【推荐】2017-2018学年北京市大兴区八年级上期末数学试卷(有答案)

合集下载

2018初二数学答案.doc

2018初二数学答案.doc

大兴区2017~2018学年度第二学期期末检测初二数学参考答案及评分标准一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共68分,其中17~25小题5分,26小题7分,27,28小题8分) 17. 解:224x x +=…………………………………………………………1分22141x x ++=+ ………………………………………………2分 2(1)5x += ………………………………………………………3分1x +=11x =- 21x =-……………………………………5分18.(1)证明:24b ac ∆=-()2141()m m =---⨯⨯-⎡⎤⎣⎦ ………………………………………1分2214m m m =-++ 221m m =++2(1)m =+∵2(1)0m +≥∴0∆≥∴此方程总有两个实数根. ……………………………………………2分 (2)当m = 1时,原方程为210x -=………………………………3分解得:121,1x x ==- ……………………………………5分 19. 解:设一次函数的表达式为y=kx +b (k ≠0 ) …………………1分把A (2,3), B (1,-1)代入,得312k b k b +=+=-⎧⎨⎩……………………………………………………3分 45k b ==-⎧⎨⎩………………………………………………………4分 ∴这个一次函数的表达式为y=4x - 5……………………………5分 20. 解:(1)把A (m ,6)代入2y x =得:………………………1分6=2m ∴m =3∴A (3,6)……………………………………………2分把A (3,6)代入4y ax =+得:6=3a +4∴23a =……………………………………………………3分(2)12(9,0),(3,0)P P -………………………………………………5分 21. 解:(1)93.5…………………………………………………………2分(2)①②③ ………………………………………………5分22. 解:∴点D 即为所求. ………………………………………………………5分23. 证明:连接AC 交BD 于点O …………………………………………… 1分 ∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD …………………………………………… 3分∵BE =DF∴OE =OF ……………………………………………………… 4分 ∴四边形AECF 是平行四边形………………………………… 5分 24. 解:把a 代入方程2201810x x -+=得:2201810a a -+=………………………………………… 1分∴220181a a =- …………………………………………2分 ∴22201820171a a a -++ 20182018120172018a a a=--+11a a=-+……………………………………………… 3分21a a a-+=201811a a a--+=………………………………………4分∵a 是方程2201810x x -+=的一个根 ∴0a ≠∴原式=2017 ……………………………………………… 5分 25. 解:∵正方形ABCD ,点E 在AC 上, ∴AB =AD ,∠BAE = ∠DAE在△ABE 与△ADE 中,AB AD BAE DAE AE AE =∠=∠=⎧⎪⎨⎪⎩∴△ABE ≌△ADE ………………………………………2分 ∴∠AEB = ∠AED ,∠ABE = ∠ADE ………………… 3分 ∵∠CBF =20° ∴∠ABE =70°∴∠AEB =180°﹣45°﹣70°=65°∴ ∠AED =65° ………………………………………… 5分26. 解:∵E 是AD 的中点∴AE =DE ………………………………………………… 1分 ∵△ABE 沿BE 折叠后得到△GBE ∴△ABE ≌△GBE ∴AE =EG ,AB =BG ∴ED =EG ∵在矩形ABCD 中 ∴∠A =∠D =90° ∴∠EGF =90°∵在Rt △EDF 和Rt △EGF 中ED EGEF EF==⎧⎨⎩ ∴Rt △EDF ≌Rt △EGF …………………………………… 3分 ∴DF =FG ………………………………………………… 4分 设DF =x ,则BF =3+x ,CF =3﹣x在Rt △BCF 中,()2+(3﹣x )2=(3+x )2 ……6分 解得x =2∴FD 的长是2. ……………………………………………7分 27. 解:(1)①令y=0,则x =2,∴A (2,0)………………………………………… 1分 令x =0,则y=4,∴ B (0, 4) …………………………………………… 2分 ∴S △OAB =12OA OB ⋅=12442⨯⨯= …………… 3分②作OC ⊥l 于点CAB ===分∴S △OAB 11422AB OC OC =⋅=⨯=∴OC =∴原点O 到直线l…………… 5分(2) 令y=0,则x = -b ,令x =0,则y=b ,∴S =122b b ⨯-⨯= …………… 6分∴24b = ∴2b =±∴此函数的表达式 y=x+2或y=x-2 …………………… 8分28.(1)证明:连接DC,BE ………………………………………………… 1分 ∵△ABD 和△ACE 是等边三角形 ∴DA = BA ,AC =AE ∠DAB =∠CAE =60°∴∠DAB+∠BAC =∠CAE+∠BAC 即∠DAC =∠BAE 在△DAC 和△BAE 中DA BA DAC BAE AC AE =∠=∠=⎧⎪⎨⎪⎩∴△DAC ≌△BAE ……………………………………………… 4分 ∴DC =BE∵M,P ,N 分别是BD,BC,CE 的中点, ∴11,22PM DC PN BE ==∴PM =PN ………………………………………………… 5分 (2)解: ∵△DAC ≌△BAE ∴∠ACD =∠AEB 又∵∠1=∠2∴∠3=∠CAE=60°………………………………………… 6分 ∵P ,N 是BC,CE 的中点∴PN∥BE∴∠MPN+∠4=180°∵M,P是BD,BC的中点,∴PM∥DC,∴∠4=∠3=60°∴∠MPN=120°……………………………………………… 8分。

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末学业质量监测试题

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末学业质量监测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表如下:表格中捐款5元和8元的人数不小心被墨水污染看不清楚.若设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得方程组( )A .125884x y x y +=⎧⎨+=⎩B .1258400x y x y +=⎧⎨+=⎩C .455884x y x y +=⎧⎨+=⎩D .4558400x y x y +=⎧⎨+=⎩【答案】A 【分析】设捐款5元的有x 名同学,捐款8元的有y 名同学,利用八(1)班学生人数为45得出一个方程,然后利用共捐款400元得出另外一个方程,再组成方程组即可.【详解】解:设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得:453323*********x y x y +=-⎧⎨⨯+++⨯=⎩,即125884x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,关键是利用总人数和总钱数作为等量关系列方程组.2.使分式x 2x-4有意义的x 的取值范围是( ) A .x=2B .x≠2且x≠0C .x=0D .x≠2【答案】D【解析】根据分母不等于零列式求解即可.【详解】由题意得2x-4≠0,∴x≠2.故选D.【点睛】本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.3.下列图形中,有且只有三条对称轴的是( )A.B.C.D.【答案】A【分析】根据轴对称图形的定义逐项分析即可,一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】A.有3条对称轴;B.有1条对称轴;C.不是轴对称图形;D.不是轴对称图形.故选:A.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.4.如图,ABC 中,∠C=90°,AC=3,AB = 5,点D 是边BC 上一点,若沿将ACD翻折,点C刚好落在边上点E处,则BD等于()A.2 B.52C.3 D.103【答案】B【分析】根据勾股定理,求出BC的长度,设BD=x,则DC= 4-x,由折叠可知:DE= 4-x,BE=1,在Rt BDE 中,222BD=BE DE+,根据勾股定理即可求出x的值,即BD的长度.【详解】∵∠C= 90°,AC=3,AB=5∴BC= 22AB-AC,设BD=x ,则DC= 4-x ,由折叠可知:DE=DC=4-x ,AE=AC=3,∠AED= ∠C=90°,∴ BE= AB -AE = 1.在 Rt BDE 中,222BD =BE DE +,即:222x =2(4-x)+,解得:x=52, 即BD=52, 故选:B .【点睛】本题主要考查了折叠的性质、勾股定理,解题的关键在于写出直角三角形BDE 三边的关系式,即可求出答案.5.已知线段 a =2cm ,b =4cm ,则下列长度的线段中,能与 a ,b 组成三角形的是( )A .2cmB .4cmC .6cmD .8cm 【答案】B【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【详解】解:2a cm =,4b cm =,2cm ∴<第三边6cm <∴能与a ,b 能组成三角形的是4cm ,故选B .【点睛】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.6.如图,在△ABC 中,∠C=90°,AB 的垂直平分线MN 分别交AC ,AB 于点D ,E ,若∠CBD :∠DBA=2:1,则∠A 为( )A .20°B .25°C .22.5°D .30°【答案】C 【解析】试题分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB ,再根据等边对等角可得∠A=∠DBA ,然后在Rt △ABC 中,根据三角形的内角和列出方程求解即可.解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选C.考点:线段垂直平分线的性质.7.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30B.20C.25D.15 【答案】D【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=12∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED=1802BAC︒∠-=280013︒-︒=75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选D.【点睛】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.8.下列各分式中,是最简分式的是().A.22x yx y++B.22x yx y-+C.2x xxy+D.2xyy【答案】A【分析】根据定义进行判断即可.【详解】解:A、22 x y x y ++分子、分母不含公因式,是最简分式;B、22x yx y-+=()()x y x yx y+-+=x-y,能约分,不是最简分式;C、2x xxy+=(1)x xxy+=1xy+,能约分,不是最简分式;D、2xyy=xy,能约分,不是最简分式.故选A.【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.9.如图,在△ABC与△EMN中,BC MN a==,AC EM b==,∠C=∠M=54°,若∠A=66°,则下列结论正确的是( )A.EN c=B.EN=a C.∠E=60°D.∠N=66°【答案】A【分析】利用BC MN a==,AC EM b==,∠C=∠M=54°证明ABC∆与ENM∆全等,利用全等三角形的性质可得到答案.【详解】解:在ABC∆与ENM∆中,54BC NM aC MAC EM b==⎧⎪∠=∠=︒⎨⎪==⎩ABC∆≅ENM∆所以:,66,60AB EN c A E B N==∠=∠=︒∠=∠=︒所以B,C,D,都错误,A正确.故选A.【点睛】本题考查三角形全等的判定,掌握三角形全等的判定方法是关键.10.下列命题中为假命题的是( )A .无限不循环小数是无理数B .代数式 1C .若22x y a a >,则x > yD .有三个角和两条边分别相等的两个三角形一定全等【答案】D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A . 无限不循环小数是无理数,故本选项是真命题;B . 代数式 中根据二次根式有意义的条件可得1020x x -≥⎧⎨-≥⎩解得:2x ≥x 的增大而增大∴当x=21,故本选项是真命题; C . 若22x y a a>,将不等式的两边同时乘a 2,则x y >,故本选项是真命题; D . 有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题; 故选D .【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.二、填空题11_________.【答案】±8=,然后根据平方根的定义求出8的平方根.【详解】解:8=,8∴的平方根为=±故答案为±【点睛】本题考查了平方根的定义:若一个数的平方等于a ,那么这个数叫a 的平方根,记作0)a .12有意义,则实数x 的取值范围是__________. 【答案】3x ≥【分析】根据二次根式有意义的条件,即可求出x的取值范围.【详解】解:∵代数式34x-有意义,∴30x-≥,∴3x≥.故答案为:3x≥.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练掌握被开方数大于或等于0.13.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______【答案】5—1【解析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴AC=22215+=,∵A点表示-1,∴E点表示的数为:5-1,故答案为5-1.【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.14.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).234【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,∴A′D=42=2(m),BD=1+0.6-0.4=1.2(m),∴在直角△A′DB中,2222234A'D BD2 1.2+=+=(m),234.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.15.已知:1232724839x x--⎛⎫⎛⎫•=⎪ ⎪⎝⎭⎝⎭,则x=_______________【答案】-2【分析】根据幂的乘方、负指数幂及同底数幂的运算公式即可求解.【详解】∵123 2724 839x x--⎛⎫⎛⎫•= ⎪ ⎪⎝⎭⎝⎭∴33232 322 233x x--⎛⎫⎛⎫⎛⎫•=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故33232 222 333x x--⎛⎫⎛⎫⎛⎫•=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴3-3x+2x-3=2,解得x=-2,故填:-2.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式及运用.16.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .【答案】5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5. 17.已知:如图,45AOB ∠=︒,点P 为AOB ∠内部一点,点P 关于OA OB ,的对称点12P P ,的连线交OA OB ,于M N ,两点,连接PM PN ,,若2OP =,则PMN ∆的周长=__________.【答案】2【分析】连接OP 1,OP 2,利用对称的性质得出OP= OP 1= OP 2=2,再证明△OP 1 P 2是等腰直角三角形,则△PMN 的周长转化成P 1 P 2的长即可.【详解】解:如图,连接OP 1,OP 2,∵OP=2,根据轴对称的性质可得:OP= OP 1= OP 2=2,PN= P 2N ,PM= P 1M , ∠BOP=∠BOP 2,∠AOP=∠AOP 1,∵∠AOB=45°,∴∠P 1O P 2=90°,即△OP 1 P 2是等腰直角三角形,∵PN= P 2N ,PM= P 1M ,∴△PMN 的周长= P 1M+ P 2N+MN= P 1 P 2,∵P 1 P 22OP 1=22故答案为:2.【点睛】本题考查轴对称的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用对称的性质将三角形周长转化成线段的长度.三、解答题18.某高速公路有300km的路段需要维修,拟安排甲、乙两个工程队合作完成,规定工期不得超过一个月(30天) ,已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km公路的维修时,甲队比乙队少用6天(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km(2)若甲队的工程费用为每天2万元,乙队每天的工程费用为1.2万元,15 天后乙队另有任务,余下工程由甲队完成,请你判断能否在规定的工期完成且总费用不超过80万元【答案】(1)甲、乙工程队每天能完成维修公路的长度分别是8km和4km;(2)能在规定工期完成且总费用不超过80万,见解析【分析】(1) 设乙工程队每天能完成维修公路的长度是x km,根据题意找到等量关系列出分式方程即可求解;(2)根据题意求出工程完成需要的天数,再求出总费用即可求解.【详解】解:(1) 设乙工程队每天能完成维修公路的长度是x km.依题意得484862x x-=解得:4x=经检验:4x=是原方程的解.则甲工程队每天能完成维修公路的长度是248⨯=(km).答:甲、乙工程队每天能完成维修公路的长度分别是8km和4km.(2) 15(48)180km⨯+=,300180120km-=,120815÷=天,所以能在规定工期内完成;15(2 1.2)48⨯+=万,15230⨯=万,483078+=<80,所以能在规定工期完成且总费用不超过80万.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程求解.19.如图,在四边形ABCD 中,AB DC =,点E 是AB 边上一点,,180CE AB A ADC =∠+∠=︒,DF BC ⊥,垂足为点F ,交CE 于点G ,连接,DE EF .(1)四边形ABCD 是平行四边形吗?说明理由;(2)求证:1902AED DCE ∠=︒-∠; (3)若点E 是AB 边的中点,求证:2DEF EFB ∠=∠.【答案】(1)四边形ABCD 是平行四边形,理由见解析;(2)见解析;(3)见解析【分析】(1)由180A ADC ∠+∠=︒可得AB ∥DC ,再由AB=DC 即可判定四边形ABCD 为平行四边形; (2)由AB ∥DC 可得∠AED=∠CDE ,然后根据CE=AB=DC 可得∠CDE=∠CED ,再利用三角形内角和定理即可推出∠AED 与∠DCE 的关系;(3)延长DA ,FE 交于点M ,由“AAS”可证△AEM ≌△BEF ,可得ME=EF ,由直角三角形的性质可得DE=EF=ME ,由等腰三角形的性质和外角性质可得结论.【详解】(1)四边形ABCD 是平行四边形,理由如下:∵180A ADC ∠+∠=︒∴AB ∥DC又∵AB=DC∴四边形ABCD 是平行四边形.(2)∵AB ∥DC∴∠AED=∠CDE又∵AB=DC ,CE=AB∴DC=CE∴∠CDE=∠CED∴在△CDE 中,2∠CDE+∠DCE=180°∴∠CDE=90°-12∠DCE ∴1902AED DCE ∠=︒-∠ (3)如图,延长DA ,FE 交于点M ,∵四边形ABCD 为平行四边形∴DM ∥BC ,DF ⊥BC∴∠M=∠EFB ,DF ⊥DM∵E 为AB 的中点∴AE=BE在△AEM 和△BEF 中,∵∠M=∠EFB ,∠AEM=∠BEF ,AE=BE∴△AEM ≌△BEF (AAS )∴ME=EF∴在Rt △DMF 中,DE 为斜边MF 上的中线∴DE=ME=EF∴∠M=∠MDE ,∴∠DEF=∠M+∠MDE=2∠M=2∠EFB .【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,等腰三角形和直角三角形的性质,熟练掌握平行四边形的判定定理,利用“中线倍长法”构造全等三角形是解题的关键.20.(1)如图,已知ABC ∆的顶点在正方形方格点上每个小正方形的边长为1.写出ABC ∆各顶点的坐标(2)画出ABC ∆关于y 轴的对称图形111A B C ∆【答案】(1)A (-2,2),B (-3,-1),C (-1,1);(2)见解析【分析】(1)利用坐标可得A 、B 、C 三点坐标;(2)首先确定A 、B 、C 三点关于y 轴的对称点,然后再连接即可.【详解】解:(1)由图可知:A (-2,2),B (-3,-1),C (-1,1);(2)如图,△A 1B 1C 1即为所画图形.【点睛】此题主要考查了作图—轴对称变换,关键是正确确定组成图形的关键点关于y 轴的对称点位置. 21.已知ABC ∆在平面直角坐标系中的位置如图所示.(1)画出ABC ∆关于y 轴对称的11AB C ∆;(2)每个小方格都是边长为1个单位的正方形,求多边形11ABCC B 的面积.【答案】(1)见解析(2)13【分析】(1)依次找到各顶点关于y 轴的对称点,再顺次连接即可;(2)根据割补法即可求解.【详解】(1)如图,11AB C ∆为所求;(2)多边形11ABCC B 的面积=6×4-2×12×3×3-2×12×2×1=24-9-2=13【点睛】此题主要考查坐标与图形,解题的关键是熟知关于y 轴的坐标特点.22.如图,一块四边形的土地,其中90BAD ∠=,4AB cm =,12BC cm =,13CD cm =,3AD cm =,求这块土地的面积.【答案】36cm 2【分析】根据勾股定理逆定理证BD ⊥BC ,再根据四边形ABCD 的面积=△ABD 的面积+△BCD 的面积.【详解】解:∵AD=3cm ,AB=4cm ,∠BAD=90°,∴BD=5cm.又∵BC=12cm ,CD=13cm ,∴BD 2+BC 2=CD 2.∴BD ⊥BC.∴四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=113451222⨯⨯+⨯⨯=6+30=36(cm 2). 故这块土地的面积是36m 2.【点睛】考核知识点:勾股定理逆定理应用.推出直角三角形,再求三角形面积是关键.23.2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?【答案】(1)该旅行社今年的有45人前来观看赛事;(2)故人均交通费最多为100元.【分析】(1)设该旅行社去年有x 人前来观看赛事,根据“人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元”列方程,求解即可;(2)设今年该旅行社本次费用中,人均交通费为x 元,根据“其它费用不低于交通费的2倍”,列不等式求解即可.【详解】(1)设该旅行社去年有x 人前来观看赛事,根据题意,得: 96009600390020(150%)x x+-=+ 解得:30x =.经检验:30x =是原方程的解.所以,原方程的解为30x =,故:()150%45x +=.答:该旅行社今年的有45人前来观看赛事;(2)设今年该旅行社本次费用中,人均交通费为x 元,由题意得:9600390045245x x +-≥⨯解得:100x ≤.故人均交通费最多为100元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.找准相等关系或不等关系是解答本题的关键. 24.2019年5月20日是第30个中国学生营养日.某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量为8%,包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60g ,蛋白质含量占15%;谷物食品和牛奶的部分营养成分下表所示).(1)设该份早餐中谷物食品为x 克,牛奶为y 克,请写出谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克.(用含有x ,y 的式子表示)(2)求出x ,y 的值.(3)该公司为学校提供的午餐有A ,B 两种套餐(每天只提供一种):为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周里,学生午餐主食摄入总量不超过830克,那么该校在一周里可以选择A ,B 套餐各几天?写出所有的方案.(说明:一周按5天计算)【答案】(1)9%,3%x y ;(2)130,110x y ==;(3)见解析【分析】(1)根据统计表列出算式即可求解;(2)根据等量关系:蛋白质总含量为8%;300克早餐食品;列出方程组求解即可;(3)设该学校一周里共有a 天选择A 套餐,则有(5-a )天选择B 套餐,根据学生午餐主食摄入总量不超过830克列出不等式求解即可.【详解】(1)谷物食品中所含的蛋白质为9%x 克,牛奶中所含的蛋白质为 3%y 克;故答案为:9%x ,3%y ;(2)依题意,列方程组为9%3%6015%3008%60300x y x y ++⨯=⨯⎧⎨++=⎩, 解得 130110x y =⎧⎨=⎩; (3)设该学校一周里共有a 天选择A 套餐,则有(5a -)天选择B 套餐,依题意,得:150a +180(5-a)≤830,解得 7a ≥.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系和不等关系.25.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=+.请根据阅读材料解决下列问题: (1)填空:分解因式244a a -+=_____;(2)若2|1|690a b b ++-+=,求+a b 的值;(3)若a 、b 、c 分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.【答案】(1)()22a -;(2)2;(3)等边三角形.【分析】(1)根据完全平方公式即可因式分解;(2)根据非负性即可求解;(3)把原式化成几个平方和的形式,根据非负性即可求解.【详解】(1)244a a -+=()22a -.故答案为:()22a -;(2)21690a b b ++-+=()2∴++-=a b130∴+=-=a b10,30∴=-=a b1,3∴+=-+=a b132(3)∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,∴(a2-2ab+b2)+(c2﹣2c+1)+(3b2﹣6b+3)=0即(a2-2ab+b2)+(c2﹣2c+1)+3(b2﹣2b+1)=0,∴(a-b)2+(c-1)2+3(b-1)2=0,∴a-b=0,c-1=0,b-1=0,∴a=b,c=1,b=1,∴a=b=c∵a、b、c分别是△ABC的三边,∴△ABC是等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负性的应用.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.内角和等于外角和的2倍的多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180°(n-2)=360°×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180°(n-2)=360°×2,解得:n=6,故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n-2).2.下列命题是假命题的是().A.同旁内角互补,两直线平行B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.角是轴对称图形【答案】C【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案.【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C.【点睛】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解.3.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(K12教育文档)

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(K12教育文档)

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(word版可编辑修改)的全部内容。

FB CE第9题图北师大版2017-2018学年度上学期期末考试八年级数学试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,。

已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A 。

6个 B.5个 C.4个 D 。

3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A 。

15或16B 。

16或17C 。

15或17 D.15。

16或174。

如图,△ACB ≌△A ’CB',∠BCB ’=30°,则∠ACA'的度数为( )A。

20° B.30° C.35° D.40°5, 等腰三角形的两边长分别为5cm 和 10cm,则此三角形的周长是( )A.15cmB. 20cmC. 25cm D 。

20cm 或25cm6。

如图,已知∠CAB =∠DAB,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C 。

∠C =∠D D.∠ABC =∠ABD7。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。

2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。

3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。

4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。

不按以上要求作答的答案无效。

5.考试结束只上交答题卡。

第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。

1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末统考试题

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末统考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.等腰△ABC中,∠C=50°,则∠A的度数不可能是()A.80°B.50°C.65°D.45°【答案】D【分析】分类讨论后,根据三角形内角和定理及等腰三角形的两个底角相等解答即可.【详解】当∠C为顶角时,则∠A=12(180°﹣50°)=65°;当∠A为顶角时,则∠A=180°﹣2∠C=80°;当∠A、∠C为底角时,则∠C=∠A=50°;∴∠A的度数不可能是45°,故选:D.【点睛】本题考查了三角形内角和定理,等腰三角形的性质,掌握等腰三角形两底角相等的性质是解题的关键.2.如图一个五边形木架,要保证它不变形,至少要再钉上几根木条()A.4 B.3 C.2 D.1【答案】C【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【详解】如图,要保证它不变形,至少还要再钉上2根木条.故选C.【点睛】本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.3.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE 的度数为()A.30°B.40°C.70°D.80°【答案】A【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB 于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°−∠A)÷2=70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC-∠ABE=30°,故选:A.【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.4.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°【答案】D【分析】根据两直线平行同旁内角互补解答即可.【详解】解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.5.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( ) A .3B .6C .9D .12 【答案】D【分析】先求出另一组数据的平均数,然后再利用方差公式2222121[()()()]n s x x x x x x n =-+-++-求出方差,找到与给定的一组数据的方差之间的关系,则答案可解.【详解】设数据x 1,x 2,…,x n 的平均数为x ,方差为2s ,则12n x x x x n +++=,2222121[()()()]n s x x x x x x n =-+-++-,则另一组数据的平均数为122222n x x x x n +++= ,方差为: 2222222121214[(22)(22)(22)][()()()]412n n x x x x x x x x x x x x s nn -+-++-=-+-++-==故选:D .【点睛】 本题主要考查平均数和方差的求法,掌握平均数和方差的求法是解题的关键.6.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为( )A .1.6×10﹣9米B .1.6×10﹣7米C .1.6×10﹣8米D .16×10﹣7米【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1纳米=10﹣9米, ∴16纳米表示为:16×10﹣9米=1.6×10﹣8米.故选C .【点睛】 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.把多项式a 2﹣4a 分解因式,结果正确的是( )A .a (a ﹣4)B .(a+2)(a ﹣2)C .(a ﹣2)2D .a (a+2(a ﹣2)【答案】A【分析】原式利用提取公因式法分解因式即可.【详解】解:原式=a (a ﹣4),故选:A .【点睛】本题考查因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.8.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A 【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 9.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于G ,交BE 于H .下列结论:①S △ABE =S △BCE ;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中所有正确结论的序号是( )A.①②③④B.①②③C.②④D.①③【答案】B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】解:∵BE是中线,∴AE=CE,∴S△ABE=S△BCE(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.10.在ABC ∆和A B C '''∆中,①AB A B ''=,②BC B C ''=,③AC A C ''=,④A A '∠=∠,⑤B B '∠=∠,⑥C C '∠=∠,则下列各组条件中使ABC ∆和A B C '''∆全等的是( )A .④⑤⑥B .①②⑥C .①③⑤D .②⑤⑥【答案】D【解析】根据全等三角形的判定方法对各选项分别进行判断.【详解】A. 由④⑤⑥不能判定△ABC ≌△A′B′C′;B. 由①②⑥不能判定△ABC ≌△A′B′C′;C. 由①③⑤,不能判定△ABC ≌△A′B′C′;D. 由②⑤⑥,可根据“ASA”判定△ABC ≌△A′B′C′.故选:D.【点睛】考查全等三角形的判定定理,三角形全等的判定定理有:SSS ,SAS ,ASA ,AAS,HL.二、填空题11.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作__________;【答案】(3,5 ).【分析】根据有序数对确定点的位置,可得答案.【详解】解:在电影院中,若将电影票上“7排4号”记作(7,4),,那么”3排5号”应记作(3,5), 故答案为:(3,5 ).【点睛】本题考查了坐标确定位置,利用有序数对确定位置注意排在前,号在后.12.已知ABC ∆中,3AB =,8AC =,BC 长为奇数,那么三角形ABC 的周长是__________.【答案】18或20【分析】根据三角形三边关系定理得到第三边的范围,再根据BC 为奇数和取值范围确定三角形ABC 的周长即可.【详解】解:根据三角形的三边关系可得:8-3<BC <8+3,即:5<BC <11,∵BC 为奇数,∴BC 的长为7或9,∴三角形ABC 的周长为18或20.故答案为:18或20.【点睛】本题主要考查三角形的三边关系,关键是掌握三角形三边关系定理即三角形任意两边之和大于第三边;三角形的任意两边之差小于第三边.13.计算:(x+a)(y-b)=______________________【答案】xy+ay-bx-ab【分析】根据多项式乘以多项式的运算法则进行计算即可得到答案.【详解】(x+a)(y-b)= xy+ay-bx-ab.故答案为:xy+ay-bx-ab.【点睛】本题主要考查了多项式乘以多项式的运算法则,注意不要漏项,有同类项的合并同类项.14.已知a11=-1,则a2+2a+2的值是_____.【答案】1.【分析】先将多项式配方后再代入可解答.【详解】解:∵a11=-1,∴a2+2a+2=(a+1)2+1=(11-1+1)2+1=11+1=1.故答案为:1.【点睛】本题考查了完全平方式和二次根式的化简,熟记完全平方公式对解题非常重要.15.小明家1至6月份的用水量统计如图所示,根据图中的数据可知,5月份的用水量比3月份的用水量多_____吨.【答案】1【分析】根据折线统计图给出的数据进行相减即可.【详解】解:由折线统计图知,5月份用的水量是6吨,1月份用的水量是1吨,则5月份的用水量比1月份的用水量多1吨;故答案为1.【点睛】本题主要考查折线统计图,解题的关键是根据折线统计图得出具体的数据.16.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1 10-米,用科学记数法将16纳米表示为__________________米.纳米=9【答案】81.610-⨯【分析】由1纳米=10-9米,可得出16纳米=1.6×10-1米,此题得解.【详解】∵1纳米=10-9米,∴16纳米=1.6×10-1米.故答案为1.6×10-1.【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.17.(-2a-3b )(2a-3b)=__________.【答案】9b 1-4a 1【分析】根据平方差公式:(a-b )(a+b)= a 1-b 1计算即可.【详解】解:(-1a-3b )(1a-3b)=(-3b -1a )(-3b+ 1a)=(-3b )1-(1a )1=9b 1-4a 1故答案为:9b 1-4a 1.【点睛】此题考查的是平方差公式,掌握平方差公式是解决此题的关键.三、解答题18.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.19.如图,∠B=∠E=Rt ∠,AB=AE ,∠1=∠2,请证明∠3=∠4【答案】详见解析【分析】由∠1=∠2,得AC=AD ,进而由HL 判定Rt △ABC ≌Rt △AED ,即可得出结论【详解】∵∠1=∠2∴AC=AD∵∠B=∠E=Rt ∠,AB=AE∴△ABC ≌△AED(HL)∴∠3=∠4考点:全等三角形的判定及性质20.某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?【答案】(1)8元;(2)1元.【分析】(1)设第一批手机壳进货单价为x 元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设销售单价为m 元,根据获利不少于2000元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批手机壳进货单价为x 元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批手机壳的进货单价是8元;(2)设销售单价为m元,根据题意得:200(m-8)+600(m-10)≥2000,解得:m≥1.答:销售单价至少为1元.【点睛】本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.21.如图所示,△ABD和△BCD都是等边三角形,E、F分别是边AD、CD上的点,且DE=CF,连接BE、EF、FB.求证:(1)△ABE≌△DBF;(2)△BEF是等边三角形.【答案】(1)详见解析;(2)详见解析.【分析】(1)根据等边三角形的性质及SAS推出△ABE≌△DBF即可;(2)根据全等三角形的性质得出BE=BF,∠ABE=∠DBF,求出∠EBF=60°,根据等边三角形的判定推出即可.【详解】证明:(1)∵△ABD和△BCD都是等边三角形,∴∠ABD=∠A=∠BDF=60°,AB=AD=DB=CD,∵DE=CF,∴AE=DF,在△ABE和△DBF中,AB DBA BDF AE DF=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△DBF(SAS);(2)∵△ABE≌△DBF,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°,∴△BEF 是等边三角形.【点睛】本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形和等边三角形的判定方法和性质是解题的关键.22.芳芳计算一道整式乘法的题:(2x +m)(5x-4),由于芳芳将第一个多项式中的“+ m”抄成“-m”,得到的结果为10x 2 - 33x + 1.(1)求m 的值;(2)请解出这道题的正确结果.【答案】(1)m=5;(2)2101720x x +-【分析】(1)化简()()254x m x --,根据一次项的系数和常数项即可求出m 的值;(2)将5m =代入原式求解即可.【详解】(1)()()225410854x m x x x mx m --=--+. ∴4208533m m =⎧⎨--=-⎩ 解得5m =(2)将5m =代入原式中原式()()2554x x =+-21082520x x x =-+-2101720x x =+-.【点睛】本题考查了整式的运算问题,掌握整式混合运算法则是解题的关键.23.(1)计算:22242442a a a a a a --÷+++ (2)先化简,后求值:221221212x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭;其中1x =- 【答案】(1)1a ;(2)()221x -,12【分析】(1)分式除法,先进行因式分解,然后再将除法转化成乘法进行计算;(2)分式的混合运算,先做小括号里的异分母分式减法,要进行通分,能进行因式分解的先进行因式分解,然后做除法,最后代入求值.【详解】(1)22242442 a a a aa a--÷+++()()()()222222a a aaaa+-+=⨯-+1a=;(2)原式()()21221211x x xx x xx⎡⎤+-=-⨯⎢⎥---⎢⎥⎣⎦()222122211x x x xxx x--+=⨯--()221x=-,当1x=-时,原式()221211==--.【点睛】本题考查分式的混合运算,掌握因式分解的技巧,运算顺序,正确计算是解题关键.24.尺规作图:如图,已知ABC∆.(1)作A∠的平分线;(2)作边AC的垂直平分线,垂足为E.(要求:不写作法,保留作图痕迹) .【答案】(1)图见解析;(2)图见解析【分析】(1)根据角平分线的尺规作图方法即可;(2)根据线段垂直平分线的尺规作图方法即可.【详解】(1)AF为∠BAC的平分线;(2)MN为AC的垂直平分线,点E为垂足.【点睛】本题考查了角平分线及线段垂直平分线的尺规作图方法,解题的关键是掌握相应的尺规作图.25.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC=2时,求证:△ABD≌△DCE;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.【答案】(1)25°;小;(2)见解析;(3)当∠BDA=110°或80°时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA 的变化情况;(2)假设△ABD≌△DCE,利用全等三角形的对应边相等得出AB=DC=2,即可求得答案;(3)假设△ADE是等腰三角形,分为三种情况:①当AD=AE时,∠ADE=∠AED=40°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=70°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【详解】(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2)∵∠EDC+∠ADE=∠DAB+∠B,∠B=∠EDA=40°∴∠EDC=∠DAB∵AB=AC∴∠B=∠C在△ABD和△DCE中,2DAB EDC AB DC B C ∠=∠⎧⎪==⎨⎪∠=∠⎩∴△ABD ≌△DCE (ASA )(3)∵AB=AC ,∴∠B=∠C=40°,①当AD=AE 时,∠ADE=∠AED=40°,∵∠AED >∠C ,∴此时不符合;②当DA=DE 时,即∠DAE=∠DEA=12×(180°-40°)=70°, ∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°;③当EA=ED 时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40°=80°;∴当∠BDA=110°或80°时,△ADE 是等腰三角形.【点睛】本题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,问:乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .18【答案】D【分析】分别设设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,根据寒假结束开学时甲、乙两校人数相同,可列方程求解即可解答.【详解】设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人, ∵寒假结束开学时甲、乙两校人数相同,∴1016102833x y x y -+=-+,整理得:6x y -=,开学时乙校的人数为:()102833102831028181010x y x y -+=--=-=(人),∴乙校开学时的人数与原有的人数相差;1028-1010=18(人),故选:D .【点睛】本题考查了二元一次方程的应用,解决本题的关键是根据题意列出方程.2.以下四家银行的标志图中,不是轴对称图形的是 ( ) A .B .C .D .【答案】B . 【解析】试题分析:根据轴对称图形的概念:A 、C 、D 都可以沿某一直线折叠后重合,是轴对称图形.故选B .考点:轴对称图形.3.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A.15°B.25°C.30°D.40°【答案】B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解. 【详解】解:∵∠A′BC=20°,DC BC,∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵AD//BC,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∴∠A′BD=12∠ABA′=25°.故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.4.如图,AE∥CD,△ABC为等边三角形,若∠CBD=15°,则∠EAC的度数是()A.60°B.45°C.55°D.75°【答案】B【分析】如图,延长AC交BD于H.求出∠CHB即可解决问题.【详解】如图,延长AC交BD于H.∵△ABC 是等边三角形,∴∠ACB=60°,∵∠ACB=∠CBD+∠CHB ,∠CBD=15°,∴∠CHB=45°,∵AE ∥BD ,∴∠EAC=∠CHB=45°,故选B .【点睛】本题考查平行线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 5.已知点()()()1232,,1,,1,y y y -- 都在直线y=-3x+m 上,则 123,,y y y 的大小关系是( ) A .123y y y >>B .132y y y >>C .231y y y >>D .321y y y >> 【答案】A【分析】根据在y=-3x+m 中,-3<0,则y 随x 的增大而减小,然后根据一次函数的增减性解答即可.【详解】∵直线3y x m =-+ 中30-< ,∴ y 随 x 的增大而减小,又∵点 ()()()1232,,1,,1,y y y -- 都在直线上,且211-<-<.∴y 1>y 2>y 3故答案为A .【点睛】本题考查了一次函数的增减性,灵活运用一次函数的性质是正确解答本题的关键.6.公式表示当重力为P 时的物体作用在弹簧上时弹簧的长度.表示弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( )A .L=10+0.5PB .L=10+5PC .L=80+0.5PD .L=80+5P【答案】A【解析】试题分析:A 和B 中,L 0=10,表示弹簧短;A 和C 中,K=0.5,表示弹簧硬;故选A考点:一次函数的应用7.已知A(a ,b),B(c ,d)是一次函数y=kx ﹣3x+2图象上的不同两个点,m=(a ﹣c)(b ﹣d),则当m <0时,k 的取值范围是( )A .k <3B .k >3C .k <2D .k >2 【答案】A【分析】将点A ,点B 坐标代入解析式可求k−1=b d a c--,即可求解. 【详解】∵A(a ,b),B(c ,d)是一次函数y=kx ﹣1x+2图象上的不同两个点,∴b=ka ﹣1a+2,d=kc ﹣1c+2,且a≠c ,∴k ﹣1=b d a c--. ∵m=(a ﹣c)(b ﹣d)<0,∴k <1.故选:A .【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−1=b d ac --是关键,是一道基础题.8.下列几组数中,能组成直角三角形的是( )A .111,,345B .3,4,7C .5,12,13D .0.8,1.2,1.5 【答案】C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【详解】解:A 、222111453⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴以111,,345为三边的三角形不能组成直角三角形, 故本选项不符合题意;B 、222347+≠,∴以3,4,7为三边的三角形不能组成直角三角形,故本选项不符合题意;C 、22251213+=,∴以5,12,13为三边的三角形能组成直角三角形,故本选项符合题意;D 、2220.8 1.2 1.5+≠,以0.8,1.2,1.5为三边的三角形不能组成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查的是勾股定理的逆定理,熟记勾股定理的逆定理的内容以及正确计算是解题的关键.9.下列运算正确的是()A.a3+a3=a3B.a•a3=a3C.(a3)2=a6D.(ab)3=ab3【答案】C【解析】根据幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法的运算法则,逐项判断即可.【详解】解:A、∵a3+a3=2a3,∴选项A不符合题意;B、∵a•a3=a4,∴选项B不符合题意;C、∵(a3)2=a6,∴选项C符合题意;D、∵(ab)3=a3b3,∴选项D不符合题意.故选:C.【点睛】本题考查幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法,正确掌握相关运算法则是解题关键.10.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12 B.10 C.8 D.6【答案】C【分析】由折叠的性质可知;DC=DE,∠DEA=∠C=90°,在Rt△BED中,∠B=30°,故此BD=2ED,从而得到BC=3BC,于是可求得DE=1.【详解】解:由折叠的性质可知;DC=DE,∠DEA=∠C=90°,∵∠BED+∠DEA=110°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=2.∴DE=1.故答案为1.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.二、填空题11.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米.【答案】3【解析】试题分析:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD .又∵AC+BD=24厘米,∴OA+OB=12厘米.∵△OAB 的周长是18厘米,∴AB=6厘米.∵点E ,F 分别是线段AO ,BO 的中点,∴EF 是△OAB 的中位线.∴EF=12AB=3厘米. 12.若关于x 的分式方程7311mx x x +=--无解,则实数m=_______. 【答案】3或1. 【解析】解:方程去分母得:1+3(x ﹣1)=mx ,整理得:(m ﹣3)x=2.①当整式方程无解时,m ﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m ﹣3=2,m=1.综上所述:∴m 的值为3或1.故答案为3或1.13.如图,在ABC ∆中,AD BD BC ==,若A x ∠=︒,则ABC ∠=___度(用含x 的代数式表示).【答案】(1803)x -【分析】由AD=BD 得∠DAB=∠DBA ,再由三角形外角的性质得∠CDB=2x°;由BD=BC 得∠C =∠CDB=2x°;最后由三角形内角和求出∠ABC 的值.【详解】∵AD=BD ,∴∠DAB=∠DBA ,∵∠A=x°∴∠CDB=∠DAB+∠DBA=2x°;∵BD=BC ,∴∠C=∠CDB=2x°;在△ABC 中,∠A+∠C+∠ABC=180°∴∠ABC=180°-∠A-∠C=(180-x)°.故答案为:(180-3x ).【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理,熟练掌握性质和定理是解题的关键. 14.已知一次函数23y x =-+, 当1y =-时,x = ____________.【答案】2x =【分析】把1y =-代入即可求解.【详解】把1y =-代入一次函数23y x =-+得-1=-2x+3解得x=2,故填:2.【点睛】此题主要考查一次函数的性质,解题的关键是熟知坐标与函数的关系.15.分解因式:x 2-2x+1=__________.【答案】(x-1)1.【详解】由完全平方公式可得:2221(1)x x x -+=-故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底. 16.下列式子按一定规律排列 a 2,3a 4,5a 6,7a 8……则第2017个式子是________.【答案】4033 4034 a【解析】试题分析:根据题目中给出的数据可得:分母为2n,分子中a的指数为2n-1,则第2017个式子是4033 4034a.17.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.【答案】1【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=10°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=10°,BD=AD=6,再由10°角所对的直角边等于斜边的一半即可求出结果.【详解】∵∠C=90°,∠ABC=60°,∴∠A=10°.∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=10°,∴BD=AD=6,∴CD=12BD=6×12=1.故答案为1.【点睛】本题考查了直角三角形的性质、含10°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.三、解答题18.解方程组24 326x yx y-=⎧⎨+=⎩①②【答案】2=0 xy=⎧⎨⎩【解析】把①×2+②,消去y,求出x的值,然后把求得的x的值代入①求出y的值即可.【详解】解:24326x yx y-=⎧⎨+=⎩①②,①×2+②得:7x=14,即x=2,把x=2代入①得:y=0,则方程组的解为20x y =⎧⎨=⎩. 【点睛】 本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.19.化简:2344111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭,请选择一个绝对值不大于2的整数,作为x 的值代入并求值. 【答案】22x x +--;1 【分析】先根据分式的运算法则将所给代数式化简,然后选一个绝对值不大于2且使分式有意义的整数代入计算即可.【详解】2344111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭=23(1)(1)11(2)x x x x x --++⨯+- =2(2)(2)11(2)x x x x x +-+⨯+- =22x x +--, x=0符合题意,则当x=0时,原式=0202+--=1. 【点睛】 本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.如图,已知点B 、E 、C 、F 在同一条直线上,AB ∥DE, AC ∥DF, BE =CF.求证: AC =DF.【答案】证明见解析【分析】根据平行线的性质可得∠B=∠DEF ,∠ACB=∠F ,由BE=CF 可得BC=EF ,运用ASA 证明△ABC 与△DEF 全等,从而可得出结果.【详解】证明:∵BE=CF ,∴BE+EC=CF+EC ,即BC=EF ,∵AB ∥DE ,∴∠DEF=∠B ,∵AC ∥DF ,∴∠ACB=∠F ,在△ABC 和△DEF 中,=B DEF BC EFACB F ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA),∴AC=DF .【点睛】此题考查了全等三角形的判定与性质,证明线段相等,通常证明它们所在的三角形全等.21.如图,点B 、F 、C 、E 在一条直线上,FB CE =,//AB ED ,//AC FD ,AD 交BE 于O .(1)求证:ABC DEF ∆≅∆.(2)求证:AO OD =.【答案】(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠B=∠E ,∠BCA=∠EFD ,证出BC=EF ,即可得出结论;(2)由全等三角形的性质得出AC=DF ,∠ACB=∠DFE ,证明△ACO ≌△DFO (AAS ),即可得出结论.【详解】(1)证明:∵AB ∥DE ,∴∠B=∠E,∵AC ∥FD ,∴∠BCA=∠EFD ,∵FB=EC ,∴BC=EF ,在△ABC 和△DEF 中,B E BC EFBCA EFD ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△ABC ≌△DEF (ASA )(2)证明:∵△ABC≌△DEF,∴AC=DF,∠ACB=∠DFE,在△ACO和△DFO中,ACO DFOAOC DOF AC DF∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACO≌△DFO(AAS),∴AO=OD.【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;证明三角形全等是解题的关键.22.小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的函数关系式;(3)当量桶中水面上升至距离量桶顶部3cm时,应在量桶中放入几个小球?【答案】(1)2;(2)y=2x+30;(3)放入1个小球.【分析】(1)根据中间量筒可知,放入一个小球后,量筒中的水面升高2cm;(2)本题中关键是如何把图象信息转化为点的坐标,无球时水面高30cm,就是点(0,30);3个球时水面高为36,就是点(3,36),从而求出y与x的函数关系式.(3)列方程可求出量筒中小球的个数.【详解】(1)根据中间量筒可知,放入一个小球后,量筒中的水面升高2cm.故答案为2;(2)设水面的高度y与小球个数x的表达式为y=kx+b.当量筒中没有小球时,水面高度为30cm;当量筒中有3个小球时,水面高度为36cm,因此,(0,30),(3,36)满足函数表达式,则30336 bk b=⎧⎨+=⎩,解,得k230 b=⎧⎨=⎩.则所求表达式为y=2x+30;(3)由题意,得2x+30=46,解,得x=1.所以要放入1个小球.【点睛】本题考查了一次函数的实际应用,朴实而有新意,以乌鸦喝水的小故事为背景,以一次函数为模型,综合考查同学们识图能力、处理信息能力、待定系数法以及函数所反映的对应与变化思想的应用.23.先化简,再求值:22121xx x--+÷1111x xx x+--+,其中x=12.【答案】11xx-+,13.【分析】先将分式的分子和分母分解因式,将分式约分化简得到最简结果,再将未知数的值代入计算即可. 【详解】221112111x x xx x x x-+-÷-+-+,2(1)(1)11(1)11x x x xx x x+---=⋅⋅-++=11xx-+,当x=12时,原式=11121312-=+.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,再将未知数的值代入求值即可. 24.已知:∠1=∠2,∠3=∠1.求证:AC=AD【答案】见解析【分析】由∠3=∠1可得∠ABD=∠ABC,然后即可根据ASA证明△ABC≌△ABD,再根据全等三角形的性质即得结论.【详解】证明:∵∠3=∠1,∴∠ABD=∠ABC,在△ABC和△ABD中,∵∠2=∠1,AB=AB,∠ABC=∠ABD,∴△ABC≌△ABD(ASA),∴AC=AD.。

2017-2018八年级上期末数学试卷及答案

2017-2018八年级上期末数学试卷及答案

2017-2018八上期末数学试卷及答案一、你一定能选对(本大题共10小题,每小题3分,共30分)。

下列各题均有四个各选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.下列四个汽车标志图中,不是轴对称图形的是( )2.使分式1xx -有意义的x 的取值范围是( ) A.x ≠1 B.x ≠0 C.x ≠-1 D.x ≠0且x ≠1. 3.下列运算正确的是( )A. 2x+3y=5xyB.x 8÷x 2=x 4C.(x 2y)3=x 6y 3D.2x 3·x 2=2x 64.如图,已知AB=CD,添加一个条件后,仍然不能判定△ABC ≌△ADC 的是( ) A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°5.下列因式分解正确的是( )A. 6x+9y+3=3(2x+3y)B. x 2+2x+1=(x+1)2C.x 2-2xy-y 2=(x-y)2D.x 2+4=(x+2)2 6.点A 关于y 轴对称点是( ) A. (3,-4) B.(-3,4) C.(3,4) D.(-4,3) 7.下列各式从左到右的变形正确的是( ) A.2b a b +=12a + B. b a =22b a ++ C.a bc -+=-a b c+ D.22a a +-=224(2)a a --8.如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点,在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的DCBA三角形的个数有(不包含△ABC 本身)( ) A. 4个 B.3个 C.2个 D.1个 9.已知P=717m-1, Q=m 2-1017m(m 为任意实数),则P 与Q 的大小关系为( ) A.P>Q B.P=Q C.P<Q D.不能确定10.如图△ABC 与△CDE 都是等边三角形,且∠EBD=65°,则∠AEB 的度数是( ) A. 115° B.120° C.125° D.130°二.填空题(每题3分,共18分) 11.若分式8x x的值为0,则x=_____. 12.计算: 6a 2b ÷2a=_____.13.如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=AD, ∠A=36°,则∠DBC=______.14.信息技术的存储设备常用B 、KB 、MB 、GB 等作为存储设备的单位,例如,我们常说的某计算机的硬盘容量是320GB,某移动硬盘的容量是80GB,某个文件夹的大小是156KB 等,其中1GB=210MB,1MB=210KB,1KB=210B(字节),对于一个容量为8GB 的内存盘,其容量为____B(字节).15.已知(x+p)(x+q)=x 2+mx+3,p 、q 为整数,则m=___.16.如图,点A(2,,0), ∠AON=60°,点M 为平面直角坐标系内一点,B C且MO=MA,则MN的最小值为_______.三.解下列各题(本大题共8小题,共72分)17.(8分)计算: (1) (3x+1)(x+2) (2) 123p++1 23p-18.(8分)因式分解: (1)4x2-9 (2) -3x2+6xy-3y219(8分)先化简,再求值: (m+2-52m-)×243mm--,其中m=4.20(8分)如图,“丰收1号”小麦试验田是一块边长为a米的正方形试验田上修建两条宽为1米的甬道后剩余的部分,“丰收2号”小麦试验田是边长为a米的正方形去掉一个边长为1米的蓄水池后余下的部分,两块试验田的小麦都收获了500千克.(1) “丰收1号”试验田的面积为_____平方米;“丰收2号”试验田的面积为_____平方米;(2)“丰收1号”小麦试验田的单位面积产量是“丰收1号”小麦试验田的单位面积产量的多少倍?21(8分)如图,△ABC 中, ∠BAC=∠ADB,BE 平分∠ABC 交AD 于点E,交AC 于点F,过点E 作EG//BC 交AC 于点G.(1)求证: AE=AF; (2)若AG=4,AC=7,求FG 的长.22(10分)从2007年4月18日开始,我国铁路第六次提速,某次列车平均提速v km/h.(1) 若提速前列车的平均速度为x km/h,行驶1200km 的路程,提速后比提速前少用多长时间?(2)若v=50,行驶1200km 的路程,提速后所用时间是提速前的45,求提速前列车的平均速度?(3)用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.23(10分)已知:在△ABC 中, ∠B=60°,D 、E 分别为AB 、BC 上的点,且AE 、CD 交于点F.(1)如图1,若AE 、CD 为△ABC 的角平分线. ①求证: ∠AFC=120°;②若AD=6,CE=4,求AC 的长?图1(2)如图2,若∠FAC=∠FCA=30°,求证:AD=CE.24(12分)如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,OC 平分∠AOB 交AB 于点C,点D 为线段AB 上一点,过点D 作DE//OC 交y 轴于点E,已知AO=m,BO=n,且m 、n 满足n 2-12+36+|n-2m|=0. (1)求A 、B 两点的坐标?(2)若点D 为AB 中点,求OE 的长?(3)如图2,若点P(x,-2x+6)为直线AB 在x 轴下方的一点,点E 是y 轴的正半轴上一动点,以E 为直角顶点作等腰直角△PEF,使点F 在第一象限,且F 点的横、纵坐标始终相等,求点P 的坐标.图2Axx2017~2018学年度上学期期末试题八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11、812、3ab 13、36°14、23315、4或-4 16、32三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17、解:(1)原式=2362x x x +++…………(2分) =2372x x ++…………(4分) (2)112323p p ++- 解:原式=()()()()2-32323232323p p p p p p +++-+-…………(6分) =()()2-3232323p p p p +++-…………(7分)=2449pp -…………(8分) 18、解:(1)原式=()2223x -…………(2分) =(2x +3)(2x -3) …………(4分)(2)原式=22-3(2)x xy y -+…………(6分)=2-3()x y -…………(8分)19、解:原式=()()3422522--⋅---+m m m m m …………(2分)=()322292--⋅--m m m m =()()()322233--⋅--+m m m m m …………(4分)=2(m +3) …………(6分)当m =2时,原式=2×(2+3)=10…………(8分)20、解:(1) “丰收1号”试验田的面积为_(a -1)2_平方米;“丰收2号”试验田的面积为 (a 2-1)平方米.…………(4分) (2)()225005001-1a a ÷-…………(5分) =()()()211500500-1a a a +-⋅=()()()211500500-1a a a +-⋅=11a a +-…………(7分) ∴“丰收1号”小麦的单位面积产量是“丰收2号”小麦的单位面积产量的11a a +-倍……(8分)21、(1)∵BF 平分∠ABC∴∠ABF =∠CBF∵∠AFB =180°-∠ABF -∠BAF ∠BED =180°-∠CBF -∠ADB 又∵∠BAC =∠ADB∴∠AFB =∠BED …………(2分) ∵∠AEF =∠BED ∴∠AFB =∠AEF ∴AE =AF …………(4分)(2)如图,在BC 上截取BH =AB ,连接FH在△ABF 和△HBF 中∵⎪⎩⎪⎨⎧=∠=∠=BF BF HBF ABF BH AB ∴△ABF ≌△HBF (SAS )∴AF =FH ,∠AFB =∠HFB …………(5分) ∵∠AFB =∠AEF ∴∠HFB =∠AEF ∴AE ∥FH ∴∠GAE =∠CFH ∵EG ∥BC ∴∠AGE =∠C ∵AE =AF∴AE =FH …………(6分)H GFED CBA在△AEG 和△FHC 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠FH AE C AGE CFH GAE∴△AEG ≌△FHC (AAS ) ∴AG =FC =4…………(7分)∴FG =AG + FC -AC =1. …………(8分) 注:本题两问其它解法参照评分 22、解:(1)由题意得:12001200-x x v +…………(2分)…………(3分)∴提速后比提速前少用 小时. …………(4分) (2)依题意有:120041200505x x=⨯+…………(6分) 解得:x =200…………(7分)经检验x =200是原方程的解,且符合题意…………(8分) ∴提速前列车的平均速度为:200千米/时 (3) 提速前列车的平均速度为:50sv千米/时. …………(10分)1200()1200()()120012001200()x v xx x v x x v x v x x x v +=-+++-=+1200()v x x v =+1200()v x x v +23、(1)①∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =BAC ∠21,∠FCA =BCA ∠21…………(1分) ∵∠B =60°∴∠BAC +∠BCA =120°…………(2分)∴∠AFC =180-∠FAC -∠FCA =180-)21BCA BAC ∠+∠(=120°…………(3分)②在AC 上截取AG =AD =6,连接FG ∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =∠FAD ,∠FCA =∠FCE ∵∠AFC =120°∴∠AFD =∠CFE =60°…………(4分)在△ADF 和△AGF 中∵⎪⎩⎪⎨⎧=∠=∠=AF AF GAF DAF AG AD ∴△ADF ≌△AGF (SAS )∴∠AFD =∠AFG =60°…………(5分) ∴∠GFC =∠CFE =60° 在△CGF 和△CEF 中∵GFC EFC CF CF GCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CGF ≌△CEF (ASA ) ∴CG =CE =4∴AC =10…………(6分)GFDE BCA(2)在AE 上截取FH =FD ,连接CH ∵∠FAC =∠FCA =30° ∴FA =FC …………(7分)在△ADF 和△CHF 中∵⎪⎩⎪⎨⎧=∠=∠=HF DF CFH AFD CF AF ∴△ADF ≌△CHF (SAS )∴AD =CH ,∠DAF =∠HCF …………(8分) ∵∠CEH =∠B +∠DAF =60°+∠DAF ∠CHE =∠HAC +∠HCA =60°+∠HCF ∴∠CEH =∠CHE …………(9分) ∴CH =CE∴AD =CE …………(10分) 注:本题两问其它解法参照评分24、(1)∵2123620n n n m -++-= ∴()0262=-+-m n n …………(1分)∵()260n -≥,-20n m ≥ ∴()260n -=,-20n m =∴ m =3,n =6…………(2分)∴点A 为(3,0),点B 为(0,6)…………(3分)(2)延长DE 交x 轴于点F ,延长FD 到点G ,使得DG =DF ,连接BG 设OE =xHFDE BCA∵OC 平分∠AOB ∴∠BOC =∠AOC =45° ∵DE ∥OC∴∠EFO =∠FEO =∠BEG =∠BOC =∠AOC =45°…………(4分) ∴OE =OF =x在△ADF 和△BDG 中∵ ⎪⎩⎪⎨⎧=∠=∠=DG DF BDG ADF BD AD∴△ADF ≌△BDG (SAS )∴BG =AF =3+x ,∠G =∠AFE =45°…………(5分) ∴∠G =∠BEG =45° ∴BG =BE =6-x∴6-x =3+x …………(6分) 解得:x =1.5∴OE =1.5…………(7分)(3)分别过点F 、P 作FM ⊥y 轴于点M ,PN ⊥y 轴于点N 设点E 为(0,m )∵点P 的坐标为(x ,-2x +6) 则PN =x ,EN =m +2x-6…………(8分)∵∠PEF =90°∴∠PEN+∠FEM=90°∵FM⊥y轴∴∠MFE+∠FEM=90°∴∠PEN=∠MFE在△EFM和△PEN中∵MFE PENFME PNE EF EP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EFM≌△PEN(AAS)∴ME=NP=x,FM=EN=m+2x-6…………(9分) ∴点F为(m+2x-6,m+x)…………(10分) ∵F点的横坐标与纵坐标相等∴m+2x-6=m+x…………(11分)解得:x=6∴点P为(6,-6)…………(12分)注:本题其它解法参照评分。

【精编】北京市大兴区2017-2018学年八年级上期末考试数学试卷(,有答案)

【精编】北京市大兴区2017-2018学年八年级上期末考试数学试卷(,有答案)

北京市大兴区八年级(上)期末数学试卷一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么的取值范围是()A.≠0B.=﹣1C.≠﹣1D.≠12.9的平方根是()A.±3B.3C.81D.±813.下列实数中的有理数是()A.B.πC.D.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.5.如果将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值()A.扩大为原的3倍B.不改变C.缩小为原的D.扩大为原的9倍6.下列二次根式中,最简二次根式是()A.B.C.D.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则的取值范围是.10.若分式的值是1,则的值是.11.若,则=.12.若最简二次根式和是同类二次根式,则a的值是.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF≌△BDE,则可以补充一个条件:.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.18.计算:﹣+÷﹣.19.先化简,再求值:( +)÷,其中a=+2,b=﹣2.20.解分式方程:﹣=1.21.已知:如图,△ABC中,D是BC延长线上一点,E是CA延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC ∥EF.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).2017-2018学年北京市大兴区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么的取值范围是()A.≠0B.=﹣1C.≠﹣1D.≠1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,2+2≠0,解得≠﹣1.故选:C.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.9的平方根是()A.±3B.3C.81D.±81【分析】根据平方根的定义即可求出答案.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型.3.下列实数中的有理数是()A.B.πC.D.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、是无理数,故A错误;B、π是无理数,故B错误;C、是有理数,故C正确;D、是无理数,故D错误;故选:C.【点评】本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如果将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值()A.扩大为原的3倍B.不改变C.缩小为原的D.扩大为原的9倍【分析】根据分式的性质求解即可.【解答】解:将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值不变,故选:B.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.6.下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义求解即可.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°【分析】根据平行线的性质求出∠3,根据三角形内角和定理求出∠4,即可得出答案.【解答】解:如图:∵直线l1∥l2,∠1=45°,∴∠3=∠1=45°,∵∠A=50°,∴∠2=∠4=180°﹣∠A﹣∠3=85°.故选:B.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠4的度数,注意:两直线平行,同位角相等.8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【分析】分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC的度数.【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.【点评】本题考查了几何体的展开图与勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则的取值范围是≤3.【分析】直接利用二次根式的性质得出3﹣的取值范围,进而求出答案.【解答】解:∵二次根式有意义,∴3﹣≥0,解得:≤3.故答案为:≤3.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.10.若分式的值是1,则的值是9.【分析】根据题意列出关于的分式方程,解之可得.【解答】解:根据题意得=1,两边都乘以+6,得:2﹣3=+6,解得:=9,经检验:=9是原分式方程的解,所以=9,故答案为:9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.若,则=5.【分析】用n表示出m,然后代入所求的分式中进行约分、化简即可.【解答】解:由题意,知:m=2n;===5.故答案为5.【点评】解答此类题一定要熟练掌握分式的基本性质.12.若最简二次根式和是同类二次根式,则a的值是6.【分析】根据同类二次根式的概念即可求出答案.【解答】解:由题意可知:3a﹣4=a+8,解得:a=6故答案为:6【点评】本题考查同类二次根式与最简二次根式,解题的关键是正确理解同类二次根式与最简二次根式的概念,本题属于基础题型.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.【分析】让奇数的情况的个数除以所有的可能情况数,即可求解.【解答】解:任意掷一枚均匀的正方体骰子,朝上的数字有从1道6共6个数字,奇数有1,3,5共3种,则奇数点朝上”发生的可能性大小为=.【点评】用到的知识点为:可能性等于所求情况数与总情况数之比.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是12cm.【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为2cm或是腰长为5cm两种情况.【解答】解:等腰三角形的两边长分别为2cm和5cm,当腰长是5cm时,则三角形的三边是5cm,5cm,2cm,5cm+2cm>5cm,满足三角形的三边关系,三角形的周长是12cm;当腰长是2cm时,三角形的三边是2cm,2cm,5cm,2cm+2cm<5cm,不满足三角形的三边关系.故答案为:12cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF≌△BDE,则可以补充一个条件:AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵AB=CD,∴AC=BD,∵FC⊥AD 于点C,ED⊥AD于点D,∴∠ACF=∠BDE=90°,∴根据HL可以添加AF=BE,根据SAS可以添加CF=DE,根据ASA可以添加∠A=∠EBD,根据AAS可以添加∠F=∠E,故答案为AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【点评】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A)÷2=90°﹣∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:180°﹣2α【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质及三角形内角和定理;此题能够发现全等三角形,再根据平角的定义和三角形的内角和定理发现∠EDF=∠B.再根据三角形的内角和定理以及等腰三角形的性质进行推导.三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.【分析】首先通分,进而利用分式加减运算法则计算得出答案.【解答】解:﹣=﹣=.【点评】此题主要考查了分式的加减运算,正确通分是解题关键.18.计算:﹣+÷﹣.【分析】首先计算开方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣+÷﹣=3﹣3+﹣=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.先化简,再求值:( +)÷,其中a=+2,b=﹣2.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=+2,b=﹣2时,原式=(+)÷=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得2+﹣2+2=2﹣1,解得:=3,经检验=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.已知:如图,△ABC中,D是BC延长线上一点,E是CA延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.【分析】根据三角形的外角的性质证明即可.【解答】证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC ∥EF.【分析】直接利用全等三角形的判定方法得出△ABC≌△DEF(SAS),进而得出答案.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.【分析】根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,根据三角形的面积公式分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC===2,∵CD=1,AD=3,AC=2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=AB×BC+×AC×CD=×2×2+×1×2=2+.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?【分析】本题求的是原计划的工效,工作总量是3000米,一定是根据工作时间列的等量关系.关键描述语是:提前10天完成,等量关系为:原计划时间﹣实际时间=10.【解答】解:设原计划每天铺设多长管道设原计划每天铺设米管道,根据题意得.解得=60,经检验=60是原分式方程的解.答:原计划每天铺设60米长的管道.【点评】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定和性质得出DE=DF即可;【解答】证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.【点评】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出∠B=∠C.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.【分析】连接BC,作BC的中垂线交AB于点D,据此知DB=DC,则AC+AD+DC=AC+AD+DB=AC+AB.【解答】解:如图所示,点D即为所求.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握中垂线的尺规作图及其性质.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP=CP,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB+PC>AB+AC,理由如下:在BA的延长线上截取AF=AC,连接PF,在△FAP和△CAP中,,∴△FAP≌△CAP(SAS),∴FP=CP.在△FPB中,FP+BP>FA+AB,即PB+PC>AB+AC.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,三角形三边的性质.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是60度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是60度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).【分析】(1)只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;(2)只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(3)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α;【解答】解:(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质和判定、等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.。

北京市—2018八年级上期末教学数学试卷有答案 -精编

北京市—2018八年级上期末教学数学试卷有答案 -精编

东城区2017—2018学年度第一学期期末检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的 1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。

将0.056用科学记数法表示为A. -15.610⨯B. -25.610⨯C. -35.610⨯ D .-10.5610⨯2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,其中基本是轴对称图形的是3.下列式子为最简二次根式的是4.若分式23x x -+的值为0,则x 的值等于 A .0 B .2 C .3 D .-35.下列运算正确的是A. 532b b b ÷=B.527()b b =C. 248b b b = D .2-22aa b a ab =+()6.如图,在△ABC 中,∠B=∠C=60,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为A .2 B.4 D .7.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。

此角平分仪的画图原理是:根据仪器结构,可得 △ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立A. 2222)(b ab a b a ++=+B. 2222)(b ab a b a +-=-C. 22))((b a b a b a -=-+ D. 2()a a b a ab +=+9.如图,已知等腰三角形ABC AB AC,,若以点B为圆心,BC长为半径画弧,交腰AC于=点E,则下列结论一定..正确的是A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140° B.100° C.50° D.40°二、填空题:(本题共16分,每小题2分)11x的取值范围是.12.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是.13.如图,点B,F,C,E在一条直线上,已知BF=CE,AC//DF,请你添加一个适当的条件使得△ABC≌△DEF.14.等腰三角形一边等于5,另一边等于8,则其周长是 .15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_______.16.如图,在△ABC 中,∠ACB=90°,AD 平分∠ABC ,BC=10cm ,BD :DC=32,则点D 到AB的距离为_________ cm .17.如果实数,a b 满足226,8,a b ab a b +==+=那么 ;18.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线. 已知:线段AB .小俊的作法如下:老师说:“小俊的作法正确.”请回答:小俊的作图依据是_________________________.三、解答题(本题共9个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.(5分)计算:10126()1)2-++-20.(5分)因式分解:(1)24x - (2) 2244ax axy ay-+在直线21.(5分)如图,点E ,F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF.求证:DF=CE.22.(5分)已知2+2x x =,求()()()()22311x x x x x +-+++-的值23.(5分)解分式方程:11+2-22-xx x+=.24.(5分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.25.(6分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?26.(6分)如图,在△ABC 中,AB =AC ,AD ⊥于点D ,AM 是△ABC 的外角∠CAE 的平分线. (1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△AD N 的形状并说明理由.27.(6分)定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1) 若1,a b ==直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b = (用含x 的式子表示)28. (6分)如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E. (1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE, BE, CE 之间的数量关系,并证明你的结论.东城区2017——2018学年度第一学期期末教学目标检测初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)三、解答题(本题共54分)10119.61245())-+-分分220.14=2)(2)2x x x --+()(分22222244=(44)1(2)3ax axy ay a x xy y a x y -+-+=-()分分21. 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF.求证:△ADF ≌△BCE.证明:∵点E ,F 在线段AB 上,AE =BF.,∴AE+EF =BF+EF , 即:AF =BE .………1分 在△ADF 与△BCE 中,,,,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩………3分 ∴△ADF ≌△BCE(SAS) ………4分∴ DF=CE (全等三角形对应边相等)………5分2222222.=4431342=55x x x x x x x x x ++--+-=+++=解:原式分当时,原式分23.解方程:11+2-22-xx x+=解:方程两边同乘(x -2),得1+2(x -2)=-1-x 2分 解得:2.33x =L L 分 220.323x x 4x 5=-?=L L L L 检验:当时,分所以,原分式方程的解为分24. 先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.()()()()333223333233142x x x x x x x x x x x -+-=÷++-+=⋅++-=+解:原式分分分当2x =-时,原式===.…5分 25.解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人……1分由题意得240240-304x x= ……………3分 解得x =6 …………… 4分 经检验x =6是分式方程的解 ……………5分4x 24=……………6分答:2017年每小时客运量24万人26.(1)∵AB=AC ,AD ⊥BC ,∴∠BAD=∠CAD=12BAC ∠.…………… 1分∵AM 平分∠EAC ,∴∠EAM=∠MAC=12EAC ∠.…………… 2分∴∠MAD=∠MAC+∠DAC=1122EAC BAC ∠+∠=1180902⨯︒=︒。

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2017-2018学年北京市大兴区八年级上期末数学试卷(含答案解析)

2017-2018学年北京市大兴区八年级上期末数学试卷(含答案解析)

2017-2018学年北京市大兴区八年级(上)期末数学试卷一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么x的取值范围是()A.x≠0B.x=﹣1C.x≠﹣1D.x≠12.9的平方根是()A.±3B.3C.81D.±813.下列实数中的有理数是()A.B.πC.D.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.5.如果将分式(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.不改变C.缩小为原来的D.扩大为原来的9倍6.下列二次根式中,最简二次根式是()A.B.C.D.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则x的取值范围是.10.若分式的值是1,则x的值是.11.若,则=.12.若最简二次根式和是同类二次根式,则a的值是.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF ≌△BDE,则可以补充一个条件:.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.18.计算:﹣+÷﹣.19.先化简,再求值:( +)÷,其中a=+2,b=﹣2.20.解分式方程:﹣=1.21.已知:如图,△ABC中,D是BC延长线上一点,E是CA延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC∥EF.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).2017-2018学年北京市大兴区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么x的取值范围是()A.x≠0B.x=﹣1C.x≠﹣1D.x≠1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,2x+2≠0,解得x≠﹣1.故选:C.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.9的平方根是()A.±3B.3C.81D.±81【分析】根据平方根的定义即可求出答案.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型.3.下列实数中的有理数是()A.B.πC.D.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、是无理数,故A错误;B、π是无理数,故B错误;C、是有理数,故C正确;D、是无理数,故D错误;故选:C.【点评】本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如果将分式(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.不改变C.缩小为原来的D.扩大为原来的9倍【分析】根据分式的性质求解即可.【解答】解:将分式(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式的值不变,故选:B.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.6.下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义求解即可.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°【分析】根据平行线的性质求出∠3,根据三角形内角和定理求出∠4,即可得出答案.【解答】解:如图:∵直线l1∥l2,∠1=45°,∴∠3=∠1=45°,∵∠A=50°,∴∠2=∠4=180°﹣∠A﹣∠3=85°.故选:B.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠4的度数,注意:两直线平行,同位角相等.8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【分析】分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.【点评】本题考查了几何体的展开图与勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则x的取值范围是x≤3.【分析】直接利用二次根式的性质得出3﹣x的取值范围,进而求出答案.【解答】解:∵二次根式有意义,∴3﹣x≥0,解得:x≤3.故答案为:x≤3.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.10.若分式的值是1,则x的值是9.【分析】根据题意列出关于x的分式方程,解之可得.【解答】解:根据题意得=1,两边都乘以x+6,得:2x﹣3=x+6,解得:x=9,经检验:x=9是原分式方程的解,所以x=9,故答案为:9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.若,则=5.【分析】用n表示出m,然后代入所求的分式中进行约分、化简即可.【解答】解:由题意,知:m=2n;===5.故答案为5.【点评】解答此类题一定要熟练掌握分式的基本性质.12.若最简二次根式和是同类二次根式,则a的值是6.【分析】根据同类二次根式的概念即可求出答案.【解答】解:由题意可知:3a﹣4=a+8,解得:a=6故答案为:6【点评】本题考查同类二次根式与最简二次根式,解题的关键是正确理解同类二次根式与最简二次根式的概念,本题属于基础题型.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.【分析】让奇数的情况的个数除以所有的可能情况数,即可求解.【解答】解:任意掷一枚均匀的正方体骰子,朝上的数字有从1道6共6个数字,奇数有1,3,5共3种,则奇数点朝上”发生的可能性大小为=.【点评】用到的知识点为:可能性等于所求情况数与总情况数之比.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是12cm.【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为2cm或是腰长为5cm两种情况.【解答】解:等腰三角形的两边长分别为2cm和5cm,当腰长是5cm时,则三角形的三边是5cm,5cm,2cm,5cm+2cm>5cm,满足三角形的三边关系,三角形的周长是12cm;当腰长是2cm时,三角形的三边是2cm,2cm,5cm,2cm+2cm<5cm,不满足三角形的三边关系.故答案为:12cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF ≌△BDE,则可以补充一个条件:AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵AB=CD,∴AC=BD,∵FC⊥AD 于点C,ED⊥AD于点D,∴∠ACF=∠BDE=90°,∴根据HL可以添加AF=BE,根据SAS可以添加CF=DE,根据ASA可以添加∠A=∠EBD,根据AAS可以添加∠F=∠E,故答案为AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【点评】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF 和△CED 中,,∴△BDF ≌△CDE ∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A )÷2=90°﹣∠A , ∵∠FDE=α, ∴∠A=180°﹣2α, 故答案为:180°﹣2α【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质及三角形内角和定理;此题能够发现全等三角形,再根据平角的定义和三角形的内角和定理发现∠EDF=∠B .再根据三角形的内角和定理以及等腰三角形的性质进行推导.三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.【分析】首先通分,进而利用分式加减运算法则计算得出答案.【解答】解:﹣=﹣=.【点评】此题主要考查了分式的加减运算,正确通分是解题关键.18.计算:﹣+÷﹣.【分析】首先计算开方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣+÷﹣=3﹣3+﹣=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.先化简,再求值:(+)÷,其中a=+2,b=﹣2.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=+2,b=﹣2时,原式=(+)÷=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得x 2+x ﹣2x +2=x 2﹣1, 解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.已知:如图,△ABC 中,D 是BC 延长线上一点,E 是CA 延长线上一点,F 是AB 上一点,连接EF .求证:∠ACD >∠E .【分析】根据三角形的外角的性质证明即可. 【解答】证明:∵∠ACD 是△ABC 的一个外角, ∴∠ACD >∠BAC ,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC∥EF.【分析】直接利用全等三角形的判定方法得出△ABC≌△DEF(SAS),进而得出答案.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.【分析】根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,根据三角形的面积公式分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC===2,∵CD=1,AD=3,AC=2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=AB×BC+×AC×CD=×2×2+×1×2=2+.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?【分析】本题求的是原计划的工效,工作总量是3000米,一定是根据工作时间来列的等量关系.关键描述语是:提前10天完成,等量关系为:原计划时间﹣实际时间=10.【解答】解:设原计划每天铺设多长管道设原计划每天铺设x米管道,根据题意得.解得x=60,经检验x=60是原分式方程的解.答:原计划每天铺设60米长的管道.【点评】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定和性质得出DE=DF即可;【解答】证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.【点评】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出∠B=∠C.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.【分析】连接BC,作BC的中垂线交AB于点D,据此知DB=DC,则AC+AD+DC=AC+AD+DB=AC+AB.【解答】解:如图所示,点D即为所求.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握中垂线的尺规作图及其性质.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP=CP,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB+PC>AB+AC,理由如下:在BA的延长线上截取AF=AC,连接PF,在△FAP和△CAP中,,∴△FAP≌△CAP(SAS),∴FP=CP.在△FPB中,FP+BP>FA+AB,即PB+PC>AB+AC.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,三角形三边的性质.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是60度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是60度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).【分析】(1)只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;(2)只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(3)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α;【解答】解:(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质和判定、等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.。

北京市大兴区八年级(上)期末数学试卷

北京市大兴区八年级(上)期末数学试卷
A. 随时打开电视机,正在播天气预报
B.抛掷一枚质地均匀的骰子,出现 4 点朝上 C.从分别写有 3,6 两个数字的两张卡片中随机抽出一张,卡片上的数字能被 3
整除
D.长度分别是 3cm,3cm,6cm 的三根木条首尾相接,组成一个三角形
4. 下列各式中,最简二次根式是( )
A. 27
B. m5n2
14.【答案】600x+30=450x
【解析】
解:设原计划平均每天植树棵 x 棵,现在每天植树(x+30)棵,
依题意得,

故答案是:
.Hale Waihona Puke 设原计划平均每天植树棵 x 棵,根据“现在植树 600 棵所需的时间与原计划植 树 450 棵所需的时间相同”这一等量关系列出分式方程求解即可. 此题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量 关系是解决问题的关键.
【解析】
解:∵
-6y+9=0,∴
∴3x+4=0,y-3=0,
解得:x=- ,y=3,
代入 axy-3x=y,
a×3×(- )-3×(- =3,
+(y-3)2=0,
故 a= .
故选:A.
根据
-6y+9=0,可求出 x,y 的值,代入 axy-3x=y,即可解出 a.
本题考查了完全平方公式及非负数的性质,属于基础题,关键是根据非负数
27. 在同一平面内的图形 M,N,给出如下定义:P为图形 M 上任意一点,Q 为图形 N 上任意一点,如果 P,Q 两点间的距离有最小值,那么称这个最小值为图形 M,N
第 4 页,共 15 页
间的“闭距离“,记作 d(M,N). 如图,等腰直角三角形 ABC 的一条直角边 AB 垂直数轴于点 D,斜边 AC 与数轴交 于点 E,数轴上点 O 表示的有理数是 0,若 AB=BC=8,AD=6,OD=2.点 O 到边 BC 的距离与线段 DB 的长相等. 1 求 d(点 O,点 E); 2 求 d(点 O,△ABC).

(精选)北京市大兴区2017-2018学年八年级上期末考试数学试卷(,有答案)

(精选)北京市大兴区2017-2018学年八年级上期末考试数学试卷(,有答案)

北京市大兴区八年级(上)期末数学试卷一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么的取值范围是()A.≠0B.=﹣1C.≠﹣1D.≠12.9的平方根是()A.±3B.3C.81D.±813.下列实数中的有理数是()A.B.πC.D.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.5.如果将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值()A.扩大为原的3倍B.不改变C.缩小为原的D.扩大为原的9倍6.下列二次根式中,最简二次根式是()A.B.C.D.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则的取值范围是.10.若分式的值是1,则的值是.11.若,则=.12.若最简二次根式和是同类二次根式,则a的值是.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF≌△BDE,则可以补充一个条件:.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.18.计算:﹣+÷﹣.19.先化简,再求值:( +)÷,其中a=+2,b=﹣2.20.解分式方程:﹣=1.21.已知:如图,△ABC中,D是BC延长线上一点,E是CA延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC ∥EF.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).2017-2018学年北京市大兴区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么的取值范围是()A.≠0B.=﹣1C.≠﹣1D.≠1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,2+2≠0,解得≠﹣1.故选:C.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.9的平方根是()A.±3B.3C.81D.±81【分析】根据平方根的定义即可求出答案.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型.3.下列实数中的有理数是()A.B.πC.D.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、是无理数,故A错误;B、π是无理数,故B错误;C、是有理数,故C正确;D、是无理数,故D错误;故选:C.【点评】本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如果将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值()A.扩大为原的3倍B.不改变C.缩小为原的D.扩大为原的9倍【分析】根据分式的性质求解即可.【解答】解:将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值不变,故选:B.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.6.下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义求解即可.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°【分析】根据平行线的性质求出∠3,根据三角形内角和定理求出∠4,即可得出答案.【解答】解:如图:∵直线l1∥l2,∠1=45°,∴∠3=∠1=45°,∵∠A=50°,∴∠2=∠4=180°﹣∠A﹣∠3=85°.故选:B.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠4的度数,注意:两直线平行,同位角相等.8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【分析】分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC的度数.【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.【点评】本题考查了几何体的展开图与勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则的取值范围是≤3.【分析】直接利用二次根式的性质得出3﹣的取值范围,进而求出答案.【解答】解:∵二次根式有意义,∴3﹣≥0,解得:≤3.故答案为:≤3.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.10.若分式的值是1,则的值是9.【分析】根据题意列出关于的分式方程,解之可得.【解答】解:根据题意得=1,两边都乘以+6,得:2﹣3=+6,解得:=9,经检验:=9是原分式方程的解,所以=9,故答案为:9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.若,则=5.【分析】用n表示出m,然后代入所求的分式中进行约分、化简即可.【解答】解:由题意,知:m=2n;===5.故答案为5.【点评】解答此类题一定要熟练掌握分式的基本性质.12.若最简二次根式和是同类二次根式,则a的值是6.【分析】根据同类二次根式的概念即可求出答案.【解答】解:由题意可知:3a﹣4=a+8,解得:a=6故答案为:6【点评】本题考查同类二次根式与最简二次根式,解题的关键是正确理解同类二次根式与最简二次根式的概念,本题属于基础题型.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.【分析】让奇数的情况的个数除以所有的可能情况数,即可求解.【解答】解:任意掷一枚均匀的正方体骰子,朝上的数字有从1道6共6个数字,奇数有1,3,5共3种,则奇数点朝上”发生的可能性大小为=.【点评】用到的知识点为:可能性等于所求情况数与总情况数之比.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是12cm.【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为2cm或是腰长为5cm两种情况.【解答】解:等腰三角形的两边长分别为2cm和5cm,当腰长是5cm时,则三角形的三边是5cm,5cm,2cm,5cm+2cm>5cm,满足三角形的三边关系,三角形的周长是12cm;当腰长是2cm时,三角形的三边是2cm,2cm,5cm,2cm+2cm<5cm,不满足三角形的三边关系.故答案为:12cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF≌△BDE,则可以补充一个条件:AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵AB=CD,∴AC=BD,∵FC⊥AD 于点C,ED⊥AD于点D,∴∠ACF=∠BDE=90°,∴根据HL可以添加AF=BE,根据SAS可以添加CF=DE,根据ASA可以添加∠A=∠EBD,根据AAS可以添加∠F=∠E,故答案为AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【点评】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A)÷2=90°﹣∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:180°﹣2α【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质及三角形内角和定理;此题能够发现全等三角形,再根据平角的定义和三角形的内角和定理发现∠EDF=∠B.再根据三角形的内角和定理以及等腰三角形的性质进行推导.三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.【分析】首先通分,进而利用分式加减运算法则计算得出答案.【解答】解:﹣=﹣=.【点评】此题主要考查了分式的加减运算,正确通分是解题关键.18.计算:﹣+÷﹣.【分析】首先计算开方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣+÷﹣=3﹣3+﹣=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.先化简,再求值:( +)÷,其中a=+2,b=﹣2.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=+2,b=﹣2时,原式=(+)÷=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得2+﹣2+2=2﹣1,解得:=3,经检验=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.已知:如图,△ABC中,D是BC延长线上一点,E是CA延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.【分析】根据三角形的外角的性质证明即可.【解答】证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC ∥EF.【分析】直接利用全等三角形的判定方法得出△ABC≌△DEF(SAS),进而得出答案.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.【分析】根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,根据三角形的面积公式分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC===2,∵CD=1,AD=3,AC=2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=AB×BC+×AC×CD=×2×2+×1×2=2+.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?【分析】本题求的是原计划的工效,工作总量是3000米,一定是根据工作时间列的等量关系.关键描述语是:提前10天完成,等量关系为:原计划时间﹣实际时间=10.【解答】解:设原计划每天铺设多长管道设原计划每天铺设米管道,根据题意得.解得=60,经检验=60是原分式方程的解.答:原计划每天铺设60米长的管道.【点评】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定和性质得出DE=DF即可;【解答】证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.【点评】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出∠B=∠C.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.【分析】连接BC,作BC的中垂线交AB于点D,据此知DB=DC,则AC+AD+DC=AC+AD+DB=AC+AB.【解答】解:如图所示,点D即为所求.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握中垂线的尺规作图及其性质.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP=CP,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB+PC>AB+AC,理由如下:在BA的延长线上截取AF=AC,连接PF,在△FAP和△CAP中,,∴△FAP≌△CAP(SAS),∴FP=CP.在△FPB中,FP+BP>FA+AB,即PB+PC>AB+AC.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,三角形三边的性质.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是60度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是60度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).【分析】(1)只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;(2)只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(3)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α;【解答】解:(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质和判定、等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.。

2017-2018学年北京市大兴区八年级上学期期末数学试卷(无答案)

2017-2018学年北京市大兴区八年级上学期期末数学试卷(无答案)

大兴区2017-2018学年度第一学期期末检测初二数学试卷考 生 须 知 1.本试卷共4页,共三道大题,28道小题,满分100分,考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律涂或写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将答题卡交回.第Ⅰ卷(选择题,共16分)一、选择题:(本题共8个小题,每题2分,共16分)1. 如果分式12+2x 有意义,那么x 的取值范围是 A . 0x ≠ B . -1x = C .1x ≠- D . 1x ≠2.9的平方根是A .±3B . 3C .81D .±813.下列实数中,有理数是A .2B .πC .227D .39 4.下列交通标志图案不是轴对称图形的是A. B. C. D.5. 如果将分式y x y+2(x ,y 均为正数)中字母的x ,y 的值分别扩大为原来的3倍,那么分式y x y+2的值 A .扩大为原来的3倍 B .不改变C .缩小为原来的13D .扩大为原来的9倍6.下列二次根式中,最简二次根式是A .8B .23mC .21D .67.如图,直线l 1∥l 2,∠A =50°,∠1=45°,则∠2的度数是A .95°B .85°C .65°D .45°8.如图是一个棱长为1的正方体的展开图,点A,B,C 是展开后小正方形的顶点,连接AB ,BC,则∠ABC 的大小是A .60°B . 50°C .45°D .30°第Ⅱ卷 (填空题、解答题84分)二、填空题(共8个小题,每小题2分,共16分)9.若二次根式3a -有意义,则a 的取值范围是 .10.若分式236x x -+的值是1,则x 的值是 . 11.若2m n =,则3m n m n+=-的值是 . 12.若最简二次根式34a -和8a +是同类二次根式,则a 的值是 . 13.任意掷一枚质地均匀的正方体骰子,“奇数点朝上”发生的可能性大小为 . 14. 已知等腰三角形的两边长分别是5cm ,2cm ,则这个等腰三角形的周长是___________cm .15.如图,点A ,B ,C ,D 在同一直线上,AB=CD ,FC ⊥AD 于点C ,ED ⊥AD于点D ,要使△ACF ≌△BDE ,则可以补充一个条件:____________________.16.如图,在△ABC 中,AB=AC ,D ,E ,F 分别在BC,AC ,AB 上的点,且BF=CD ,BD=CE ,∠FDE =α,则∠A 的度数是 度.(用含α的代数式表示)三.解答题: (共12个小题,其中17-22小题,每小题5分,23-25小题,每小题6分,27小题7分,28小题8分,共68分)17. 计算:2136b a ab-18.计算:3118271262-+÷-19.先化简,再求值:221()b a a b a b a b +÷+-+,其中32a =+,32b =-20.解分式方程:x x x -=-+211121.已知:如图,△ABC 中,D 是BC 延长线上一点,E 是CA 延长线上一点,F 是AB 上一点,连接EF .求证:∠ACD >∠E22.已知:如图,点A ,F ,C ,D 在同一直线上,AF =DC ,AB ∥DE , AB =DE ,点F ,求证:BC ∥EF .23.已知:如图,四边形ABCD 中,AB =BC =2, CD =1,DA =3,∠ABC =90°,求四边形ABCD 的面积.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25﹪.问原计划每天铺设管道多少米?25. 已知:如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D, 使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.28.(1) 在等边三角形ABC中,①如图1,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图2,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图3,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).。

北京市大兴区度第一学期八年级数学期末检测试卷(含答案).doc

北京市大兴区度第一学期八年级数学期末检测试卷(含答案).doc

1大兴区2019-2020学年度第一学期期末检测初二数学试卷第Ⅰ卷(选择题,共16分)一、选择题:(本题共8个小题,每题2分,共16分)1. 如果分式12+2x 有意义,那么x 的取值范围是A . 0x ≠B . -1x =C .1x ≠-D . 1x ≠ 2.9的平方根是 A .±3B . 3C .81D .±81 3.下列实数中,有理数是A B .π C .227D 4.下列交通标志图案不是轴对称图形的是A.B. C. D. 5. 如果将分式y x y +2(x ,y 均为正数)中字母的x ,y 的值分别扩大为原来的3倍,那么分式yx y+2的值A .扩大为原来的3倍B .不改变C .缩小为原来的13D .扩大为原来的9倍 6.下列二次根式中,最简二次根式是A .8B C .21D .67.如图,直线l 1∥l 2,∠A =50°,∠1=45°,则∠2的度数是 A .95°B .85°C .65°2D .45°8.如图是一个棱长为1的正方体的展开图,点A,B,C 是展开后小正方形的顶点,连接AB ,BC,则∠ABC 的大小是A .60°B . 50°C .45°D .30°第Ⅱ卷 (填空题、解答题84分)二、填空题(共8个小题,每小题2分,共16分)9.a 的取值范围是 . 10.若分式236x x -+的值是1,则x 的值是 .11.若2mn=,则3m n m n +=-的值是 . 12.是同类二次根式,则a 的值是 . 13.任意掷一枚质地均匀的正方体骰子,“奇数点朝上”发生的可能性大小为 . 14. 已知等腰三角形的两边长分别是5cm ,2cm ,则这个等腰三角形的周长是___________cm .15.如图,点A ,B ,C ,D 在同一直线上,AB=CD ,FC ⊥AD 于点C ,ED ⊥AD 于点D ,要使△ACF ≌△BDE ,则可以补充一个条件:____________________.16.如图,在△ABC 中,AB=AC ,D ,E ,F 分别在BC,AC ,AB 上的点,且BF=CD ,BD=CE ,∠FDE =α,则∠A 的度数是 度.(用含α的代数式表示)三.解答题: (共12个小题,其中17-22小题,每小题5分,23-25小题,每小题6分,27小题7分,28小题8分,共68分)17. 计算: 2136b a ab-18.19.先化简,再求值:221()b aa b a b a b+÷+-+,其中2a =+,2b =320.解分式方程:x x x -=-+211121.已知:如图,△ABC 中,D 是BC 延长线上一点,E 是CA 延长线上一点,F 是AB 上一点,连接EF . 求证:∠ACD >∠E22.已知:如图,点A ,F ,C ,D 在同一直线上,AF =DC ,AB ∥DE , AB =DE ,点F ,求证:BC ∥EF .23.已知:如图,四边形ABCD 中,AB =BC =2, CD =1,DA =3, ∠ABC =90°,求四边形ABCD 的面积.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25﹪.问原计划每天铺设管道多少米?25. 已知:如图,△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F . 求证:DE =DF .26. 作图题:已知:如图,线段AB,AC 且AB >AC.求作:一点D , 使得点D 在线段AB 上,且△ACD 的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.28.(1) 在等边三角形ABC中,①如图1,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图2,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图3,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).4。

大兴区八年级数学上册试卷

大兴区八年级数学上册试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √-42. 若a、b是方程2x + 3 = 0的两个根,则a + b的值为()A. 0B. 3C. -3D. -13. 下列各组数中,成比例的是()A. 2,4,6,8B. 1,2,3,4C. 0.5,1,1.5,2D. 3,6,9,124. 若x + 2 > 5,则x的取值范围是()A. x > 3B. x ≥ 3C. x < 3D. x ≤ 35. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A. P'(2,-3)B. P'(-2,3)C. P'(-2,-3)D. P'(2,-3)6. 若等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积为()A. 24cm²B. 18cm²C. 36cm²D. 27cm²7. 若sin∠A = 0.6,则∠A的大小是()A. 30°B. 45°C. 60°D. 90°8. 下列函数中,一次函数是()A. y = 2x² + 3B. y = 3x - 2C. y = 4x³ + 5D. y = 5x + 69. 若等差数列{an}中,a1 = 3,d = 2,则第10项an的值为()A. 21B. 23C. 25D. 2710. 下列各数中,无理数是()A. √9B. √16C. √25D. √-4二、填空题(每题3分,共30分)11. 若∠A和∠B是互余角,且∠A = 45°,则∠B的度数是________°。

12. 已知方程2(x - 3) = 4x - 6,则x的值为________。

13. 在直角三角形ABC中,∠C =90°,AC = 3cm,BC = 4cm,则AB的长度是________cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市大兴区八年级(上)期末数学试卷一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么的取值范围是()A.≠0B.=﹣1C.≠﹣1D.≠12.9的平方根是()A.±3B.3C.81D.±813.下列实数中的有理数是()A.B.πC.D.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.5.如果将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值()A.扩大为原的3倍B.不改变C.缩小为原的D.扩大为原的9倍6.下列二次根式中,最简二次根式是()A.B.C.D.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则的取值范围是.10.若分式的值是1,则的值是.11.若,则=.12.若最简二次根式和是同类二次根式,则a的值是.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF≌△BDE,则可以补充一个条件:.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.18.计算:﹣+÷﹣.19.先化简,再求值:( +)÷,其中a=+2,b=﹣2.20.解分式方程:﹣=1.21.已知:如图,△ABC中,D是BC延长线上一点,E是CA延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC∥EF.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD 的面积.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).2017-2018学年北京市大兴区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共8个小题,每题2分,共16分)1.如果分式有意义,那么的取值范围是()A.≠0B.=﹣1C.≠﹣1D.≠1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,2+2≠0,解得≠﹣1.故选:C.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.9的平方根是()A.±3B.3C.81D.±81【分析】根据平方根的定义即可求出答案.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型.3.下列实数中的有理数是()A.B.πC.D.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、是无理数,故A错误;B、π是无理数,故B错误;C、是有理数,故C正确;D、是无理数,故D错误;故选:C.【点评】本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.4.下列交通标志图案不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如果将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值()A.扩大为原的3倍B.不改变C.缩小为原的D.扩大为原的9倍【分析】根据分式的性质求解即可.【解答】解:将分式(,y均为正数)中字母的,y的值分别扩大为原的3倍,那么分式的值不变,故选:B.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.6.下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义求解即可.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.如图,直线l1∥l2,∠A=50°,∠1=45°,则∠2的度数为()A.95°B.85°C.65°D.45°【分析】根据平行线的性质求出∠3,根据三角形内角和定理求出∠4,即可得出答案.【解答】解:如图:∵直线l1∥l2,∠1=45°,∴∠3=∠1=45°,∵∠A=50°,∴∠2=∠4=180°﹣∠A﹣∠3=85°.故选:B.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠4的度数,注意:两直线平行,同位角相等.8.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【分析】分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC的度数.【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.【点评】本题考查了几何体的展开图与勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.二、填空题(共8个小题,每小题2分,共16分)9.若二次根式有意义,则的取值范围是≤3.【分析】直接利用二次根式的性质得出3﹣的取值范围,进而求出答案.【解答】解:∵二次根式有意义,∴3﹣≥0,解得:≤3.故答案为:≤3.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.10.若分式的值是1,则的值是9.【分析】根据题意列出关于的分式方程,解之可得.【解答】解:根据题意得=1,两边都乘以+6,得:2﹣3=+6,解得:=9,经检验:=9是原分式方程的解,所以=9,故答案为:9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.若,则=5.【分析】用n表示出m,然后代入所求的分式中进行约分、化简即可.【解答】解:由题意,知:m=2n;===5.故答案为5.【点评】解答此类题一定要熟练掌握分式的基本性质.12.若最简二次根式和是同类二次根式,则a的值是6.【分析】根据同类二次根式的概念即可求出答案.【解答】解:由题意可知:3a﹣4=a+8,解得:a=6故答案为:6【点评】本题考查同类二次根式与最简二次根式,解题的关键是正确理解同类二次根式与最简二次根式的概念,本题属于基础题型.13.任意掷一枚均匀的正方体骰子,“奇数点朝上”发生的可能性大小为.【分析】让奇数的情况的个数除以所有的可能情况数,即可求解.【解答】解:任意掷一枚均匀的正方体骰子,朝上的数字有从1道6共6个数字,奇数有1,3,5共3种,则奇数点朝上”发生的可能性大小为=.【点评】用到的知识点为:可能性等于所求情况数与总情况数之比.14.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是12cm.【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为2cm或是腰长为5cm两种情况.【解答】解:等腰三角形的两边长分别为2cm和5cm,当腰长是5cm时,则三角形的三边是5cm,5cm,2cm,5cm+2cm>5cm,满足三角形的三边关系,三角形的周长是12cm;当腰长是2cm时,三角形的三边是2cm,2cm,5cm,2cm+2cm<5cm,不满足三角形的三边关系.故答案为:12cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.如图,点A,B,C,D在同一直线上,AB=CD,FC⊥AD 于点C,ED⊥AD于点D,要使△ACF≌△BDE,则可以补充一个条件:AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵AB=CD,∴AC=BD,∵FC⊥AD 于点C,ED⊥AD于点D,∴∠ACF=∠BDE=90°,∴根据HL可以添加AF=BE,根据SAS可以添加CF=DE,根据ASA可以添加∠A=∠EBD,根据AAS可以添加∠F=∠E,故答案为AF=BE或CF=DE或∠A=∠EBD或∠F=∠E.【点评】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A)÷2=90°﹣∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:180°﹣2α【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质及三角形内角和定理;此题能够发现全等三角形,再根据平角的定义和三角形的内角和定理发现∠EDF=∠B.再根据三角形的内角和定理以及等腰三角形的性质进行推导.三.解答题:(共12个小题,其中17-22小题,每小题5分,23-25小题,每小题5分,27小题7分,28小题8分,共68分)17.计算:﹣.【分析】首先通分,进而利用分式加减运算法则计算得出答案.【解答】解:﹣=﹣=.【点评】此题主要考查了分式的加减运算,正确通分是解题关键.18.计算:﹣+÷﹣.【分析】首先计算开方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣+÷﹣=3﹣3+﹣=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.先化简,再求值:( +)÷,其中a=+2,b=﹣2.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=+2,b=﹣2时,原式=(+)÷=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得2+﹣2+2=2﹣1,解得:=3,经检验=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.已知:如图,△ABC中,D是BC延长线上一点,E是CA延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.【分析】根据三角形的外角的性质证明即可.【解答】证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.22.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,点F,求证:BC∥EF.【分析】直接利用全等三角形的判定方法得出△ABC≌△DEF(SAS),进而得出答案.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.23.已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD 的面积.【分析】根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,根据三角形的面积公式分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC===2,∵CD=1,AD=3,AC=2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=AB×BC+×AC×CD=×2×2+×1×2=2+.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.24.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?【分析】本题求的是原计划的工效,工作总量是3000米,一定是根据工作时间列的等量关系.关键描述语是:提前10天完成,等量关系为:原计划时间﹣实际时间=10.【解答】解:设原计划每天铺设多长管道设原计划每天铺设米管道,根据题意得.解得=60,经检验=60是原分式方程的解.答:原计划每天铺设60米长的管道.【点评】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.25.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定和性质得出DE=DF即可;【解答】证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.【点评】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出∠B=∠C.26.作图题:已知:如图,线段AB,AC且AB>AC.求作:一点D,使得点D在线段AB上,且△ACD的周长等于线段AB与线段AC的长度和.要求:不写作法,保留作图痕迹.【分析】连接BC,作BC的中垂线交AB于点D,据此知DB=DC,则AC+AD+DC=AC+AD+DB=AC+AB.【解答】解:如图所示,点D即为所求.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握中垂线的尺规作图及其性质.27.已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP=CP,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB+PC>AB+AC,理由如下:在BA的延长线上截取AF=AC,连接PF,在△FAP和△CAP中,,∴△FAP≌△CAP(SAS),∴FP=CP.在△FPB中,FP+BP>FA+AB,即PB+PC>AB+AC.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,三角形三边的性质.28.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是60度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是60度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).【分析】(1)只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;(2)只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(3)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α;【解答】解:(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质和判定、等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.。

相关文档
最新文档