惠贞书院5月数学参考答案
八年级下数学5月月考试卷(有答案)
![八年级下数学5月月考试卷(有答案)](https://img.taocdn.com/s3/m/a1240424376baf1ffd4fad00.png)
八年级下数学5月月考试卷(有答案)八年级(下)数学月考试卷(总分120分,时间100分钟)一、选择题(本大题8小题,每小题3分,共24分) 1.的化简结果为( )A .3B .﹣3C .±3D .92.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.要使式子有意义,则x 的取值范围是( )A .x >1B .x >﹣1C .x ≥1D .x ≥﹣14.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A.B. C. D.5.某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是( )A .在公园调查了1000名老年人的健康状况B .调查了10名老年人的健康状况C .在医院调查了1000名老年人的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人健康状况6.如图,过反比例函数y=(x >0)的图像上一点A 作A B ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )A .2B .3C .4D .57.在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB=1, ∠ABE=45°,则BC 的长为( )A.B .1.5 C. D .28.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函学校 班级姓名考号数在第一象限内的图像与△ABC有公共点,则k的取值范围是()A.2≤k≤3 B.2≤k≤4 C.3≤k≤4 D.2≤k≤3.5二、填空题((本大题10小题,每小题3分,共30分)9.若分式的值为零,则x=.10.化简的结果为.11.学校为了考察我校八年级同学的视力情况,从八年级的4个班共160名学生中,每班抽取了5名进行分析,在这个问题中,样本的容量是____ __.12.如图,在△ABC中,点D,E分别是边AB,BC的中点,若DE的长是6,则AC的长等于____ __.13.反比例函数的图像在第一、三象限,则m的取值范围是.14.k=_____ _____,方程x2﹣(k﹣2)x+9=0有两个相等的实数根.15.已知点A(2,y1),B(1,y2)在反比例函数y=(k<0)的图像上,则y1y2.(选填“>”、“=”、“<”)16.比较下列实数的大小:______.17.若关于x的方程无解,则m=____ __.18.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M、N分别是x轴、y轴上的点,若以点A、B、M、N为顶点的四边形是平行四边形,则点M的横坐标的所有可能的值是.三、解答题(66分)19.计算:(每小题5分,共10分)(1)8-12(2)0)13(27)13)(13(--+-+20.解方程:(每小题5分,共10分)(1)x2﹣4x+3=0;(2)﹣=1.21.化简并选一个你喜欢的数a ,求出该代数式的值.(8分)22.为做好食堂的服务工作,某学校食堂对学生最喜爱的菜肴进行了抽样调查,下面是根据收集的数据绘制的统计图(不完整):(9分)(1)参加抽样调查的学生数是__ __人,扇形统计图中“大排”部分的圆心角是______°; (2)把条形统计图补充完整;(3)若全校有3000名学生,请你根据以上数据估计最喜爱“烤肠”的学生人数.23.2017年“母亲节”前夕,某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?(8分)24.如图,在平面直角坐标系中,矩形OABC 的对角线OB 、AC 相交于点D ,且BE ∥AC ,CE ∥OB .(10分)(1)求证:四边形CDBE 是菱形;(2)如果OA=4,OC=3,求出经过点E 的反比例函数解析式.22241a a a a a---÷+25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG ⊥DE,使EG=DE,连接FG,FC.(11分)(1)请判断:FG与CE的数量关系是__ ____,位置关系是__ ____;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.二数答案一、选择题(每小题3分,共24分)1.A 2.B 3.C 4.C5.D 6.C 7.A 8.B二、填空题(每小题3分,共30分)9. 2 10.. 20 12. 12 13.m>1 14.8,﹣4. 15.> 16.> 17. -8 18.3,-3,-7 三、解答题(66分)19.(1)2(2)1+20.(1)11x=23x= (2) x=-4,经检验 x=-4是原方程的解.21.(5分)略(3分)22.解:(1)200(人),144°.(4分)(2)40(人);图略(2分)(3)600(人).(3分)23. 第一批花每束的进价是20元/束.24.(1)证明:∵BE∥AC,CE∥OB,∴四边形CDBE是平行四边形.又∵四边形OABC是矩形,∴OB与AC相等且互相平分,∴DC=DB.∴四边形CDBE是菱形.(5分)(2)解:连接DE,交BC于点F,如图所示.∵四边形CDBE是菱形,∴BC与DE互相垂直平分.又∵OA=4,OC=3,∴EF=DF== OC==,CF== OA=2,∴E点的坐标为(2,,).设反比例函数解析式为y==,则k=9,∴经过点E的反比例函数解析式为y==(5分)25.解:(1)FG=CE,FG∥CE;(3分)(2)过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE∵四边形ABCD是正方形,∴CD=BC,∴HE=BC∴HE+EB=BC+EB∴BH=EC∴FG=EC (6分) (3)成立.(2分)。
七年级(下)学期5月份段考数学试卷含答案
![七年级(下)学期5月份段考数学试卷含答案](https://img.taocdn.com/s3/m/4f53eff9cfc789eb162dc822.png)
七年级(下)学期5月份段考数学试卷含答案一、选择题1.若关于x 、y 的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为( ) A .a <−2B .a >−2C .a <2D .a >22.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩3.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:54.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩ D .20y D =-5.把方程23x y -=改写成用含x 的式子表示y 的形式( )A .23y x =-B .23y x =+C .1322x y =+ D .132x y =+6.已知方程组32453x y ax y -=⎧⎨+=⎩的解x 与y 互为相反数,则a 等于( )A .3B .﹣3C .﹣15D .157.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个8.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173 B .888 C .957 D .69 9.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3 B .5C .4或5D .3或4或510.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩二、填空题11.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.12.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 13.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________14.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.15.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.16.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 17.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.18.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.19.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.三、解答题21.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.22.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y,的值并在图3中填出剩余的数字.23.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元? 24.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.25.已知:平面直角坐标系中,A (a ,3)、B (b ,6)、C (c ,1),a 、b 、c 都为实数,并且满足3b -5c =-2a -18,4b -c =3a +10 (1) 请直接用含a 的代数式表示b 和c(2) 当实数a 变化时,判断△ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a 变化时,若线段AB 与y 轴相交,线段OB 与线段AC 交于点P ,且S △PAB >S △PBC ,求实数a 的取值范围.26.某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).()1A 、B 两种花草每棵的价格分别是多少元?()2若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先解根据关于x ,y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩①②①+②得4x+4y=2-3a ,234ax y -+=;然后将其代入x +y >2,再来解关于a 的不等式即可. 【详解】 解:3234x y a x y a +=+⎧⎨+=-⎩①②①+②得 4x+4y=2-3a234ax y -+=∴由x+y>2,得 2324a-> 即a<-2 故选A 【点睛】 本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质: (1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.2.B解析:B 【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 3.B解析:B 【分析】 由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可. 【详解】 ∵4520430x y z x y z -+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z , ∴x :y :z=x :2x :3x=1:2:3, 故选B . 【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键.4.D解析:D 【分析】分别根据行列式的定义计算可得结论. 【详解】 A 、3113D -==3×3-(-1)×1=10,计算正确,不符合题意;B 、D x =1×3-(-1)×7=10,计算正确,不符合题意;C 、方程组的解:x=102011010y ==,=2,计算正确,不符合题意. D 、D y =3×7-1×1=20,计算错误,符合题意;故选:D.【点睛】此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.5.A解析:A【分析】把x看做已知数求出y即可.【详解】方程2x−y=3,解得:y=2x−3,故选:A.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.6.C解析:C【分析】x与y互为相反数,得y=-x,带入到方程组32453x y ax y-=⎧⎨+=⎩消去y,得到关于x、a的二元一次方程组即可.【详解】由x与y互为相反数,得y=-x,代入方程组32453x y ax y-=⎧⎨+=⎩,得32453x x ax x+=⎧⎨-=⎩,解得:315 xa=-⎧⎨=-⎩,故选:C.【点睛】本题主要考查二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.7.B解析:B【详解】解:把①22xy==⎧⎨⎩代入得左边=10=右边;把②2{1xy==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6x y ==代入得左边=10=右边;所以方程4x +y =10的解有①④2个. 故选B .8.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845, 解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C 【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6. ∵x ,y 均为正整数,∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴x +y =4或5. 10.D解析:D 【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可.【详解】A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B 、把12x y =⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C 、把12x y =⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误; D 、把12x y =⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12x y =⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确. 故选D . 【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.二、填空题 11.777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a 的值. 【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元, 设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a 故答案为:777.本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.12.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.13.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 14.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键15.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的 解析:16【分析】 从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.【详解】 解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x ,∴符合要求的方程组为.解析:28y x xy =⎧⎨=⎩【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为28 y x xy=⎧⎨=⎩.【点睛】根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.17.11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax+by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得,解得.解析:11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax +by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得4523a ba b⎧⎨⎩+=+=,解得11ab⎧⎨⎩==.当a=1,b=1时,x※y=x+y2.所以2※3=2+32=11.故答案为11.点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.18.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.19.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.20.90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁解析:90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.【详解】解:设道路一侧植树棵数为x 棵,则78x+=2+102610x -⨯+, 解得x =180,实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010y-+﹣5=()18078678y -+++, 解得y =5, 则丁植树的时长为1805610-⨯=15, 所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).故答案为:90.【点睛】本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过计算两人的植树时间进行比较.三、解答题21.(1)见解析;(2)a 和b 的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.11x y =-⎧⎨=⎩,见解析. 【分析】根据题中的和为3先列出二元一次方程组,解出x,y 的值,之后再补全图3即可.【详解】解:根据题意,得2323243x y x y y ++=⎧⎨++=⎩①② 解得:11x y =-⎧⎨=⎩填出剩余的数字如图所示:【点睛】本题是材料阅读题,注意正确阅读材料理解题意,列出方程组,求解之后即可顺利完成本题.23.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.24.(1)0≤x≤1;(2)①x=1;②a=b=c ;③存在 063a b c =⎧⎪=⎨⎪=⎩使等式成立 . 【解析】【分析】(1)根据题意可得关于x 的不等式组,解不等式组即可求得答案;(2)①先求出{}21,21M x x x +=+,,继而根据题意可得{}min 2,1,21x x x +=+,由此可得关于x 的不等式组,求解即可得;②M{a ,b ,c}=3a b c ++,如果min{a ,b ,c}=c ,则a ≥c ,b ≥c ,即3a b c ++=c ,由此可推导得出a=b=c ,其他情况同理可证,故a=b=c ;③由②的结果可得关于a 、b 、c 的方程组,由此进行求解即可得.【详解】 (1)由题意得2224-22x x +≥⎧⎨≥⎩, 解得0≤x≤1;(2)①{}21221,213x x M x x x ++++==+, {}{}21,2min 2,1,2M x x x x ,+=+所以{}min 2,1,21x x x +=+则有1212x x x +≤⎧⎨+≤⎩ 即11x x ≤⎧⎨≥⎩所以x=1 ②∵M{a ,b ,c}=3a b c ++, 如果min{a ,b ,c}=c ,则a ≥c ,b ≥c , 则有3a b c ++=c , 即a+b-2c=0,∴(a-c)+(b-c)=0,又a-c ≥0,b-c ≥0,∴a-c=0且b-c=0,∴a=b=c ,其他情况同理可证,故a=b=c ;③存在,理由如下:由题意得:()()273212741a b a b a b c ⎧-+=++⎪⎨-+=+⎪⎩ⅠⅡ, 由(Ⅰ)得 a+3b=6,即23a b =-, 因为a ,b ,c 是非负整数 ,所以a=0,3,6 ,b=2,1,0,即06a b =⎧⎨=⎩,代入(Ⅱ)得c=3, 或31a b =⎧⎨=⎩,代入(Ⅱ)得c=114,不符合题意,舍去, 或60a b =⎧⎨=⎩ ,代入(Ⅱ)得c=92,不符合题意,舍去, 综上所述: 存在063a b c =⎧⎪=⎨⎪=⎩使等式成立.【点睛】本题考查了一元一次不等式组的应用,方程组的应用,读懂题意,正确进行分析得出相应的不等式组或方程组是解题的关键.25.(1)46b a c a =+⎧⎨=+⎩;(2)S △ABC =13为定值;(3)542a -≤<- 【分析】(1)由4b -c =3a +10可知c=4b-3a-10,把c 代入3b -5c =-2a -18可用a 表示出b ,同理可表示c ;(2)如图构造梯形,根据S △ABC =S 梯形ADEC -S △ADB -S △CBE 可证明S △ABC 是定值,所以△ABC 的面积无变化;(3)作AD ⊥x 轴,BE ⊥x 轴,CF ⊥x 轴,根据S △PAB >S △PBC 可知AP >PC ,进而可得S △OAP >S △OPC ,所以S △OAB >S △OBC ,利用梯形和三角形的面积差可表示出△OAB 和△OBC 的面积,即可列出不等式,由AB 与y 轴相交可得-4≤a≤0,结合前面的不等式求出公共解集即可求出a 的取值范围.【详解】(1)∵4b-c=3a+10,∴c=4b-3a-10,∵3b -5c =-2a -18,∴3b -5(4b-3a-10)=-2a-18,∴b=a+4,同理可得:c=a+6,∴46b ac a=+⎧⎨=+⎩(2) 构造如图所示的梯形:S△ABC=12⨯(3+5)⨯6-12⨯3⨯4-12⨯2⨯5=13为定值,(3) 线段AB与y轴相交,故40aa≤⎧⎨+≥⎩,∴-4≤a≤0,∵S△PAB>S△PBC,∴AP>PC,∴S△OAP>S△OPC,∴S△OAB>S△OBC,作AD⊥x轴,BE⊥x轴,CF⊥x轴,S△OAB=12(3+6)4a a⎡⎤++⎣⎦ -124a+⨯6-12⨯6a⨯=6-32a,S△OBC=12⨯(1+6)(64a a+-+)+124a+⨯6-126a+=52a+16,∴6-32a>52a+16,解得:a<-5 2 ,∴5 4a2 -≤<-【点睛】本题考查解二元一次方程组,利用代入消元法可减少未知数的个数,从而实现消元;本题也考查了梯形与三角形的面积公式,熟练掌握相关知识是解题关键.26.(1)A 种花草每棵的价格是20元,B 种花草每棵的价格是5元;(2)购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元.【解析】【分析】()1设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据第一次分别购进A 、B 两种花草30棵和15棵,共花费940元;第二次分别购进A 、B 两种花草12棵和5棵,两次共花费675元;列出方程组,即可解答.()2设A 种花草的数量为m 株,则B 种花草的数量为()12m -株,根据A 种花草的数量不少于B 种花草的数量的4倍,得出m 的范围,设总费用为W 元,根据总费用=两种花草的费用之和建立函数关系式,由一次函数的性质就可以求出结论.【详解】解:()1设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据题意得:3015675125940675x y x y +=⎧+=-⎨⎩, 解得 {205x y ==. A ∴种花草每棵的价格是20元,B 种花草每棵的价格是5元;()2设A 种花草的数量为m 株,则B 种花草的数量为()12m -株, A 种花草的数量不少于B 种花草的数量的4倍,()412m m ∴≥-,解得:9.6m ≥,9.612m ∴≤≤,设购买树苗总费用为()205121560W m m m =+-=+,当10m =时,最省费用为:151060210(⨯+=元),答:购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元.【点睛】本题考查了列二元一次方程组,一元一次不等式解实际问题的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时根据总费用=两种花草的费用之和建立函数关系式是关键.。
宁波市惠贞书院数学高三上期末基础卷(含答案解析)
![宁波市惠贞书院数学高三上期末基础卷(含答案解析)](https://img.taocdn.com/s3/m/c71d8dda4b35eefdc9d333ce.png)
一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .113.在ABC ∆中,2AC =,BC =135ACB ∠=,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD4.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π5.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( )A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞6.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-7.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( )A .140B .280C .168D .568.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =9.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .8410.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .911.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-12.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( ) A .223+B .31+C .232-D .31-13.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 14.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)15.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题16.已知实数a >b >0,且a +b =2,则3a−ba 2+2ab−3b 2的最小值为____17.已知lg lg 2x y +=,则11x y+的最小值是______. 18.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.19.已知数列{}n a 满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,记数列{}n a 的前n项和为n S ,若对所有满足条件的{}n a ,10S 的最大值为M 、最小值为m ,则M m +=______.20.已知变量,x y 满足约束条件2{41y x y x y ≤+≥-≤,则3z x y =+的最大值为____________.21.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .22.已知a b c R ∈、、,c 为实常数,则不等式的性质“a b a c b c >⇐+>+”可以用一个函数在R 上的单调性来解析,这个函数的解析式是()f x =_________ 23.在等比数列{a n }中,a 1=1,a 4=8,则a 7=__________.24.设x ,y 满足则220,220,20,x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩则3z x y =-的最小值是______.25.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.三、解答题26.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)m 万件与年促销费用x 万元,满足31km x =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 27.若0,0a b >>,且11a b+=(1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 28.已知正项等比数列{}n a 满足26S =,314S =. (1)求数列{}n a 的通项公式; (2)若2log n n b a =,已知数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T 证明:1n T <. 29.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.30.已知在公比为q 的等比数列{}n a 中,416a =,()34222a a a +=+. (1)若1q >,求数列{}n a 的通项公式;(2)当1q <时,若等差数列{}n b 满足31b a =,512b a a =+,123n n S b b b b =+++⋅⋅⋅+,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项的和.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.C3.A4.C5.A6.C7.A8.A9.C10.C11.A12.B13.B14.B15.C二、填空题16.3+54【解析】【分析】由a+b=2得出b=2﹣a代入代数式中化简后换元t=2a﹣1得2a=t+1得出1<t<3再代入代数式化简后得出2t6t-(t2+5)然后在分式分子分母中同时除以t利用基本不等17.【解析】由得:所以当且仅当时取等号故填18.10【解析】【分析】画出不等式组表示的可行域由得平移直线根据的几何意义求出最优解进而得到所求的最大值【详解】画出不等式组表示的可行域如图阴影部分所示由得平移直线结合图形可得当直线经过可行域内的点A时19.1078【解析】【分析】根据数列的递推关系求出数列的前四项的最大最小值得出何时和最大何时和最小进而求得结论【详解】解:因为数列{an}满足:即解得;或或;或所以最小为4最大为8;所以数列的最大值为时20.11【解析】试题分析:由题意得作出不等式组所表示的可行域如图所示由得平移直线则由图象可知当直线经过点时直线的截距最大此时有最大值由解得此时考点:简单的线性规划21.【解析】试题分析:约束条件的可行域如图△ABC所示当目标函数过点A(11)时z取最大值最大值为1+4×1=5【考点】线性规划及其最优解22.【解析】【分析】构造函数通过讨论其单调性即解析不等式的性质【详解】函数是定义在上的单调增函数若则即即故答案为:【点睛】此题考查利用函数单调性解析不等式的性质利用常见函数的单调性结合不等式的特征即可求23.64【解析】由题设可得q3=8⇒q=3则a7=a1q6=8×8=64应填答案6424.-4【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:作出可行域如图所示当直线经过点时故答案为:【点睛】本题考查简单的线性25.【解析】【分析】首先根据无穷等比数列的各项和为2可以确定其公比满足利用等比数列各项和的公式得到得到分和两种情况求得的取值范围得到结果【详解】因为无穷等比数列的各项和为2所以其公比满足且所以当时当时所三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 3.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到2222AC BC AB AC BC +-=⨯⨯将2AC =,BC =,代入等式得到AB=再由等面积法得到11222CD CD ⨯=⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.5.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.6.C解析:C【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.7.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 8.A解析:A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 9.C 解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.10.C解析:C 【解析】因为等差数列{}n a 中,611 a a =,所以6116111150,0,,2a a a a a d =-=-,有2[(8)64]2n dS n =--, 所以当8n =时前n 项和取最小值.故选C. 11.A解析:A 【解析】 【分析】 【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍, 联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划12.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.13.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.14.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.15.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。
惠贞书院5月数学参考答案
![惠贞书院5月数学参考答案](https://img.taocdn.com/s3/m/e215710052ea551810a6871c.png)
{参考答案一、选择题(每题4分, 12小题,共48分)二、填空题(每题4分, 6小题,共24分)13. 2x(x+2) ; 14. 62.510-⨯ ; 15. 49 ;16. 36°; 17. 1tt - ; 18. (0,2) , (-2,0) ;三、解答题(第19题6分、20题8分,21、22题各9分、23、24题各10分、25题12分,26题14分, 共78分)19. 解:原式 2132=-⨯+-………………………………………………(4分)2=……………………………………………………(6分)20.解:由题意得: 69235m n n m --=--=- ……………………………………………(2分)解得 m=3, n=-2…………………………………………………(8分) 21. (1) 40 , 100 , 15 ………………………………………………(6分)(2)12010030400⨯= (万人)答:其中持D 组“观点”的市民人数30万人……………………………………(9分) 22.(1)连结AC ,∵AB =BC =15千米,∠B =90°,∴∠BAC =∠ACB =45°,AC =152千米. ……………………………………(3分) 又∵∠D =90°, ∴AD =2222)23()215(-=-CD AC =123(千米)……………(5分)∴周长=AB +BC +CD +DA =30+32+123(千米). ……………………………(6分) 面积=S △ABC +S △ADC =21×15×15+21×123×32=2225+186(平方千米).……(7分) (2)cos ∠ACD =5121523==AC CD . ……………………………………………(9分)23.(1)∵抛物线对称轴为x=-1,且与x 轴相交于点A 、B ,其中点A 的坐标为(-3,0) ∴B(1,0) ………………………………………………………………………(1分)设解析式为(3)(1)y a x x =+-把(0,4)代人得43a =-,4(3)(1)3y x x =-+-即248433y x x =--+……………………………………………………………(4分)(2) 当x=1时,163y =,∴顶点D(-1,163)……………………………………(6分)A C D A D E A OE D C OS S SS ∆∆∆=+-梯形=11611612(4)13423232⨯⨯+⨯+⨯-⨯⨯=4 ………………………………………………………………………(10分) 24. (1)设从甲厂调运饮用水x 吨,则从乙厂调运饮用水(120-x )吨,由题意得26700)120(15141220=-⨯+⨯x x .………………………………………………(2分)50=x70120=-x .∴从甲厂调运饮用水50吨,从乙厂调运饮用水70吨……………………………(4分) (2)由题意得:⎩⎨⎧≤-≤9012080x x …………………………………………………(6分)∴8030≤≤x ……………………………………………………………(7分))120(15141220x x W -⨯+⨯=2520030+=x ……………………………………………………………(8分) W 随着x 的增大而增大∴当30=x 时,W 最小……………………………………………………………(9分)答:方案:从甲厂调运饮用水30吨,从乙厂调运饮用水90吨,使得每天的总运费最省。
惠贞书院5月数学试卷
![惠贞书院5月数学试卷](https://img.taocdn.com/s3/m/8e016d583c1ec5da50e2701c.png)
AP(第8题图)(第5题图)(第6题图)宁波市惠贞书院2013学年第二学期五月月考试九年级数学试题卷一、选择题(每小题4分,共48分,每小题给出的四个选项中,只有一项符合题目要求) 1.-2的绝对值是( ) A .21B. -21 C .2 D.-22. 下列图形中是中心对称图形,但不是轴对称图形的是( )AD3. 代数式12 x 中x 的取值范围是( )A .x >-21 B . x ≥21 C . x >21 D . x ≥-21 4. 将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x+1)2的图象,平移的方法是( ) A.向上平移1个单位 B.向下平移1个单位 C.向左平移1个单位 D.向右平移1个单位 5.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是( )A .65°B . 35°C .30°D . 25°6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) A. 两个内切的圆 B.两个外切的圆 C.两个相交的圆 D.两个外离的圆7. 已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形 D .当AC =BD 时,它是正方形8. 如图,P 是Rt△ABC 斜边AB 上一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作( )A .4条B .3条C .2条D .1条9. 书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )A. 61B. 31C. 21D. 3210. 如图,点B是⊙O的半径OA的中点,且弦CD⊥OA于B,则tan∠CPD的值为(2C.3D.1211. 如图,二次函数y=ax2+bx+c的图象经过(-1,0)、(0,3),下列结论中错误的是()A.abc<0 B.9a+3b+c=0 C.a-b=-3 D.4ac﹣b2<012.如图,在平面直角坐标系中,半径为2的⊙M的圆心坐标是(4,2),将直线y=-2x+1向上平移K个单位后恰好与⊙M相切,则K的值是()A.1.1+ C.9+ D.10+二、填空题(共6小题,每小题4分,满分24分)13. 分解因式:xx422+= .14.PM 2.5是指大气中直径小于或等于0.0000025 m的颗粒物,将0.0000025用科学记数法表示为 .15. 某次体检,从七年级三班随机抽取15名学生的体重如下表(单位:kg):这名学生体重的中位数是 .16. 如图,把⊿ABC绕点C顺时针旋转得到⊿CBA'',此时BA''⊥AC于D,已知∠A =54°,则∠CBB'的度数是 . (第16题图)17. 已知f1=,f2=1f11-,f3=2f11-,……,f1+n=nf11-(n为正整数)那么2014f化简后的结果为 .(结果用t表示)18. 如图,已知函数2y x=图像和函数kyx=图像交于A,B两点,过A作AE⊥X 轴于点E,⊿AOE的面积为4,点C 是坐标轴上一点,点D是双曲线上一点,则当以点B,E,C,D为顶点的四边形是平行四边形时,满足条件的点C 的坐标是 .三、解答题(第19题6分、20题8分,21、22题9分、23、24题10分、25题12分,26题14分, 共78分)19.(本题6112sin45(2)3-⎛⎫+-π- ⎪⎝⎭t111-(第18题图)(第10题图)(第11题图)(第12题图)20. (本题8分)已知关于x ,y 的方程组⎩⎨⎧-=-=-5292my nx ny mx 的解为⎩⎨⎧=-=31y x ,求m, n 的值.21. (本题9分) 今年我国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m = ,n = ,扇形统计图中E 组所占的百分比为 %; (2)若该市人口约有100万人,请你估计其中持D 组“观点”的市民人数;22.(本题9分)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B =∠D =90°,AB =BC =15千米,CD =23千米,请据此解答如下问题: (1) 求该岛的周长和面积; (2) 求∠ACD 的余弦值.23. (本题10分)已知:抛物线24y ax bx =++的对称轴为x=-1,且与x 轴相交于点A 、B ,与y 轴相交于点C ,其中点A 的坐标为(-3,0), (1) 求该抛物线的解析式;(2)若该抛物线的顶点为D ,求△ACD 的面积。
浙江省宁波市惠贞书院2022-2023学年数学九年级第一学期期末达标检测试题含解析
![浙江省宁波市惠贞书院2022-2023学年数学九年级第一学期期末达标检测试题含解析](https://img.taocdn.com/s3/m/220f9e7076232f60ddccda38376baf1ffc4fe3d6.png)
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.不等式组215840x x -≤⎧⎨-<⎩的解集在数轴上表示为( ) A . B . C . D .2.若⊙O 的弦AB 等于半径,则AB 所对的圆心角的度数是( )A .30°B .60°C .90°D .120°3.如图,,,,A B C D 是⊙O 上的点,则图中与A ∠相等的角是( )A .B B .C ∠ C .DEB ∠D .D ∠4.下列汽车标志中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,A ,B ,C 是⊙O 上的三点,∠BAC =55°,则∠BOC 的度数为( )A .100°B .110°C .125°D .130°6.如图,太阳在A 时测得某树(垂直于地面)的影长ED =2米,B 时又测得该树的影长CD =8米,若两次日照的光线PE ⊥PC 交于点P ,则树的高度为PD 为( )A .3米B .4米C .4.2米D .4.8米7.抛物线2245y x x =++的顶点坐标为( )A .(1,3)B .(1,3)-C .(1,5)D .(1,5)-8.已知如图,ABC 中,AB AC =,点D 在AB 边上,且AD BD BC ==,则A ∠的度数是( ).A .18︒B .36︒C .54︒D .72︒9.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数10.方程()440x x x -+-=的解是( )A .4B .-4C .-1D .4或-111.根据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元,较年初上升197亿美元,升幅0.6%,数据30924亿用科学计数法表示为( )A .83092410⨯B .123.092410⨯C .113.092410⨯D .133.092410⨯ 12.如图,直线y =23x +2与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A.(﹣34,0)B.(﹣12,0)C.(﹣32,0)D.(﹣52,0)二、填空题(每题4分,共24分)13.如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为_____.14.小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.15.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.16.在不透明的袋子中有红球、黄球共40个,除颜色外其他完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,则口袋中红球的个数大约是_________________.17.计算:3×12=______.18.已知关于x 的一元二次方程(a -1)x 2-x + a 2-1=0的一个根是0,那么a 的值为 .三、解答题(共78分)19.(8分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.20.(8分)已知:如图,⊙O 的直径AB 与弦CD 相交于点E ,且E 为CD 中点,过点B 作CD 的平行线交弦AD 的延长线于点F .(1)求证:BF 是⊙O 的切线;(2)连结BC ,若⊙O 的半径为2,tan ∠BCD=34,求线段AD 的长. 21.(8分)如图,正方形ABCD 、等腰Rt BPQ ∆的顶点P 在对角线AC 上(点P 与A 、C 不重合),QP 与BC 交于E ,QP 延长线与AD 交于点F ,连接CQ .(1)求证:AP CQ =.(2)求证:2PA AF AD =⋅(3)若:1:3AP PC =,求tan CBQ ∠的值.22.(10分)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.23.(10分)先化简,再求值:(x -1)÷(x -21x x-),其中x =2+1 24.(10分)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x =>>的图象上,边CD 在x 轴上,点B 在y 轴上.已知2CD =.(1)点A 是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标.(3)平移正六边形ABCDEF ,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.25.(12分)如图,△ABC 的角平分线BD=1,∠ABC=120°,∠A 、∠C 所对的边记为a 、c.(1)当c=2时,求a 的值;(2)求△ABC 的面积(用含a ,c 的式子表示即可);(3)求证:a ,c 之和等于a ,c 之积.26.如图,在平面直角坐标系中,点A 的坐标为()10,0,点B 在第一象限,BO AO =,点C 是OA 上一点,2OC =,4sin 5AOB ∠=.(1)求证:ABO ACB ∆∆∽;(2)求cos ABO ∠的值.参考答案一、选择题(每题4分,共48分)1、B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840x x -≤⎧⎨-<⎩①②, 解不等式2x−1≤5,得:x ≤3,解不等式8−4x <0,得:x >2,故不等式组的解集为:2<x ≤3,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.2、B【解析】试题分析:∵OA=OB=AB ,∴△OAB 是等边三角形,∴∠AOB=60°.故选B .【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.3、D【分析】直接利用圆周角定理进行判断.【详解】解:∵A ∠与D ∠都是BC 所对的圆周角,∴D A ∠=∠.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 4、D【解析】根据题意直接利用轴对称图形和中心对称图形的概念求解即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、不是轴对称图形,是中心对称图形,故此选项不合题意;C 、是轴对称图形,不是中心对称图形,故此选项不合题意;D 、既是中心对称图形也是轴对称图形,故此选项正确;故选:D .【点睛】本题主要考查中心对称与轴对称的概念即有轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5、B【分析】由点A 、B 、C 是⊙O 上的三点,∠BAC =40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC 的度数.【详解】解:∵∠BAC =55°,∴∠BOC =2∠BAC =110°.(圆周角定理)故选:B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 6、B【分析】根据题意求出△PDE 和△FDP 相似,根据相似三角形对应边成比例可得PD DC =DE FD ,然后代入数据进行计算即可得解.【详解】∵PE ⊥PC ,∴∠E +∠C =90°,∠E +∠EPD =90°,∴∠EPD =∠C ,又∵∠PDE =∠FDP =90°,∴△PDE ∽△FDP , ∴PD DC =DE FD, 由题意得,DE =2,DC =8, ∴PD 8=2PD , 解得PD =4,即这颗树的高度为4米.故选:B .【点睛】本题通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.7、B 【分析】利用顶点公式24,24b ac b a a ⎛⎫-- ⎪⎝⎭,进行计算 【详解】2245y x x =++()()()222242322113213x x x x x =+++=+++=++∴顶点坐标为(1,3)-故选B.【点睛】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.8、B【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【详解】设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°故选:B【点睛】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.9、D【解析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10、D【分析】利用因式分解法解一元二次方程即可.【详解】解:()440x x x -+-=()()140x x +-=解得:121,4x x =-=故选D .【点睛】此题考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解决此题的关键.11、B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】30924亿=3.0924×1012, 故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12、A【分析】根据一次函数解析式可以求得()30A -,,()0,2B ,根据平面直角坐标系里线段中点坐标公式可得3,12C ⎛⎫- ⎪⎝⎭,()0,1D ,根据轴对称的性质和两点之间线段最短的公理求出D 点关于x 轴的对称点()0,1D '-,连接CD ',线段CD '的长度即是PC PD +的最小值,此时求出CD '解析式,再解其与x 轴的交点即可.【详解】解: 223y x =+, ∴()30A -,,()0,2B ∴303222A B C x x x +-+===-, 02122A B C y y y ++===, ∴3,12C ⎛⎫- ⎪⎝⎭同理可得()0,1D∴D 点关于x 轴的对称点()0,1D '-;连接CD',设其解析式为y kx b=+,代入3,12C⎛⎫-⎪⎝⎭与()0,1D'-可得CD':413y x=--,令0y=,解得34 x=-.∴3,04P⎛⎫-⎪⎝⎭.【点睛】本题是结合了一次函数的动点最值问题,熟练掌握一次函数的图象与性质,把点的坐标与线段长度灵活转化为两点间的问题是解答关键.二、填空题(每题4分,共24分)13、40°或70°或100°.【分析】根据旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.先连结AP,如图,由旋转的性质得OP=OB,则可判断点P、C在以AB为直径的圆上,利用圆周角定理得∠BAP=12∠BOP=12α,∠ACP=∠ABP=90°﹣12α,∠APC=∠ABC=70°,然后分类讨论:当AP=AC时,∠APC=∠ACP,即90°﹣12α=70°;当PA=PC时,∠PAC=∠ACP,即12α+20°=90°﹣12α,;当CP=CA时,∠CAP=∠CAP,即12α+20°=70°,再分别解关于α的方程即可.【详解】连结AP,如图,∵点O是AB的中点,∴OA=OB,∵OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,∴OP=OB,∴点P在以AB为直径的圆上,∴∠BAP=12∠BOP=12α,∠APC=∠ABC=70°,∵∠ACB=90°,∴点P、C在以AB为直径的圆上,∴∠ACP=∠ABP=90°﹣12α,∠APC=∠ABC=70°,当AP=AC时,∠APC=∠ACP,即90°﹣12α=70°,解得α=40°;当PA=PC时,∠PAC=∠ACP,即12α+20°=90°﹣12α,解得α=70°;当CP=CA 时,∠CAP=∠CPA ,即12α+20°=70°,解得α=100°, 综上所述,α的值为40°或70°或100°.故答案为40°或70°或100°. 考点:旋转的性质.14、59. 【分析】分别计算出阴影部分面积和非阴影面积,即可求出掷中阴影部分的概率.【详解】∵大圆半径为3,小圆半径为2,∴S 大圆239ππ==(m 2),S 小圆224ππ==(m 2),S 圆环=9π﹣4π=5π(m 2),∴掷中阴影部分的概率是5599ππ=. 故答案为:59. 【点睛】本题考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比. 15、1,83 ,32【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图,当DP ∥AB 时,△PDC ∽△ABC ,∴PD CD AB BC =,∴236DP =,∴DP=1; ②如图,当DP ∥AC 时,△PBD ∽△ABC .∴PD BD AC BC =,∴446DP =,∴DP=83;③如图,当∠CDP=∠A 时,∠DPC ∽△ABC ,∴DP DC AB AC =,∴234DP =,∴DP=32; ④如图,当∠BPD=∠BAC 时,过点D 的直线l 与另一边的交点在其延长线上,,不合题意。
宁波市惠贞书院小升初数学期末试卷章末练习卷(Word版 含解析)
![宁波市惠贞书院小升初数学期末试卷章末练习卷(Word版 含解析)](https://img.taocdn.com/s3/m/b019b6e2e109581b6bd97f19227916888486b936.png)
宁波市惠贞书院小升初数学期末试卷章末练习卷(Word版含解析)一、选择题1.有一根原木(下图),把它锯成一个底面是正方形的长方体木料,这个长方体的体积最大是()。
A.160πB.320πC.640 D.12802.商店运来一批水果,卖出50千克后,还剩下这批水果的35,这批水果原来有多少千克?正确的算式是( ).A.50×35B.50÷35C.50÷(1-35) D.50×(1-35)3.一根彩绳和A、B、C三个钉子围成如下图所示的三角形。
如果保持其中两个钉子及钉子间的彩绳不动,挪动三角形另一个顶点处的钉子,并再加一个钉子,使这个彩绳围成一个长方形,则所围成的长方形的面积是()。
A.14或20 B.14或18或20 C.7或15或16 D.以上答案都不正确4.如果x是一个大于0的数,那么x+79和x×79比较的结果是()。
A.x×79大B.x+79大C.无法确定5.下列图形中,从右面看的形状是的有()A.只有①B.②C.①和③6.一项工程,甲队单独做需要10天完成,乙队单独做需要12天完成。
下面说法有错误的是()。
A.甲每天可以完成这项工程的110B.两队合作每天可以完成这项工程的11 1012+C.甲的工作效率比乙的工作效率低D.甲乙两队合作一共需要60 11天7.一个圆柱和一个圆锥等底等高,它们的体积相差28立方厘米,圆锥的体积是()立方厘米。
A.14 B.28 C.42 D.848.某市出租车收费标准如下表,根据表格描述,()的说法是正确的。
里程收费2千米(含2千米)以内 6.00元(起步价)2千米以上,每增加1千米 1.50元A.该市出租车所行的里程与所需费用成正比例B.该市出租车所行的里程与所需费用成反比例C.该市出租车所行里程在2千米以上,所行的里程与所需费用成正比例D.该市出租车所行里程在2千米以上,所行的里程与所需费用成反比例9.将一圆形纸片对折后再对折,得到图所示,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是_____.A.B.C.D.二、填空题10.海王星与太阳之间的平均距离大约是4504000000千米。
宁波市惠贞书院小升初数学期末试卷章末练习卷(Word版 含解析)(1)
![宁波市惠贞书院小升初数学期末试卷章末练习卷(Word版 含解析)(1)](https://img.taocdn.com/s3/m/2d3d3b543a3567ec102de2bd960590c69ec3d8d1.png)
宁波市惠贞书院小升初数学期末试卷章末练习卷(Word 版 含解析)(1)一、选择题1.一个正方体木块,6个面都涂上红色 ,然后把它分割为大小相等的27个小正方体,其中三个面都涂色的小正方体有( )个.A .4B .12C .6D .8 2.一桶油用去35千克,还剩15千克,剩下的比用去的少百分之几?正确的算式是( )。
A .()351535-÷B .()353515÷+C .()153515÷+D .1535÷ 3.在一个三角形中,三个内角度数的比为2∶3∶4,这个三角形是( )。
A .锐角三角形 B .直角三角形 C .钝角三角形4.5千克棉花的和1千克铁的比较,结果是( )A .5千克棉花的重B .1千克铁的重C .一样重D .无法比较5.涛涛用棱长是1厘米的正方体摆成一个物体,下图分别是他从前面、右面和上面看到的图形。
涛涛摆成的这个物体的体积是( )。
A .4立方厘米B .5立方厘米C .6立方厘米6.六(1)班男生与女生人数的比是3∶4,下列说法错误的是( )。
A .女生人数是男生的43B .女生是全班的47C .男生比女生少14D .女生比男生多14 7.底面积相等的圆柱和圆锥,它们的体积比是4∶1,圆锥的高是6厘米,圆柱的高是( )厘米。
A .4B .8C .6D .108.某市出租车收费标准如下表,根据表格描述,( )的说法是正确的。
里程收费 2千米(含2千米)以内6.00元(起步价) 2千米以上,每增加1千米 1.50元A .该市出租车所行的里程与所需费用成正比例B .该市出租车所行的里程与所需费用成反比例C .该市出租车所行里程在2千米以上,所行的里程与所需费用成正比例D .该市出租车所行里程在2千米以上,所行的里程与所需费用成反比例9.某市规定每户每月用水量不超过6吨时,每吨价格为2.5元;当用水量超过6吨时,超过的部分每吨价格为3元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
参考答案
一、选择题(每题4分, 12小题,共48分)
二、填空题(每题4分, 6小题,共24分)
13. 2x(x+2) ; 14. 6
2.5
10-⨯ ; 15. 49 ;
16. 36°
; 17. 1t
t - ; 18. (0,2) , (-2,0) ;
三、解答题(第19题6分、20题8分,21、22题各9分、23、24题各10分、25题12分,26题14分, 共78分)
19. 解:原式 2132=-⨯
+-………………………………………………(4分)
2=
……………………………………………………(6分)
20.解:由题意得: 69
235m n n m --=--=- ……………………………………………(2分)
解得 m=3, n=-2…………………………………………………(8分) 21. (1) 40 , 100 , 15 ………………………………………………(6分)
(2)
120
10030400⨯
= (万人)
答:其中持D 组“观点”的市民人数30万人……………………………………(9分) 22.(1)连结AC ,
∵AB =BC =15千米,∠B =90°,
∴∠BAC =∠ACB =45°,AC =152千米. ……………………………………(3分) 又∵∠D =90°, ∴AD =
2222)23()215(-=-CD AC =123(千米)……………(5分)
∴周长=AB +BC +CD +DA =30+32+123(千米). ……………………………(6分) 面积=S △ABC +S △ADC =
21×15×15+21×123×32=2
225
+186(平方千米).……(7分) (2)cos ∠ACD =5
121523==AC CD . ……………………………………………(9分)
23.(1)∵抛物线对称轴为x=-1,且与x 轴相交于点A 、B ,其中点A 的坐标为(-3,0) ∴B(1,0) ………………………………………………………………………(1分)
设解析式为(3)(1)y a x x =+-
把(0,4)代人得
43a =-
,4
(3)(1)3y x x =-+-
即248
4
33y x x =--+……………………………………………………………(4分)
(2) 当x=1时,163y =
,∴顶点D(-1,16
3)……………………………………(6分)
A C D A D E A O
E D C O
S S S
S ∆∆
∆
=+-梯形
=1161161
2(4)134
23232⨯⨯+⨯+⨯-⨯⨯
=4 ………………………………………………………………………(10分) 24. (1)设从甲厂调运饮用水x 吨,则从乙厂调运饮用水(120-x )吨,由题意得
26700)120(15141220=-⨯+⨯x x .………………………………………………(2分)
50=x
70120=-x .
∴从甲厂调运饮用水50吨,从乙厂调运饮用水70吨……………………………(4分) (2)由题意得:⎩⎨
⎧≤-≤90
12080
x x …………………………………………………(6分)
∴8030≤≤x ……………………………………………………………(7分)
)120(15141220x x W -⨯+⨯=
2520030+=x ……………………………………………………………(8分) W 随着x 的增大而增大
∴当30=x 时,W 最小……………………………………………………………(9分)
答:方案:从甲厂调运饮用水30吨,从乙厂调运饮用水90吨,使得每天的总运费最省。
……(10分)
25.解:(1) 3; 60. …………………………………………………………………………(2分)
(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°.………………………………………(3分)
∴θ=∠CAC′=∠BAC′﹣∠BAC =90°﹣30°=60°.……………………………………(5分) 在 Rt △AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B =30°. ∴AB′=2 AB ,即2AB n AB
'
=
=.……………………………………………………(7分) (3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′.
又∵∠BAC =36°,∴θ=∠CAC′=∠ACB =72°.……………………………………(8分) ∴∠C′AB′=∠BAC =36°.
而∠B =∠B ,∴△ABC ∽△B′BA . ∴AB ∶BB′=CB ∶AB .
∴AB 2
=CB•BB′=CB (BC +CB′).…………………………………………………(10分) 而 CB′=AC=AB=B′C′,BC =1,∴AB 2
=1(1+AB ),
解得,AB
.…………………………………………………………………(11分)
∵AB >0,∴
BC n BC '
==.…………………………………………………(12分) (以上各题,若有其他解法,请参照评分标准酌情给分)
26. 解:(1)A(0,4), B(3,0);…………………………………………………………(4分) (2)∵AP =DP ,∴∠P AD =∠PDA . ∵∠PDA =∠ODE ,∴∠P AD =∠O DE . ∵∠AOB =∠DOE =90°,∴△ABO ∽△DEO . ∴∠ABO =∠DEO ,
DE
AB
OE BO =
. ∴PB =PE .………………………………………………………………………………(6分) Rt △ABO 中,∠ABO =90°,AO =4,BO =3,∴AB =5.
∵AP =2,∴PB=PE =3,DE =1 …………………………………………………(7分) ∴1
5
3=OE ,OE =35.…………………………………………………………………(8分)
(3)①如果点P 在线段AB 上,点E 在线段BO 延长线上时(如图1), 由(2)知,△ABO ∽△DEO ,∴
DE AB DO AO =,∴x
2554-=
DO ,DO =54
(5-2x ), 当DO =PI 时,点D 、O 、 I 、P 构成一个平行四边形, 由DO =PI 得,
54(5-2x )= x ,x =13
20
…………………………………………………(10分)
②如果点P 在线段AB 上,点E 在线段BO 上时(如图2),DO =5
4
(2x -5), 当DO =PI 时,点D 、O 、 I 、P 构成一个平行四边形, 由DO =PI 得,54(2x -5)= x ,x =203
, ∵
203>5,与点P 在线段AB 上矛盾,∴x =20
3
舍去. ………………………………(12分) ③如果点P 在线段AB 的延长线上(如图3),点E 在线段OB 的延长线上时, DO =5
4
(2x -5),
当DO =PI 时,点D 、O 、 I 、P 构成一个平行四边形,
由DO =PI 得,54(2x -5)= x ,x =203
. 综上,AP=1320或AP=20
3
. …………………………………………………………………(14分)。