山西大同市灵丘县2019年秋七年级数学上册期末试题卷附答案解析
大同市七年级上学期数学期末考试试卷
大同市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)互为相反数是指()A . 意义相反的两个量B . 一个数前面添上“-”所得的数C . 数轴上原点两旁的两个点所表示的两个数D . 只有符号不同的两个数(零的相反数是零)2. (2分)不超过的最大整数是()A . ﹣4B . ﹣3C . 3D . 43. (2分)(2020·长沙模拟) Rt△ABC ,已知∠C=90,∠B=50°,点D在边BC上,BD=2CD (如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A . 80B . 80或120C . 60或120D . 80或1004. (2分) (2019七上·惠山期中) 下列各组中的两个项不属于同类项的是()A . 3x2y和﹣2x2yB . ﹣xy和2yxC . 23和32D . a2b和ab25. (2分)下列代数式符合书写格式的是()A . y÷xB . 2xmC . 2 aD .6. (2分) (2017七上·龙湖期末) 在平面内过O点作三条射线OA、OB、OC,已知∠AOB=50°,∠BOC=20°,则∠AOC的度数为()A . 70°B . 30°C . 70°或30°D . 无法确定7. (2分) (2017九下·莒县开学考) 若x=a是关于x的方程3x-4a=2的解,则a的值是()A . 2B . -2C .D . -8. (2分) 7的相反数是()A .B . -7C . -D . 79. (2分)如图两条非平行的直线AB,CD被第三条直线EF所截,交点为PQ,那么这条直线将所在平面分成()A . 5个部分B . 6个部分C . 7个部分D . 8个部分10. (2分) (2017七上·深圳期末) 某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A . 240元B . 250元C . 280元D . 300元11. (2分) (2019七下·迁西期末) 如图,D是△ABC的边BC上任意一点,E、F分别是线段AD.CE的中点,且△ABC的面积为20cm2 ,则△BEF的面积是()A . 10B . 9C . 6D . 512. (2分)一条公路甲队独修需24天,乙队需40天,若甲、乙两队同时分别从两端开始修,()天后可将全部修完.A . 24B . 40C . 15D . 1613. (2分)(2017·宁津模拟) 观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82017 的个位数字是()A . 2B . 4C . 6D . 814. (2分) (2020七上·郯城期末) 如果一个多项式与另一多项式m2﹣2m+3的和是多项式3m2+m﹣1,则这个多项式是()A . 2m2+3m﹣4B . 3m2+3m﹣1C . 3m2+m﹣4D . 2m2+3m﹣115. (2分) -2 × 4 的结果是()A . 8B . -2C . 4D . -816. (2分) (2019七下·江门期末) 将方程改成成用含的式子表示的形式,结果是()A .B .C .D .二、填空题 (共4题;共4分)17. (1分) (2017七上·鄞州月考) 若,则 =________.18. (1分) (2019七上·宜兴期末) 一个多项式加上得,则这个多项式为________.19. (1分) (2020七上·岑溪期末) 有两个有理数,其和为1,其差为5,则其积为________.20. (1分)将一张长方形纸片按图中方式折叠,若∠2=63°,则∠1的度数为________.三、解答题 (共6题;共53分)21. (1分) (2020七下·南安月考) 若2x﹣1=x+5,则x=________.22. (10分)(2018七上·辛集期末) 解方程(1) 3(y+1)=2y﹣1(2) 2﹣ = .23. (10分)(2019·安徽模拟) 如图是2019年1月份的日历.任意选择图中的菱形框部分,将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:9×11-3×17=48,13×15-7×21=48.不难发现,结果都是48(1)请证明发现的规律;(2)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120,请判断他的说法是否符合题意.24. (10分) (2016八上·高邮期末) 如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2) AF=2CD.25. (7分) (2018七上·故城期末) 如图,数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P 从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1) (1)点B表示的数为________,点P表示的数为________(用含t的式子表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,H同时出发,问点P运动多少秒时追上点H?26. (15分) (2018七上·满城期末) 一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元.问:(1)每件服装的标价是多少?(2)每件服装的成本是多少?(3)为保证不亏本,最多能打几折?参考答案一、单选题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共53分)21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
山西省大同市七年级上册数学期末考试试卷
山西省大同市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共21分)1. (2分) |-2|的相反数是()A . 2B . -C . -2D .2. (2分)实数a,b在数轴上的位置如图所示,下列结论正确的是()A . b>0B . a<0C . b>aD . a>b3. (2分) (2018七上·临沭期末) 已知,化简所得的结果是()A .B .C .D .4. (2分)(2012·北海) ﹣的绝对值是()A . ﹣B .C . ﹣6D . 65. (2分)中国老龄办公布的《“十一五”期间中国老龄事业发展状况》称,“十一五”期间,中国养老保障制度不断完善。
截至2011年初,全国城镇基本养老保险参保人数为25673 0000人,保留两个有效数字后为()A . 26000 0000B . 2.6×107D . 26000 0006. (2分)如图是一个正方体的表面展开图,则原正方体中,与“安”字所在面相对的面上标的字是()A . 重B . 泰C . 山D . 于7. (2分) (2017七下·港南期末) 下列说法正确的是()A . 相等的两个角是对顶角B . 同位角相等C . 图形平移后的大小可以发生改变D . 两条直线相交所成的四个角都相等,则这两条直线互相垂直8. (2分)下列叙述正确的是()A . 零是整数中最小的数B . 有理数中有最大的数C . 有理数中有绝对值最小的数D . ﹣1是最大的负数9. (2分)已知,则(a+b)2011的值是()A . 1B . -1C . 0D . ±110. (2分) (2016七上·昆明期中) 买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A . (7m+4n)元B . 28mn元C . (4m+7n)元11. (1分) (2011七下·河南竞赛) 若a=1,b=19,c=200,d=2000,则 ________。
七年级上册数学期末检测试卷(附答案和解释)
七年级上册数学期末检测试卷(附答案和解释)2019年七年级上册数学期末检测试卷(附答案和解释)距离期末考试越来越近了,期末考试考查的是整个学期的学习内容,内容很多。
各科都已经进入复习阶段,现在大家都在忙碌的复习阶段。
我们一起来看看这篇七年级上册数学期末检测试卷吧!一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣63. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 35. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=36. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最18. 已知x=﹣2是方程3(x+a)=15的解,则a=.19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB=度.20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD=度.三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)22. ﹣23+(﹣3)2﹣32(﹣2)2.23. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.24. 解方程:四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3? 26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?参考答案与试题解析一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:正和负相对,所以,如果向东走80m记为+80m,那么向西走60m记为﹣60m.2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣6考点:绝对值.专题:计算题.分析:根据绝对值的性质解答即可.解答:解:根据绝对值的性质,3. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数.解答:解:按照科学记数法的形式8 500亿元应该写成8.5103亿元.4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 3考点:代数式求值.分析:把x=﹣2直接代入x+1计算.5. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=3考点:解一元一次方程.专题:计算题.分析:去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.解答:解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.6. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最好还是把你的羊给我一只,我们羊数就一样了.若设甲有x 只羊,则下列方程正确的是()A. x+1=2(x﹣2)B. x+3=2(x﹣1)C. x+1=2(x﹣3)D.考点:由实际问题抽象出一元一次方程.分析:根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.解答:解:∵甲对乙说:把你的羊给我1只,我的羊数就是你的羊数的两倍.甲有x只羊,乙有+1只,∵乙回答说:最好还是把你的羊给我1只,我们的羊数就一样了,7. 下列图形中,不是正方体的展开图的是()A. B. C. D.考点:几何体的展开图.专题:压轴题.分析:利用正方体及其表面展开图的特点解题.解答:解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.8. 已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP; ②BP=AB; ③AB=2AP; ④AP+PB=AB.A. 1个B. 2个C. 3个D. 4个考点:两点间的距离.分析:根据题意画出图形,根据中点的特点即可得出结论. 解答:解:如图所示:①∵AP=BP,点P是线段AB的中点,故本小题正确;②∵BP=A B,AP=BP,即点P是线段AB的中点,故本小题正确;③∵AB=2AP,AB=AP+BP,AP=BP,即点P是线段AB的中点,故本小题正确;9. 一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2考点:整式的加减.分析:被减式=差+减式.解答:解:多项式为:x2﹣2y2+(x2+y2)10. 如图,已知直线AB,CD相交于点O,OE平分COB,若EOB=55,则BOD的度数是()A. 35B. 55C. 70D. 110考点:角平分线的定义;余角和补角.分析:利用角平分线的定义和补角的定义求解.解答:解:OE平分COB,若EOB=55,二、填空题(共10个小题,每小题2分,共20分)11. 比较大小:﹣6﹣8(填、=或)考点:有理数大小比较.专题:计算题.分析:先计算|﹣6|=6,|﹣8|=8,根据负数的绝对值大的反而小,绝对值小的反而大即可得到﹣6与﹣8的大小.解答:解:∵|﹣6|=6,|﹣8|=8,12. 计算:|﹣3|﹣2= 1 .考点:有理数的减法;绝对值.分析:先根据绝对值定义去掉这个绝对值的符号再计算.13. 化简:2(x﹣3)﹣(﹣x+4)= 3x﹣10 .考点:整式的加减.分析:首先根据去括号法则去括号(注意括号前是负号时,去括号,括号里各项都要变号),再合并同类项(注意只把系数相加减,字母和字母的指数不变).解答:解:2(x﹣3)﹣(﹣x+4),14. 如果一个角的补角是150,那么这个角的余角是 60 度. 考点:余角和补角.专题:计算题.分析:本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.解答:解:根据定义一个角的补角是150,则这个角是180﹣150=30,15. 若x,y互为相反数,a、b互为倒数,则代数式的值为﹣3 .考点:代数式求值.分析:根据相反数的概念和倒数概念,可得x、y;a、b的等量关系,把所得的等量关系整体代入可求出代数式的值. 解答:解:∵x,y互为相反数,a、b互为倒数,16. 如果把6.48712保留三位有效数字可近似为 6.49 . 考点:近似数和有效数字.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.解答:解:6.48712保留三位有效数字可近似为:6.49.17. 若2x与2(1+x)互为相反数,则x的值为﹣ .考点:解一元一次方程.专题:计算题.分析:利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:2x+2(1+x)=0,去括号得:2x+2+2x=0,移项合并得:4x=﹣2,18. 已知x=﹣2是方程3(x+a)=15的解,则a= 7 .考点:一元一次方程的解.专题:计算题.分析:由x=﹣2是方程的解,将x=﹣2代入方程即可求出a 的值.解答:解:根据题意将x=﹣2代入方程得:3(﹣2+a)=15,19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB= 180 度.考点:角的计算.专题:计算题.分析:本题考查了角度的计算问题,因为本题中AOC始终在变化,因此可以采用设而不求的解题技巧进行求解.解答:解:设AOD=a,AOC=90+a,BOD=90﹣a,20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD= 70 度.考点:角的计算;角平分线的定义.分析:由图形可知DOE=DOC+EOC,然后根据角平分线的性质,可推出DOC=BOC,EOC=AOC,由此可推出DOE=AOB,最后根据AOB的度数,即可求出结论.解答:解:∵OD是BOC的平分线,OE是AOC的平分线,DOC=BOC,EOC=AOC,DOE=DOC+EOC=AOB,三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)考点:有理数的除法;有理数的乘法.分析:根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法运算,可得答案.22. ﹣23+(﹣3)2﹣32(﹣2)2.考点:有理数的乘方.分析:根据有理数的乘方的定义进行计算即可得解.解答:解:﹣23+(﹣3)2﹣32(﹣2)2=﹣8+9﹣9423. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=6x﹣8y﹣5x+10y+1024. 解方程:考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.解答:解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?考点:一元一次方程的应用.专题:工程问题.分析:在工程问题中,注意公式:工作总量=工作效率工作时间.若设第一架掘土机每小时掘土xm3,那么,第二架掘土机每小时掘土(x﹣40)m3.第一架掘土机16小时掘土16xm3,第二架掘土机24小时掘土24(x﹣40)m3.解答:解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.考点:比较线段的长短.专题:计算题.分析:根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=AB,CD=CB,AD=AC+CD,又AB=10cm,继而即可求出答案.解答:解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?考点:一元一次方程的应用.分析: (1)根据甲乙两个旅行社的优惠情况,分别表示出示两家旅行社的收费情况即可;(2)令m=n,求出x的值.解答:解:(1)由题意得,甲旅行社收费为:m=240+120x,乙旅行社收费为:n=2400.6(x+1)=144x+144;(2)令m=n可得,240+120x=144x+144,解得:x=4,这篇七年级上册数学期末检测试卷的内容,希望会对各位同学带来很大的帮助。
(2019秋)度第一学期七年级期末数学试卷(有答案)-精编.doc
第一学期七年级期末评价数 学 试 卷一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
1.(-2)×3的结果是…………………………………………………………………………【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】 A .5个 B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】 A .∠DOE 的度数不能确定 B .∠AOD =12∠EOC C .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】①a -b >0; ②ab <0; ③11a b>; ④a 2>b 2.A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是……………………………【 】 A .x ·30%×80%=312 B .x ·30%=312×80% C .312×30%×80%=xD .x (1+30%)×80%=3127..下列等式变形正确的是…………………………………………………………………【 】 A .如果s= 2ab,那么b=2s a B .如果12x=6,那么x=3 C .如果x-3 =y-3,那么x-y =0 D .如果mx= my ,那么x=y8.下列方程中,以x =-1为解的方程是………………………………………………………【 】 A .13222xx +=- B .7(x -1)=0 C .4x -7=5x +7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。
2019-2020学年山西七年级(上)期末数学试卷(含解析)
2019-2020学年山西省七年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列代数式是同类项的一组是()A.﹣a2b与﹣ab2B.ab3与﹣3b3a C.ab与abc D.m与n2.(3分)如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于()A.100°B.90°C.70°D.50°3.(3分)2019年9月8日至16日,中华人民共和国第十一届少数民族传统体育运动会在郑州市举行.运动会期间,公交车总运营车次为476208次,完成运营里程742万公里.数据742万用科学记数法表示为()A.7.42×102B.7.42×105C.7.42×106D.7.42×1074.(3分)从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.5.(3分)如图所示,已知数轴上两数a和b,下列关系正确的是()A.a<﹣b<b<﹣a B.﹣a<﹣b<a<b C.﹣b<﹣a<a<b D.a<b<﹣b<﹣a6.(3分)下列各式中,一定成立的是()A.22=(﹣2)2B.﹣22=|﹣22|C.﹣(﹣2)3=﹣|﹣23|D.23=(﹣23)7.(3分)用一副三角尺可以画出许多不同的角度,以下角度不能用三角尺画出的是()A.75°B.60°C.40°D.30°8.(3分)数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述何者正确?()A.在A的左边B.介于A、C之间C.介于C、O之间D.介于O、B之间9.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“祝”字所在面相对的面上的汉字是()A.新B.年C.快D.乐10.(3分)如图,将一张长方形纸片按图中方式折叠,图中与∠1一定相等的角有()A.1个B.2个C.3个D.4个二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)如图,CE∥BA,图中一定与∠B相等的角是.12.(3分)m+3与1﹣2m互为相反数,则m=.13.(3分)如图,在一条笔直道路l的两侧,分别有A,B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,要使存放点到A,B小区的距离之和最小,则存放点应该建在E处,理由是.14.(3分)在一张长方形纸片上剪去个小长方形得到如图所示的纸片(阴影部分),当x=5.5,y=4时,阴影部分的周长是.15.(3分)如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD 互余,其中正确的有(只填写正确结论的序号).三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(15分)计算:(1)﹣12020﹣;(2)25×;(3)108°18'﹣(56°30'+20°33').17.(6分)先化简再求值:,其中x=1,y=﹣2.18.(6分)如图所示,一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,小正方形中的数字表示在该位置的小立方体的个数.请分别画出从正面、左面看到的这个几何体的形状图.19.(8分)如图,已知△ABC和△CDE,点E在AB边上,且AB∥CD,EC为∠AED的平分线,若∠BCE=30°,∠B=44°,求∠D的度数.20.(10分)我们将两数的和与积相等的等式称为“和谐”等式.(1)计算并完成下列等式:第1个:=;第2个:=;第3个:=;…(2)按以上等式的规律,请再写出一个符合这个规律的“和谐”等式;(3)按以上等式的规律,请写出第n个“和谐”等式.21.(10分)在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.(8分)如图,一只蚂蚁在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发,爬向B,C,D处.规定:向上或向右走为正,向下或向左走为负,如从A到B记为:A→B(+1,+4),从B到A 记为:B→A(﹣1,﹣4).其中括号内第一个数表示左右方向运动情况,第二个数表示上下方向运动情况,根据以上材料,解答下面的问题:(1)从A到C记为A→C,从B到D记为B→D;(2)若这只蚂蚁的行走路线为A→B→C→D,请计算该蚂蚁走过的路程.23.(12分)如图,已知直线AB与射线CD平行,∠CEB=100°.点P是直线AB上一动点,过点P作PQ ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,CF交直线AB于点F,CG平分∠ECF,点P,F,C都在点E的右侧.(1)求∠PCG的度数;(2)若∠EGC﹣∠ECG=40°,求∠CPQ的度数;(3)把题中条件“射线CD”改为“直线CD”,条件点P,F,C都在点E的右侧”改为“点P,F,G都在点E的左侧”,请你在图2中画出PC,CF,CG,并直接写出∠PCG的度数.2019-2020学年山西省七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同不是同类项,故C错误;D、字母不同不是同类项,故D错误;故选:B.2.【解答】解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠ACD=∠1=40°,∠BCD=∠2=60°,∴∠3=∠ACD+∠BCD=100°.故选:A.3.【解答】解:742万=7420000=7.42×106,故选:C.4.【解答】解:从正面看是,故选:D.5.【解答】解:∵由图可知a<0<b,﹣a>b,∴a<﹣b<b<﹣a.故选:A.6.【解答】解:A、22=(﹣2)2=4,正确;B、﹣22=﹣4,|﹣22|=4,错误;C、﹣(﹣2)3=8,﹣|﹣23|=﹣8,错误;D、23=8,﹣23=﹣8,错误,故选:A.7.【解答】解:∵一副三角尺有:30°,45°、60°、90°,∴能用三角尺画出的是:30°,45°、60°、90°、15°、75°.故选:C.8.【解答】解:∵c<0,b=5,|c|<5,|d﹣5|=|d﹣c|,∴BD=CD,∴D点介于O、B之间,故选:D.9.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“祝”字相对的字是“年”.故选:B.10.【解答】解:如图所示:由平行线的性质可得∠1=∠2,∠1=∠3,由对顶角相等可得∠1=∠4.故图中与∠1一定相等的角有3个.故选:C.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.【解答】解:∵CE∥BA,∴∠B=∠ECD.故答案为:∠ECD.12.【解答】解:∵m+3与1﹣2m互为相反数,∴m+3+1﹣2m=0,m=4,故答案为:4.13.【解答】解:公共自行车存放点应该建在E处,理由是:两点之间,线段最短.故答案为:两点之间,线段最短.14.【解答】解:根据题意得:2(2x+2y)+2(2y﹣y)=4x+4y+2y=4x+6y,当x=5.5,y=4时,原式=22+24=46,故答案为:4615.【解答】解:①∵OB,OD分别平分∠COD,∠BOE,∴∠COB=∠BOD=∠DOE,设∠COB=x,∴∠COD=2x,∠BOE=2x,∴∠COD=∠BOE,故①正确;②∵∠COE=3x,∠BOD=x,∴∠COE=3∠BOD,故②正确;③∵∠BOE=2x,∠AOC=90°﹣x,∴∠BOE与∠AOC不一定相等,故③不正确;④∵OA⊥OB,∴∠AOB=∠AOC+∠COB=90°,∵∠BOC=∠BOD,∴∠AOC与∠BOD互余,故④正确,∴本题正确的有:①②④;故答案为:①②④.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.【解答】解:(1)原式=,=,=,=;(2)原式=,=,=25×1,=25;(3)原式=108°18'﹣76°63',=107°78'﹣76°63',=31°15'.17.【解答】解:原式=﹣6x2y+8xy2﹣2xy2+6x2y﹣8=6xy2﹣8当x=1,y=﹣2时,原式=6×1×4﹣8=24﹣8=16.18.【解答】解:如图所示:.19.【解答】解:∵AB∥CD,∴∠B=∠DCB,∠DCE=∠AEC,∠AED+∠D=180°.∵∠B=44°,∴∠DCB=44°.∵∠BCE=30°,∴∠DCE=∠DCB+∠BCE=44°+30°=74°.∴∠AEC=∠DCE=74°.∵EC为∠AED的平分线,∴∠AED=2∠AEC=2×74°=148°,∴∠D=180°﹣148°=32°.20.【解答】解:(1)第1个:=﹣;第2个:=﹣;第3个:=﹣;故答案为:;;;(2)答案不唯一,如;(3)第n个“和谐”等式是.21.【解答】解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.【解答】解:(1))∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+3,+4);B→D记为(+3,﹣1);(2)根据已知可得A→B记为:(+1,+4),B→C记为(+2,0),C→D记为(+1,﹣2),故该蚂蚁走过的路程为1+4+2+1+|﹣2|=10.故答案为:(+3,+4),(+3,﹣1).23.【解答】解:(1)∵AB∥CD,∠CEB=100°∴∠ECQ=80°.∵∠PCF=∠PCQ,CG平分∠ECF,∴.(2)∵AB∥CD,∴∠QCG=∠EGC,∠ECQ=180°﹣∠CEB=80°,∵CG平分∠ECF,∴∠ECG=∠GCF,又∵∠EGC﹣∠ECG=40°,∴∠QCG﹣∠GCF=40°,即∠QCF=40°,∵∠PCF=∠PCQ,即CP平分∠QCF,∴,∴∠ECP=∠ECQ﹣∠PCQ=80°﹣20°=60°,∵PQ∥CE,∴∠CPQ=∠ECP=60°.(3)如图所示,即为所求.∵AB∥CD,∠CEB=100°∴∠ECQ=∠BEC=100°.∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=ECQ=50°,∴∠PCG=50°.第11页(共11页)。
山西省大同市云冈区、灵丘县2019-2020学年七年级(上)期末数学试卷解析版
山西省大同市云冈区、灵丘县2019-2020学年七年级(上)期末数学试卷姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(每小题3分,共30分)1.(3分)﹣2019的倒数是()A.2019B.C.﹣D.﹣20192.(3分)下列各数:﹣5,1.1010010001…,3.14,,20%,,有理数的个数有()A.3个B.4个C.5个D.6个3.(3分)如图,检测4个排球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度,下列最接近标准的是()A.B.C.D.4.(3分)如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.5.(3分)公元820年左右,中亚细亚的数学家阿尔花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法,这本书对后来数学发展产生了很大的影响.其中的“还原”指的是解方程的哪个步骤?()A.去分母B.移项C.合并同类项D.系数化为1 6.(3分)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短7.(3分)如图,赵老师在点O处观测到小明站位点A位于北偏西54°30'的方向,同时观测到小刚站位点B在南偏东15°20'的方向,那么∠AOB的大小是()A.69°50'B.110°10'C.140°50'D.159°50' 8.(3分)下列四个算式:①﹣2﹣3=﹣1;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷=﹣6.其中,正确的算式有()A.0个B.1个C.2个D.3个9.(3分)如图,已知线段AB长度为a,CD长度为b,则图中所有线段的长度和为()A.3a+b B.3a﹣b C.a+3b D.2a+2b10.(3分)下列说法:①若C是AB的中点,则AC=BC;②若AC=BC,则点C是AB 的中点;③若OC是∠AOB的平分线,则∠AOC=∠AOB;④若∠AOC=∠AOB,则OC是∠AOB的平分线,其中正确的有()A.1个B.3个C.2个D.4个二.填空题(每小题3分,共18分)11.(3分)某地某天早晨的气温是﹣3℃,中午上升了8℃,到了夜间又下降了6℃,那么这天夜间的气温是℃.12.(3分)“美丽中国”2019大同国际马拉松赛9月15日在文瀛湖广场开赛,来自世界各地13065名选手在大同秋日宜人的风景中,用激情奔跑感受了这座古都的魅力风情.数13065用科学记数法可表示为.13.(3分)比较大小:﹣1.5﹣1(用“=,<,>”填空)14.(3分)互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为元.15.(3分)按图中的程序计算,若输出的值为﹣1,则输入的数为.16.(3分)用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第一个图形(n=1)时有3个正方形,第二个图形有7个正方形……那么第2019个图案中正方形的个数是.三.解答题(共52分)17.(4分)计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].18.(6分)解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)19.(5分)先化简,再求值:3(2a2b﹣ab2)﹣3(﹣ab2+3a2b),其中a=﹣1,b=2.20.(6分)如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.21.(7分)如图,C为线段AD上一点,点B为线段CD的中点,且AD=8cm,BD=2cm.(1)图中共有条线段;(2)若点E在线段AD上,且EA=3cm,求线段AC和BE的长.22.(6分)为弘扬尊老敬老爱老的传统美德,丰富离退休教职工的精神文化生活,2019年11月16日,我校组织离退休教职工进行了游览晋阳湖参观新校区一日游活动.学校统一租车前往.如果单独租用30座客车若干辆,刚好坐满;如果单独租用45座客车,可少租一辆,且余15个座位,求参加此次活动的人数是多少?23.(8分)(1)探究:哪些特殊的角可以用一副三角板画出?在①135°,②120°,③75°,④25°中,小明同学利用一副三角板画不出来的特殊角是;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图①,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45°角(∠AOB)的顶点与60°角(∠COD)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB平分∠EOD时,求旋转角度α;②是否存在∠BOC=2∠AOD?若存在,求旋转角度α;若不存在,请说明理由.24.(10分)某市出租车的收费标准是:起步价10元(起步价指小于等于3千米行程的出租车价),行程在3千米到5千米(即大于3千米小于等于5千米)时,超过3千米的部分按每千米1.3元收费(不足1千米按1千米计算),当超过5千米时,超过5千米的部分按每千米2.4元收费(不足1千米按1千米计算).(Ⅰ)若某人乘坐了2千米的路程,则他应支付的费用为元;若乘坐了4千米的路程,则应支付的费用为元;若乘坐了8千米的路程,则应支付的费用为元;(Ⅱ)若某人乘坐了x(x>5且为整数)千米的路程,则应支付的费用为元(用含x的代数式表示);(Ⅲ)若某人乘车付了15元的车费,且他所乘路程的千米数位整数,那么请你算一算他乘了多少千米的路程?参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:﹣2019的倒数是:﹣.故选:C.2.【解答】解:有理数有﹣5,3.14,,20%共4个.故选:B.3.【解答】解:通过求4个排球的绝对值得:|+3.5|=3.5,|﹣2.3|=2.3,|+0.8|=0.8,|﹣0.6|=0.6,﹣0.6的绝对值最小.所以这个球是最接近标准的球.故选:D.4.【解答】解:通过具体折叠结合图形的特征,判断图中小正方形内部的线段折叠后只能互相垂直,且无公共点,所以折叠成正方体后的立体图形是C.故选:C.5.【解答】解:公元820年左右,中亚细亚的数学家阿尔花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法,这本书对后来数学发展产生了很大的影响.其中的“还原”指的是解方程的移项,故选:B.6.【解答】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:D.7.【解答】解:∠AOB=90°﹣54°30'+90°+15°20'=140°50'.故选:C.8.【解答】解:①﹣2﹣3=﹣5,此计算错误;②2﹣|﹣3|=2﹣3=﹣1,此计算正确;③(﹣2)3=﹣8,此计算错误;④﹣2÷=﹣2×3=﹣6,此计算正确;故选:C.9.【解答】解:∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选:A.10.【解答】解:①若C是AB的中点,则AC=BC,该说法正确;②若AC=BC,则点C不一定是AB的中点,该说法错误;③若OC是∠AOB的平分线,则∠AOC=∠AOB,该说法正确;④若∠AOC=∠AOB,则OC不一定是∠AOB的平分线,该说法错误;故选:C.二.填空题(每小题3分,共18分)11.【解答】解:根据题意得:(﹣3)+(+8)+(﹣6)=﹣1(℃),故答案为:﹣1.12.【解答】解:13065=1.3065×104,故答案为:1.3065×104.13.【解答】解:∵,∴﹣1.5<.故答案为:<14.【解答】解:设这件商品的进价为x元,依题意,得:200×0.6﹣x=20%x,解得:x=100.故答案为:100.15.【解答】解:设输入的数为x,根据题意,得:(x﹣6)÷(﹣2)+3=﹣1,解得:x=14,故答案为:14.16.【解答】解:由图可得,当n=1时,有2+1=3个正方形,当n=2时,有3+2+2×1=7个正方形,当n=3时,有4+3+2×2=11个正方形,…,则第n个图形中,正方形的个数为:(n+1)+n+2(n﹣1)=4n﹣1,故当n=2019时,4×2019﹣1=8075,故答案为:8075.三.解答题(共52分)17.【解答】解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.18.【解答】解:(1)去括号得:15﹣7+5x=2x+5﹣3x,移项合并得:6x=﹣3,解得:x=﹣;(2)去分母得:5x﹣15﹣4x+6=10,移项合并得:x=19.19.【解答】解:原式=6a2b﹣3ab2+3ab2﹣9a2b=﹣3a2b,当a=﹣1,b=2时,原式=﹣6.20.【解答】解:(1)如图所示,直线AB,射线BD,线段BC即为所求;(2)连接AC,点E即为所求.21.【解答】解:(1)有线段AC,AB,AD,CB,CD,BD,共6条答案为6条(2)∵B是线段CD的中点∴CD=2BD=2×2=4 cm∴AC=AD﹣CD=8﹣4=4 cm又∵EA=3 cm∴EC=AC﹣EA=4﹣3=1 cm∴BE=EC+CB=EC+CD=1+2=3 cm22.【解答】解:设租用30座客车x辆,则45座客车为(x﹣1)辆.30x=45(x﹣1)﹣15,解得:x=4,4×30=120(人)答:参加此次活动的人数是120人.23.【解答】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①∵∠COD=60°,∴∠EOD=180°﹣∠COD=180°﹣60°=120°,∵OB平分∠EOD,∴∠EOB=∠EOD=×120°=60°,∵∠AOB=45°,∴α=∠EOB﹣∠AOB=60°﹣45°=15°;②当OA在OD的左侧时,则∠AOD=120°﹣α,∠BOC=135°﹣α,∵∠BOC=2∠AOD,∴135°﹣α=2(120°﹣α),∴α=105°;当OA在OD的右侧时,则∠AOD=α﹣120°,∠BOC=135°﹣α,∵∠BOC=2∠AOD,∴135°﹣α=2(α﹣120),∴α=125°,综上所述,当α=105°或125°时,存在∠BOC=2∠AOD.24.【解答】解:(Ⅰ)由题意可得:某人乘坐了2千米的路程,他应支付的费用为:10元;乘坐了4千米的路程,应支付的费用为:10+(4﹣3)×1.3=11.3(元),乘坐了8千米的路程,应支付的费用为:10+2×1.3+3×2.4=19.8(元),故答案为:10;11.3,19.8;(Ⅱ)由题意可得:10+1.3×2+2.4(x﹣5)=2.4x+0.6;故答案为:2.4x+0.6或12.6+2.4(x﹣5)(Ⅲ)若走5千米,则应付车费:10+1.3×2=12.6(元),∵12.6<15,∴此人乘车的路程超过5千米,因此,由(Ⅱ)得2.4x+0.6=15,解得:x=6答:此人乘车的路程为6千米.。
七年级上册大同数学期末试卷测试卷(解析版)
七年级上册大同数学期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
七年级上册大同数学期末试卷测试卷(解析版)
七年级上册大同数学期末试卷测试卷(解析版)一、选择题1.下列说法正确的是()A.过一点有且仅有一条直线与已知直线平行B.两点之间的所有连线中,线段最短C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点2.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A.B.C.D.3.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角. 其中说法正确的有( )A.0个B.1个C.2个D.3个4.下列合并同类项结果正确的是( )A.2a2+3a2=6a2B.2a2+3a2=5a2C.2xy-xy=1 D.2x3+3x3=5x6 5.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A.2a B.-2b C.-2a D.2b6.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .17.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A .B .C .D .8.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小 9.把方程213148x x --=-去分母后,正确的结果是( ) A .2x -1=1-(3-x ) B .2(2x -1)=1-(3-x )C .2(2x -1)=8-3+xD .2(2x -1)=8-3-x 10.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( )A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯11.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 12.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒13.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x 个“中国结”,可列方程( )A .9764x x --=B .96x -=74x + C .x 9x+764+= D .x 9x 764+-= 14.关于零的叙述,错误的是( ) A .零大于一切负数B .零的绝对值和相反数都等于本身C .n 为正整数,则00n =D .零没有倒数,也没有相反数.15.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )A .B .C .D .二、填空题16.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个. 17.单项式235a b -的次数为____________. 18.如图,直线//,1125∠=︒a b ,则2∠=_____________度19.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.20.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.21.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________.22.已知222x y -+的值是 5,则 22x y -的值为________.23.如果向北走20米记作+20米,那么向南走120米记为______米.24.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.25.若王老师在一次数学过关测试中,以80分为过关线,记下了4名同学的成绩:+8,0,-8,+13,则这4名同学实际成绩最高的是__________分. 三、解答题26.如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =135°,将一个含45°角的直角三角板的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.(1)将图1中的三角板绕着点O 逆时针旋转90°,如图2所示,此时∠BOM = ;在图2中,OM 是否平分∠CON ?请说明理由;(2)接着将图2中的三角板绕点O 逆时针继续旋转到图3的位置所示,使得ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;(3)将图1中的三角板绕点O 按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第 秒时,∠COM 与∠CON 互补.27.先化简,后求值:(23)2(2+2ab a a b ab )-+--,其中a=3,b=1. 28.解方程(组)(1)3(4)12x -= (2)2121136x x -+-= (3) 5616795x y x y +=⎧⎨-=⎩29.如图,在方格纸中, A 、 B 、 C 为 3 个格点,点 C 在直线 AB 外.(1)仅用直尺,过点C画AB的垂线m和平行线n;(2)请直接写出(1)中直线m、n的位置关系.30.解方程(组)(1)3(4)12x-=(2)2121 136x x-+ -=(3)5616 795 x yx y+=⎧⎨-=⎩31.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.例如,以点M为圆心,1cm为半径画圆如图1,那么点M到该圆的距离等于1cm;若点N 是圆上一点,那么点N到该圆的距离等于0cm;连接MN,若点Q为线段MN中点,那么点Q到该圆的距离等于0.5cm,反过来,若点P到已知点M的距离等于1cm,那么满足条件的所有点P就构成了以点M为圆心,1cm为半径的圆.(初步运用)(1)如图2,若点P到已知直线m的距离等于1cm,请画出满足条件的所有点P.(深入探究)(2)如图3,若点P到已知线段的距离等于1cm,请画出满足条件的所有点P.(3)如图4,若点P到已知正方形的距离等于1cm,请画出满足条件的所有点P.32.先化简,再求值:3x2+(2xy-3y2)-2(x2+xy-y2),其中x=-1,y=2.33.已知:如图,点P是数轴上表示-2与-1两数的点为端点的线段的中点.(1)数轴上点P表示的数为;(2)在数轴上距离点P为2.5个单位长度的点表示的数为;(3)如图,若点P是线段AB(点A在点B的左侧)的中点,且点A表示的数为m,那么点B表示的数是.(用含m的代数式表示)四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n²−32n+247,1⩽n<16,n为整数。
初一年级上册数学期末试卷(含答案和解释)
初一年级上册数学期末试卷(含答案和解释)2019年初一年级上册数学期末试卷(含答案和解释)这学期的努力成果就看期末考试的成绩了,因此,我们一定要重视。
在期末考试来临之际,各位初一的同学们,下文为大家整理了一份初一年级上册数学期末试卷,希望可以对各位考生有所帮助!一.精心选一选,你一定能行!(每题3分,共24分)1. 的绝对值是( )A.-3B.C.3D.2.下列计算正确的是( )A. B. C. D.3.下列关于单项式的说法中,正确的是( )A.系数是1,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是34.下列说法错误的是 ( )A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形5.某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家()A.赚了10元B.赚了8元C.不赔不赚D.赚了32元6.下列图形是一个正方体表面展开图的是( )14. 19时45分时,时钟的时针与分针的夹角是 .15.若、互为相反数,、互为倒数,,则 ______.16.下列事件中,哪些是必然事件,哪些是不可能事件,哪些是可能事件?(1)掷骰子掷得2点是 ;(2)同号两数相乘积为负数是 ;(3)互为相反数的两数相加为零是 .三、细心做一做(17题8分、18题10分)17.计算:(每小题4分,共8分)(1) (2) (-2)2+(-2)(- )+ (-24)18.先化简,后求值(每小题5分,共10分)(1) , 其中a= - .(2) 2x-y-(2y2-x2)-5x+y+(x2+2y2) , x=-1,y=1.四、沉着冷静,周密考虑(19题10分、20题10分)19.解方程:(每小题5分,共10分)(1) (2) -1=20.(10分)根据要求完成下列题目:(1)图中有块小正方体;(2)请在下面分别画出它的主视图,左视图和俯视图.五.(21、22题各10分)21.(10分)七年级一班部分同学参加全国希望杯数学邀请赛,取得了优异成绩,指导教师统计所有参赛同学的成绩(成绩为整数,满分150分)并绘制了统计图如下图所示(注:图中各组中不包含最高分).请回答:(1)该班参加本次竞赛同学有多少人?(2)如果成绩不低于110分的同学获奖,那么该班参赛同学获奖率是多少?(3)参赛同学有多少人及格?(成绩不低于总成绩的60%为及格)22.(10分)下面是小马虎解的一道题:题目:在同一平面上,若BOA=70,BOC=25,求AOC的度数. 解:根据题意可画出图形∵AOC=BOA-BOC=70-25=45AOC=45若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.六.开动脑筋,再接再厉(23、24题各10分)23.( 10分)有一挖宝游戏,有一宝藏被随意藏在下面圆形区域内,(圆形区域被分成八等份)如图1.(1)假如你去寻找宝藏,你会选择哪个区域(区域1;区域2;区域3)?为什么?在此区域一定能够找到宝藏吗?(2)宝藏藏在哪两个区域的可能性相同?(3)如果埋宝藏的区域如图2(图中每个方块完全相同),(1)(2)的结果又会怎样?24.(10分) A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2 )若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?七.应用知识解决问题25.(14分)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?八.充满信心,成功在望26.(每小题5分共10分)(一)观察下图,回答下列问题:(1)在AOB内部画1条射线OC,则图中有个不同的角;(2)在AOB内部画2条射线OC,OD,则图中有个不同的角;(3)在AOB内部画3条射线OC,OD,OE则图中有个不同的角;(4)在AOB内部画10条射线OC,OD,OE则图中有个不同的角;(5)在AOB内部画n条射线OC,OD,OE则图中有个不同的角.(二)观察下列等式:则并请你将想到的规律用含有 ( 是正整数)的等式来表示就是:_______ ______________.参考答案:题号12345678答案CD DBACBA9. 1.481010 元 10. 11. b,两点之间线段最短17. (1) 解:原式= (-48)+ (-48)- (-48)+(-48)--------------2分=-8+(- )-(-12)+(-4)------------------------------------------3分=-8- +12-4=--------------------------------------------------------- -----------------4分(2)解:原式=4+(-2)(- )+(-16)---------------------------2分=4+3-1--------------------------------------------------------------3分=6--------------------------------------------------------------------4分18.(1)解:5a2-3a+6-4a2+7a,=5a2-4a2+(-3a+7a)+6=a2+4a+6------------------------------------------------------------------2分当a=- 时,原式=(- )2+4(- )+6-----------------------------------------4分= -2+6=------------------------------------------------------------------5分(2) 解:2x-y-(2y2 -x2)-5x+y+(x2+2y2),=2x-y-2y2+x2-5x+y+x2+2y2= (2x-5x)+(-y+y)+(-2y2+2y2)+ (x2+x2)=-3x+2x2-----------------------------------------------------2分当x=-1,y=1时,原式=-3(-1)+2(-1)2-------------------------------------------4分=3+2=5 ----------------------- --------------------5分(2)解:去分母得:3(3x-1)- 12=2(5x-7) 2分去括号得: 9x-3-12=10x-14 3分移项得: 9x-10x=-14+3+12 4分合并同类项得: -x=1方程两边除以-1得: x= -1 5分20.6块 -------------------------2分主视图----5分左视图------8分俯视图---10分21. (1)3+6+8+2+1=20人因此该班参加本次竞赛同学有20人.--------------------------------------------------3分(2)(2+1)20190%=15%因此该班参赛同学获奖率是15%-----------------------------------6分(3)8+2+1=11人因此参赛同学有11人及格---------------------------------------------------------10分22.解:小马虎不会得满分的。
2019年大同市初一数学上期末试题附答案
2019年大同市初一数学上期末试题附答案一、选择题1.如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=125°,则∠BOC= ( )A.25︒B.65︒C.55︒D.35︒2.下列四个角中,最有可能与70°角互补的角是()A.B.C.D.3.实数a、b、c在数轴上的位置如图所示,且a与c互为相反数,则下列式子中一定成立的是()A.a+b+c>0B.|a+b|<c C.|a-c|=|a|+c D.ab<04.若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.55.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B. C. D.6.如图所示运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3B.6C.4D.27.点C是线段AB上的三等分点,D是线段AC的中点,E是线段BC的中点,若6CE =,则AB 的长为( ) A .18 B .36C .16或24D .18或368.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.019.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯10.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x=- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 11.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或312.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4ACB .CE =12AB C .AE =34AB D .AD =12CB 二、填空题13.若13a+与273a -互为相反数,则a=________.14.已知一个长方形的周长为(86a b +)厘米(0,0a b >>),长为(32a b +)厘米,则它的宽为____________厘米.15.如图,若输入的值为3-,则输出的结果为____________.16.如图所示是一组有规律的图案,第l 个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为_______ (用含n 的式子表示).17.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.18.若当x=1时,多项式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个多项式的值为_____.19.计算7a2b﹣5ba2=_____.20.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论:①可能是锐角三角形;②可能是钝角三角形;③可能是长方形;④可能是梯形.其中正确结论的是______(填序号).三、解答题21.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.22.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.23.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M所表示的数是____.24.如图,平面上有射线AP和点B,C,请用尺规按下列要求作图:(1)连接AB,并在射线AP上截取AD=AB;(2)连接BC、BD,并延长BC到E,使BE=BD.(3)在(2)的基础上,取BE中点F,若BD=6,BC=4,求CF的值.25.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)﹣2+(﹣65)×(﹣23)+(﹣65)×173【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由△AOB与△COD为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠AOD-∠AOB=125°-90°=35°,然后利用互余即可得到∠BOC=∠COD-∠BOD=90°-35°.【详解】解:∵∠AOB=∠COD=90°,∠AOD=125°,∴∠BOD=∠AOD-∠AOB=125°-90°=35°,∴∠BOC=∠COD-∠BOD=90°-35°=55°.故答案为C.【点睛】本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.2.D解析:D【解析】【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.3.C解析:C【解析】【分析】先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.【详解】由数轴可得:a<b<0<c,∴a+b+c<0,故A错误;|a+b|>c,故B错误;|a−c|=|a|+c,故C正确;ab>0 ,故D错误;故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.4.C解析:C【解析】试题分析:已知﹣x3y a与x b y是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C.考点:同类项.5.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.6.D解析:D【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.7.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.8.B解析:B【解析】【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9不在该范围之内,∴不合格的是B.故选B.9.B解析:B【解析】解:将2400000用科学记数法表示为:2.4×106.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.11.D解析:D 【解析】 【分析】此题可将原方程化为x 关于a 的二元一次方程,然后根据x >0,且x 为整数来解出a 的值. 【详解】 ax+3=4x+1 x=,而x >0 ∴x=>0∴a <4 ∵x 为整数 ∴2要为4-a 的倍数 ∴a=2或a=3. 故选D . 【点睛】此题考查的是一元一次方程的解,根据x 的取值可以判断出a 的取值,此题要注意的是x 取整数时a 的取值.12.D解析:D 【解析】 【分析】由C ,D ,E 是线段AB 的四等分点,得AC =CD =DE =EB =14AB ,即可知A 、B 、C 均正确,则可求解 【详解】由C ,D ,E 是线段AB 的四等分点,得AC =CD =DE =EB =14AB , 选项A ,AC =14AB ⇒AB =4AC ,选项正确 选项B ,CE =2CD ⇒CE =12AB ,选项正确 选项C ,AE =3AC ⇒AE =34AB ,选项正确 选项D ,因为AD =2AC ,CB =3AC ,所以2AD CB 3=,选项错误 故选D . 【点睛】此题考查的是线段的等分,能理解题中:C ,D ,E 是线段AB 的四等分点即为AC =CD =DE =EB =14AB ,是解此题的关键 二、填空题13.【解析】根据题意列出方程+=0直接解出a 的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a ﹣7=0合并同类项得:3a ﹣4=0化系数为1得:a ﹣=0故答案为 解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0, 合并同类项得:3a ﹣4=0, 化系数为1得:a ﹣43=0, 故答案为43. 14.【解析】【分析】根据长方形的周长公式列式整理即可【详解】解:由题意得它的宽为:厘米故答案为:【点睛】本题考查了列代数式以及整式的加减运算正确化简是解题的关键 解析:()a b +【解析】 【分析】根据长方形的周长公式列式整理即可. 【详解】解:由题意得,它的宽为:()()86232866422a b a b a b a ba b +-++--==+厘米,故答案为:()a b +. 【点睛】本题考查了列代数式以及整式的加减运算,正确化简是解题的关键.15.1【解析】【分析】把-3代入程序中计算判断结果比0小将结果代入程序中计算直到使其结果大于0再输出即可【详解】把-3代入程序中得:把-2代入程序中得:则最后输出结果为1故答案为:1【点睛】本题考查有理解析:1 【解析】 【分析】把-3代入程序中计算,判断结果比0小,将结果代入程序中计算,直到使其结果大于0,再输出即可. 【详解】把-3代入程序中,得:()-33+7-9+7-20⨯==<, 把-2代入程序中,得:()-23+7-6+710⨯==>, 则最后输出结果为1. 故答案为:1 【点睛】本题考查有理数的混合运算,熟练掌握各运算法则是解题的关键.16.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形第一个图案有4个基本图形则第n 个图案的基础图形有4+3(n-1)=3n+1个考点:规律型解析:3n+1 【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n-1)=3n+1个 考点:规律型17.②③④【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的①的位置出现重叠的面所以不能围成正方体将图1的正方形放在图2中的②③④的位置均能围成正方体故答案解析:②、③、④【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,将图1的正方形放在图2中的②③④的位置均能围成正方体,故答案为②③④.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.18.1【解析】【分析】把x=1代入代数式求出ab的关系式再把x=﹣1代入进行计算即可得解【详解】x=1时ax3﹣3bx+4=a﹣3b+4=7解得a﹣3b=3当x=﹣1时ax3﹣3bx+4=﹣a+3b+4解析:1【解析】【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【详解】x=1时,12ax3﹣3bx+4=12a﹣3b+4=7,解得12a﹣3b=3,当x=﹣1时,12ax3﹣3bx+4=﹣12a+3b+4=﹣3+4=1.故答案为:1.【点睛】本题考查了代数式的求值,整体思想的运用是解题的关键.19.2a2b【解析】【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.20.①③④【解析】【分析】正方体的6个面都是正方形用平面去截正方体最多与6个面相交得六边形最少与3个面相交得三角形因此截面的形状可能是三角形四边形五边形六边形再根据用一个平面截正方体从不同角度截取所得形解析:①③④【解析】【分析】正方体的6个面都是正方形,用平面去截正方体最多与6个面相交得六边形,最少与3个面相交得三角形,因此,截面的形状可能是三角形、四边形、五边形、六边形,再根据用一个平面截正方体,从不同角度截取所得形状会不同,进而得出答案.【详解】解:用平面去截正方体,得到的截面形状可能是三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不可能是直角三角形和钝角三角形.所以正确的结论是可能是锐角三角形、可能是长方形和梯形.故答案为:①③④.【点睛】本题考查了正方体的截面,注意:截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.三、解答题21.(1)3秒;(2)当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①.【解析】试题分析:(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24-x,PB=24-2x,表示出2BM-BP后,化简即可得出结论.(3)PA=2x,AM=PM=x,PB=2x-24,PN=12PB=x-12,分别表示出MN,MA+PN的长度即可作出判断.试题解析:(1)设出发x秒后PB=2AM,当点P在点B左边时,PA=2x,PB=24−2x,AM=x,由题意得,24−2x=2x,解得:x=6;当点P在点B右边时,PA=2x,PB=2x−24,AM=x,由题意得:2x−24=2x,方程无解;综上可得:出发6秒后PB=2AM.(2)∵AM=x,BM=24−x,PB=24−2x,∴2BM−BP=2(24−x)−(24−2x)=24;(3)选①;∵PA=2x,AM=PM=x,PB=2x−24,PN=12PB=x−12,∴①MN=PM−PN=x−(x−12)=12(定值);②MA+PN=x+x−12=2x−12(变化).点睛:本题考查了两点间的距离,解答本题的关键是用含有时间的式子表示出各线段的长度.22.214y=-.【解析】【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.23.(1)-1;(2)点A表示的数的绝对值最大.理由是点A的绝对值是4最大;(3)2或10;【解析】【分析】(1)先确定原点,再求点B表示的数,(2)先确定原点,再求四点表示的数,(3)分两种情况①点M在AD之间时,②点M在D点右边时分别求解即可.【详解】(1)根据题意得到原点O,如图,则点B表示的数是-1;(2)当B,D表示的数互为相反数时,A表示-4,B表示-2,C表示1,D表示2,所以点A表示的数的绝对值最大.点A的绝对值是4最大.(3)2或10.设M的坐标为x.当M在A的左侧时,-2-x=2(4-x),解得x=10(舍去)当M在AD之间时,x+2=2(4-x),解得x=2当M在点D右侧时,x+2=2(x-4),解得x=10故答案为:①点M在AD之间时,点M的数是2②点M在D点右边时点M表示数为10.【点睛】本题主要考查了数轴,解题的关键是熟记数轴的特点.24.(1)见解析;(2)见解析;(3)CF的值为1【解析】【分析】(1)连接AB,并在射线AP上截取AD=ABJ即可;(2)连接BC、BD,并延长BC到E,使BE=BD即可;(3)在(2)的基础上,取BE中点F,根据BD=6,BC=4,即可求CF的值.【详解】解:如图所示,(1)连接AB,并在射线AP上截取AD=AB;(2)连接BC、BD,并延长BC到E,使BE=BD.(3)在(2)的基础上,∵BE=BD=6,BC=4,∴CE=BE﹣BC=2∵F是BE的中点,∴BF=12BE=162=3∴CF=BC﹣BF=4﹣3=1.答:CF的值为1.【点睛】本题考查了作图-复杂作图,解决本题的关键是根据语句准确画图.25.(1)34;(2)-8【解析】【分析】(1)有理数的混合运算,先做乘方,然后做乘除,最后做加减,有小括号先做小括号里面的;(2)有理数的混合运算,先做乘法,然后做加减法.【详解】解:(1)原式=﹣1﹣5×(﹣7)=﹣1+35=34;(2)原式=﹣2+45﹣345=﹣2﹣6=﹣8.【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.。
七年级上册数学期末试卷(带答案)
2019年七年级上册数学期末试卷(带答案)又到了一年一度的期末考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2019年七年级上册数学期末试卷,希望可以帮助到大家!一、选择题(每小题3分,共30分)1.如果+20%表示增加20%,那么﹣6%表示()A. 增加14%B. 增加6%C. 减少6%D. 减少26%考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.正和负相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.解答:解:根据正数和负数的定义可知,﹣6%表示减少6%.2.关于x的方程2m=x﹣3m﹣2的解为x=5,则m的值为()A. B. C. D.考点:一元一次方程的解.分析:把x=5代入方程得到一个关于m的方程,解方程即可求得.解答:解:把x=5代入方程得:2m=5﹣3m﹣2,3.下列判断错误的是()A. 若xB. 单项式的系数是﹣4C. 若|x﹣1|+(y﹣3)2=0,则x=1,y=3D. 一个有理数不是整数就是分数考点:单项式;有理数;非负数的性质:绝对值;有理数大小比较;非负数的性质:偶次方.分析:分别根据单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义对各选项进行逐一分析即可.解答:解:A、∵xB、∵单项式﹣的数字因数是﹣,此单项式的系数是﹣,故本选项错误;C、∵|x﹣1|+(y﹣3)2=0,x﹣1=0,y﹣3=0,解得x=1,y=3,故本选项正确;D、∵整数和分数统称为有理数,一个有理数不是整数就是分数,故本选项正确.4.下列去括号结果正确的是()A. a2﹣(3a﹣ b+2c)=a2﹣3a﹣b+2cB. 3a ﹣[4a﹣(2a﹣7)]=3a﹣4a﹣2a+7C. (2x﹣3y)﹣(y+4x)=2x﹣3y﹣y﹣4xD. ﹣(2x﹣y)+(x﹣1)=﹣2x﹣y+x﹣1考点:去括号与添括号.分析:根据去括号法则去括号,再判断即可.解答:解:A、a2﹣(3a﹣b+2c)=a2﹣3a+b﹣2c,故本选项错误;B、3a﹣[4a﹣(2a﹣7)]=3a﹣4a+2a﹣7,故本选项错误;C、(2x﹣3y)﹣(y+4x)=2x﹣3y﹣y﹣4x,故本选项正确;D、﹣(2x﹣y)+(x﹣1)=﹣2x+y+x﹣1,故本选项错误;5.中国梦成为2019年人们津津乐道的话题,小明在百度搜索中国梦,找到相关结果约为46800000,数据46800000用科学记数法表示为()A. 468105B. 4.68105C. 4.68107D. 0.468108考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值是易错点,由于46 800000有8位,所以可以确定n=8﹣1=7.6.把方程3x+ 去分母正确的是()A. 18x+2(2x﹣1)=18﹣3(x+1)B. 3x+(2x﹣1)=3﹣(x+1)C. 18x+(2x﹣1)=1 8﹣(x+1)D. 3x+2(2x﹣1)=3﹣3(x+1) 考点:解一元一次方程.分析:同时乘以各分母的最小公倍数,去除分母可得出答案.解答:解:去分母得:18x+2(2x﹣1)=18﹣3(x+1).7.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为()A. 105元B. 100元C. 108元D. 118元考点:一元一次方程的应用.专题:销售问题.分析:设进价为x,则依题意:标价的9折出售,仍可获利10%,可列方程解得答案.解答:解:设进价为x,则依题意可列方程:13290%﹣x=10%x,8.2019年地球停电一小时活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A. 30x﹣8=31x+26B. 30x+8=31x+26C. 30x﹣8=31x﹣26D. 30x+8=31x﹣26考点:由实际问题抽象出一元一次方程.专题:应用题.分析:应根据实际人数不变可列方程,解出即可得出答案9.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理两点之间,线段最短来解释的现象有()A. ①②B. ①③C. ②④D. ③④考点:线段的性质:两点之间线段最短.专题:应用题.分析:由题意,认真分析题干,用数学知识解释生活中的现象.解答:解:①②现象可以用两点可以确定一条直线来解释;10.观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、根据其中的规律,得出的第10个单项式是()A. ﹣29x10B. 29x10C. ﹣29x9D. 29x9考点:单项式.专题:规律型.分析:通过观察题意可得:n为奇数时,单项式为负数.x的指数为n时,2的指数为(n﹣1).由此可解出本题.解答:解:依题意得:(1)n为奇数,单项式为:﹣2(n﹣1)xn;(2)n为偶数时,单项式为:2(n﹣1)xn.综合(1)、(2),本数列的通式为:2n﹣1(﹣x)n,二、填空题(每小题3分,共15分)11.若3xm+5y与x3y是同类项,则m= ﹣2 .考点:同类项;解一元一次方程.分析:根据同类项的定义(所含有的字母相同,并且相同字母的指数也相同的项叫同类项)可得:m+5=3,解方程即可求得m的值.解答:解:因为3xm+5y与x3y是同类项,12.如图,从A地到B地共有五条路,你应选择第③ 条路,因为两点之间,线段最短 .考点:线段的性质:两点之间线段最短.分析:根据连接两点的所有线中,直线段最短解答.解答:解:根据图形,应选择第(3)条路,因为两点之间,线段最短.13.若x,y互为相反数,a、b互为倒数,则代数式的值为﹣2 .考点:代数式求值;相反数;倒数.分析:根据互为相反数的两个数的和等于0可得x+y=0,互为倒数的两个数的积等于1可得ab=1,然后代入代数式进行计算即可得解.解答:解:∵x,y互为相反数,x+y=0,∵a、b互为倒数,ab=1,14.AB=4cm,BC=3cm,如果O是线段AC的中点.线段OB的长度为 0.5cm .考点:两点间的距离.分析:先根据O是线段AC的中点求出OC的长度,再根据OB=OC﹣BC即可得出结论.解答:解:∵AB=4cm,BC=3cm,如果O是线段AC的中点,OC= (AB+BC)= (4+3)= ,15.如图,已知AOC=75,BOC=50,OD平分BOC,则AOD= 100 . 考点:角平分线的定义.专题:计算题.分析:先根据角平分线的定义得到COD= BOC=25,然后根据AOD=AOC+COD进行计算.解答:解:∵OD平分BOC,COD= BOC= 50=25,三、解答题(共55分)16.(6 分)(2019秋济宁期末)计算:(1)(2) .考点:有理数的混合运算.专题:计算题.分析: (1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=3+1﹣27+6=﹣17;17.先化简,后求值.(1) ,其中 .(2)3(3a2﹣2b)﹣2(5a2﹣3b),其中a=﹣3,b=﹣1.考点:整式的加减化简求值.专题:计算题.分析: (1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:(1)原式= x﹣2x+ y2﹣ x+ y2=﹣3x+y2,当x=﹣2,y= 时,原式=6 ;18.解方程或求值.(1)1﹣4x=2(x﹣1)(2) ﹣1=(3)已知与互为相反数,求的值.考点:解一元一次方程.分析: (1)(2)按照解一元一次方程的步骤与方法求得未知数的数值即可;(3)由与互为相反数,得出 =0,解方程求得y的数值,进一步代入求得答案即可.解答: (1)1﹣4x=2(x﹣1)解:1﹣4x=2x﹣2﹣4x﹣2x=﹣2﹣1﹣6x=﹣3x= ;(2) ﹣1=解:3(y+1)﹣12=2(2y+1)3y+3﹣12=4y+23y﹣4y=2﹣3+12﹣y=11y=﹣11;(3)解: =0,4(4y+5)﹣12﹣3(5y+2)=019.请你在答题卷相应的位置上画出下面几何体的三视图. 考点:作图-三视图.专题:作图题.分析:主视图从左往右3列正方形的个数依次为1,2,1;左视图3列正方形的个数依次为2,1,1.俯视图从左往右3列正方形的个数依次为1,3,2.20.如图,AOB=120,OD平分BOC,OE平分AOC.①求EOD的度数.②若BOC=90,求 AOE的度数.考点:角平分线的定义.分析: (1)根据OD平分BOC,OE平分AOC可知DOE=DOC+EOC= (BOC+AOC)= AOB,由此即可得出结论;(2)先根据BOC=90求出AOC的度数,再根据角平分线的定义即可得出结论.解答:解:(1)∵AOB=120,OD平分BOC,OE平分AOC,EOD=DOC+EOC= (BOC+AOC)= AOB= 120=60(2)∵AOB=120,BOC=90,21.有一批零件加工任务,甲单独做40小时完成,乙单独做30小时完成,甲做了几小时后另有任务,剩下的任务由乙单独完成,乙比甲多做了2小时,求甲做了几小时?考点:一元一次方程的应用.分析:设甲做了x小时,根据题意得等量关系:甲x小时的工作量+乙(x+2)小时的工作量=1,再根据等量关系列出方程即可.解答:解:设甲做了x小时,根据题意得,22.已知:点A、B、C在一条直线上,线段AB=6cm,线段BC=4cm,若M,N分别为线段AB、BC的中点,求MN的长.考点:两点间的距离.分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.解答:解:①如图:∵M为AB的中点,AB=6cm,MB= AB=3cm,∵N为BC在中点,AB=4cm,NB= BC=2cm,MN=MB+NB=5cm.②如图:∵M为AB的中点,AB=6cm,MB= AB=3cm,∵N为BC的中点,AB=4cm,NB= BC=2cm,23.问题解决:一张长方形桌子可坐6人,按如图方式将桌子拼在一起. (1)2张桌子拼在一起可坐 8 人,3张桌子拼在一起可坐 10 人,n张桌子拼在一起可坐 2n+4 人.(2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 112 人.考点:规律型:图形的变化类.专题:规律型.分析: (1)根据所给的图,正确数出即可.在数的过程中,能够发现多一张桌子多2个人,根据这一规律用字母表示即可;(2)结合(1)中的规律,进行表示出代数式,然后代值计算. 解答:解:(1)2张桌子拼在一起可坐22+4=8人,3张桌子拼在一起可坐23+4=10人,那么n张桌子拼在一起可坐(4+2n)人;(2)因为5张桌子拼在一起,40张可拼405=8张大桌子,再利用字母公式,得出40张大桌子共坐8(4+25 )=112人. 24.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.小芳:我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元. 小明:我们九年级师生租用5辆60座和1辆45座的客车正好坐满.根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元 ?考点:二元一次方程组的应用.专题:阅读型;方案型.分析: (1)根据题目给出的条件得出的等量关系是:60座客车每辆每天的租金﹣45座客车每辆每天的租金=200元,4辆60座的一天的租金+2辆45座的一天的租金=5000元;由此可列出方程组求解;(2)可根据我们九年级师生租用5辆60座和1辆45座的客车正好坐满以及(1)的结果来求出答案.解答:解:(1)设平安公司60座和45座客车每天每辆的租金分别为x元,y元.由题意列方程组解得答:平安公司60座和45座客车每天每辆的租金分别为900元,700元;(2)九年级师生共需租金:5900+1700=5200(元)为大家推荐的2019年七年级上册数学期末试卷的内容,还满意吗?相信大家都会仔细阅读,加油哦!。
七年级上册数学期末试题(有答案)
2019年七年级上册数学期末试题(有答案) 以下是查字典数学网为您推荐的2019年七年级上册数学期末试题(有答案),希望本篇文章对您学习有所帮助、2019年七年级上册数学期末试题(有答案)一、相信您的选择(每小题3分,共36分)1。
的倒数是【】。
(A)5 (B) (C)5 (D)2、下列图形中,经过折叠不能围成一个立方体的是【】、3、绝对值不大于10的所有整数的与等于【】、(A) (B) (C)10 (D)4。
据宁波市××局公布的第六次人口普查数据,本市常住人口760、57万人,其中760、57万人用科学记数法表示为【】。
(A)7。
6057105人 (B)7、6057106人(C)7。
6057107人(D)0。
76057107人5、28 cm接近于【】、(A)珠穆朗玛峰的高度 (B)三层楼的高度(C)姚明的身高 (D)一张纸的厚度6、为了筹办经典红歌唱响金色校园大合唱,学校选了四首经典红歌:①《保卫黄河》;②《十送红军》;③《我们走在大路上》;④《我的祖国》、班长对全班50名同学您最想唱哪首红歌作了问卷调查,小明将班长的统计结果绘制成如图2所示的统计图,并得出以下四个结论,其中错误的是【】、(A)最想唱《十送红军》的人最多(B)最想唱《我的祖国》的人数是最想唱《我们走在大路上》的人数的3倍(C)最想唱《保卫黄河》的人数占全班人数的40%(D)有10人对这4首红歌都不想唱7。
在① 与;②与;③ 与;④与中,分别是同类项的是【】、(A)②④(B)①③(C)②③ (D)①②8、计算 ( 1)2 + ( 1)3 =【】、(A) 2 (B) 1 (C)0(D)29、某工厂第一个生产a件产品,第二年比第一年增产了20%,则两年共生产产品的件数为【】、(A)0、2a (B)a (C)1、2a (D)2。
2a10。
一支球队参加比赛,开局9场保持不败,共积21分、比赛规定胜一场得3分,平一场得1分,则该对共胜的场数为【】、(A)4 (B)5(C)6 (D)7 11、多项式与多项式的与不含二次项,则m为【】。
山西省大同市七年级上学期数学期末考试试卷
山西省大同市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列几种说法中,正确的是()A . 任意有理数a的相反数是﹣aB . 绝对值等于其本身的数必是正数C . 在一个数前面加上“﹣”号所得的数是负数D . 最小的自然数是12. (2分)数轴上表示 -5与-1这两点间的距离是()A . -4B . -6C . 4D . 63. (2分)除以一个数的商是-1,这个数是()A .B .C .D .4. (2分)已知一个多项式与的和等于,则这个多项式是()A .B .C .D .5. (2分) (2019七下·沙雅月考) 直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A . 90°B . 120°C . 180°D . 140°6. (2分)如图,是一个正方体的展开图,若原正方体朝上的面上的字是“祝”,则与其相对的朝下的面上的字应是()A . 考B . 试C . 顺D . 利7. (2分)甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是()A . 10岁B . 15岁C . 20岁D . 35岁8. (2分)已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A . 60°B . 45°C . 40°D . 30°二、填空题 (共10题;共11分)9. (1分) (2016七下·盐城开学考) 请任意写出一个你喜欢的无理数:________.10. (1分) (2017七下·靖江期中) 甲型H7N9流感病毒的直径大约为0.00000008米,用科学记数法表示为________米.11. (1分) (2018七上·西城期末) 已知x= 2是关于的方程3x + a = 8的解,则a =________.12. (1分) (2017七上·宁江期末) 已知,m,n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2013pq+ 的值为________.13. (1分)一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为________元.14. (1分) (2018七上·沈河期末) 6000''=________’=________。
山西省大同市2019届数学七上期末检测试题
山西省大同市2019届数学七上期末检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.将一长方形纸片,按右图的方式折叠,BC ,BD 为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95° 2.已知线段,在直线AB 上取一点C ,使 ,则线段AC 的长( )A.2B.4C.8D.8或4 3.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4AC B .CE =12AB C .AE =34ABD .AD =12CB 4.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( )A.2019B.2018C.2016D.2013 5.多项式2x 2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是: A.-2x 2-3x+2B.-x 2-3x+1C.-x 2-2x+2D.-2x 2-2x+1 6.若233m xy -与42n x y 是同类项,那么m n -=( ) A.0 B.1 C.-1 D.-57.定义一种正整数n “F ”的运算:①当n 是奇数时,()31F n n =+;②当n 是偶数时,()2k n F n =(其中k 是使得2k n 为奇数的正整数......,)两种运算交替重复运行.例如,取24n =,则: 243105F F F −−−→−−−→−−−→⋅⋅⋅⋅⋅⋅第一次第二次第三次②①②,若13n =,则第2019次“F ”运算的结果是( )A.1B.4C.2019D.201948.下列方程中,是一元一次方程的是( )A.x 2-4x =3B.3x -1=2xC.x +2y =1D.xy -3=5 9.已知x 的方程2x+k=5的解为正整数,则k 所能取的正整数值为( ) A .1 B .1或3 C .3 D .2或310.-12的相反数是( ) A.12 B.2 C.-2 D.-1211.如图,数轴的单位长度为1,若点A 和点C 所表示的两个数的绝对值相等,则点B 表示的数是( )A.﹣3B.﹣1C.1D.312.在﹣[][]12(2)(2)()(2)(2)2----+---+-+-+,,,,,中,负数有( ) A.1个B.2个C.3个D.4个 二、填空题13.如图是一个正方体的展开图,则“数”字的对面的字是______.14.如图,是的平分线,是内的一条射线,已知比大,则的度数为__________.15.若方程(a ﹣3)x |a|﹣2﹣7=0是一个一元一次方程,则a 等于_____.16.某商品的标价为200元,8折销售仍获利25%,则商品进价为_____元.17.如图所示,若三角形纸片内有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是______.18.如图,某广场用正方形地砖铺地面,第一次拼成图(1)所示的图案,需要4块地砖;第二次拼成图(2)所示的图案,需要12块地砖,第三次拼成图(3)所示的图案,需要24块地砖,第四次拼成图(4)所示的图案,需要_____块地砖…,按照这样的规律进行下去,第n 次拼成的图案共用地砖_____块.19.已知m ,n 满足关系式(m ﹣6)2+|n+2|=0,则2m ﹣3n 的值为_____.20.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.三、解答题21.如图①,点O 为直线AB 上一点,射线OC ⊥AB 于O 点,将一直角三角板的60°角的顶点放在点O 处,斜边OE 在射线OB 上,直角顶点D 在直线AB 的下方.(1)将图①中的三角板绕点O 逆时针旋转至图②,使一边OE 在∠BOC 的内部,且恰好平分∠BOC ,问:直线OD 是否平分∠AOC ?请说明理由;(2)将图①中的三角板绕点O 按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线OD 恰好平分∠AOC ,则t 的值为________;(直接写出结果)(3)将图①中的三角板绕点O 顺时针旋转至图③,使OD 在∠AOC 的内部,请探究:∠AOE 与∠DOC 之间的数量关系,并说明理由.22.如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠(1)若50AOC ∠=︒,求∠BOE 的度数;(2)若OF 平分COB ∠,能判断OE OF ⊥吗? (直接回答)23.定义一种新运算“⊕”:a ⊕b=2a ﹣ab ,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5(1)求(﹣2)⊕3的值;(2)若(﹣3)⊕x=(x+1)⊕5,求x 的值;(3)若x ⊕1=2(1⊕y ),求代数式x+y+1的值.24...列方程....解应用题: 某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?25.先化简,再求值:2(2)()()3a b a b a b ab +++--,其中12,2a b ==-. 26.(1)已知代数式(kx 2+6x+8)-(6x+5x 2+2)化简后的结果是常数,求系数k 的值.(2)先化简,再求值:2(21x 2-3xy-y 2)-(2x 2-7xy-2y 2),其中x=3,y=-23. 27.(1)计算:-12018-6÷(-2)×1||3-;(2)比较大小,将下列各数用“〉”连接起来:-|-3|,0,-(-2)2.28.计算:(1)(-71)+(+64);(2)(-16)-(-7);(3)()2184-⨯;(4)315()2÷-【参考答案】***一、选择题1.C2.D3.D4.D5.D6.C7.B8.B9.B10.A11.B12.C二、填空题13.养14.15°15.-316.12817.20118.2n2+2n .19.20.SKIPIF 1 < 0解析:π三、解答题21.(1)直线OD 不平分∠AOC ,理由见解析;(2)3或39;(3)∠DOC -∠AOE =30°,理由见解析.22.(1)25°;(2)OE OF ⊥.23.(1)2;(2);(3)3.24.(1) 两种商品全部卖完后可获得1950元利润;(2) 第二次乙种商品是按原价打8.5折销售. 25.1926.(1)k=5;(2)原式=-x2+xy=-11.27.(1) 0;(2)0〉-|-3|〉-(-2)2.28.(1)-7;(2)-9;(3)-42;(4)-10。