =30º,∠ACP =75º,∵PD⊥AC于点D,∴∠DPC=15º.....................................................................2分(2)结论:∠DPC=75º...................................................3分(3)画图.............................................................................4分过点A作AE⊥BP于E.∴∠AEB=90º,∵∠ABP=150°,∴∠1=30º,∠BAE=60º,又∵BA= BP,∴∠2=∠3=15º,∴∠PAE=75º,∵∠BAC=90°,∴∠4=75º,∴∠PAE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90º,∴△APE≌△APD,..............................................................5分∴AE= AD,在Rt△ABE中,∠1=30º,∴12AE AB=,又∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,又∵∠ADP=∠CDP=90º,∴△ADP≌△CDP,.............................................................6分∴∠DCP=∠4=75º,∴∠DPC=15º........................................................................7分4123EDBAC PEBC P321EAPC BD28.(1)=BE CF . ………………………………………………………………2分 (2)证明:如图2,∵AB =BC ,∠ABC =90°,BD 为斜边中线 ∴BD =AD =CD =12AC ,BD ⊥AC∵ △EFD 是由△ABD 旋转得到的,∴DE =DF =DB =DC ,∠EDF =∠ADB =∠BDC =90° ∴∠EDF +∠BDF =∠BDC +∠BDF ,即∠BDE =∠FDC ∴△BDE ≌△FDC ∴BE =FC 且∠1=∠2 又∵∴ ,即…………………………………………3分 连接BF ,取BF 中点G ,连接MG 、NG . ∵M 为EF 中点,G 为BF 中点,N 为BC 中点 ∴MG ∥BE ,MG =12BE ;NG ∥FC ,NG =12FC 又∵EB =FC ,BE ⊥FC ∴MG =NG ,∠MGN =90° ∴△MGN 为等腰直角三角形∴MN =22FC …………………………………………………………………5分 (3) ……………………………………………………………7分28.解:(1)………………………………∠3=∠4FHE FDE ︒==90∠∠BE CF ⊥222BF CE AC +=B图2………… 1分 (2)证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴ AD //BC ,AB //CD . ∴∠DAE =∠AEB,∠BAE =∠DPA . ……………………………………… 2分∵ AE 平分∠ BAD , ∴ ∠ DAE =∠ BAE ,∴ ∠ BAE =∠ AEB ,∠ DAE =∠ DPA . ∴BA =BE,DA =DP , ……………………………………………………… 3分又 ∵ BG ⊥ AE ,DH ⊥ AE , ∴G为AE中点,H为AP中点. …………………………………………… 4分又 ∵O 为AC 中点,AD =BC , ∴ ()()111222OG CE BC BE AD AB ==-=-, ()()111222OH CP DP CD AD AB ==-=- . …………………………… 5分∴OG =OH . ………………………………………………………………… 6分 (3)717. ……………………………………………………………………………… 7分28.解:(1)∠D =80°, (1)B∠C =130°; (2)(2)①如图2,连接BD , ∵AB =AD ,∴∠ABD =∠ADB .………………………………………………3 ∵∠ABC =∠ADC ,∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB . ∴∠CBD =∠CDB .∴CB =CD .………………………………………………………4 (3)(Ⅰ)如图,当∠ADC =∠ABC =90°时,延长AD ,BC 相交于点E , ∵∠ABC =90°,∠DAB =60°,AB =5, ∴AE =10.∴DE =AE ﹣AD =10﹣4═6.……………………………………5 ∵∠EDC =90°,∠E =30°,∴CD∴AC=2 (6)(Ⅱ)如图,当∠BCD =∠DAB =60°时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N , ∵DM ⊥AB ,∠DAB =60°,AD =4, ∴AM =2,DM=2∴BM =AB ﹣AM =5﹣2=3.………………………………………7 ∵四边形BNDM 是矩形, ∴DN =BM =3,BN =DM∵∠BCD =60°, ∴CN∴BC =CN +BN∴AC=2……………………………………………………8 即AC28.(本小题满分7分)解:(1)① 依题意补全图形(如图);…………………………………………1分 ② ∠ADC +∠CDE =180°.……………………………………………2分 (2)线段CM ,AE 和BE 之间的数量关系是AE =BE +2CM ,理由如下: ∵ 线段CD 绕点C 逆时针旋转90°得到线段CE , ∴ CD =CE ,∠DCE =90°. ∴ ∠CDE =∠CED =45°.又∵ ∠ADC =135°, ∴ ∠ADC +∠CDE =180°,∴ A 、D 、E 三点在同一条直线上.∴ AE =AD +DE . …………………………………………………………3分 又∵ ∠ACB =90°,AAMDABCE∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.………………………………………………………………4分∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.…………………………………………………………5分∴AE=BE+2CM.……………………………………………………6分(3)点A到BP的距离为.…………………………………………7分。
2015北京各区中考数学二模25题全面总结及答案
2015北京各区中考数学25题汇编及答案25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB,且OA PG 的长.25.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于 点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F . (1)求证:DF 是⊙O 的切线;F(2)若DF =3,DE =2.①求值;②求FAB ∠的度数.25.如图,点A B C D E 、、、、在⊙O 上,AB CB ⊥于点B ,tan 3D =,2BC=,H为CE 延长线上一点,且AH =CH =(1)求证:AH 是⊙O 的切线;(2)若点D 是弧CE 的中点,且AD 交CE 于点F ,求EF 的长.25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,P A ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:P A 是⊙O 的切线;(2)若BC =4 ,求AD 的长.25.如图,△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE是⊙O 的直径,连结DE . (1)求证:AC 是⊙O 的切线;BEADCC(2)若4sin 5C =,AC =6,求⊙O 的直径.25.如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点,CDB BFD ∠=∠.(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB =10,AC =8,求DF 的长.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F .25.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA =∠ABC ;(2)如果BD =1,tan ∠BAD =12,求⊙O 的半径.25.如图,AB 是⊙O 的直径,点C 是⊙O 上一点, AD ⊥ DC 于D , 且AC 平分∠DAB ,延长DC 交AB 的延长线于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:PD 是⊙O 的切线; (2)若tan ABC =43∠,BE =PC 的长.25.如图,△ABC 内接于⊙O ,OC ⊥AB 于点E ,点D 在OC 的延长线上,且∠B =∠D =30°.(1)求证:AD 是⊙O 的切线;(2)若AB =求⊙O 的半径.25.如图,已知,⊙O 为△ABC 的外接圆,BC 为直径,点E 在AB 边上,过点E 作EF ⊥BC ,延长FE 交⊙O 的切线AG 于点G . (1)求证:GA =GE .PE(2)若AC =6,AB =8,BE =3,求线段OE 的长.答案25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩F∴△OEC ≌△OAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF与⊙O相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF ,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC =F∴BD=.…………………………………………………………………………………….5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切. 证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点, ∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==A∴tan 4PG CG GCP =⋅∠==. …………………………… 5分25. (1)连结OD , ∵AD 平分∠BAC ∴∠DAF =∠DAO ∵OA =OD ∴∠OAD =∠ODA ∴∠ DAF =∠ODA ∴AF ∥OD .┉┉1分 ∵DF ⊥AC ∴OD ⊥DF ∴DF 是⊙O 的切线┉┉2分 (2)①连接BD ∵直径AB , ∴∠ADB =90° ∵圆O 与BE 相切 ∴∠ABE =90°∵∠DAB +∠DBA =∠DBA +∠DBE =90° ∴∠DAB =∠DBE ∴∠DBE =∠F AD ∵∠BDE=∠AFD =90° ∴△BDE ∽△AFD ∴32==DF DE AD BE ┉┉3分 ②连接OC ,交AD 于G 由①,设BE =2x ,则AD =3x ∵△BDE ∽△ABE ∴BE DE AE BE =∴xx x 22232=+∵AB BC ⊥于点B∴AC 是⊙O 的直径…………………………………1分 ∵D ACB ∠=∠,∴tan tan 3D ACB =∠= 在Rt ABC ∆中,2BC =,∴36AB BC == 由勾股定理AC =在CAH ∆中,由勾股定理逆定理:22250AC AH CH +==∴90CAH ∠=°即CA AH ⊥∴AH 是⊙O 的切线…………………………………2分 (2)解:∵点D 是弧CE 的中点∴EAD DAC ∠=∠…………………………………3分 ∵AC 是⊙O 的直径 ∴AE CH ⊥∴90H EAH H HCA ∠+∠=∠+∠=° ∴EAH HCA ∠=∠∴EAD EAH DAC HCA ∠+∠=∠+∠ 即AFH HAF ∠=∠∴HF HA =∵CA AH ⊥AE CH ⊥∴2AH EH CH =⨯可得EH = ∴EF =5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分C B∵PA ∥BC , ∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分25. (1)证明:∵AB =AC ,AD =DC ,∴∠1=∠C =∠B ,..................................................1分 又∵∠E =∠B ,∴∠1=∠E , ∵AE 是⊙O 的直径,∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠1+∠EAD =90°,∴AC 是⊙O 的切线............................................2分 (2)解:过点D 作DF ⊥AC 于点F , ∵DA =DC ,AC =6, ∴CF =12AC =3,..................................... ............3分 ∵4sin 5E =,∴4sin 5C =, ∴在Rt △DFC 中,DF =4,DC =5, ∴AD =5,∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,.............................................4分C∴AD DFAE DC =, ∴545AE =, ∴AE =254,∴⊙O 的直径为254.....................5分25.解:(1)DF 与⊙O 相切. ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠,∴BFD CAB ∠=∠. ∴AC ∥DF . ………………………………… 2分∵半径OD 垂直于弦AC 于点E ,∴DF OD ⊥. ∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8,∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEORt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分∵AC ∥DF , ∴OAE ∆∽OFD ∆. ∴DF AEOD OE = . ∴DF453=. ∴321DF CEB A O320=DF . ………………………………………………… 5分25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC .∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,∴B C ∠=∠.∴cos C=cos 5ABC ∠=. 在Rt △ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD….3分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt △CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE ODAB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 25.(本小题满分5分)(1)证明:连接OA .(如图)∵ AE 为⊙O 的切线,BD ⊥AE , ∴ ∠DAO =∠EDB =90°. ∴ DB ∥AO .∴ ∠DBA =∠BAO . …………1分 又 ∵OA =OB , ∴ ∠ABC =∠BAO .∴ ∠D B A =∠A B C . ………………………………………………2分(2)在Rt △ADB 中,∠ADB =90°,C∵ BD =1,tan ∠BAD =12, ∴ AD =2,……………………………………………………………………3分由勾股定理得AB .∴ cos ∠DBA 又∵ BC 为⊙O 的直径, ∴ ∠BAC =90°. 又∵∠DBA =∠ABC .∴ cos ∠ABC = cos ∠DBA∴ 5.cos ABBC ABC===∠…………………………………………4分 ∴ ⊙O 的半径为5.2…………………………………………………………5分25.解:(1)∵ OC =OA∴ ∠CAO =∠OCA ∵ AC 平分∠DAB ∴ ∠DAC =∠CAO , ∴ ∠ACO =∠DAC . ∴ OC ∥AD .…………………………………………………………………….1分 ∵ AD ⊥PD , ∴OC ⊥PD . ∴ PD 是⊙O 的切线……………………………………………………………...2分(2)连接AE .∵CE 平分∠ACB ,∴AE BE =,∴AE BE == ∵AB 为⊙O 的直径, ∴∠AEB =90°.在Rt △ABE 中,14AB =………………………………………3分 ∵ ∠P AC =∠PCB ,∠P =∠P , ∴ △P AC ∽△PCB , ∴ PC AC PB BC =.…………………………………………………………………..4分 又∵4tan 3ABC =∠,∴43AC PCBC PB==, 设PC =4k ,PB =3k ,则在Rt △POC 中,PO =3k +7,OC =7,∵ PC 2+OC 2=OP 2, ∴()()2224737k k +=+, ∴ 126,0k k ==(舍去).∴ PC =4k =4×6=24. …………………………………………………………..5分25证明:(1)连接OA .∵∠B =∠D =30°,∴∠AOC =2∠B =60°,……………………….(1分) ∴∠OAD =180°-∠AOD -∠D =90°,…………….(2分) 即OA ⊥AD ,∴AD 是⊙O 的切线.……………….(3分)(2)∵OA =OC ,∠AOC =60°,∴△ACO 是等边三角形, ∵CO ⊥AB ∴ ……………………….(4分)在Rt △ABC 中∴⊙O 的半径为6.……………………………….(5分)1122AE AB ==⨯=sin sin60AEACE AC∠==︒6AC ===。
北京2015初中二模几何汇总及答案
EF OA BCD1昌平.如图,在平行四边形ABCD 中,AB =5,BC =12,对角线交于点O ,∠BAD 的平分线交BC 于E 、交BD 于F ,分别过顶点B 、D 作AE 的垂线,垂足为G 、H ,连接OG 、OH . (1)补全图形; (2)求证:OG =OH ;(3)若OG ⊥OH ,直接写出∠OAF 的正切值.2朝阳.数学活动课上,老师提出这样一个问题:如果AB =BC ,∠ABC =60°,∠APC =30°,连接PB ,那么P A 、PB 、PC 之间会有怎样的等量关系呢? 经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P 在BA 延长线上(如图1),得到了一个猜想: P A 2+PC 2=PB 2 .小东:我假设点P 在∠ABC 的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△P AB 错误!未找到引用源。
后得到△P′CB ,并且可推出△PBP′ ,△PCP ′ 错误!未找到引用源。
错误!未找到引用源。
分别是等边三角形、直角三角形,就能得到猜想和证明方法. 这时老师对同学们说,请大家完成以下问题: (1)如图2,点P 在∠ABC 的内部,①P A =4,PC =23,PB= .②用等式表示P A 、PB 、PC 之间的数量关系,并证明.(2)对于点P 的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.图1图23东城. 如图1,在ABC Rt △中,90ACB ∠=︒,E 是边AC 上任意一点(点E 与点A ,C 不重合),以CE 为一直角边作ECD Rt △,90ECD ∠=︒,连接BE ,AD . (1) 若CA CB =,CE CD =,①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1中的ECD Rt △绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;若8CA =,6CB =,3CE =,4CD =,ECD Rt △绕着点C 顺时针旋转锐角α,(2) 如图3,连接BD ,AE ,计算22BD AE +的值.4海淀.如图1,在△ABC 中,AB =AC ,∠ABC =α,D 是BC 边上一点,以AD 为边作△ADE ,使AE =AD ,DAE ∠+BAC ∠=180°. (1)直接写出∠ADE 的度数(用含α的式子表示); (2)以AB ,AE 为边作平行四边形ABFE ,①如图2,若点F 恰好落在DE 上,求证:BD =CD ; ②如图3,若点F 恰好落在BC 上,求证:BD =CF .ECAB DFEBCAD图3DEBACFEBCA D图1 图2 图35门头沟 .如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE . (1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,AB =2,如果PD =1,∠BPD =90°,请直接写出点A 到BP 的距离.DAB CPDC AB图1 图26顺义.如图,△ABC 中,∠BAC =90°,AB =AC ,边BA 绕点B 顺时针旋转α角得到线段BP ,连结P A ,PC ,过点P 作PD ⊥AC 于点D . (1)如图1,若α=60°,求∠DPC 的度数; (2)如图2,若α=30°,直接写出∠DPC 的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC 的度数.图3PCABDD图2图1ABPC B CPA7西城.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.8丰台.已知△ABC是锐角三角形,BA=BC,点E为AC边的中点,点D为AB边上一点,且∠ABC=∠AED=α.(1)如图1,当α=40°时,∠ADE= °;(2)如图2,取BC边的中点F,联结FD,将∠AED绕点E顺时针旋转适当的角度β(β<α),得到∠MEN,EM与BA的延长线交于点M,EN与FD的延长线交于点N.①依题意补全图形;②猜想线段EM与EN之间的数量关系,并证明你的结论.A BECD DCEBA9石景山.如图1,点O 为正方形ABCD 的中心. (1)将线段OE 绕点O 逆时针方向旋转︒90,点E 的对应点为点F ,连结EF ,AE ,BF ,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE 与BF 的关系;(3)如图2,点G 是OA 中点,△EGF 是等腰直角三角形,H 是EF 的中点,︒=∠90EGF ,22AB =,2=GE ,△EGF 绕G 点逆时针方向旋转α角度,请直接写出旋转过程中BH 的最大值.10平谷.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70°,∠B =80°.则∠C = 度,∠D = 度. (2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60°,∠ABC =90°,AB =5,AD =4.求对角线AC 的长.11怀柔.在△ABC 内侧作射线AP ,自B ,C 分别向射线AP 引垂线,垂足分别为D ,E,M 为BC 边中点,连接MD ,ME. (1)依题意补全图1; (2)求证:MD=ME ; (3)如图2,若射线AP 平分∠BAC ,且AC>AB ,求证:MD=1()2AC AB -.OBDC AEC B H EFGODA图1ACDB图2B DA CPC BA M 图1图2P CBAMa HFEDABC12房山.在△ABC 中,AB =BC=2,∠ABC =90°,BD 为斜边AC 上的中线,将△ABD 绕点D 顺时针旋转α(0°<α<180°)得到△EFD ,其中点A 的对应点为点E ,点B 的对应点为点F . BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________; (2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN =22FC ; (3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系: .13通州.如图①,∠MON =60°,点A ,B 为射线OM ,ON 上的动点(点A ,B 不与点O 重合),且AB =34,在∠MON 的内部、△AOB 的外部有一点P ,且AP =BP ,∠APB =120°. (1)求AP 的长;(2)求证:点P 在∠MON 的平分线上;(3)如图②,点C ,D ,E ,F 分别是四边形AOBP 的边AO ,OB ,BP ,P A 的中点,连接CD ,DE ,EF ,FC ,OP . 当AB ⊥OP 时,请直接..写出四边形CDEF 周长的值.图① 图②图2a H FEMNDA BC图1aH FEDABC图 3N MO A BP EFDC NOMA BP1昌平.解:(1)HG E FODCBA……………………… 1分(2)PHG E FODCBA证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴ AD //BC ,AB //CD .∴ ∠ DAE =∠ AEB ,∠ BAE =∠ DP A . …………… 2分 ∵ AE 平分∠ BAD , ∴ ∠ DAE =∠ BAE ,∴ ∠ BAE =∠ AEB ,∠ DAE =∠ DP A .∴ BA =BE ,DA =DP , …………………… 3分 又 ∵ BG ⊥ AE ,DH ⊥ AE ,∴ G 为AE 中点,H 为AP 中点. …………… 4分 又 ∵O 为AC 中点,AD =BC , ∴ ()()111222OG CE BC BE AD AB ==-=-,()()111222OH CP DP CD AD AB ==-=- . ……… 5分∴ OG =OH . ………………… 6分(3)717. ……………………………………………………… 7分2朝阳. (1)①72;……………………………………………………………………………1分图1CGF EBAD②222PB PC PA =+. …………………………………………………………2分 证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分 ∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分 ∴P A =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°. ∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+. (说明:答案不惟一)……………………………………………………………………………………………7分3东城①解BE AD =,BE AD ⊥;……2分②∴BE AD ⊥.……4分BE AD =,BE AD ⊥仍然成立;证明:设BE 与AC 的交点为点F ,BE 与AD 的交点为点G ,如图1.∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠. 在ACD △和BCE △中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴ACD BCE △≌△.∴AD BE =,CAD CBE ∠=∠.……3分 ∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒.(2)证明:设BE 与AC 的交点为点F ,BE 的延长线与AD 的交点为点G ,如图2. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠.∵8CA =,6CB =,3CE =,4CD =,∴43CA CD CB CE ==. ∴ACD BCE △∽△.……5分∴CAD CBE ∠=∠.∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BG AD ⊥.……6分 ∴90AGE BGD ∠=∠=︒.∴222AE AG EG =+,222BD BG DG =+. ∴222222BD AE AG EG BG DG +=+++.∵222AG BG AB +=,222EG DG ED +=,∴22222222125BD AE AB ED CA CB CD CE +=+=+++=.……4海淀(1)∠ADE =90α︒-.………………………………………………………….…1分 (2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=.…………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒.…………………...……3分 ∴AD ⊥BC . ∵AB =AC , ∴BD =CD .………………………………………………..……………4分②证明:∵AB =AC ,∠ABC =α, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形, ∴AE ∥BF , AE =BF . ∴EAC C α∠=∠=.……………………………………………………………5分由(1)知,2DAE α∠=,∴DAC α∠=.…………………………………………………………………………6分 ∴DAC C ∠=∠. ∴AD =CD . ∵AD =AE =BF , ∴BF =CD .∴BD =CF .…………………………………………………………………7分5门头沟解:(1)① 依题意补全图形(如图);…………………………………………1分② ∠ADC +∠CDE =180°.……………………………………………2分 (2)线段CM ,AE 和BE 之间的数量关系是AE =BE +2CM ,理由如下: ∵ 线段CD 绕点C 逆时针旋转90°得到线段CE ,∴ CD =CE ,∠DCE =90°.∴ ∠CDE =∠CED =45°. 又∵ ∠ADC =135°, ∴ ∠ADC +∠CDE =180°,∴ A 、D 、E 三点在同一条直线上.∴ AE =AD +DE .…………………………………………………………3分 又∵ ∠ACB =90°,∴ ∠ACB -∠DCB =∠DCE -∠DCB ,F EB CADF EBCA D MD A B C E即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.………………………………………………………………4分∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.…………………………………………………………5分∴AE=BE+2CM.……………………………………………………6分(3)点A到BP 的距离为312-.…………………………………………7分6顺义(1)∵边BA绕点B顺时针旋转α角得到线段BP,∴BA= BP,∵α=60°,∴△ABP是等边三角形,..................................1分∴∠BAP=60º,AP= AC,又∵∠BAC=90°,∴∠P AC=30º,∠ACP=75º,∵PD⊥AC于点D,∴∠DPC=15º.....................................................................2分(2)结论:∠DPC=75º...................................................3分(3)画图.............................................................................4分过点A作AE⊥BP于E.∴∠AEB=90º,∵∠ABP=150°,∴∠1=30º,∠BAE=60º,又∵BA= BP,∴∠2=∠3=15º,∴∠P AE=75º,∵∠BAC=90°,∴∠4=75º,∴∠P AE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90º,∴△APE≌△APD,..............................................................5分∴AE= AD,在Rt△ABE中,∠1=30º,∴12AE AB=,又∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,又∵∠ADP=∠CDP=90º,4123EDBAC P321EAPCBD∴△ ADP ≌△CDP ,.............................................................6分 ∴∠DCP =∠4=75º, ∴∠DPC =15º........................................................................7分 另法:作平行,构造平行四边形.7西城.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1. ∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .……………………………………… 5分 ∴ CH=AB .…………………………………… 6分(3)323+.………………………………………………7分8丰台. 解:(1)°70ADE ∠=;…….1分 (2)①见右图;…….2分 ②EM EN =.…….3分证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠.∴°902EDA ACB α∠=∠=-.∵BA BC =,E APCBD EDBACP图10图11∴ACB BAC ∠=∠,即EDA BAC ∠=∠. ∴EA ED = . …….4分∵E 是AC 中点,∴EA EC =. ∴EA EC ED ==.∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=.∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分 ∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN , ∴ ∠AED=∠MEN , ∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED . ∴ ΔEAM ≌ΔEPN . ∴ EM=EN .…….7分9石景山.解:(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分 ∵O 为正方形ABCD 的中心, ∴OB OA =,∠AOB =90……3分 ∵OE 绕点O 逆时针旋转90角得到OF ∴OF OE =∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分 在△EOA 和△FOB 中,OF OE =,OB OA =,∠EOA =∠FOB , ∴△EOA ≌△FOB ∴BF AE =.……5分 ∴∠OEA =∠OFB∵∠OEA +∠OHA ∴∠OFB +∠FHG =90 ∴AE ⊥BF ……6分 (3)BH 的最大值为25+……8分10平谷.解:(1)∠D=80°, (1)∠C=130°; (2)(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB. (3)∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB.∴∠CBD=∠CDB.∴CB=CD. (4)(3)(Ⅰ)如图,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10.∴DE=AE﹣AD=10﹣4═6. (5)∵∠EDC=90°,∠E=30°,∴CD =23.∴AC =27. (6)(Ⅱ)如图,当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,∵DM⊥AB,∠DAB=60°,AD=4,∴AM=2,DM =23.∴BM=AB﹣AM=5﹣2=3. (7)∵四边形BNDM是矩形,∴DN=BM=3,BN=DM =23.∵∠BCD=60°,∴CN =3.∴BC=CN+BN =33.∴AC =213. (8)即AC =27或213.11怀柔.解:(1)补全图形,如图1所示.………1分(2)延长DM交CE于点F.∵BD、CE分别垂直AP于点D、E.∴BD∥CE.,∴∠1= ∠2.∵M为BC边中点,∴BM=CM, 又∵∠DMB= ∠FMC,∴△DMB≌△FMC (ASA),∴DM=FM.∵∠DEF=90°.∴EM=12 DF,∴MD=ME.……………………………4分(3)延长BD交AC于点G.………………… 5分∵BD⊥AP于点D,射线AP平分∠BAC,∴△A DB≌△ADG (ASA),ECDBANMCDA B21FEDCBAPM图1图1PEDMAB C∴BD=DG,AB=AG.又∵△DMB ≌△FMC, ∴BD=CF ,DM=MF, ∴CF=DG, 又∵BG ∥CF,∴四边形DFCG 为平行四边形. ∴DF=CG, ∴2MD=CG, ∴2MD=AC-AB, ∴MD=12(AC-AB). ……………………………7分 12房山.(1)=BE CF . ………………………………………………………………2分(2)证明:如图2,∵AB =BC ,∠ABC =90°,BD 为斜边中线 ∴BD =AD =CD =12AC ,BD ⊥AC∵ △EFD 是由△ABD 旋转得到的,∴DE =DF =DB =DC ,∠EDF =∠ADB =∠BDC =90° ∴∠EDF +∠BDF =∠BDC +∠BDF ,即∠BDE =∠FDC ∴△BDE ≌△FDC ∴BE =FC 且∠1=∠2 又∵∠3=∠4∴FHE FDE ︒==90∠∠ ,即BE CF ⊥…………………………………………3分 连接BF ,取BF 中点G ,连接MG 、NG . ∵M 为EF 中点,G 为BF 中点,N 为BC 中点 ∴MG ∥BE ,MG =12BE ;NG ∥FC ,NG =12FC又∵EB =FC ,BE ⊥FC ∴MG =NG ,∠MGN =90° ∴△MGN 为等腰直角三角形 ∴MN =22FC …………………………………………………………………5分 (3)222BF CE AC += ……………………………………………………………7分13通州.解:⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线, ∴12CD AB =, ∴CD =BD .∴∠BCE =∠ABC .……………………………….(1分) ∵BE ⊥CD ,P GME DCBAF∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB、PC.∵P为△ABC的内心,∴12PBC ABC∠=∠,12PCB ACB∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.…………….(6分)。
2015北京初三数学二模试题及答案WORD
中考统一练习㈡数 学 2015.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .6 4.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a +=D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ).A .85,75B .75,85C .75,80D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ).A .15πB .14π C.13π D .12π8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分)第5题图2a bcMB A 19.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = . 12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解:14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式.解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.OBEACD OB EACD图1 图2 证明:⑴ ⑵ 20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D ,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长; ⑵求sin ∠DAO 的值. 解:⑴ ⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:y x31D B O A FED BOA C⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这一信息补全图①;⑵商场服装部4月份的销售额是多少万元;⑶小华观察图②后认为,4月份服装部的销售额比3月份减少了.你同意他的看法吗?为什么? 解:⑴ ⑵ ⑶22.⑴阅读下面材料并完成问题:已知:直线AD 与△ABC 的边BC 交于点D ,①如图1,当BD =DC 时,则S △ABD ________S △ADC .(填“=”或“<”或“>”)DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S ADC S ∆ . ③如图3,若AD ∥BC ,则有ABC S ∆ DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)BCAD五、解答题(共3道小题,23题7分,24题8分,25题7分,共22分)23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k 的解集.解:⑴⑵①② 24.探究问题:已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD 、BE 交于点O .⑴△ABC 为等边三角形,如图1,则AO ︰OD = ;⑵当小明做完⑴问后继续探究发现,若△ABC 为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.⑶运用上述探究的结果,解决下列问题:如图3,在△ABC 中,点E 是边AC 的中点,AD 平分∠BAC , AD ⊥BE 于点F ,若AD =BE =4. 求:△ABC 的周长.ODE ABCOE DBCA1 2 3 4 4 3 2 1xy O -1 -2 -3 -4 -4 -3-2-1D CF B EA图1 图2 图3解:⑴⑵⑶25.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.解:⑴⑵⑶参考答案一、选择题1 2 3 4 5 6 7 8 B C B D C B DB二、填空题9、x ≥-3 10、-4 11、-3 12、(6,4);(13,1) 三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=3121232-+⨯----------------------------------------4分 =3---------------------------------------5分14.解:()()()()32322-=+-++a a a a a ---------------------------------------1分a a a a a364222-=--++ ---------------------------------------2分 24=a ---------------------------------------3分 21=a ---------------------------------------4分是原方程的根经检验:21=a∴是原方程的根21=a ---------------------------5分15.44=-∴+=y x y x 解:---------------------------------------1分原式=2524222-+-y xy x ---------------------------------------2分()2522--=y x ---------------------------------------4分7254242=-⨯==-时,原式当y x ---------------------------------------5分 16.证明: AD 是中线∴BD=CD ---------------------------------------1分 分别过点B 、C 作AD 及其延长线的垂线BE 、CFCFD E ∠=∠∴---------------------------------------2分中和在CFD BED ∆∆ ⎪⎩⎪⎨⎧∠=∠=∠=∠CDF BDE CDBD CFD E ()AAS CFD BED ∆≅∆∴-------------------------------4分 CF BE =∴---------------------------------------5分17.解:E AB DE D 于点作过⊥---------------------------------------1分 ,于B AB CB ⊥ DC ∥AB∴.90==CB DE ---------------------------------------2分A DE AD AED Rt sin =∆ 中,在---------------------------------------4分∴m AD 4.614.09.0≈= EC AD B∴从斜坡起点A 到台阶最高点D 的距离约为6.4m 。
2015北京市海淀区初三二模数学试题及答案word版
2015北京市海淀区初三二模数学2015.6下面各题均有四个选项,其中只有一个..是符合题意的. 1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3119万册,其中古籍善本约有2000000册.2000000用科学记数法可以表示为A .70.210⨯B .6210⨯ C .52010⨯ D .6102⨯ 2.x 的取值范围是A .0≤xB .0≥xC .2≤xD .2≥x3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为0A.13B .4C .6D .124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形A B C D5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立A .()2222a b a ab b +=++ B.()2222a b a ab b -=-+C.()()22a b a b a b +-=-D.()2a a b a ab -=-6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是 A .甲的方差比乙的方差小 B .甲的方差比乙的方差大 C .甲的平均数比乙的平均数小 D .甲的平均数比乙的平均数大7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:对于“想一想”中的问题,下列回答正确的是:A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOBDa8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱A .45元B .50元C .55元D .60元9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A ,B 两点间的距离为 A .2BC.10.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是AB C D二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为.12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是.13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为.西DBAC PQO14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,则点B 与点C 的距离为米.15.如图,在Rt △ABC 中,∠C =90°,∠BAC =30°,BC =1,以B 为圆心, BA 为半径画弧交CB 的延长线与点D ,则AC 的长为.16.五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为 (7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.三、解答题(本题共30分,每小题5分)17.计算:11tan 45+()3-+︒-.18.解不等式2(1)13x x -≤+,并把它的解集在数轴上表示出来.19.如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°,BE=BD .求证:∠E =∠D .20.已知2410x x --=,求代数式314x x x---的值.21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.DA22.已知关于x的方程24310-+-=有两个实数根.x x a(1)求实数a的取值范围;(2)若a为正整数,求方程的根.四、解答题(本题共20分,每小题5分)23.已知,ABC△中,D是BC上的一点,且∠DAC=30°,过点D作ED⊥AD交AC于点E,AE=,24EC=.(1)求证:AD=CD;(2)若tan B=3,求线段AB的长.24.小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:经过调查,他们得到了如下36个数据:BCBADACDBCBCDCDCECCABEADECBCBCEDEDDC(1)小明用表格整理了上面的调查数据,写出表格中m和n的值;(2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗?.(填“适中”或者“不适中”)25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.x 的)请回答:(1) 当k =1时,使得原等式成立的x 的个数为_______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______;F(3) 当k >1时,使得原等式成立的x 的个数为_______.参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.28.如图1,在△ABC 中,AB =AC ,∠ABC =α,D 是BC 边上一点,以AD 为边作△ADE ,使AE =AD ,DAE ∠+BAC ∠=180°. (1)直接写出∠ADE 的度数(用含α的式子表示); (2)以AB ,AE 为边作平行四边形ABFE ,()①如图2,若点F 恰好落在DE 上,求证:BD =CD ; ②如图3,若点F 恰好落在BC 上,求证:BD =CF .图1 图2 图329. 如图1,在平面直角坐标系xOy 内,已知点(1,0)A -,(1,1)B -,(1,0)C ,(1,1)D ,记线段AB 为1T ,线段CD 为2T ,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与1T ,2T 都有公共点,则称点P 是12T T -联络点.例如,点P 1(0,)2是12T T -联络点.(1)以下各点中,__________________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).图1备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部分表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点, ①若1r =,求点M 的纵坐标; ②求r 的取值范围.海淀区九年级第二学期期末练习数学试卷答案及评分参考2015.6一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17.(本小题满分5分)解:原式213=-+-……………………..……………………………………………………...4分4=.……………………………………………………………………………………...5分18. (本小题满分5分) 解法一:去括号,得22133x x -+≤.…………………………………………………………………..1分 移项,得22133x x -+≤.…………………………………………………………………..2分 合并,得1533x -≤.……………………………………………………………………3分 系数化为1,得 5x -≥.…………………………………………………………...……4分不等式的解集在数轴上表示如下:. …………………………………………………………5分解法二:去分母,得22x x -+≤.…………………………………………………………………1分移项,得2332x x -+≤.……………………………………………………………………2分合并,得5x -≤.………………………………………………………………..3分 系数化为1,得5x -≥.…………………………………………………………………..4分不等式的解集在数轴上表示如下:. …………………………………………………………5分19.(本小题满分5分) 证明:在△ABC 中 ∵∠BAC =∠BCA ,∴AB =CB .……………………………………………1分 ∵∠BAE =∠BCD =90°, 在Rt △EAB 和R t △DCB 中, ,,AB CB BE BD =⎧⎨=⎩∴Rt △EAB ≌Rt △DCB .……………………………………4分 ∴∠E =∠D .…………………………………………5分20.(本小题满分5分) 解:原式()()()3444x x x x x x x --=---……………………………………………………………………….1分()2344x x x x x --+=-……………………………………………..………………………………2分22444x x x x-+=-.………………………………………………………………………………3分∵2410x x --=, ∴241x x -=.………………………………………………………………………………………4分DA∴原式1451+==.………………………………………………………………………………..5分21. (本小题满分5分) 解:设小明家到学校的距离为x 米.……………………………………………………………………..1分由题意,得403025x x +=.………………………………………………………………………..3分解得6000x =.……………………………………………………………………..4分答:小明家到学校的距离为6000米.………………………………………………………………….5分 22. (本小题满分5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………………………..1分解得53a ≤. (2)分∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.…………………………………………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x ==………………………………………………………5分 四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt △ADE 中,∠DAE=30°,AE =4, ∴60DEA =∠o,122DE AE ==.………………………………………………………………1分 ∵2EC =, ∴DE EC =. ∴EDC C =∠∠.又60,EDC C DEA +=∠=∠∠o Q∴30C DAE =∠=∠o.∴AD=DC .………………….…………………………………………………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图. ∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt △AFC 中,∠AFC =90°,∠C=30°, ∴132AF AC ==…………………………………………………………………………3分 在Rt △AFB 中,∠AFB =90°,tan B=3, ∴1tan AFBF B==.……….………………………………………………………………………4分∴AB (5)分24. (本小题满分5分) (1)8m =;5n =;………………………………………………………………………………...2分(2)………………………………………………………………...4分(3)适中.………………………………………………………………………………….5分 25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩∴△OEC ≌△OAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°,F∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF与⊙O相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF =,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC = ∴BD=.…………………………………………………………………………………….5分26. (本小题满分5分) 解:(1)当k =1时,使得原等式成立的x的个数为F1 ;…………………………………….(2)当0<k <1时,2 ;(3)当k>1时,使1 .…..解决问题:将不等式240 (x a a x +-<研究函数2(0)y x a a =+>与函数4y x=∵函数4y x=的图象经过点A (1,4),B 函数2y x =的图象经过点C (1,1),D 若函数2(0)y x a a =+>3a =,结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ……………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-. ∴抛物线的表达式为232y x x =-++.…………………………………………………………………1分∵抛物线232y x x =-++与x 轴交于点B ,C ,∴令0y =,即2320x x +-=+. 解得11x =-,23x =. 又∵点B 在点C 左侧, ∴点B的坐标为(1-,点C 的坐标为(3,0).…………………………………………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D , ∴点D的坐标为(.…………………………………………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE的表达式为1y x =-. ………………………………………………………………………5分(3)1t <或3t >……………………………………………………………………………………………7分28.(本小题满分7分) (1)∠ADE=90α︒-.…………………………………………………………………………………….…1分(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥E F .∴EDC ABC α∠=∠=.…………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒.…………………...……3分 ∴AD ⊥BC . ∵AB =AC , ∴BD =CD .……………………………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =α, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF . ∴EAC C α∠=∠=.……………………………………………………………………………………………5分由(1)知,2DAE α∠=, ∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠. ∴AD =CD . ∵AD =AE =BF , ∴BF =CD . ∴BD =CF .………………………………………………………………………………………………………7分29. (本小题满分8分)直线∴MO =r ,ME >r ,F (0,12). 在Rt △AOF 中,∠AOF =90°,AO =1,12OF =,∴AF =,sin AO AFO AF ∠==.在Rt △FEM 中,∠FEM =90°,FM =FO +OM =r +12,sin sin EFM AFO ∠=∠=,∴sin ME FM EFM =⋅∠=.r >.又∵0r >, ∴02r <<.……………………………………………………………………………………8分。
北京市朝阳区2015年初三二模数学试题答案
北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2015.6一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠ 16. 8或10(写出一个正确结果给1分)三、解答题(本题共30分,每小题5分) 17. 证明:∵BE ⊥CE ,AD ⊥CE ,∴∠BEC=∠CDA =90°. ………………………1分 ∴∠EBC +∠ECB =90°.又∵∠DCA +∠ECB =90°,∴∠EBC=∠DCA . ………………………………2分 又∵BC=AC ,……………………………………3分∴△BEC ≌△CDA . ………………………………………………………………4分 ∴BE =CD . ………………………………………………………………………5分18. 解:原式 =1218324-⨯-+. ………………………………………………………4分 =132-. ……………………………………………………………………5分19. 解:2443-≥-x x .……………………………………………………………………1分4243+-≥-x x .……………………………………………………………………2分2≥-x . …………………………………………………………………………3分解得2-≤x . ………………………………………………………………………4分 …………………………5分20. 解:)1(4)2()2(2-+-+-a a b b a=4424422-+-++-a ab b a a . ……………………………………………3分 =ab b a 222-+=2)(b a -.……………………………………………………………………………4分 ∵2=-b a ,∴原式=2)2(2=. ………………………………………………………………5分21. 解:(1)把A (-3,1)代入,有31-=m, 解得3-=m .∴反比例函数的表达式为xy 3-=. ……………………………………1分 当1=x 时,313-=-=y . ∴B (1,-3). …………………………………………………………2分 把A (-3,1),B (1,-3)代入b kx y +=,有⎩⎨⎧+=-+-=b k bk 331, 解得⎩⎨⎧-=-=21b k .∴一次函数的表达式为2--=x y . ……………………………………3分 (2)(4,0)或(-2,0). ……………………………………………………5分22. 解:设小白家这两年用水的年平均下降率为x . …………………………………………1分由题意,得1264000)1(%3630002=-⋅x . ………………………………………2分 解得 8.11=x ,2.02=x . ……………………………………………3分 ∵8.1=x 不符合题意,舍去. ………………………………………………4分 ∴%.20=x答:小白家这两年用水的年平均下降率为%.20 ………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形.∵∠ABF=∠FBC +∠FCB ,∠AFB=∠FBC +∠FCB ,∴∠ABF=∠AFB . …………………………………………………………………1分 ∴AB =AF .∴□ABEF 是菱形. ………………………………………………………………2分 (2)解:作DH ⊥AC 于点H ,∵21sin =∠CBE , ∴︒=∠30CBE . ∵BE ∥AC , ∴CBE ∠=∠1. ∵AD ∥BC , ∴12∠=∠.∴︒=∠=∠302CBE .Rt △ADH 中,342cos =∠⋅=AD AH .………………………………………………3分 42sin =∠⋅=AD DH .∵四边形ABEF 是菱形, ∴CD= AB=BE=5, Rt △CDH 中,322=-=DH CD CH . ………………………………………………4分∴334+=+=CH AH AC .…………………………………………5分24.(1)18,50%. …………………………………………………………………………2分 (2)…………………………………………4分(3)120. ………………………………………………………………………………5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分 ∵P A ∥BC ,∴∠P AO =∠BEO =90°. ∵OA 为⊙O 的半径,∴P A 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°,∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分解决问题:αsin 21⋅ab .………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ·············································································· 1分 =4. 即0∆>.∴方程有两个不相等的实数根. ······································································· 2分 (2) 解:由求根公式,得2(1)22a x a-±=. ∴1x =或21x a=-. ·························································································· 3分 0a >,1x >2x ,11x ∴=,221x a=-. ························································································· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分 证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分 ∴P A =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+. (说明:答案不惟一)……………………………………………………………………………………………7分29.(1)解:设二次函数的表达式为4)4(2++=x a y , 把点(0,0)代入表达式,解得41-=a . ………………………………………1分 ∴二次函数的表达式为4)4(412++-=x y , 即x x y 2412--=. ……………………………………………………………2分 (2)解:设直线OP 为y kx =,将P (-6,3)代入y kx =,解得12k =-,∴12y x =-. 当4-=x 时,2=y .∴M (-4,2). ……………………………………………………………………3分 ∵点M 、N 关于点A 对称, ∴N (-4,6). ∴MN =4.∴12=+=∆∆∆PMN O MN PO N S S S . ……………………………………………………4分 (3)①证明:设点P 的坐标为)241,(2t t t --, 其中4-<t ,设直线OP 为x k y '=, 将P )241,(2t t t --代入x k y '=,解得'=k ∴x t y 48+-=. 当4-=x 时,8+=t y . ∴M (-4,8+t ).∴AN =AM =)8(4+-t =4--t .设对称轴l 交x 轴于点B ,作PC ⊥l 于点C ,则B (-4,0),C )241,4(2t t ---. ∴OB =4,NB =)4(4--+t =t -,PC =-NC =)241(2t t t ----=t t +241.则44412tt tt PC NC -=--+=,44t t OBNB -=-=. ∴OBNBPC NC =. 又∵∠NCP =∠NBO =90°, ∴△NCP ∽△NBO .∴∠PNM =∠ONM . …………………………………………………………………6分 ② (4,244---). ………………………………………………………………8分其他正确解法,请参考标准给分.。
2015北京各区中考数学二模27题汇编及答案
2015北京各区中考数学二模27题汇编及答案27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.27已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a的取值范围.()27.在平面直角坐标系中,抛物线2+3y ax bx =+()0≠a 与x 轴交于点A (-3,0)、B (1,0)两点, D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称, 点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 坐标;若不存在,请说明理由.27.在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 果图象G 沿y 轴向上平移()个单位后与直线 AB 只有一个公共点,求的取值范围.t 0t >t27.已知关于x 的方程()231220mx m x m --+-=.(1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数()23122y mx m x m =--+-的图象经过坐标原点,得到抛物线1C .将抛物线1C 向下平移后经过点()0,2A -进而得到新的抛物线2C ,直线l 经过点A 和点()2,0B ,求直线l 和抛物线2C 的解析式;(3)在直线l 下方的抛物线2C 上有一点C ,求点C 到直线l 的距离的最大值.27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .27.已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线2y x =沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.27.已知关于x 的方程()2230x m x m +-+-=.(1)求证:方程()2230x m x m +-+-=总有两个实数根; (2)求证:抛物线()223y x m x m =+-+-总过x 轴上的一个定点;(3)在平面直角坐标系xOy 中,若(2)中的“定点”记作A抛物线()223y x m x m =+-+-与x 轴的另一个交点为B 与y 轴交于点C ,且△OBC 的面积小于或等于8,求m 的 取值范围.图2xyO27.在平面直角坐标系xOy 中,抛物线214y x bx c =-++经过点A (4,0)和B (0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C ,点B 关于抛物线对称轴对称的点为D ,求直线 CD 的表达式;(3)在(2)的条件下,记该抛物线在点A ,B 之间的部分(含点A ,B )为图象G ,如果图象G 向上平移m (m >0)个单位后与直线CD 只有一个公共点,请结合函数的图象,直接写出m 的取值范围.27.已知关于x 的一元二次方程()23130kx k x +++= (k ≠0).(1)求证:无论k 取何值,方程总有两个实数根;(2)点()()120,0A x B x ,、在抛物线()2313y kx k x =+++上,其中12x x <0<,且12x x 、和k 均为整数,求A ,B 两点的坐标及k 的值;(3) 设(2)中所求抛物线与y 轴交于点C ,问该抛物线上是否存在点E ,使得ABEABCS S=,若存在,求出E 点坐标,若不存在,说明理由.yx11O27.如图,在平面直角坐标系中,点A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q 是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.(1)求点C的坐标及b的值;(2)求k的取值范围;(3)当k为取值范围内的最大整数时,过点B作BE∥x﹣5ax(a≠0)的顶点在四边形ABED的内部,求a27.已知关于x的方程mx2-(3m-1)x+2m-2=0(1)求证:无论m取任何实数时,方程恒有实数根.(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求二次函数的表达式.答案27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-. ∴抛物线的表达式为232y x x=-++.…………………………………………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧, ∴点B的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D , ∴点D的坐标为(.…………………………………………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE的表达式为1y x =-. ………………………………………………………………………5分(3)1t <或3t > ……………………………………………………………………………………………7分27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩ ……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分27.解:(1)据题意得9-3b+3=01,a+b+3=0. 2.a ab =-⎧⎧⎨⎨=-⎩⎩,解得 ∴解析式为y = -x 2 -2x +3 ……3分 (2)当12bx a=-=-时,y =4 ∴顶点D (-1,4)∴F (-1,-4)… 4分 若以点O 、F 、P 、Q 为顶点的平行四边形存在,则点Q (x ,y )满足4y EF == ①当y = - 4时,-x 2-2x +3= -4解得,1x =-±∴12(14),(14)Q Q ----+-∴12(P P -……6分 ②当y = 4时,-x 2-2x +3= 4 解得,x = - 1 ∴Q 3(-1,4) ∴P 3(-2,0)……7分综上所述,符合条件的点有三个即:123((2,0)P P P --27 . 解:(1)∵抛物线21y ax bx =++过(13)A ,,(21)B ,两点.∴134211a b a b ++=⎧⎨++=⎩ .…….1分解得,24a b =-⎧⎨=⎩ .∴抛物线的表达式是224+1y x x =-+.…….2分 设直线AB 的表达式是y mx n =+ ,∴321m n m n +=⎧⎨+=⎩ ,解得,25m n =-⎧⎨=⎩ .…….3分∴直线AB 的表达式是25y x =-+.…….4分 (2)∵点C 在抛物线上,且点C 的横坐标为3.∴C (3,-5).…….5分点C 平移后的对应点为点'(3,5)C t -代入直线表达式25y x =-+,解得4t =.…….6分结合图象可知,符合题意的t 的取值范围是04t <≤. …….7分27.解:(1)当0m =时,2x =当0m ≠时,()()231422m m m ∆=---2296188m m m m =-+-+()22211m m m =++=+∵()210m +≥,∴0∆≥综上所述:无论m 取任何实数时,方程恒有实数根;………………………3分 (2)∵二次函数2(31)22y mx m x m =--+-∴220m -=∴1m =………………………4分抛物线1C 的解析式为:22y x x =- 抛物线2C 的解析式为:222y x x =-- 设直线l 所在函数解析式为:y kx b =+将A 和点()2,0B 代入y kx b =+∴直线l 所在函数解析式为:2y x =-………5分(3)据题意:过点C 作CE x ⊥轴交AB 于E ,可证45DEC OAB ∠=∠=︒ ,则2CD =设()2,22C t t t --,(),2E t t -,()03t <<∴E C EC y y =-23t t =-+23924t ⎛⎫=--+ ⎪⎝⎭………………………6分∵3032⎛⎫<< ⎪⎝⎭∴当32t =时,max 94EC = ∵CD 随EC 增大而增大,∴max CD =.………………………7分27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ·················································································· 1分 =4. 即0∆>.∴方程有两个不相等的实数根. ·········································································· 2分 (2) 解:由求根公式,得2(1)22a x a-±=.∴1x =或21x a=-. ······························································································ 3分 0a >,1x >2x ,11x ∴=,221x a=-. ····························································································· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分27.解:(1)∵ 抛物线经过()0,0,()4,0- ,()6,3-三点, ∴01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩…………………………………………………………………… 1分 解得1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. ………………………………………………………………………… 2分 ∴ 抛物线的解析式为214y x x =+.∵()()22211144421444y x x x x x =+=++-=+-∴抛物线的顶点坐标为()2,1-- …………………………………………………… 3分(2)设直线CD 的解析式为2y x m =+,根据题意,得2124x x x m+=+, …………………………………………………… 4分 化简整理,得2440x x m --=, 由16160m ∆=+=,解得1m =-, ………………………………………………… 5分∴直线CD 的解析式为21y x =- .(3)点的坐标为()2,7, …………………………………………………………… 6分最短距离为. ……………………………………………………………… 7分 27. 解:(1)24b ac -=()()2243m m ---........................................................1分 =244412m m m -+-+ =2816m m -+ =()24m - ∵()240m -≥,∴方程()2230x m x m +-+-=总有两个实数根...............................................2分(2)()21,224m m x -±-==()242m m -±-................................................3分∴11x =-,23x m =-+,∴抛物线()223y x m x m =+-+-总过x 轴上的一个定点(-1,0).................4分 (3)∵抛物线()223y x m x m =+-+-与x 轴的另一个交点为B ,与y 轴交于点C , ∴B (3-m ,0),C (0, m -3),...................................................................................5分 ∴△OBC 为等腰直角三角形, ∵△OBC 的面积小于或等于8, ∴OB ,OC 小于或等于4,∴3-m ≤4或m -3 ≤4, .......................................................................................6分 ∴m ≥-1或m ≤7.∴-1≤m ≤7且3m ≠.............................................................................................7分 27.(本小题满分7分)解:(1)∵ 抛物线214y x bx c =-++经过点A (4,0)和B (0,2).∴ 21440,42.b c c ⎧-⨯++=⎪⎨⎪=⎩………………………………………………1分解得 1,22.b c ⎧=⎪⎨⎪=⎩ ∴ 此抛物线的表达式为211242y x x =-++.………………………2分 (2)∵()221119214244y x x x =-++=--+, ∴ C (1,94).…………………………………………………………3分 ∵ 该抛物线的对称轴为直线x =1,B (0,2),∴ D (2,2).……………………………………………………………4分 设直线CD 的表达式为y =kx +b .由题意得 9,42 2.k b k b ⎧+=⎪⎨⎪+=⎩解得 1,45.2k b ⎧=-⎪⎪⎨⎪=⎪⎩∴ 直线CD 的表达式为1542y x =-+.………………………………5分 (3)0.5<m ≤1.5.……………………………………………………………7分27. (1)∵()()222Δ=3112961310k k k k k +-=-+=-≥∴方程总有两个实数根.……………………………………………………2分 (2)由求根公式得:()()31312k kx k-+?=∴3x =-或1x k=- ∵12x x 、和k 均为整数∴=1k ± 又∵120x x <<∴1k =-…………………………………………………………………………3分 ∴A (-3,0), B (1,0) ……………………………………………………4分 (3)()()()2,3131,,--+---…………………………………………7分27.解:(1)直线y=kx+b (k ≠0)经过P (0,3),∴b =3. (1)过点B 作BF ⊥AC 于F , ∵A (5,0),B (3,2),BC =BA , ∴点F 的坐标是(3,0). ∴点C 的坐标是(1,0).…………………………………(2)当直线PC 经过点C 时,k =﹣3. 当直线PC 经过点B 时,k =13-.………………………∴133k -≤≤-……………………………………………(3)133k -≤≤-且k 为最大整数,∴k =﹣1.则直线PQ 的解析式为y=﹣x+3.∵抛物线y=ax 2﹣5ax (a≠0)的顶点坐标是52524a ⎛⎫-⎪⎝⎭,,对称轴为52x =.解方程组352y x x =-+⎧⎪⎨=⎪⎩,得5212x y ⎧=⎪⎪⎨⎪=⎪⎩ 即直线PQ 与对称轴为52x =的交点坐标为5122⎛⎫⎪⎝⎭,,…………………………………………6 ∴125224a <-<. 解得822525a -<<-. (7)27.解:(1)△=9m 2-6m +1-8m 2+8m =m 2+2m +1,=(m +1)2;∴△=(m +1)2≥0,………………………………………….(1分) ∴无论m 取任何实数时,方程恒有实数根;(2)设x 1,x 2为抛物线y =mx 2-(3m -1)x +2m -2与x 轴交点的横坐标. 令y =0,则mx 2-(3m -1)x +2m -2=0由求根公式得,x 1=2,, …………………………….(2分)∴抛物线y =mx 2-(3m -1)x +2m -2不论m 为任何不为0的实数时恒过定点(2,0).∴x 2=0或x 2=4,∴m =1或 ) 当m =1时,y =x 2-2x ,,∴抛物线解析式为y =x 2-2x当 时,382312-+-=x x y答:抛物线解析式为y =x 2-2x ;或 382312-+-=x x y ……….(3分)。
2015北京昌平区初三二模数学试题及答案(word版)
2015 年北京市昌平区初三二模数学 2015.6一、选择题(共10 道小题,每题 3 分,共 30 分)以下各题均有四个选项,其中只有一个..是吻合题意的.1.小超同学在“百度”找寻引擎中输入“中国梦,我的梦”,能找寻到与之相关结果的条数是1650000,这个数用科学记数法表示为A .16510 4B.1.65 105C. 1.65 106D. 0.165 1072.如图,数轴上有A, B, C,D 四个点,其中表示- 3 的相反数的点是A B C D-3-2-1 0 1 2 3 A.点 A B.点 B C.点 C D.点 D3.用 5 个完满相同的小正方体组合成以下列图的立方体图形,它的主视图为A B C D4.四张质地、大小相同的卡片上,分别画上以以下列图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为直角三角形平行四边形矩形圆113A.B. C. D .12445.如图,直线AB∥ CD ,Rt△ DEF 如图放置,∠ EDF =90 °,若∠ 1+∠ F=70 °,F则∠ 2 的度数为A 1BA. 20°B. 25°C. 30°D .40°E2C D6.五一期间( 5 月 1 日 -7 日),昌平区每天最高温度(单位:℃)情况以下列图,则表示最高温度的这组数据的中位数是A.24B .25C. 26 D. 27P7.如图, A, B,P 是半径为 2 的⊙ O 上的三点,∠ APB= 45°,则弦 AB 的长为O A.2B.4C.2D.22AB8.小明在学习之余去买文具,打算购买 5 支单价相同的签字笔和3本单价相同的笔录本,期间他与售货员对话以下:小明:您好,我要买 5 支签字笔和 3 本笔录本.售货员:好的,那你应该付52 元.小明:刚刚我把两种文具的单价弄反了,以为要付44元.请你判断在单价没有弄反的情况下,购买 1 支签字笔和 1 本笔录本应付A .10 元 B.11 元 C. 12 元 D.13 元9.如图,在已知的△ABC 中,按以下步骤作图:①分别以B,C 为圆心,以大于1BC 的长为半径作弧,两弧订交于M 2两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD .BD 若 CD =AC,∠ A=50°,则∠ ACB 的度数为NA .90° B. 95°C. 100° D. 105°10. 如图,正方形 ABCD 的边长为 5,动点 P 的运动路线为 AB→ BC,动点 Q 的运动路A线为 BD .点 P 与 Q 以相同的平均速度分别从A, B 两点同时出发,当一个点到达PB CAD QC终点停止运动时另一个点也随之停止.设点P 运动的行程为x,△ BPQ 的面积为y,则以下能大体表示y 与 x 的函数关系的图象为y y y y11111510 x1510 x1510 x1510 xA B C D二、填空题(共 6 道小题,每题 3 分,共18 分)11.分解因式:my29m.12.若关于 x 的一元二次方程kx22x 10 有实数根,则k的取值范围是.A 13.已知:如图,在△ ABC 中,点 D 为 BC 上一点, CA=CD , CF 均分∠ ACB,E F交 AD于点 F,点 E 为 AB 的中点.若EF=2,则 BD =.B CD14.把方程x26x 3 0 变形为2k 的形式,其中h,k为常数,则kx h.15.在阳光体育课上,小腾在打网球,以下列图,网高 0.9m,球恰巧打过网,而且落在离网6m 的地址上,则球拍击球的高度h =m.0.9m h6m4m16. 以下列图,是一张直角三角形纸片,其中有一个内角为30 ,最小边长为2,点 D 、E 分别是一条直角边和斜边的中点,先将纸片沿DE 剪开,尔后再将两部分拼成一个四边形,则所得四边形的周长是.三、解答题(共 6 道小题,每题 5 分,共 30 分)17.计算:( 2015 1)027 3tan 30131.18.如图,AB AD,AE AC,E C,DE BC.E求证: AD AB .D CAB19.求不等式4x3≤x的负整数解.220.已知x24x 1 0 ,求代数式 2x( x 3) (x 1) 23的值.21. 如图,在平面直角坐标系中,一次函数y kx b 与反比率函数 y6A 1 ,m,的图象交于xB n , 3 两点,一次函数y kx b 的图象与y轴交于点C .y( 1)求一次函数的剖析式;( 2)点P是x轴上一点,且△ BOP的面积是△ BOC面积的2倍,求点P的坐标.ACO xB22.自从 2012 年 9 月 1 日昌平区首批50 辆纯电动出租车正式运营以来,电动出租车以绿色环保碰到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15 公里以内一般燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价一般燃油型313 元 2.3 元/公里纯电动型38元2元/公里老张每天从家去单位打出租车上班(行程在15 公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节约0.8 元,求老张家到单位的行程是多少公里?四、解答题(共 4 道小题,每题 5 分,共 20 分)23.如图,在矩形ABCD 中, AB=3, BC=6,对角线交于点O.将△ BCD 沿直线 BD 翻折,获取△ BED.( 1)画出△ BED ,连接 AE;( 2)求 AE 的长.A DOB C24.我区某学校为了提升学生的体艺涵养,准备开设空手道、素描、剪纸三项活动课程,为认识学生对各项活动的兴趣,随机抽取了部分学生进行检查(每人从中必定采用一项,且只能选一项),将检查结果绘制成下面两个统计图,请你结合图中信息解答问题.(1)将条形统计图补充完满;(2)本次抽样检查的样本容量是 ____________;( 3)已知该校有1200 名学生,请你依照样本估计全校学生中喜欢剪纸的人数.25.如图, AB 是⊙ O 的直径.半径 OD 垂直弦 AC 于点 E.F 是 BA 延长线上一点,CDB BFD .( 1)判断 DF 与⊙ O 的地址关系,并证明;C ( 2)若 AB=10, AC=8,求 DF 的长.DEF A O B26.【阅读学习】刘老师提出这样一个问题:已知α为锐角,且 tan α=1,求 sin2α的值.3小娟是这样解决的:如图 1,在⊙ O 中, AB 是直径,点 C 在⊙ O 上,∠ BAC=α,所以∠ ACB=90°, tan α=BC= 1 .AC3易得∠ BOC =2α.设 BC=x ,则 AC=3x ,则 AB= 10 x .作 CD ⊥AB 于 D ,求出 CD =(用含 x 的式子表示),可求得 sin2α=CD=.OC【问题解决】已知,如图 2,点 M 、 N 、 P 为圆 O 上的三点,且∠P=β, tan β= 1,求 sin2β的值 .2CMβP2αBαA NDOO图1 图2五、解答题(共 3 道小题,第 23, 24 小题各 7 分,第 25 小题 8 分,共 22 分)27.已知抛物线 y ax 2 bx c 经过原点 O 及点 A ( - 4, 0)和点 B ( - 6,3).( 1)求抛物线的剖析式以及极点坐标;( 2)如图 1,将直线 y 2x 沿 y 轴向下平移后与( 1)中所求抛物线只有一个交点C ,平移后的直线与 y轴交于点 D ,求直线 CD 的剖析式;( 3)如图 2,将( 1)中所求抛物线向上平移4 个单位获取新抛物线,请直接写出新抛物线上到直线 CD距离最短的点的坐标及该最短距离.yyBCCAOxODxD图1图228.如图,在平行四边形ABCD 中, AB=5,BC=12 ,对角线交于点O,∠ BAD 的均分线交BC 于 E、交 BD 于 F,分别过极点 B、 D 作 AE 的垂线,垂足为 G、 H ,连接 OG、OH.( 1)补全图形;(2)求证: OG=OH ;(3)若 OG⊥ OH,直接写出∠ OAF 的正切值.A DOFB CE29. 在平面直角坐标系xOy 中,给出以下定义:形如 y a x m 22a x m 与 y a x m a x m 的两个二次函数的图象叫做“兄弟抛物线”.( 1)试写出一对兄弟抛物线的剖析式与;( 2)判断二次函数y x2x 与 y x 23x 2 的图象可否为兄弟抛物线,若是是,求出 a 与 m 的值,如果不是,请说明原由;( 3)若一对兄弟抛物线各自与x 轴的两个交点和其极点构成直角三角形,其中一个抛物线的对称轴为直线x 2 且张口向上,请直接写出这对兄弟抛物线的剖析式.yO x备用图昌平区 2015 年初三年级第二次一致练习数学参照答案及评分标准 2015.6一、(共10 道小,每小 3 分,共 30 分)号12345678910答案C D A C A B D C D B 二、填空(共 6 道小,每小 3 分,共 18 分)号111213141516答案m(y+3)( y-3)k≤1,且 k≠046 1.58或4+23三、解答(共 6 道小,每小 5 分,共 30 分)117.解:(20151)027 3tan3013=133333 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分3=13333= 443.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分18.明:∵AB AD,AE AC,E∴EAC DAB 90 ,即 EAD DACCAB DAC .D C∴∠ EAD =∠CAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分在△ ADE 和△ ABC 中,A BE C,EAD,CABDE BC,∴△ ADE ≌△ ABC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴ AD=AB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分19 .解:去分母,得 4 x 6 ≤2 x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2分.移 ,合并,得x ≤ 2.系数化 1,得x ≥ - 2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分所以原不等式的 整数解2, 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分20.解: 2x(x3) ( x 1)2 32x 2 6 x x 2 2 x 13 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分x 2 4x 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∵ x 2 4x 1 0,∴ x 2 4x 1 ,∴ 原式 =1+2=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分21.解:( 1)∵点 A 1 ,m , B n , 3 在反比率函数 y6的 象上,x∴ m=6, n=2.∴ A1 ,6 , B2 ,3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分∵一次函数 y kxb 的 象 A 1 ,6 , B 2, 3两点,6 k ,2 分∴2k ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3b.解方程 ,得k3, b 3.∴一次函数的剖析式y=- 3x+3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 2)∵一次函数 y=-3 x+3 与 y 交点 C(0 , 3), 且 B(2 , -3)∴ △BOC 面 3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵ P 是 x 上一点,且 △ BOP 的面 是 △BOC 面 的 2 倍,∴ P ( a,0), ∴1a 36 ,解得, a4 .2∴点 P 的坐 ( 4, 0)或( - 4, 0). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分22.解: 小明家到 位的行程是x 千米.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分 依 意,得 13 2.3(x 3) 8 2( x 3)0.8 x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分 解 个方程,得x 8. 2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分答:小明家到 位的行程是 8.2 千米.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分四、解答 (共4 道小 ,每小5 分,共 20 分)23.( 1)如 , 全 形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分E( 2)解: 接 CE 交 BD 于点 F .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵将△ BCD 沿直 BD 翻折,获取△ BED ,ADF∴ BD 垂直均分 CE .O∵矩形 ABCD , AB=3,BC=6,BC∴ BEDBCD 90 , DE DC AB3, EB BC 6.∴ BD BE 2DE 262 323 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∴ OD1BD3 5 .22∵cos EDBDF DEDE,BD∴ DF3 3 . 35∴ DF3 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分5∴ OFODDF9 5 .10∵ BD 垂直均分 CE , O AC 中点,∴ AE=2OF =95 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分524.解:( 1) 全条形 ,如 所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( 2) 100. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 3)∵ 本中喜 剪 的人数30 人, 本容量 100,∴估 全校学生中喜 剪 的人数:1200×30=360 人.100答:全校学生中喜 剪 的有360 人.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分25.解:( 1) DF 与⊙ O 相切.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分C∵ CDBCAB ,D 又∵CDBBFD ,EF A O B∴CAB BFD .∴ AC ∥ DF .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵半径 OD 垂直于弦 AC 于点 E , ∴ OD DF . ∴ DF 与⊙O 相切.( 2)∵半径 OD 垂直于弦⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯AC 于点 E , AC =8,3 分∴AE1AC184.22∵ AB 是⊙ O 的直径, ∴OA OD1AB1105 .22在 Rt AEO 中, OEOA 2 AE 2 52 42 3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∵ AC ∥DF ,∴OAE ∽ OFD . ∴ OEAE . ODDF ∴34 . 5DF∴ DF 20⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分.33 10x1 分26.解: CD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10Sin2α=CD32 分= .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯OC5如 , 接 NO ,并延 交⊙ O 于 Q , 接 MQ , MO ,作 MH NO 于H .在⊙ O 中,∠ NMQ =90 °. ∵∠ Q= ∠P=β,OM=ON,∴∠ MON= 2∠ Q= 2β.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分 M∵ tan β= 1,βPNHOQ2∴ MN=k , MQ=2k ,∴NQ= MN 2MQ 25k .∴OM=1 NQ=5k .22∵SNMQ1MN MQ1NQ MH ,22∴ k 2k5k MH .∴ MH=2 5 k . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分52 5 k4MH55 分在 Rt MHO 中, sin2β=sin ∠ MON =5k . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯OM52五、解答 (本 共 22 分,第 277 分,第 287 分,第 298 分)27.解:(1)∵ 抛物0, 0 , 4 ,0 , 6 ,3 三点,c 0∴ 16a4b 0, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分36a 6b 3.a1,4解得b ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分1c.∴ 抛物 的剖析式y2x .1 x41 21 24x 4 41 2∵ yxxxx 2 1444∴抛物 的 点坐2 , 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分( 2) 直 CD 的剖析式 y2x m ,依照 意,得1x 2 x2xm ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分4化 整理,得 x 2 4x 4m0 ,由16 16m0 ,解得 m1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分∴直 CD 的剖析式 y 2 x 1.( 3)点的坐2 , 7 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分最短距离4 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分528.解:( 1)ADG OFBE CH⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分( 2)ADG OFBE CHP明:如 ,延AE 、 DC 交于点 P . ∵四 形ABCD 是平行四 形,∴ AD//BC , AB//CD .∴∠ DAE =∠ AEB ,∠ BAE =∠DPA . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分∵ AE 均分∠ BAD ,∴∠ DAE =∠ BAE ,∴∠ BAE=∠ AEB ,∠ DAE =∠DPA . ∴ BA=BE , DA =DP , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分又∵ BG ⊥ AE , DH ⊥ AE ,∴ G AE 中点, H AP 中点. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分又 ∵ O AC 中点,AD=BC ,∴ OG1 1 BC BE 1 AB ,CE2AD22OH1 1 CD1 AB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分CPDP AD222∴ OG=OH .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分( 3) 7.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分1729.解:( 1)答案不唯一,只要两个剖析式 出相同的a 和相同的 m 即可(每空各 1分)⋯⋯ 2分(2)是兄弟抛物 ,原由以下.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∵ yx 2xx 121 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分xy x 23x2x 2x1 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分1∴二次函数 y x 2 x 与 y x 23x 2 的 象是兄弟抛物 .此 a 1 , m 1 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分 (3) y2( x 1)( x3) , y 2( x3)( x5) ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分2 222或 y2(x3)(x5) , y 2( x5)( x7) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分2222。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. 如图,点 M、N 分别在矩形 ABCD 边 AD、BC 上,将 矩形 ABCD 沿 MN 翻折后点 C 恰好与点 A 重合,若 此时
BN 1 = ,则△AMD′ 的面积与△AMN 的面积的比为 CN 3
B.1:4 D.1: 9
A.1:3 C.1:6
10. 如图,矩形 ABCD 中,E 为 AD 中点,点 F 为 BC 上的动点(不 与 B、C 重合) .连接 EF,以 EF 为直径的圆分别交 BE,CE 于点 G、H. 设 BF 的长度为 x,弦 FG 与 FH 的长度和为 y,则 下列图象中,能表示 y 与 x 之间的函数关系的图象大致是
2.下列二次根式中,能与 2 合并的是 A. 20 B. 12 C. 8 D. 4
3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是
A
BCDຫໍສະໝຸດ 4.如图,在△ABC 中,D 为 AB 边上一点,DE∥BC 交 AC 于点 E, 若
AD 2 ,AE=6,则 EC 的长为 DB 3
B. 9 D. 18
A
B
C
D
二、填空题(本题共 18 分,每小题 3 分) 11.若分式
2x 6 的值为 0,则 x 的值为 x 1
.
.
12.分解因式: 3x2 12 y 2
13.用一个圆心角为 120° ,半径为 6 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径 为 .
14. 如图,△ABC 中,AB=AC,AD 是 BC 边中线,分别以点 A、C 为圆心,以大于
1 ,求 AC 的长. 2
24.某校为了更好的开展“学校特色体育教育” ,从全校八年级的各班分别随机抽取了 5 名 成绩 划记 频数 百分比 男生和 5 名女生,组成了一个容量为 60 的样本, 进行各项体育项目的测试,了解他们的身体素质 a 30% 优秀 正正正 情况.下表是整理样本数据,得到的关于每个个体 b 良好 正正正正正正 30 的测试成绩的部分统计表、图: 9 15% 合格 正 不合格 合计 60 3 60 5% 100%
16.如果一个平行四边形一个内角的平分线分它的一边为 1:2 的两部分,那么称这样的平
行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为 3 时,它的周 长为 .
三、解答题(本题共 30 分,每小题 5 分) 17.已知:如图,在△ABC 中,∠ACB=90° ,AC=BC,BE⊥CE 于点 E, AD⊥CE 于点 D. 求证:BE=CD.
北京市朝阳区九年级综合练习(二)
数学试卷
学校 班级 姓名 考号
2015.6
1.本试卷共 8 页,共五道大题,29 道小题,满分 120 分. 考试时间 120 分钟. 2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号. 考生 须知 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用 2B 铅笔作答,其它试题用黑色字迹签字笔作 答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个 是符合题意的. .. 1.某种埃博拉病毒(EBV)长 0.000 000 665nm 左右.将 0.000 000 665 用科学记数法表示 应为 A.0. 665× 10-6 B.6.65× 10-7 C.6.65× 10-8 D.0. 665× 10-9
6.某射击教练对甲、乙两个射击选手的 5 次成绩(单位:环)进行了统计,如下 表 10 9 8 5 8 甲 所 8 8 7 9 8 乙 示:
设甲、乙两人射击成绩的平均数分别为 x甲 、 x乙 ,射击成绩的方差分别为 s甲2 、 s乙2 ,则 下列判断中正确的是 A. x甲 < x乙 , s甲2 > s乙2 C. x甲 = x乙 , s甲2 =s乙2 B. x甲 = x乙 , s甲2 < s乙2 D. x甲 = x乙 , s甲2 > s乙2
1 AC 2
长为半径画弧,两弧交点分别为点 E、F,直线 EF 与 AD 相交于点 O,若 OA=2,则△ ABC 外接圆的面积为 .
(第 14 题)
(第 15 题)
15.如图,点 B 在线段 AE 上,∠1=∠2,如果添加一个条件,即 可得到△ABC≌△ABD, 那么这个条件可以是 (要求:不在图中添加其他辅助线,写出一个条件即可 ).
1 18.计算: 12 8cos60 ( + 3)0 . 2
1 2 2 1 19.解不等式 x ≥ x ,并把它的解集在数轴上表示出来. 2 3 3 3
-2
20.已知 a b 2 ,求 (a 2)2 b(b 2a) 4(a 1) 的值.
22.列方程或方程组解应用题:
四、解答题(本题共 20 分,每小题 5 分) 23.如图,点 F 在□ABCD 的对角线 AC 上,过点 F、 B 分别作 AB、 AC 的平行线相交于点 E,连接 BF,∠ABF=∠FBC+∠FCB. (1)求证:四边形 ABEF 是菱形; (2)若 BE=5,AD=8, sin CBE
7.一个隧道的横截面如图所示,它的形状是以点 O 为圆心, 5 为半径的圆的一部分,M 是⊙O 中弦 CD 的中点,EM 经过圆心 O 交⊙O 于点 E,若 CD=6,则隧道的高(ME 的 长)为 A.4 C.8 B.6 D.9
8.某数学课外活动小组利用一个有进水管与出水管的容器 模拟水池蓄水情况:从某时刻开始,5 分钟内只进水不出 水,在随后的 10 分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量 y(单位:L)与时间 x (单位:min)之间的关系如图所示,则第 12 分钟容器内的 蓄水量为 A. 22 C. 27 B. 25 D. 28
21.如图,一次函数 y kx b k 0 的图象与反比例函数
y
m m 0 的图象交于 A (-3,1),B (1,n)两点. x
(1)求反比例函数和一次函数的表达式; (2)设直线 AB 与 y 轴交于点 C,若点 P 在 x 轴上,使 BP=AC,请直 接写出点 P 的坐标.
A .6 C. 15
5.在一个不透明的盒子中装有 n 个小球,它们除了颜色不同外,其余都相同,其中有 4 个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在 0.4,那么可以推算出 n 大约是 A . 10 B. 14 C. 16 D. 40