高浓度高含盐高氨氮高磷废水处理工艺研究
高浓度含盐废水处理工艺
高浓度含盐废水处理工艺一、高浓度含盐废水的定义及危害高浓度含盐废水是指废水中含有较高浓度的盐类(如氯化钠、硫酸盐、碳酸盐等)。
这种废水往往来自于化工、电子、矿业等行业,在生产过程中产生。
高浓度含盐废水假如直接排放到环境中,会造成以下危害:1. 对水体生态环境造成直接破坏,导致水生生物死亡和生态平衡失调。
2. 加重土地污染,对植被生长和土壤质量造成不良影响。
3. 造成大气污染,严重影响四周居民的日常生活。
因此,高浓度含盐废水的处理特别紧要,需要找寻适合的处理技术。
二、高浓度含盐废水处理技术1. 浓缩技术浓缩技术是指将高浓度含盐废水通过蒸发、冷冻结晶、扩散等方式,将废水中的水分蒸发掉,使废水中的盐分达到肯定的浓度。
这种技术可以将高浓度含盐废水中的盐分浓缩到较高的浓度,降低处理的难度和成本。
浓缩后的盐分可以进一步用于回收利用或销售。
2. 离子交换技术离子交换技术是指通过树脂对废水中的离子进行吸附和交换。
通过选择特定的吸附树脂,可以将废水中的高浓度离子快速吸附到树脂上并得到纯洁的水。
这种技术可以有效地去除废水中的高浓度盐分,得到高品质的废水。
3. 反渗透技术反渗透技术是指利用半透膜对废水进行过滤,过滤后的废水中水分较少,离子浓度较高。
通过这种技术,可以将废水中的高浓度离子和溶解物分别出来。
反渗透技术一般需要高压和高能耗,但是可以得到纯洁的废水,是一种特别有效的处理方法。
4. 气浮沉淀技术气浮沉淀技术是指将高浓度含盐废水中的悬浮物通过气浮或沉淀的方式分别出来。
这种技术特别适用于处理含大量悬浮物的高浓度废水,可以有效地去除废水中的物质,得到更纯洁的水。
5. 生物处理技术生物处理技术是指通过生物菌群对废水进行分解、转化和吸附,以去除其中的污染物。
这种技术可以完成一些常规的废水处理,如去除有机物和氨氮等污染物。
但是,对于高浓度含盐废水,生物处理技术往往只能起到辅佑襄助作用。
三、综合处理方案针对高浓度含盐废水的特点,综合采纳多种处理技术是特别有效的。
高含盐、氨氮、COD_化工废水处理[1]
江苏莱茵河医药化工材料有限公司年产200吨4,4-二氨基苯酰替苯胺、200吨N-(乙氧基羰基苯基)-N’-甲基-N’-苯甲脒、150吨3,4’-二氨基二苯醚、300吨双(2, 2, 6, 6-四甲基-4-哌啶基)癸二酸酯、100吨4-叔丁基-4’-甲氧基二苯酰甲烷、50吨3,3’-双(对甲苯磺酰氨基羰基氨基)二苯甲酸-1,5-(3-氧代戊酯)、50吨4,4’-双(对甲苯磺酰氨基羰基氨基)二苯甲烷、100吨4-氨基-N-甲基苯甲酰胺、100吨1,3-双(4-氨基苯氧基)苯、200吨对硝基苯甲酰胺、120吨2-(4-氨基苯基)-5-氨基苯并咪唑技改项目废水处理工艺项目方案及报价书江苏穆玉耳环境工程有限公司二○一○年六月目录一、公司简介 (1)二、项目概况 (1)三、项目基本资料 (1)四、方案设计 (1)4.1 工艺选择说明 (2)4.2 工艺说明 (2)4.3污水处理设备技术性能参数及说明 (3)1、高含盐、高含有机物废水收集池(前置格栅井) (3)2、三效蒸发器 (4)3、蒸发集水池 (4)4、铁碳微电解池 (5)5、水质水量的调节——调节池 (6)6、混凝沉降器 (6)7、酸化水解池(上流式兼氧滤池) (7)8、接触氧化池 (8)9、斜管沉淀池 (9)10、清水池 (9)11、污泥浓缩池 (10)12、机房 (10)五、设备配置及报价 (10)5.1 土建费用概算 (10)5.2 主要机电设备及器材概算 (11)5.3 工程总概算 (12)附表:进水水质及园区污水处理厂水质接受标准 (13)一、公司简介江苏穆玉耳环保工程有限公司是一家集技术开发、生产制造、工程建设、运营服务于一体的技术密集型高新科技企业。
公司拥有强大的技术自主研发和工程总承包能力;拥有先进的信息化管理及简捷高效管理模式;拥有高水平、高技能、高素质的朝气蓬勃的员工队伍;拥有江苏穆玉耳设计研究院、江苏穆玉耳环境工程有限公司、江苏穆玉耳重型机械有限公司、江苏穆玉耳科技有限公司等十多个实体企业。
化学沉淀法处理高浓度氨氮废水的实验研究
氨 氮 废 水
纂 将 定 量 氯 化 铵 溶 于 纯 水 中 制 成
1 . 2 实验 装置及 设 备
理想 的高浓度氨 氮废水处理方 法 J 。
1 实验部 分
实验 所用 的仪 器设备 如表 2所示 。
收 稿 日期 : 2 0 1 3—1 0— 3 0 。
作者简介 : 刘国跃 , 男, 1 9 8 3年毕业于华 东化工学院分院化学 工程专业 , 工学学士, 工程师 。
文章 针对模 拟含 氨氮废 水 进行化 学沉 淀法 去
石 油 化 工 技 术 与 经 济
T e c h n o l o g y& E c o n o mi c s i n P e t r o c h e mi c a l s
第2 9 卷
第6 期
2 0 1 3年 1 2月
表 2 仪 器 设 备
中 图分 类 号 : T X 7 0 3
高浓 度 的氨 氮废水 主要 产 自工业 生产 过程 以
除氨氮 的研 究 。在 溶解 性 磷 酸 盐 , 镁及 氨 氮 的起 始摩 尔浓 度 比为 1 : 1 : l 条件 下 , 研 究改变 p H 以及
及 垃圾 填埋场 渗 滤 液 , 其 污 染 物 氨氮 质 量 浓 度 一 般 大于 5 0 0 m g / L 【 I J 。废 水 中 的氨 氮 类 化 合 物 是 水 体富 营养 化与 环 境 污 染 的重 要 物 质 , 其 成 分 复 杂, 含有 许 多有生 物毒 性 、 难 以被 微 生物 降解 的化 合物, 处 理难 度较 大 。据 《 中 国环境 统 计 报 》 的数
并 探讨 化学 沉淀 法 去 除 氨氮 的最 佳操 作 条 件 , 以
便 为实 际废 水 中去除 氨氮摸 索适 宜的反 应条件 提
基于化学沉淀法处理高浓度氨氮废水的研究
基于化学沉淀法处理高浓度氨氮废水的研究摘要:全球工业化不断发展的今天,高浓度氨氮废水的排放日益剧增,严重地影响到了水质营养,造成环境污染。
废水处理问题将成为全球热点关注问题,其中化学沉淀法处理高浓度氨氮废水工艺的研究尤为重要,通过一系列的化学反应生成化学沉淀,分析药剂进行配制的比例值对高浓度氨氮废水处理的作用,应发挥化学沉淀法的优势,改善水质污染。
关键词:氨氮废水处理磷酸铵镁化学沉淀法要点中图分类号:x703 文献标识码:a 文章编号:1007-3973(2013)004-123-021 前言目前水体污染超标比较严重的是氨氮废水的排放,其来源遍及很多地域,排放出来的有毒物质会给水中生物带来生病威胁。
国家对于氨氮废水的处理方式多种多样,化学沉淀法因其工艺手法简易,净化水体污染效率高,反应速度快等特点而被国内外重视利用,广泛利用到氨氮废水处理当中,其原理就是在废水中投入沉淀剂,与氨氮发生反应,生成难溶于水的物质,从而进行沉淀分离,这过程也叫做脱氧。
2 高浓度氨氮的危害废水排放中含有的高浓度氨氮,是水环境中氮的表现形态,对水体影响极大,它一旦跟水体进行接触就会给水体造成污染,我们经常会在一些江河湖泊中发现藻类的存在,特别是流动速度缓慢河流更容易被氨氮污染,造成藻类植物的大量繁殖,致使水体缺少氧气,危机鱼类乃至水生动植物的生命,引发水质质量的异变,其呈黑色液体,江河因此会附上恶臭,加大了自来水处理厂的工作量,难度大大提高;某些金属物质在遇到氨氮时会被大量的腐蚀,金属物质就不耐用,破坏了金属的使用寿命;在对污水进行回收利用时,用水设备与输水管道中的微生物会充分利用氨氮来进行生命的再度繁殖,大量的微生物结垢堵塞管道,致使污水处理不能完成,引发污水循环倒流;工业中水的循环利用以及对水的消毒都要用到含有氯的消毒水,在进行消毒时,氯与氨氮相遇产生化学反应,生成氯胺,氯的消毒效果就不明显,提高了消毒时对氯物质量的需求;氧化后的氨氮有可能存在饮用水中,长期饮用可能会得高铁血红蛋白症,同样它在人体中会自动转换为亚硝胺,有致癌作用,严重威胁了人们的身体健康。
废水脱氮除磷工艺
废水脱氮除磷工艺
废水脱氮除磷工艺是一种用于处理含有高浓度氮和磷的废水的技术,旨在减少这些有害污染物的排放,以满足环保标准。
以下是常见的废水脱氮除磷工艺:
1.生物脱氮除磷工艺:
生物脱氮(BNR):生物脱氮是通过在废水处理系统中引入一些特定的微生物,将废水中的氮转化为氮气的过程。
这通常包括硝化和反硝化两个阶段,其中氨氮首先被氧化成亚硝酸盐,然后转化为氮气。
生物除磷(BPR):生物除磷是通过引入能够吸附磷的微生物,将废水中的磷物质吸附并沉淀出来的过程。
2.化学脱氮除磷工艺:
化学沉淀:添加化学药剂,如氧化铁、氧化铝等,与废水中的磷形成沉淀物,从而实现除磷的效果。
这一过程通常被称为磷酸盐的化学沉淀。
硝化-脱硝:使用化学方法将废水中的氨氮氧化成硝酸盐,然后再还原成氮气。
3.物理化学脱氮除磷工艺:
生物物理化学一体化工艺:将生物处理、物理处理和化学处理结合在一起,以提高脱氮除磷效果。
膜分离技术:利用膜过滤技术,如超滤、反渗透等,从废水中去除氮和磷。
4.湿地处理:
人工湿地:利用植物和微生物的协同作用,通过湿地过程去除废水中的氮和磷。
自然湿地模拟:模仿自然湿地的生态系统,利用湿地中的植物和微生物去除废水中的有机和无机污染物。
高氨氮废水处理技术
高浓度氨氮废水处理过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。
因此,废水脱氮处理受到人们的广泛关注。
目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。
消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。
高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1物化法1.1吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882mg/L)进行了处理试验。
最佳工艺条件为pH=11,超声吹脱时间为40min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240mg/L)时发现在pH=11.5,反应时间为24h,仅以120r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
而在pH =12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。
化工高盐废水处理工艺
化工高盐废水处理工艺
一、概述
高盐废水是一种具有高含盐量、高有机物和高悬浮物的特点的废水。
这类废水主要来源于化工、制药、石油化工、造纸和印染等行业。
高盐废水不仅对环境造成严重污染,还对生物处理系统产生抑制作用,因此,高盐废水的处理一直是环保领域的重要课题。
二、处理工艺
1.预处理:预处理的目的是去除废水中的大颗粒悬浮物和油类物质,为后续
处理创造有利条件。
常用的预处理方法包括沉淀、过滤、气浮等。
2.蒸发结晶:蒸发结晶是一种常用的高盐废水处理方法,通过加热使废水中
的水分蒸发,而盐分则以结晶的形式析出。
该方法不仅可以去除盐分,还可以回收有价值的盐类物质。
3.生物处理:对于含盐量较低的废水,可以采用生物处理方法。
通过培养微
生物,利用其代谢作用降解有机物,并降低废水中的氨氮、总氮等污染物。
常用的生物处理技术包括活性污泥法、A2O工艺等。
4.高级氧化:对于难降解的有机物,可以采用高级氧化技术进行处理。
该技
术利用强氧化剂如臭氧、过氧化氢等,将有机物转化为无害物质。
高级氧化技术具有反应速度快、无二次污染等优点,但运行成本较高。
三、处理效果
通过合理的处理工艺,高盐废水可以得到有效的处理,达到国家或地方规定的排放标准。
同时,一些有价值的产品也可以通过处理过程得到回收利用。
四、结论
高盐废水处理是一个复杂而重要的课题,需要采用多种方法综合处理。
目前,虽然已有许多成熟的处理工艺,但随着环保要求的提高和处理难度的增加,仍需不断探索和创新。
高浓度含盐废水处理
高浓度含盐废水处理处理高盐有机废水的工艺方法有物理法、化学法、生物法,一般都是以降低废水的COD和含盐量为目的。
一、物化法(1)焚烧法:对于热值较高的高盐废水,COD含量高,在800-1000℃的条件下充分与空气中的氧气反应,COD转化为气体和固体残渣,一般适用于COD 值大于100g/L的废水,且能耗较高。
(2)电解法:高盐废水具有较高的导电性,在电解过程中,有机物电解质溶液可以发生一系列氧化还原反应,生成不溶于水的物质,经过沉淀或生成无害气体除去,降低COD。
该方法处理与有机物和无机盐的种类也有关,Cl-存在时可在阳极放电,生成ClO-降解COD。
但也有实验表明苯酚废水通过电解法处理只改变了COD的存在形式并没有减少TOC的存在总量。
(3)膜分离工艺:目前较成熟的常用膜分离工艺有微滤、超滤、纳滤、反渗透、电渗析。
微滤和超滤所用膜的孔径较大,对于COD和悬浮物(SS)的截留作用较好,但不能有效去除污水中的盐分。
纳滤可以截留大部分二价离子。
反渗透(RO)能够截留一价离子,可以除去部分溶解性有机物,但在水处理应用上有一定的限制。
电渗析技术是比较有效和常用的脱盐技术。
根据不同的要求可以选择不同的膜分离工艺处理,但当有机物浓度高时,膜易被污染,且成本较高。
(4)蒸发结晶工艺:蒸发结晶工艺适用于COD值较低的工艺,其主要目的是使高盐废水固液分离。
目前常用的是多效蒸发工艺和机械压缩蒸发工艺,蒸发结晶工艺瓶颈在于能耗大,各企业含盐废水的水质差异较大,处理效果和费用不同,经济效益不好,也会带来二次污染,常被用于预处理阶段。
(5)吸附工艺:活性炭晶格结构独特,表面有很多含氧官能团,可吸附大量无机物和有机物在表面,同时一些有机物进入活性炭内部微孔形成螯合物,从而净化水质。
Fenton氧化工艺可产生强氧化自由基,自由基可使有机物裂解,从而提高生化活性或去除有机物。
在Fenton试剂体系中引入活性炭,可提高氧化基附近的有机物浓度,提高氧化效率。
高盐化工废水处理工艺研究进展
高盐化工废水处理工艺研究进展摘要:在化工行业快速发展的同时,也伴随着许多化工废水的排放,而其所引起的环境污染也日益严重。
在化学工业中,废水的结构复杂,难降解,毒性大,其处理过程复杂,不仅要花费巨大的投资,还会加剧当前的环境污染。
在所有化工行业中,含盐化工废水的排放是最多的,因此,要想改善含盐化工废水,就有必要对其进行处理。
基于此,本文对高盐度化工废水处理工艺进行了详细的分析。
关键词:高盐化工废水;处理技术;废水处理1.高盐废水治理现状1.1高盐化工废水治理的必要性在化工行业的生产运行中,都会产生一些带有污染性质的废水和废气,它们会对工厂周围的生态环境产生一定的影响,也会污染周围居民的日常生活环境,对他们的身体健康不利。
所以,如何有效地控制化学污染物,特别是高含盐量的化学废水,是值得有关部门关注的问题。
目前,随着化学工业的持续发展,其产生的高含盐量的化学污水也在逐年增多,因此,污水的治理和二次利用问题,已成为制约我国化学工业发展和环境保护的关键问题。
高盐浓度的化学污水治理技术通过对污水中的有毒物质进行有效的分离,并对其中的无机盐组分进行二次资源化,从而达到有效的环境保护和资源节约的目的,并为企业节约成本的目的。
因此,要对高盐废水处理工艺进行持续的调整和升级,对废水处理技术和处理效率进行提升,并制定出一套严格的废水控制体系,构建出一套绿色发展的模式,从而推动公司的进一步发展。
1.2 高盐化工废水的治理难点在目前工业条件下,对含高浓度盐分的污水进行处理,技术要求更高、难度更大,投资更大,但在实践中的效果并不明显。
很多企业为了快速提高自身的废水处理技术,都会向国外和国内的化工企业学习。
然而,单纯的复制和套用已有的教学模式,并不能很好地改善教学质量。
由于精细化学品生产具有其特殊性,在不同时期、不同环节所产生的废水的成分、浓度等均不相同,所以单纯的重复已无法从根本上解决污水处理的问题。
而随着化工行业的发展,越来越重视经济利益,所以很多公司的管理者都会尽量减少投资、减少成本,以求经济利益最大化。
污水处理中的高盐废水处理技术
海水淡化
随着全球水资源短缺问题日益严重,海水淡化成为解决人类 用水需求的重要途径。然而,海水淡化过程中会产生大量的 高盐废水。
高盐废水排入环境后,不仅对生态环境造成危害,还会对淡 水资源的供给产生影响。因此,如何有效处理这些高盐废水 成为海水淡化技术发展的关键问题之一。
高盐废水对城市污水处理厂的生物处理过程产生不利影响,如抑制微生物的生长和代谢,降低污水处 理效率。同时,高盐废水也会对城市污水处理厂的出水水质产生影响,导致出水水质不稳定,难以达 到排放标准。
02
高盐废水处理技术
物理法
01
02
03
反渗透法
利用半透膜,在压力作用 下使水分子和无机离子透 过膜,而盐类物质被截留 ,从而实现脱盐。
污水处理中的高盐废水处理 技术
汇报人:可编辑 2024-01-05
contents
目录
• 高盐废水来源及危害 • 高盐废水处理技术 • 高盐废水处理技术应用与案例分析 • 高盐废水处理技术经济性分析
01
高盐废水来源及危害
工业生产排放
工业生产过程中,如石油化工、制药 、造纸等,会产生大量的高盐废水。 这些废水中的盐分主要来源于生产过 程中添加的化学物质和反应副产物。
02
随着膜技术的不断发展,膜分离技术将在高盐废水处理中发挥越来越 重要的作用。
03
高级氧化技术具有强氧化能力和广谱性,将成为高盐废水处理领域的 研究热点。
04
生物法在高盐废水处理中具有成本低、能耗小、无二次污染等优势, 未来将得到更广泛的应用。
04
高盐废水处理技术经济性 分析
高盐化工废水处理工艺研究进展
高盐化工废水处理工艺研究进展身份证号:******************摘要:通常高盐废水除含有高浓度盐类物质外,还含有较高浓度的有机物、氮、磷等污染物,水质复杂,处理难度大,目前处理方法主要有物理法、化学法和生物法。
其中物化法包括焚烧、热处理、絮凝沉淀、离子交换及膜分离等,但由于处理费用较高且易带来二次污染等问题,其应用会受到一定限制;而生化法因具有经济、高效、无害等特点,得到了广泛关注。
本文对高盐废水的来源、特征及生化处理现状进行了综述,以期为生化处理高盐废水的工程应用提供依据和解决思路。
关键词:废水处理;电渗析;纳滤;反渗透;多效蒸发引言随着国民环保意识的提高,化工废水的处理及排放受到了广泛的关注。
化工废水的排放逐年增加,不仅造成日益严重的环境污染,还对居民的安全和健康有着严重的威胁。
化工领域产生的废水通常具有成分复杂、难降解的特点,处理过程较为复杂,效率低下。
其中,含盐废水的不当排放会造成地下高盐结晶,给我国环境污染问题的解决带来莫大的烦恼。
因此,合理的采用污水处理方式,以及对现有的污水处理方式进行优化与改进成为亟待解决的科学问题。
1高盐化工废水来源高盐废水来源广泛,不仅在化工产品的制造过程中,在日常生活中也有,如消防水、防结冰盐水、或高盐冲洗水,都是高盐废水排放的组成部分。
此外,沿海城市工业循环冷却海水也是高盐废水的主要来源。
一些高含盐量的地下水和湖泊,以及青海大柴达木湖和河套段高盐地下水等知名的高盐湖泊,也是高盐废水的来源。
其中,工业废水和海水利用废水是主要来源。
1.1海水替代废水沿海城市拥有丰富的海水资源,利用海水替代和处理非家用淡水资源是沿海城市发展和降低经济成本的重要方法和必然趋势。
然而,传统的海水资源利用率较低,不仅消耗大量资源,而且大规模使用海水导致排放高密度高盐度废水。
为了经济多样化,高盐废水的处理成本相对较高,效率较低。
因此,在日常生活中,工厂冷却或冲厕所等过程中,海水的利用是常用的。
污水处理中的高氨氮废水处理技术
污水处理中的高氨氮废水处理技术1.随着我国经济的快速发展,工业和生活污水的排放量逐年增加,其中高氨氮废水已成为我国水环境污染的重要来源之一。
高氨氮废水主要来源于食品加工、制药、化工等行业,若未经处理直接排放,将对水环境造成严重污染,影响生态系统的平衡。
因此,研究高氨氮废水的处理技术具有重要的现实意义。
本文将对高氨氮废水的来源、危害及处理技术进行探讨。
2. 高氨氮废水的来源与危害2.1 高氨氮废水的来源高氨氮废水主要来源于以下几个行业:1.食品加工行业:动物制品、豆制品、水产品加工等过程中产生的废水,含有较高的氨氮成分。
2.制药行业:制药生产过程中使用的原料、溶剂、催化剂等,可能含有较高浓度的氨氮。
3.化工行业:合成氨、尿素、硝酸等化工产品的生产过程中,产生的废水含有较高氨氮。
2.2 高氨氮废水对环境的危害高氨氮废水对环境的危害主要表现在以下几个方面:1.水体富营养化:氨氮废水中的氨氮物质在水中被微生物转化为硝酸盐和磷酸盐,进一步导致水体富营养化,引发藻类过度生长,破坏水体生态平衡。
2.恶臭污染:氨氮废水具有强烈的刺激性气味,直接排放到环境中,会对周围居民的生活环境造成严重影响。
3.毒性效应:氨氮废水中的氨氮物质在生物体内转化为氨,对人体和动植物产生毒性效应,影响生长发育,甚至造成死亡。
3. 高氨氮废水处理技术目前,高氨氮废水处理技术主要包括生物处理法、化学处理法和物理处理法。
以下是几种常见的处理技术:3.1 生物处理法生物处理法是利用微生物的代谢作用,将有机污染物转化为无害物质的过程。
生物处理法包括好氧生物处理和厌氧生物处理两种。
好氧生物处理法如活性污泥法、生物膜法等,适用于较高浓度氨氮废水的处理。
厌氧生物处理法如升流式厌氧污泥床(UASB)、厌氧滤池等,适用于低浓度氨氮废水的处理。
3.2 化学处理法化学处理法是通过化学反应,将氨氮废水中的氨氮转化为无害物质。
常见的化学处理法有吹脱法、吸附法、离子交换法等。
高盐废水特点、处理工艺及发展趋势详解
高盐废水特点、处理工艺及发展趋势详解高盐废水是指总含盐质量分数至少1%的废水,其主要来自化工厂及石油和天然气的采集加工等。
这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
采用生物法进行处理,高浓度的盐类物质对微生物具有抑制作用,采用物化法处理,投资大,运行费用高,且难以达到预期的净化效果。
采用生物法对此类废水进行处理,仍是目前国内外研究的重点。
高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42-、Na+、Ca2+等盐类物质。
虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。
但是若这些离子浓度过高,会对微生物产生抑制和毒害作用,主要表现:盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质分离;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥易上浮流失,从而严重影响生物处理系统的净化效果。
高盐废水处理是现阶段工业发展面临的重大环保问题。
综合利用是解决高盐废水瓶颈的重要路径。
现阶段,规模化处理高盐废水仍然存在处理效率低、运行成本高的特点,还存在很多需要突破和解决的关键技术问题。
例如,采用正渗透法处理高盐废水时,正渗透膜和汲取液等核心问题仍未很好解决;如何提高反渗透处理的水量,如何延长膜件的使用寿命,如何有效防止膜污染等问题仍需函待解决。
一、高盐废水简介高盐废水指来源于生活污水和工业废水的总含盐量大于1%的排放废水,含有较高的如Cl-,SO42-,Na+,Ca2+等无机离子,也含有如甘油、中低碳链的有机物。
由于其成分复杂多样,盐分高,对微生物生长具有较强的抑制作用,因此该废水处理技术难度远比普通污水处理要大得多。
我国高盐废水产生数量在总废水中达5%,每年仍以2%的速率增长。
A2O高浓度氨氮生活污水处理工艺
A2O高浓度氨氮生活污水处理工艺由于氨氮对水体污染的问题日益严重,污水的脱氮问题已引起人们的重视,就特殊的高氨氮生活废水,在脱氮过程中仅仅先将氨氮氧化生成亚硝酸盐氮,因此如何实现稳定高效的亚硝化过程已成为目前国际上生物脱氮领域中的热点。
本文结合华康师大生活园区高浓度氨氮生活废水处理进行分析。
Anaerobic-Anoxic-Oxic (AAO)工艺是我国城市生活污水处理工艺中最为常见的一种污水脱氮除磷工艺,其处理出水的达标排放和运行过程的节能降耗对于保护我国地表水环境具有重要意义。
由于受到进水负荷波动等因素的影响,AAO工艺通常较难保持稳定高效的污染物去除能力[1]。
因此必须经过处理,至少达到国家规定的二级排放标准25 mg/L才能排放,脱除这类废水中的氨氮是处理废水的关键步骤之一。
1工程概况华康师大生活污水于2006年建设完成,设计工艺缺氧+三级接触氧化处理工艺,出水部分做回用水。
现因部分原因出水的NH3-N和大肠杆菌超标。
根据我公司对各种大小型生活污水项目的良好运行及技术经验,应甲方要求,对该废水设计改造进行认真分析,制造了本技术方案,使出水能稳定的完全达标。
2工艺分析对于AAO 工艺中的三个主要控制变量:外回流量、内回流比以及溶解氧设定值,都可以根据进水负荷进行控制。
考虑到在生产实际中氨氮浓度易于测量,且对于同一污水处理厂进水氨氮占总氮的比例较为稳定,可以用进水的氨氮负荷来表征总氮负荷。
因此,在前馈控制中,使用进水COD负荷、氨氮负荷及COD 与氨氮浓度的比值(C/N)作为监测自变量,根据其不同的数值水平调节A2/O 工艺的各项运行参数。
(1)预处理。
预处理系统主要包括对剩余氨水的加碱蒸氨处理及对其他废水的铁凝、气浮处理。
目的是净化水质,降低废水氨氮含量,使其达到从AAO废水处理系统进水要求。
(2)AAO生化处理。
各种生产废水统一进入调节池。
调节池的主要作用是均衡废水水质和水量,保证AAO废水处理系统运行的稳定性。
高浓度氨氮废水处理方法
通过对不同行业氨氮废水的处理方法进行介绍,总结了氨氮浓度1000~5000 mg/L废水的物化法和生物法去除效果,并对各处理工艺的原理、研究现状、所需条件、存在问题等进行介绍。
氮是造成水体富营养化和环境污染的重要污染物质,氨氮污染主要产生于化工废水、化肥废水、焦化废水、味精废水、垃圾渗滤液、养殖废水等。
一般而言,对生活污水和食品加工厂废水等低浓度氨氮废水,主要采用生化法处理,对大多数中等浓度氨氮的工业废水,根据废水实际情况和处理要求,可选择物理方法或生物硝化法处理。
1、物理法1)吹脱法吹脱法是目前国内用于处理高浓度氨氮废水较多的方法,吹脱出的氨可以回收利用。
吹脱法适合处理高浓度氨氮废水,主要缺点是温度影响比较大,在北方寒冷季节效率会大大降低。
但须注意国内对吹脱出的氨有效利用不高,仅仅是将氨从水体转移至空气中,氨的污染问题并未得到妥善解决。
2)沉淀法化学沉淀法是通过向含氨氮废水中加入含Mg2+和PO43-离子的药剂,与废水中的NH4+反应生成MgNH4PO4·6H2O复合盐(俗称鸟粪石),从而将氨氮从废水中去除。
该方法在去除废水中氨氮的同时,得到了一种许多农作物所需的复合肥料MgNH4PO4·6H2O,而且同时也可去除废水中的磷,是一种变废为宝、经济可行的高浓度氨氮废水处理技术。
温度对化学沉淀法处理高浓度氨氮废水的影响并不显著,而pH值的影响却很明显,一般要求反应的pH值控制在8~10之间,氨氮去除率可达到93%以上。
3)吸附法沸石是一类以硅酸盐为主,具有阳离子交换性和较大吸附能力的矿物,其结构中含有碱金属或碱土金属离子,如Na+、Ca2+、Mg2+等。
这些离子极易与周围水溶液中的阳离子发生交换作用,交换后的沸石晶格骨架结构不被破坏,并可再生,从而使沸石具有离子交换树脂的特性。
沸石作为极性吸附剂也是一种理想的生物载体。
当废水浓度为200 mg/L,对氨氮的对数吸附等温线符合Freundlich 方程,直线的斜率在0.1~0.5之间,可以作为高浓度氨氮废水的吸附剂使用。
高含盐废水的5种处理方式
高含盐废水的5种处理方式有关高盐废水处理工艺的简短总结,大家一起来学习吧!染料、农药、制药和日用化工等精细化工生产过程中产生的废水含盐量为3~10%(以质量计)、COD在50000~150000mg/L范围内,行业内将这类废水统称为高浓度高盐废水,是一种极难处理的废水,对微生物生长的毒害尤其大。
处理高浓度含盐废水通常是“预处理+蒸发浓酸结晶除盐”工艺。
1、加药混凝—气浮、沉淀传统预处理工艺当含盐原水COD浓度在5000mg/L以下,而且对结晶盐质量没有要求时,传统工艺是将含盐原水经过“调节—加药混凝—气浮、沉淀” 预处理后,再进入“蒸发浓缩结晶除盐系统”。
该方法投资少,运行成本低,但结晶盐质差,难销。
2、Fenton 或电—Fenton 催化氧化预处理工艺Fenton试剂含有H2O2和Fe2+,对废水中有机污染物具有很强的氧化力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。
但Fenton或电-Fenton催化氧化工艺要求特定的反应条件:pH值2~4,而且产生较多含铁污泥,出水会有颜色。
当含盐原水pH值偏低时使用较经济,否则“加酸降pH,加碱中和”的过程增加运行成本。
COD浓度在10000mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton工艺就无优势了。
3、双膜法预处理工艺先利用孔径在20~2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。
由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。
这时再用孔径在1~20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。
双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。
高浓度氨氮废水的预处理方法说明
高浓度氨氮废水的预处理方法说明高浓度氨氮废水主要来自焦化废水、煤制气废水、化肥废水、垃圾渗滤液以及厌氧消化液等。
目前,国内外去除废水中高浓度氨氮的技术有以下几种。
(1)吹脱法氨吹脱是通过调节废水的 pH值、控制水温、水力负荷及气水比等参数,利用空气或蒸汽的吹脱作用将氨氮从液相转移到气相,从而降低废水中的氨氮含量。
(2)化学沉淀法化学沉淀是向废水中加入含 Mg2+和PO-4的药剂,使废水中的氨氮转化成难溶复盐 MgNH4PO4,该复盐沉淀无吸湿性,可以在空气中很快干燥。
化学沉淀法可以避免吹脱法造成的填料堵塞、臭味等问题;且不受温度限制,而且生成的磷酸氨镁也是一种农作物所需的良好的缓释复合肥料。
(3)高级氧化技术利用复合氧化剂或在电场的作用下,产生·OH 自由基或OCl-将溶液中的氨氮氧化成N2、CO2、H2O或无机盐。
常用的氧化方法有电化学氧化、超声波氧化、光催化氧化、微波氧化、湿式氧化等。
高级氧化技术具有氧化彻底、反应迅速等优势,但其在实践应用上还存在着不少有待解决的问题。
(4)离子交换与吸附技术吸附法是利用多孔状的固体材料,使废水中的氨氮被吸附在固体材料的多孔表面而去除的方法。
沸石对铵离子具有极强的选择性,可作为吸附材料去除氨氮。
活化沸石是一种具有交联结构的骨架状硅铝酸盐,其多孔道、比表面积大的特征,可吸附废水中的氨氮,释放出骨架上原有的金属离子。
沸石吸附法是在中性或偏酸性条件下进行的,这时水中的氨氮主要以NH+4的形式存在,有利于沸石的吸附和离子交换。
(5)反渗透法反渗透法中广泛采用的是低压聚酰胺膜,当操作压力大于1.0MPa时,氨氮的去除率可大于90%,TOC和Cl-的去除率均大于95%。
反渗透法具有膜成本较高,膜容易被污染的缺点,开发廉价、高效、耐污染的反渗透膜是处理高氨氮废水需要重点解决的问题。
(6)乳状液膜法乳状液膜法是通过两相间存在的液相膜界面,将组成不同但又可以互相混溶的溶液隔开,经选择性渗透使其分离。
浅析高浓度含氮废水的处理
现代工业生产所排放的工业废水是造成现代社会水污染问题异常严峻的一大根源,在工业废水中,大多数工业废水的种类都对水体有毒有害,尤其是高浓度含氮废水,一旦将其排入江河之中,极易导致水体富营养化的危害后果,进而导致水体自然灾害的频发、水质恶化、水生态遭受严重破坏等问题。
因而,对于高浓度含氮废水排放之前的有效处理非常有必要。
1 高浓度含氮废水的成分组成在大多数情况下,高浓度的含氮废水主要有两种组成成分所构成,即有机氮和无机氮。
而具体来说,有机氮中又主要有以下四种成分,即尿素、蛋白质、酰胺、氨基酸,这些成分使得有机氮在水体所具有的微生物的作用之下会变成氨氮。
无机氮主要有以下三种成分,一是亚硝酸盐氮,二是氨氮,三是硝酸盐氮。
化学制药废水、石油化工废水等都属于高浓度含氮的废水,这些废水含氮浓度之高使得其具有极低的碳氮(C/N)比,进而导致水体中的微生物无法像正常状态下运用有机碳源对废水中所含氮成分进行降解,微生物只能完成对低浓度氮的降解,无法通过传统的生物硝化——反硝化作用来对氮含量极高的废水及性能处理。
由此可知,高浓度含氮废水很难由水体自身进行生物降解,处理难度十分巨大。
2 高浓度含氮废水的水质特征通过对化学制药废水这种典型的高浓度含氮废水的相关水质指标进行检测之后,我们得出了一些具体直观的水质数据。
其水质特征如表1所示。
表1 高浓度含氮废水的水质特征CODcr/(mg/L)TN/(mg/L)NH4+-N pH SS/(mg/L)1000-4000120-15000100-100002-11≤200003 高浓度含氮废水的处理方法根据高浓度含氮废水的不同种类型具有的不一样的水质,可以采脱氮技术即处理方法,下面主要对几种物理化学处理方法和+生物化学处理方法进行简单介绍。
3.1 物理化学方法1) 吹脱法。
对高浓度含氮废水采取吹脱法脱氮实际上是对废水进行pH值的调整,使其水质变成碱性,同时通过曝气使得水体中游离的氨氮得以去除,这一处理方法的原理实际上通过加碱使得铵根离子发生转化,将NH3 由液相转为气相,进而逸出。
化肥厂污水处理
化肥厂污水处理化肥厂污水处理是指对化肥厂生产过程中产生的废水进行处理,以达到环境保护和资源回收利用的目的。
化肥厂污水处理的主要目标是降低污水中有害物质的浓度,减少对水体和土壤的污染,同时回收可再利用的水和有价值的物质。
一、化肥厂污水的特点化肥厂污水的特点主要包括高浓度、高氨氮含量、高盐度、酸碱度不稳定等。
化肥厂污水中主要污染物包括氨氮、有机物、重金属、盐类等。
二、化肥厂污水处理工艺1. 预处理:化肥厂污水经过初次过滤和调节,去除大颗粒悬浮物和沉淀物,调节污水的酸碱度和温度,以满足后续处理工艺的要求。
2. 生物处理:采用生物处理工艺是化肥厂污水处理的核心环节。
常用的生物处理工艺包括活性污泥法、人工湿地法和生物膜法等。
活性污泥法利用微生物降解有机物和氨氮,将有机物转化为二氧化碳和水,同时将氨氮转化为氮气。
人工湿地法利用湿地植物和微生物的协同作用,去除有机物和氨氮。
生物膜法则利用生物膜上的微生物降解有机物和氨氮。
3. 深度处理:生物处理后的污水仍然含有一定浓度的有机物、氨氮和盐类等。
因此,需要进行深度处理,以进一步降低污水中有害物质的浓度。
常用的深度处理工艺包括活性炭吸附、反渗透和电解等。
活性炭吸附可以去除有机物和部分重金属。
反渗透则通过半透膜的作用,将污水中的溶解物质和微生物截留在膜外,从而获得清洁的水。
电解可以降解有机物和杀灭微生物。
4. 污泥处理:化肥厂污水处理过程中产生的污泥需要进行处理。
常用的污泥处理方法包括厌氧消化、压滤脱水和焚烧等。
厌氧消化可以降解污泥中的有机物,同时产生沼气。
压滤脱水则通过机械力和化学药剂的作用,将污泥中的水分脱除,得到固体污泥。
焚烧则将污泥进行高温燃烧,将有机物转化为二氧化碳和水,同时消毒杀菌。
三、化肥厂污水处理的效益1. 环境保护:化肥厂污水处理可以有效降低污水对水体和土壤的污染,保护生态环境。
经过处理后的污水可以达到排放标准,不会对周围环境造成污染。
2. 资源回收利用:化肥厂污水中含有大量的氨氮和盐类,经过适当处理可以回收利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高浓度高含盐高氨氮高磷废水处理工艺研究(江苏省宜兴市高塍中明环保技术服务部)
随着地方政府对所辖地的环保重视,越来越多的问题企业浮出水面,由以前的应付到现在的自发寻找对策,由以前的低标准门槛到现在的严控,也可以说是一次历史性的观念改变,那摆在我们环保志愿者面前的是怎样对环保技术突飞猛进的改良优化,让我们所有的排污企业都能真正达标,真正实现资源的最大利用。
纵观中国环保这几十年的发展,笔者有资格见证这几十年的变化,就拿环保之乡高塍镇来说吧,当初我们最早的企业是宜兴市纯水设备厂,也可以说是环保之乡的黄埔军校,当初接触的是一般的废水中和处理,大孔径离子交换吸附处理,然后是我等跟北京城乡建设部的赵玉龙教授在上海同济开
发的微絮凝和双生物膜的废水处理,然后形成了当地工业污水的框架,一般都是加药,沉淀,气浮,生物法处理,八十年代中期,真正有规模的企业鹏鹞环保肩负历史的使命,开创了中国城市生活污水处理的先河,一大批环保企业如雨后春笋,不断发展壮大,欧亚华都的循环水处理,矿井水处理,鑫林环保的煤焦化处理,新裕泰华的涂装水处理,方大环保的脱硫电镀水处理等等,各个企业都有传统优势产品,对各自的物化生化技术都有一个严格的设计规范。
目前,膜处理技术也相当成熟,一批国产膜也应运而生,
有超滤,纳滤,反渗透,EDI,作为废水的深度处理,技术相
当稳熟,虽然这几十年,环保是发展了,但还有相当一部分水我们忽视了它的运行成本,企业有了环保设备头疼,没有也头疼,在这个严峻形势下,我们不得不开发深挖实用新颖产品。
我们在鑫林环保李占中专家的引领下,开发了芬顿技术在煤焦化深度处理上的应用,我们又开发了双膜在渗沥液上的应用。
每一个成功的案例,都激励我们更加努力开发。
近年,中明环保技术服务部又在研究新的课题,国内还有相当一部分水COD高达几十万,同时含盐量达到百分之十几,氨氮又高达几千,磷含量又超标,面对这样一种复杂废水我们探寻答案。
我们采用了蒸铵技术,吹脱技术,四级蒸发结晶,臭氧技术,超临界技术,UASB厌氧,湿式氧化技术等工艺,都有很大的缺陷,要么投资昂贵,后期运行也费劲,甚至有的稳定性差,我们自己都无法接受,不能向市场开发。
为了节省开资,我们在传统工艺上挖掘,屏蔽了生化AO工艺脱氨氮的
路线,采用了廉价的石灰工艺,投入了过量的捕捉剂(1:1.2),反应后使混合液呈现碱性,有利于氨氮的充分反应结
合沉淀再进行二级加药沉淀,进一步除磷等物质,经上清
液检测氨氮去除率99.9%,小于5,磷也小于0.2,废水进一步中和反调,进入zmro高强度耐高压抗污染膜,进水cod
可达1-20万,此膜使用寿命可达三年以上,我们采用ro二级工艺,出水因高渗透,二级出水cod小于50,各种含盐量小于0.01,达到了工厂回用水标准,二级浓水大部分回流至均质池曝气,小部分排入浓水池,可蒸发结晶,可加絮凝剂和沉淀池污泥泵入板框压滤,泥外运处理。
整套工艺我们缩短了工艺链,降低了占地面积,工程投资少运行很稳定,实现全自动控制。
作者,华中明,长期深入一线,环保工艺残局终结者。