一元二次方程课前小测
一元二次方程单元测试题含答案
第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。
《一元二次方程》基础测试题及答案详解
《一元二次方程》基礎測試一 選擇題(每小題3分,共24分):1.方程(m 2-1)x 2+mx -5=0 是關於x の一元二次方程,則m 滿足の條件是…( )(A )m ≠1 (B )m ≠0 (C )|m |≠1 (D )m =±12.方程(3x +1)(x -1)=(4x -1)(x -1)の解是………………………………………( )(A )x 1=1,x 2=0 (B )x 1=1,x 2=2 (C )x 1=2,x 2=-1 (D )無解3.方程x x -=+65の解是……………………………………………………………( )(A )x 1=6,x 2=-1 (B )x =-6 (C )x =-1 (D )x 1=2,x 2=34.若關於x の方程2x 2-ax +a -2=0有兩個相等の實根,則a の值是………………( )(A )-4 (B )4 (C )4或-4 (D )25.如果關於x の方程x 2-2x -2k =0沒有實數根,那麼k の最大整數值是…………( )(A )-3 (B )-2 (C )-1 (D )06.以213+ 和 213- 為根の一個一元二次方程是………………………………( ) (A )02132=+-x x (B )02132=++x x (C )0132=+-x x (D )02132=-+x x 7.4x 2-5在實數範圍內作因式分解,結果正確の是……………………………………( )(A )(2x +5)(2x -5) (B )(4x +5)(4x -5)(C ))5)(5(-+x x (D ))52)(52(-+x x8.已知關於x の方程x 2-(a 2-2a -15)x +a -1=0の兩個根互為相反數,則a の值是………………………………………………………………………………………( )(A )5 (B )-3 (C )5或-3 (D )1答案:1. C;2.B;3.C;4.B;5.B;6.A;7.D;8.B.二 填空題(每空2分,共12分):1.方程x 2-2=0の解是x = ;2.若分式2652-+-x x x の值是零,則x = ; 3.已知方程 3x 2- 5x -41=0の兩個根是x 1,x 2,則x 1+x 2= , x 1·x 2= ; 4.關於x 方程(k -1)x 2-4x +5=0有兩個不相等の實數根,則k ;5.一個正の兩位數,個位數字比十位數大2,個位數字與十位數の積是24,則這個兩位數是 . 答案:1.±2;2.3;3.35,121-;4.k <59且k ≠1;5.46.三 解下列方程或方程組(第1、2小題8分,第3小題9分,共25分):1.03232=+-x x ;解:用公式法.因為1=a ,23-=b ,3=c , 所以 6314)23(422=⨯⨯--=-ac b ,所以 2623126)23(1+=⨯+--=x ,2623126)23(2-=⨯---=x ; 2.7510101522=--+--x x x x ; 解:用換元法. 設152--=x x y ,原方程可化為 710=+yy , 也就是01072=+-y y ,解這個方程,有0)2)(5(=--y y ,51=y ,22=y . 由1521--=x x y =5得方程 052=-x x ,解得01=x ,52=x ; 由1522--=x x y =2得方程 0322=--x x ,解得13-=x ,34=x . 經檢驗,01=x ,52=x ,13-=x ,34=x 都是原方程の解.3..5201222⎩⎨⎧=+=--+y x xy y x 解:由52=+y x 得y x 25-=,代入方程 01222=--+xy y x ,得01)25(2)25(22=---+-y y y y ,081032=+-y y ,0)2)(43(=--y y ,341=y ,22=y . 把 341=y 代入y x 25-=,得371=x ; 把 22=y 代入y x 25-=,得12=x .所以方程組の解為 ⎪⎪⎩⎪⎪⎨⎧==343711y x ,⎩⎨⎧==2122y x .四 列方程解應題(本題每小題8分,共16分):1.某油庫の儲油罐有甲、乙兩個注油管,單獨開放甲管注滿油罐比單獨開放乙管注滿油罐少用4小時,兩管同時開放3小時後,甲管因發生故障停止注油,乙管繼續注油9小時後注滿油罐,求甲、乙兩管單獨開放注滿油罐時各需多少小時?略解:設甲、乙兩管單獨開放注滿油罐時各需x 小時和y 小時,依題意,有⎪⎩⎪⎨⎧=++=-19334y x x y , 解得 ⎩⎨⎧==1612y x 所以,甲管單獨開放注滿油罐需12小時,乙管單獨開放注滿油罐需16小時.2.甲、乙二人分別從相距20千米のA 、B 兩地以相同の速度同時相向而行,相遇後,二人繼續前進,乙の速度不變,甲每小時比原來多走1千米,結果甲到達B 地後乙還需30分鐘才能到達A 地,求乙每小時走多少千米.略解:用圖形分析:A 地 相遇地B 地依題意,相遇地為中點,設乙の速度為v 千米/時,根據“甲、乙走10千米所用時間の差為半小時”列式,有1102110+=-v v , 解得 v =4(千米∕時).五 (本題11分) 已知關於x の方程(m +2)x 2-035=-+m mx .(1)求證方程有實數根;(2)若方程有兩個實數根,且兩根平方和等於3,求m の值.略解:(1)當m =-2時,是一元一次方程,有一個實根;當m ≠ -2時,⊿=(m +2)2+20>0,方程有兩個不等實根;綜合上述,m 為任意實數時,方程均有實數根;(2)設兩根為p ,q .依題意,有p 2+q 2=3,也就是(p +q )2-2pq =3, 有因為p +q =m 5,pq =3-m ,所以 3232)25(2=+-⨯-+m m m m , 22)2(3)2)(3(25+=+--m m m m ,1212122+=+m m ,010=m ,0=m .六 (本題12分)已知關於x の方程式x 2=(2m +2)x -(m 2+4m -3)中のm 為不小於0の整數,並且它の兩實根の符號相反,求m の值,並解方程.提示:由m ≥0和⊿>0,解出m の整數值是0或1,當m =0時,求出方程の兩根,x 1=3,x 2=-1,符合題意;當m=1時,方程の兩根積x1x2=m2+4m-3=2>0,兩根同號,不符合題意,所以,舍去;所以m=0時,解為x1=3,x2=-1.。
一元二次方程测试题(含答案)
一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。
3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。
《一元二次方程基础知识测试题》
一元二次方程基础知识测试题一、填空题(每小题3分)1、方程(X-1)(X+3)=12化为a x²+bx+c=0形式后,则a=_,b=_.c=_.2、若方程(m-2)x│m┃+3x+2=0是关于X的一元二次方程,则M=_。
3、如果x²=25,那么x=_;若x²-1=0,则x=_。
4、若=0是一元二次方程(m-2)x²+3 x+ m²+2 m-8=0的解,则m=_。
5、如果二次三项式x²-m x+16是一个完全平方式,那么m的值为_。
6、如果2 x²+1与4 x²-2 x-5互为相反数,则x值为_。
7、三角形的每条边的长都是方程x²-6 x+8=0的两根,则三角形的周长是_。
8、矩形的周长为8,面积为2,矩形的长和宽分别为_。
9、某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价为_。
10、方程x²+2x+ m=0有两个相等的实数根,则m=_。
二、选择题(每小题5分)11、方程x²=x的根是()A、0B、1C、0或-1D、0或112、下列方程中无实数根的是()A、4 x²+5 x=6B、4 x²-5 x+2=0C、4 x²+1=5 xD、4 x+2=5 x²13、已知x=m是方程x²+x-2=3根,则代数式2m²+2 m+1的值为()A、11B、7C、5D、414、已知关于x的方程x²-kx-6=0的一个根为x=3,则实数k的值为()A、1B、-1C、2D、-2三、解答题15、用适当的方法解下列方程(每小题5分)(1)、x²+2 x=0 (2)、x²-6 x-2=0(3)、x²-2 x-3=0 (4)、x²-2m x+m²-n²=0(m,n为常数)16、已知关于x的方程2 x²+kx-1=0.(10分)(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k的值。
一元二次方程测试题(含答案)
一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。
3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
6.已知322-+y y 的值为2,则1242++y y的值为 。
7.若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。
10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。
13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。
14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a= 。
15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。
16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。
17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。
(完整版)一元二次方程测试题(含答案)
一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。
3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
6.已知322-+y y 的值为2,则1242++y y的值为 。
7.若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。
10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。
13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。
14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a= 。
15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。
16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。
17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。
一元二次方程测试1
一元二次方程测试1一、选择题:(每小题2分,共20分)1.下列方程中不一定是一元二次方程的是 ( )A.(a-3)x 2=8 (a ≠0)B.ax 2+bx+c=0232057x +-= 2.已知一元二次方程ax 2+c=0(a ≠0),若方程有解,则必须有C 等于 ( ) A.-12 B.-1 C.12D.不能确定 3. 已知x =2是方程32x 2-2a =0的一个解,则2a -1的值是 ( )A .3B .4C .5D .64. 一元二次方程x 2=c 有解的条件是 ( )A .c <OB .c >OC .c ≤0D .c ≥05.已知方程11x a x a +=+ 的两根分别为a,1a , 则方程1111x a x a +=+-- 的根是( ) A.1,1a a - B.11,1a a -- C.11,a a - D.,1a a a - 6. 某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( )A .x(x +1)=1035B .x(x -1)=1035³2C .x(x -1)=1035D .2x(x +1)=1035 7. 一元二次方程2x(x -3)=5(x -3)的根为 ( )A .x =52B .x =3C .x 1=3,x 2=52D .x =-528.使分式2561x x x --+ 的值等于零的x 是 ( ) A.6 B.-1或6 C.-1 D.-69.方程x 2-4│x │+3=0的解是 ( )A.x=±1或x=±3B.x=1和x=3C.x=-1或x=-3D.无实数根10.如果关于x 的方程x 2-k 2-16=0和x 2-3k+12=0有相同的实数根,那么k 的值是 ( )A.-7B.-7或4C.-4D.4二、填空题:(每小题3分,共30分)11.已知是方程x 2+mx+7=0的一个根,则m= ,另一根为 .12.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ,b= .13.若一元二次方程ax2+bx+c=0(a≠0)有一个根为1,则a+b+c= ;若有一个根为-1,则b 与a、c之间的关系为 ;若有一个根为零,则c= . 14.有一个一元二次方程,未知数为y,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。
(完整版)一元二次方程经典测试题(含答案)
一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。
湘教版九年级数学上册第2章《一元二次方程》检测题及答案
第2章检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分)1.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-12.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=163.(云南)一元二次方程x 2-x -2=0的解是( D )A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-25.某工厂今年元月份的产值是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月月平均增长率为x ,依题意可列方程( B )A .72(x +1)2=50B .50(x +1)2=72C .50(x -1)2=72D .72(x -1)2=506.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 7.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D )A .10B .48C .36D .10或88.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B )A .长8 m ,宽2.5 mB .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m9.(仙桃)已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A ) A .-1 B .-12 C.12D .1 10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c 4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本大题共8个小题,每小题3分,共24分)11.一元二次方程x 2=16的解是__x =±4__.12.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.13.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__.14.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.15.(宿迁)一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),若计划安排21场比赛,则应邀请__7__个球队参加比赛.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.18.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__. 点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94三、解答题(66分)19.(8分)用适当的方法解下列方程:(1)2x 2+7x -4=0;解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0.解:x 1=1,x 2=320.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-k 为何值,方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根. 证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根22.(10分)(南充)已知关于x的一元二次方程x2-22的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m的最大整数值为1(2)m =1时,方程为x2-22x+1=0,∴x1+x2=22,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=8-3=523.(10分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元24.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场25.(12分)(株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形。
一元二次方程经典测试题(含答案)
一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。
(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。
(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。
(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。
3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。
一元二次方程经典测试题(含答案)
一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A. B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>”或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解:x2+bx﹣2=0,△=b2﹣4×1×(﹣2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx﹣2=0的两个根为c、d,则c+d=﹣b,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B.8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或1【解答】解:根据根与系数的关系,得x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去.∴取k=﹣1.故本题选A.9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中△=b2﹣4ac,在方程cx2+bx+a=0中△=b2﹣4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、∵“和符号相同,和符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、∵5是方程M的一个根,∴25a+5b+c=0,∴a+b+c=0,∴是方程N的一个根,正确;D、M﹣N得:(a﹣c)x2+c﹣a=0,即(a﹣c)x2=a﹣c,∵a﹣c≠1,∴x2=1,解得:x=±1,错误.故选D.11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.16【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A. B.C.D.【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是4.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,∴m﹣1≠0且△=(﹣3)2﹣4(m﹣1)>0,解得m<且m≠1,,∵解不等式组得,而此不等式组的解集是x<﹣1,∴m≥﹣1,∴﹣1≤m<且m≠1,∴符合条件的整数m为﹣1、0、2、3.故答案为4.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为2.【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为1米.【解答】解:设人行道的宽度为x米(0<x<3),根据题意得:(18﹣3x)(6﹣2x)=60,整理得,(x﹣1)(x﹣8)=0.解得:x1=1,x2=8(不合题意,舍去).即:人行通道的宽度是1米.故答案是:1.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△>0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴△=(﹣2)2﹣4(kb+1)=﹣4kb>0.故答案为>.三.解答题(共8小题)21.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m>且m≠1,∴当m>且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k<;(2)∵k<,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k<,∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.【解答】解:(1)设一次函数解析式为y=kx+b,把(90,100),(100,80)代入y=kx+b得,,解得,,y与销售单价x之间的函数关系式为y=﹣2x+280.(2)根据题意得:w=(x﹣80)(﹣2x+280)=﹣2x2+440x﹣22400=1350;解得(x﹣110)2=225,解得x1=95,x2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解得x=5或45(舍弃),答:通道的宽度为5米.(2)设种植“四季青”的面积为y平方米.由题意:y(30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?【解答】22.(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m)(500+×100)+500=1000即2m2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.。
(完整版)《一元二次方程》基础测试题及答案详解
《一元二次方程》基础测试一选择题(每小题3分,共24分):221.方程(m -1)x +mx -5=0是关于x 的一元二次方程,则m 满足的条件是…()(A)m ≠1(B)m ≠0(C)|m |≠1(D)m =±1 2.方程(3x +1)(x -1)=(4x -1)(x -1)的解是………………………………………()(A)x 1=1,x 2=0(B)x 1=1,x 2=2(C)x 1=2,x 2=-1(D)无解 3.方程5x +6=-x 的解是……………………………………………………………()(A)x 1=6,x 2=-1(B)x =-6(C)x =-1(D)x 1=2,x 2=32 4.若关于x 的方程2x -ax +a -2=0有两个相等的实根,则a 的值是………………()(A)-4(B)4(C)4或-4(D)25.如果关于x 的方程x -2x -2k=0没有实数根,那么k 的最大整数值是…………(2)(A)-3(B)-2(C)-1(D)03+13-1和为根的一个一元二次方程是………………………………(221122(A)x -3x +=0(B)x +3x +=022122(C)x -3x +1=0(D)x +3x -=026.以2)7.4x -5在实数范围内作因式分解,结果正确的是……………………………………()(A)(2x +5)(2x -5)(B)(4x +5)(4x -5)(C)(x +5)(x -5)(D)(2x +5)(2x -5)22 8.已知关于x 的方程x -(a -2a -15)x +a -1=0的两个根互为相反数,则a 的值是………………………………………………………………………………………()(A)5(B)-3(C)5或-3(D)1答案:1.C;2.B;3.C;4.B;5.B;6.A;7.D;8.B.二填空题(每空2分,共12分):21.方程x -2=0的解是x =;x 2-5x +62.若分式的值是零,则x =;x -213.已知方程 3x - 5x -=0的两个根是x ,x ,则x +x =4212122,x 1·x 2=;4.关于x 方程(k -1)x -4x +5=0有两个不相等的实数根,则k ;5.一个正的两位数,个位数字比十位数大2,个位数字与十位数的积是24,则这个两位数是.答案:1.±2;2.3;3.951,-;4.k<且k ≠1;5.46.5312三解下列方程或方程组(第1、2小题8分,第3小题9分,共25分):1.x -32x +3=解:用公式法.因为所以20;a =1,b =-32,c =3,b 2-4ac =(-32)2-4⨯1⨯3=6,所以x 1=-(-32)+632+6=2⨯12,x 2=-(-32)-632-6=;2⨯12x 2-510x -10+2=7; 2.x -1x -5解:用换元法.x 2-5设y =,原方程可化为x -110=7,y +y也就是y 2-7y +10=0,解这个方程,有(y -5)(y -2)=0,y 1=5,y 2=2.x 2-5由y 1==5得方程x -1x 2-5x =0,解得x 1=0,x 2=5;x 2-5由y 2==2得方程x -12x -2x -3=0,解得x 3=-1,x 4=3.经检验,x1=0,x 2=5,x 3=-1,x 4=3都是原方程的解.⎧x 2+y 2-2xy -1=0⎨3.⎩x +2y =5.解:由x +2y =5得x =5-2y ,22代入方程x +y -2xy -1=0,得22(5-2y )+y -2(5-2y )y -1=0,3y 2-10y +8=0,(3y -4)(y -2)=0,4y 1=,y 2=2.347代入x =5-2y ,得x 1=;33把y 2=2代入x =5-2y ,得x 2=1.7⎧x =⎪⎪13⎧x 2=1所以方程组的解为⎨,⎨.⎪y =4⎩y 2=21⎪3⎩把y 1=四列方程解应题(本题每小题8分,共16分):1.某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时?略解:设甲、乙两管单独开放注满油罐时各需x 小时和y 小时,依题意,有解得⎧y -x =4⎪,⎨33+9⎪x +y =1⎩⎧x =12⎨⎩y =16所以,甲管单独开放注满油罐需12小时,乙管单独开放注满油罐需16小时.2.甲、乙二人分别从相距20千米的A 、B 两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B 地后乙还需30分钟才能到达A 地,求乙每小时走多少千米.略解:用图形分析:A 地相遇地B 地依题意,相遇地为中点,设乙的速度为v 千米/时,根据“甲、乙走10千米所用时间的差为半小时”列式,有解得v =4(千米∕时).五(本题11分)10110,-=v 2v +1已知关于x 的方程(m +2)x -5mx +m -3=0.(1)求证方程有实数根;(2)若方程有两个实数根,且两根平方和等于3,求m 的值.略解:(1)当m =-2时,是一元一次方程,有一个实根;2当m ≠-2时,⊿=(m +2)+20>0,方程有两个不等实根;综合上述,m 为任意实数时,方程均有实数根;(2)设两根为p ,q .22依题意,有p +q =3,也就是2(p +q )-2pq =3,2有因为p +q =所以5m ,pq =m -3,5m 2m -3)-2⨯=3,m +2m +2225m -2(m -3)(m +2)=3(m +2),2m +12=12m +12,10m =0,m =0.(六(本题12分)22已知关于x 的方程式x =(2m +2)x -(m +4m -3)中的m 为不小于0的整数,并且它的两实根的符号相反,求m 的值,并解方程.提示:由m ≥0和⊿>0,解出m 的整数值是0或1,当m =0时,求出方程的两根,x 1=3,x 2=-1,符合题意;当m=1时,方程的两根积x1x2=m+4m-3=2>0,两根同号,不符合题意,所以,舍去;所以m=0时,解为x1=3,x2=-1.2。
一元二次方程测试
《一元二次方程》一、精心选一选:1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=02.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=63.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=254.若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,则另一个根是()A.2 B.1 C.﹣1 D.05.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为()A.1 B.﹣1 C.2 D.﹣26.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠57.已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2 B.﹣1 C.0 D.18.若方程x2+mx+1=0和方程x2﹣x﹣m=0有一个相同的实数根,则m的值为()A.2 B.0 C.﹣1 D.无法确定9.用13m的铁丝网围成一个长边靠墙面积为20m2的长方形,求这个长方形的长和宽,设平行于墙的一边为xm,可得方程()A.x(13﹣x)=20 B.C.D.10.如图,菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于x的方程x2+(2m ﹣1)x+m2+3=0的根,则m的值为()A.﹣3 B.5 C.5或﹣3 D.﹣5或3二、细心填一填:11.一元二次方程3x(x﹣2)=﹣4的一般形式是______,该方程根的情况是______.12.方程2﹣x2=0的解是______.13.配方x2﹣8x+______=(x﹣______)2.14.设a,b是方程x2+x﹣2013=0的两个不相等的实数根,则a2+2a+b的值为______.15.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为______.16.科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美.某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为______cm.(精确到0.1cm)三、耐心答一答:17.用指定的方法解方程(1)(x+2)2﹣25=0(直接开平方法)(2)x2+4x﹣5=0(配方法)(3)(x+2)2﹣10(x+2)+25=0(因式分解法)(4)2x2﹣7x+3=0(公式法)18.当x取什么值时,代数式x(x﹣1)与(x﹣2)+1的值相等?19.已知关于x的一元二次方程5x2+kx﹣10=0一个根是﹣5,求k的值及方程的另一个根.20.在高尔夫球比赛中,某运动员打出的球在空中飞行高度h(m)与打出后飞行的时间t(s)之间的关系是h=7t﹣t2.(1)经过多少秒钟,球飞出的高度为10m;(2)经过多少秒钟,球又落到地面.22.已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取值范围是多少时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.23.已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断△ABC的形状.24.在我校的周末广场文艺演出活动中,舞台上有一幅矩形地毯,它的四周镶有宽度相同的花边(如图).地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方米.求花边的宽.25.某电脑销售商试销某一品牌电脑(出厂为3000元/台)以4000元/台销售时,平均每月可销售100台,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台.(1)求1月份到3月份销售额的月平均增长率;(2)求3月份时该电脑的销售价格.26.某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销量y 1(千克)与x 的关系为y 1=﹣x 2+40x ;乙级干果从开始销售至销售的第t 天的总销量y 2(千克)与t 的关系为y 2=at 2+bt ,且乙级干果的前三天的销售量的情况见下表:t1 2 3 y 2 21 44 69(1)求a 、b 的值;(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)《第21章一元二次方程》参考答案与试题解析一、精心选一选:1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=0【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.3.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=25【解答】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=25.故选:C.4.若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,则另一个根是()A.2 B.1 C.﹣1 D.0【解答】解:设方程的另一个根是x,依题意得,解之得x=1,即方程的另一个根是1.故选B.5.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:把x=b代入方程x2+cx+b=0得到:b2+bc+b=0即b(b+c+1)=0,又∵b≠0,∴b+c=﹣1,故本题选B.6.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.7.已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2 B.﹣1 C.0 D.1【解答】解:∵a=1,b=﹣(2k﹣1),c=k2,方程有两个不相等的实数根∴△=b2﹣4ac=(2k﹣1)2﹣4k2=1﹣4k>0∴k<∴k的最大整数为0.故选C.8.若方程x2+mx+1=0和方程x2﹣x﹣m=0有一个相同的实数根,则m的值为()A.2 B.0 C.﹣1 D.无法确定【解答】解:由方程x2+mx+1=0得x2=﹣mx﹣1,由方程x2﹣x﹣m=0得x2=x+m.则有﹣mx﹣1=x+m,即x=﹣1.把x=﹣1代入方程x2+mx+1=0,得方程1﹣m+1=0,从而解得m=2.故选A.9.用13m的铁丝网围成一个长边靠墙面积为20m2的长方形,求这个长方形的长和宽,设平行于墙的一边为xm,可得方程()A.x(13﹣x)=20 B.C.D.【解答】解:平行于墙的一边为xm,那么垂直于墙的有2个边,等于(铁丝长﹣x)÷2,∴.故选B.10.如图,菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于x的方程x2+(2m ﹣1)x+m2+3=0的根,则m的值为()A.﹣3 B.5 C.5或﹣3 D.﹣5或3【解答】解:由勾股定理可得:AO2+BO2=25,又有根与系数的关系可得:AO+BO=﹣2m+1,AO•BO=m2+3∴AO2+BO2=(AO+BO)2﹣2AO•BO=(﹣2m+1)2﹣2(m2+3)=25,整理得:m2﹣2m﹣15=0,解得:m=﹣3或5.又∵△>0,∴(2m﹣1)2﹣4(m2+3)>0,解得m<﹣,∴m=﹣3,故本题选A.二、细心填一填:11.一元二次方程3x(x﹣2)=﹣4的一般形式是3x2﹣6x+4=0 ,该方程根的情况是无实数根.【解答】解:3x(x﹣2)=﹣4,3x2﹣6x+4=0,∵△=(﹣6)2﹣4×3×4=﹣12<0,∴无实数根.故答案为:3x2﹣6x+4=0;无实数根.12.方程2﹣x2=0的解是.【解答】解:移项,得x2=2开方,得x=±.13.配方x2﹣8x+ 16 =(x﹣ 4 )2.【解答】解:∵所给代数式的二次项系数为1,一次项系数为﹣8,等号右边正好是一个完全平方式,∴常数项为(﹣8÷2)2=16,∴x2﹣8x+16=(x﹣4)2.故答案为16;4.14.设a,b是方程x2+x﹣2013=0的两个不相等的实数根,则a2+2a+b的值为2012 .【解答】解:∵a,b是方程x2+x﹣2013=0的两个不相等的实数根,∴a2+a﹣2013=0,∴a2+a=2013,又∵a+b=﹣=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2013﹣1=2012.故答案为:2012.15.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为6,10,12 .【解答】解:解方程x2﹣6x+8=0得x1=4,x2=2;当4为腰,2为底时,4﹣2<4<4+2,能构成等腰三角形,周长为4+2+4=10;当2为腰,4为底时4﹣2=2<4+2不能构成三角形,当等腰三角形的三边分别都为4,或者都为2时,构成等边三角形,周长分别为6,12,故△ABC的周长是6或10或12.16.科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美.某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为 6.7 cm.(精确到0.1cm)【解答】答:设高跟鞋鞋跟的高度为x,根据题意列方程得:(92+x)÷(153+x)≈0.618,解得x≈6.69,精确到0.1cm为,6.7cm.三、耐心答一答:17.用指定的方法解方程(1)(x+2)2﹣25=0(直接开平方法)(2)x2+4x﹣5=0(配方法)(3)(x+2)2﹣10(x+2)+25=0(因式分解法)(4)2x2﹣7x+3=0(公式法)【解答】解:(1)(x+2)2﹣25=0(直接开平方法)x+2=±5∴x1=3,x2=﹣7.(2)x2+4x﹣5=0(配方法)(x+2)2=9x+2=±3∴x1=﹣5,x2=1;(3)(x+2)2﹣10(x+2)+25=0(因式分解法)(x+2﹣5)(x+2﹣5)=0∴x1=x2=3;(4)2x2﹣7x+3=0(公式法)x=x 1=3,x2=.18.当x取什么值时,代数式x(x﹣1)与(x﹣2)+1的值相等?【解答】解:根据题意得:x(x﹣1)=(x﹣2)+1,3x(x﹣1)=2(x﹣2)+6,3x2﹣3x=2x﹣4+6,3x2﹣3x﹣2x+4﹣6=0,3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,3x+1=0或x﹣2=0,x 1=﹣,x2=2.19.已知关于x的一元二次方程5x2+kx﹣10=0一个根是﹣5,求k的值及方程的另一个根.【解答】解:根据二次方程根与系数的关系,可得x1•x2=﹣2,x1+x2=﹣,而已知其中一根为﹣5,有(﹣5)•x2=﹣2,可得x2=,又有x 1+x 2=﹣,解可得k=23;答:k=23,另一根为.20.在高尔夫球比赛中,某运动员打出的球在空中飞行高度h (m ) 与打出后飞行的时间t (s )之间的关系是h=7t ﹣t 2.(1)经过多少秒钟,球飞出的高度为10m ;(2)经过多少秒钟,球又落到地面.【解答】解:(1)把h=10代入函数解析式h=7t ﹣t 2得,7t ﹣t 2=10,解得t 1=2,t 2=5,答:经过2秒或5秒,球飞出的高度为10m ;(2)把h=0代入函数解析式h=7t ﹣t 2得,7t ﹣t 2=0,解得t 1=0(为球开始飞出时间),t 2=7(球又落到地面经过的时间),答:经过7秒钟,球又落到地面.21.阅读下面的例题:解方程:x 2﹣|x|﹣2=0解:(1)当x ≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去).(2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=1(不合题意,舍去),x 2=﹣2∴原方程的根是x 1=2,x 2=﹣2.请参照例题解方程x 2﹣|x ﹣3|﹣3=0,则此方程的根是 x 1=﹣3,x 2=2 .【解答】解:(1)当x ≥3时,原方程化为x 2﹣(x ﹣3)﹣3=0,即x 2﹣x=0解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);(2)当x <3时,原方程化为x 2+x ﹣3﹣3=0即x 2+x ﹣6=0,解得x 1=﹣3,x 2=2.所以原方程的根是x 1=﹣3,x 2=2.22.已知关于x 的方程x 2﹣2(m+1)x+m 2=0(1)当m 取值范围是多少时,方程有两个实数根;(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.【解答】解:(1)由题意知:△=b 2﹣4ac=[﹣2(m+1)]2﹣4m 2=[﹣2(m+1)+2m][﹣2(m+1)﹣2m]=﹣2(﹣4m ﹣2)=8m+4≥0,解得m ≥. ∴当m ≥时,方程有两个实数根.(2)选取m=0.(答案不唯一,注意开放性)方程为x 2﹣2x=0,解得x 1=0,x 2=2.23.已知a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对的边,且关于x 的方程(c ﹣b )x 2+2(b ﹣a )x+(a ﹣b )=0有两个相等的实数根,试判断△ABC 的形状.【解答】解:∵x 的方程(c ﹣b )x 2+2(b ﹣a )x+(a ﹣b )=0有两个相等的实数根,∴△=b 2﹣4ac=0,且c ﹣b ≠0,即c ≠b .∴4(b ﹣a )2﹣4(c ﹣b )(a ﹣b )=0,则4(b ﹣a )(b ﹣a+c ﹣b )=0,∴(b ﹣a )(c ﹣a )=0,∴b ﹣a=0或c ﹣a=0,∴b=a ,或c=a .∴此三角形为等腰三角形.24.在我校的周末广场文艺演出活动中,舞台上有一幅矩形地毯,它的四周镶有宽度相同的花边(如图).地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方米.求花边的宽.【解答】解:设花边的宽为x 米,根据题意得(2x+8)(2x+6)=80,解得x 1=1,x 2=﹣8,x 2=﹣8不合题意,舍去.答:花边的宽为1米.25.某电脑销售商试销某一品牌电脑(出厂为3000元/台)以4000元/台销售时,平均每月可销售100台,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台.(1)求1月份到3月份销售额的月平均增长率;(2)求3月份时该电脑的销售价格.【解答】解:(1)设1月份到3月份销售额的月平均增长率为x ,由题意得:400000(1+x )2=576000,1+x=±1.2,x 1=0.2,x 2=﹣2.2(舍去)∴1月份到3月份销售额的月平均增长率为20%;(2)设3月份电脑的销售价格在每台4000元的基础上下降y 元,由题意得:(4000﹣y )(100+0.1y )=576000,y 2﹣3000y+1760000=0,(y ﹣800)(y ﹣2200)=0,∴y=800或y=2200,当y=2200时,3月份该电脑的销售价格为4000﹣2200=1800<3000不合题意舍去.∴y=800,3月份该电脑的销售价格为4000﹣800=3200元.∴3月份时该电脑的销售价格为3200元.26.某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销量y 1(千克)与x 的关系为y 1=﹣x 2+40x ;乙级干果从开始销售至销售的第t 天的总销量y 2(千克)与t 的关系为y 2=at 2+bt ,且乙级干果的前三天的销售量的情况见下表:t1 2 3 y 2 21 44 69(1)求a 、b 的值;(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)【解答】解:(1)根据表中的数据可得.答:a 、b 的值分别是1、20;(2)甲级干果和乙级干果n 天售完这批货.﹣n 2+40n+n 2+20n=1140n=19,当n=19时,y 1=399,y 2=741,毛利润=399×8+741×6﹣1140×6=798(元),答:卖完这批干果获得的毛利润是798元.(3)设从第m 天起乙级干果每天的销量比甲级干果每天的销量至少多6千克,则甲、乙级干果的销售量为m 天的销售量减去m ﹣1天的销售量,即甲级水果第m 天所卖出的干果数量:(﹣m 2+40m )﹣[﹣(m ﹣1)2+40(m ﹣1)]=﹣2m+41. 乙级水果第m 天所卖出的干果数量:(m 2+20m )﹣[(m ﹣1)2+20(m ﹣1)]=2m+19,(2m+19)﹣(﹣2m+41)≥6,解得:m≥7,答:第7天起乙级干果每天的销量比甲级干果每天的销量至少多6千克.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】感谢您的支持与配合,我们会努力把内容做得更好!。
(完整版)一元二次方程测试题及答案
一元二次方程测试姓名学号一、选择题 (每题3分,共30分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a≠3) B.ax 2+bx+c=0232057x +-=2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A. ;B.;C. ; 23162x ⎛⎫-= ⎪⎝⎭2312416x ⎛⎫-= ⎪⎝⎭231416x ⎛⎫-= ⎪⎝⎭D.以上都不对4.关于的一元二次方程的一个根是x ()22110a x x a -++-=0,则值为( )a A 、B 、C 、或 11-11-D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.196.已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是(22870xx -+=)A B 、3 C 、6D 、97.使分式 的值等于零的x 是( )2561x x x --+A.6 B.-1或6 C.-1 D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-B.k≥- 且k≠0C.k≥- 747474D.k> 且k≠0749.已知方程,则下列说中,正确的是( )22=+x x (A )方程两根和是1 (B )方程两根积是2(C )方程两根和是 (D )方程两根积比两根和1-大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共30分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.22____)(_____3-=+-x x x 14.若一元二次方程ax 2+bx+c=0(a≠0)有一个根为-1,则a 、b 、c 的关系是______.15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知是方程x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于的二次方程有两个相等实根,则符合x 20x mx n ++=条件的一组的实数值可以是 ,.,m n m =n =三、用适当方法解方程:(每小题5分,共10分)22.22(3)5x x -+=230x ++=四、列方程解应用题:(每小题8分,共48分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
一元二次方程经典测试题(含答案及解析)
WORD格式可编辑专业知识整理分享一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育第Ⅰ卷(选择题)一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m +2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A. B.C.D.第Ⅱ卷(非选择题)二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.219.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ 0(填:“>”或“=”或“<”).三.解答题(共8小题) 21.(6分)解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法)22.(6分)关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0 (1)若x=﹣1是方程的一个根,求m 的值及另一个根. (2)当m 为何值时方程有两个不同的实数根.23.(6分)关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实根. (1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;②求2x 2﹣的值.24.(6分)关于x 的方程x 2﹣(2k ﹣3)x +k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1x 2+|x 1|+|x 2|=7,求k 的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.WORD 格式 可编辑专业知识整理分享26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x 的一元二次方程x 2﹣(m +6)x +3m +9=0的两个实数根分别为x 1,x 2. (1)求证:该一元二次方程总有两个实数根;(2)若n=4(x 1+x 2)﹣x 1x 2,判断动点P (m ,n )所形成的函数图象是否经过点A (1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P 的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根4WORD 格式 可编辑专业知识整理分享B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大 【解答】解:x 2+bx ﹣2=0, △=b 2﹣4×1×(﹣2)=b 2+8, 即方程有两个不相等的实数根, 设方程x 2+bx ﹣2=0的两个根为c 、d , 则c +d=﹣b ,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c +d=﹣b 和b <0得出方程的两个根中,正数的绝对值大于负数的绝对值, 故选B .8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1【解答】解:根据根与系数的关系,得x 1+x 2=﹣1,x 1x 2=k . 又x 12+x 1x 2+x 22=2k 2, 则(x 1+x 2)2﹣x 1x 2=2k 2, 即1﹣k=2k 2, 解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去. ∴取k=﹣1. 故本题选A .9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根C .有一正根一负根且正根绝对值大D .有一正根一负根且负根绝对值大 【解答】解:∵a >0,b <0,c <0, ∴△=b 2﹣4ac >0,<0,﹣>0,∴一元二次方程ax 2+bx +c=0有两个不相等的实数根,且两根异号,正根的绝对值较大. 故选:C .10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1【解答】解:A 、在方程ax 2+bx +c=0中△=b 2﹣4ac ,在方程cx 2+bx +a=0中△=b 2﹣4ac , ∴如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确; B 、∵“和符号相同,和符号也相同,∴如果方程M 有两根符号相同,那么方程N 的两根符号也相同,正确; C 、∵5是方程M 的一个根, ∴25a +5b +c=0, ∴a +b +c=0,∴是方程N 的一个根,正确;D 、M ﹣N 得:(a ﹣c )x 2+c ﹣a=0,即(a ﹣c )x 2=a ﹣c , ∵a ﹣c ≠1,∴x 2=1,解得:x=±1,错误. 故选D .11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7B .11C .12D .16【解答】解:∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根, ∴m +n=2t ,mn=t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A .B .C .D .【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a <,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a 的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a >﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.6WORD 格式 可编辑专业知识整理分享17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组的解集是x <﹣1,则所有符合条件的整数m 的个数是 4 .【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根, ∴m ﹣1≠0且△=(﹣3)2﹣4(m ﹣1)>0,解得m <且m ≠1,,∵解不等式组得,而此不等式组的解集是x <﹣1, ∴m ≥﹣1, ∴﹣1≤m<且m ≠1,∴符合条件的整数m 为﹣1、0、2、3. 故答案为4.18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 2 . 【解答】解:由已知得:△=b 2﹣4ac=22﹣4(m ﹣2)≥0, 即12﹣4m ≥0, 解得:m ≤3,∴偶数m 的最大值为2. 故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x 米(0<x <3),根据题意得: (18﹣3x )(6﹣2x )=60, 整理得,(x ﹣1)(x ﹣8)=0.解得:x 1=1,x 2=8(不合题意,舍去).即:人行通道的宽度是1米. 故答案是:1.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ > 0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx +b 的图象经过第一、三、四象限,∴k >0,b <0,∴△=(﹣2)2﹣4(kb +1)=﹣4kb >0. 故答案为>.三.解答题(共8小题) 21.解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法) (4)2(x ﹣3)2=x 2﹣9.【解答】解:(1)x 2﹣14x +49=57, (x ﹣7)2=57, x ﹣7=±,所以x 1=7+,x 2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121, x=,所以x 1=9,x 2=﹣2;(3)(2x +3)2﹣4(2x +3)=0, (2x +3)(2x +3﹣4)=0, 2x +3=0或2x +3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m >且m≠1,∴当m >且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x +=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k <;(2)∵k <,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k <,∴k=﹣1.8WORD 格式 可编辑专业知识整理分享25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.【解答】解:(1)设一次函数解析式为y=kx +b , 把(90,100),(100,80)代入y=kx +b 得,,解得,,y 与销售单价x 之间的函数关系式为y=﹣2x +280.(2)根据题意得:w=(x ﹣80)(﹣2x +280)=﹣2x 2+440x ﹣22400=1350; 解得(x ﹣110)2=225, 解得x 1=95,x 2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x 米. 由题意(60﹣2x )(40﹣2x )=1500, 解得x=5或45(舍弃), 答:通道的宽度为5米.(2)设种植“四季青”的面积为y 平方米. 由题意:y (30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元? 【解答】22.(1)假设甲种商品的进货单价为x 元、乙种商品的进货单价为y 元, 根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m )(500+×100)+500=1000即2m 2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.10。
九年级数学一元二次方程测试卷【含答案】
九年级数学一元二次方程测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列方程中,属于一元二次方程的是:A. 2x + 3 = 5B. x^2 4x + 4 = 0C. 3x + 2y = 6D. x^3 8 = 02. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式是:A. b^2 4acB. a^2 4bC. a^2 + b^2D. b^2 ac3. 方程x^2 5x + 6 = 0的解是:A. x = 2 或 x = 3B. x = -2 或 x = -3C. x = 1 或 x = 6D. x = -1 或 x = -64. 若一元二次方程有两个相等的实数根,则判别式的值是:A. 大于0B. 等于0C. 小于0D. 无法确定5. 下列方程中,解为x = 4的是:A. x^2 8x + 16 = 0B. x^2 6x + 8 = 0C. x^2 + 8x + 16 = 0D. x^2 + 6x + 8 = 0二、判断题(每题1分,共5分)6. 任何一元二次方程都有两个解。
()7. 一元二次方程的解可能是两个实数,也可能是两个虚数。
()8. 若一元二次方程的判别式小于0,则方程无实数解。
()9. 一元二次方程的解可以通过因式分解法求得。
()10. 一元二次方程的解可以通过配方法求得。
()三、填空题(每题1分,共5分)11. 一元二次方程的标准形式是______。
12. 一元二次方程的解可以通过______求得。
13. 若一元二次方程的判别式大于0,则方程有两个______实数解。
14. 若一元二次方程的判别式等于0,则方程有两个______实数解。
15. 一元二次方程的解可以通过______求得。
四、简答题(每题2分,共10分)16. 请简述一元二次方程的定义。
17. 请说明一元二次方程的解的意义。
18. 请解释一元二次方程的判别式的意义。
19. 请列举一元二次方程的解法。
一元二次方程测试题
一、选择题(每小题3分,共24分)1.若关于x的方程2x m-1+x-m=0是一元二次方程,则m为( )A.1 B.2 C.3 D.02.根据下面表格中的对应值:x 3.23 3.24 3.25 3.26 ax2+bx+c -0.06 -0.02 0.03 0.09判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( )A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.26 3.解方程(x+1)(x+3)=5较为合适的方法是( ) A.直接开平方法 B.配方法C.公式法或配方法 D.分解因式法4.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为( )A.0 B.1 C.2 D.45.三角形两边长分别为3和6,第三边是方程x2-6x +8=0的根,则三角形的周长为( )A.11 B.13 C.15 D.11或13 6.下列说法不正确的是( )A.方程x2=x有一根为0B.方程x2-1=0的两根互为相反数C.方程(x-1)2-1=0的两根互为相反数D.方程x2-x+2=0无实数根7.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错 B.小聪错,小颖对C.他们两人都对 D.他们两人都错8.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(每小题3分,共24分)9.已知关于x的方程x2+(2k+1)x+k2−2=0的两实数根的平方和等于11,则k的取值是 . 10.若x=1是一元二次方程x2+2x+m=0的一个根,则另一个根为________.11.若(m+n)(m+n+5)=6,则m+n的值是________.12.已知关于x的方程(m−1)x2+x+1=0有实数根,则m的取值范围是.13.若关于x的一元二次方程(m−1)x2+5x+m2−3m+2=0的常数项为0,则m的值等于.14.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为__________.15.若一元二次方程a x2-bx-2 016=0有一根x=-1,则a+b= .16.若一个一元二次方程的两个根分别是R t△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程 .三、解答题(共52分)17.(6分)选择适当的方法解下列方程:(1)(x-3)2=4;(2)x2-5x+1=0.18.(6分)已知m,n是关于x的一元二次方程x2-3x +a=0的两个解,若mn+m+n=2,求a的值.19.(6分)关于x的方程04)2(2=+++kxkkx有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.北师大版九年级数学上册第二章《一元二次方程》测试题20.(6分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.21.(6分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求咸宁市2013年到2015年烟花爆竹年销售量的平均下降率.22.(7分)某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?23.(7分)如图AD是△ABC的高,点G、H在BC边上,点E在AB边上,点F在AC边上,BC=10cm,AD=8cm,四边形EFHG是面积为15cm2的矩形,求这个矩形的长和宽.24.(8分)已知关于x的一元二次方程(a+c)x2+2bx +(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.。
一元二次方程过关测试
一元二次方程过关测试一、填空题(每空5分,共70分)1.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为______.2.若关于x 的一元二次方程220x x a -+=的一个根是3,则a 的值是___________. 3.方程(n ﹣3)x |n |﹣1+3x +3n =0是关于x 的一元二次方程,n =_____. 4.一元二次方程3x (x ﹣3)=2x 2+1化为一般形式为_____. 5.若代数式x 2-8x+a 可化为(x-b )2+1,则a+b=______.6.若关于x 的一元二次方程(k ﹣1)x 2+x +2=0有两个实数根,则k 的取值范围是__. 7.若关于x 的一元二次方程x 2﹣2x+k=0无实数根,则实数k 的取值范围是________. 8.已知a 2-2a-3=0,则代数式3a (a-2)的值为______.9.已知1x 、2x 是方程2x x 20+-=的两个根,则1211x x +=______. 10.一元二次方程22x 5x =的解是______.11.已知1x 、2x 是方程22340x x +-=的两个根,则12(1)(1)x x ++=______,221211x x +=__________. 12.已知1x =是一元二次方程220x mx +-=的一根,则该方程的另一个根为________. 13.设m 、n 是一元二次方程2270x x +-=的两个根,则23m m n ++=________. 二、解答题(共30分)14.(本题10分)用适当的方法解方程: (1)x 2﹣4x ﹣7=0;(2)3x (2x +1)=4x +2.15.(本题10分)已知关于x 的方程22(1)(2)0x m x m +++-=有两个相等的实数根. (1)求m 的值. (2)求方程的根.16.(本题10分)已知关于x 的一元二次方程x 2+mx +m ﹣1=0. (1)求证:无论m 为何值,方程总有两个实数根; (2)若方程只有一个根为负数,求m 的取值范围.参考答案1.﹣3【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+3k=0,解得k 1=0,k 2=﹣3, 因为k≠0, 所以k 的值为﹣3. 故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.-3 【解析】 【分析】把x =3代入方程x 2-2x +a =0关于a 的方程9-6+a =0,然后解a 的方程即可. 【详解】解:把x =3代入方程x 2-2x +a =0得9-6+a =0,解得a =-3. 故答案为-3. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 3.-3 【解析】分析:根据一元二次方程的定义求出n 的值即可得出答案. 详解:∵()13330n n xx n --++=是关于x 的一元二次方程,∴|n|-1=2,n-3≠0, 解得:n=-3, 故答案为:-3.点睛:本题考查一元二次方程的定义,属于基础题,只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程;同时注意掌握一元二次方程的一般形式是:本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
一元二次方程检测题
第二十一章检测卷(120分钟 150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.若方程(m-1)x 2+5x+m=0是关于x 的一元二次方程,则m 的取值不可能的是A.m>1B.m<1C.m=1D.m=02.已知x=2是关于x 的一元二次方程ax 2-3bx-5=0的一个根,则4a-6b+6的值是A.1B.6C.11D.123.某服装原价为200元,连续两次涨价a %后,售价为242元,则a 的值为A.10B.9C.5D.124.将方程3x 2+6x-1=0配方,变形正确的是A.(3x+1)2-1=0B.(3x+1)2-2=0C.3(x+1)2-4=0D.3(x+1)2-1=05.用因式分解法把方程6x (x-7)=7-x 分解成两个一次方程,正确的是A.x-7=0,6x-1=0B.6x=0,x-7=0C.6x+1=0,x-7=0D.6x=7,x-7=7-x6.若一元二次方程(1-2k )x 2+12x-10=0有实数根,则k 的最大整数值为A.1B.2C.-1D.07.x 1,x 2是方程x 2+x+k=0的两个实根,若恰好x 12+x 1x 2+x 22=2k 2成立,k 的值为A.-1B.12或-1C.12D.-12或18.在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=09.如图,在▱ABCD中,AE⊥BC于点E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长为A.4+22B.12+62C.2+22D.2+2或12+6210.如图,在长为70 m,宽为40 m的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占,则路宽x应满足的方程是总面积的18A.(40-x)(70-x)=350B.(40-2x)(70-3x)=2450C.(40-2x)(70-3x)=350D.(40-x)(70-x)=2450二、填空题(本大题共4小题,每小题5分,满分20分)11.若关于x 的一元二次方程4x 2-2ax-ax-2a-6=0常数项为4,则一次项系数 15 .12.已知(a-1)x 2-5x+3=0是一个关于x 的一元二次方程,则不等式3a+6>0的解集 a>-2且a ≠1 .13.已知a ,b ,c 分别是三角形的三边,则方程(a+b )x 2+2cx+(a+b )=0的根的情况是 无实数根 .14.已知实数x 满足(x 2-x )2-4(x 2-x )-12=0,则代数式x 2-x+1的值为 7 .三、(本大题共2小题,每小题8分,满分16分)15.已知关于x 的方程(m 2-1)x 2+(m-1)x-2=0.(1)当m 为何值时,该方程为一元二次方程?(2)当m 为何值时,该方程为一元一次方程?解:(1)∵关于x 的方程(m 2-1)x 2+(m-1)x-2=0为一元二次方程,∴m 2-1≠0,解得m ≠±1,即当m ≠±1时,方程为一元二次方程.(2)∵关于x 的方程(m 2-1)x 2+(m-1)x-2=0为一元一次方程,∴m 2-1=0且m-1≠0,解得m=-1,即当m 为-1时,方程为一元一次方程.16.按要求解下列方程.(1)2x 2-4x-5=0(公式法);解:∵a=2,b=-4,c=-5,∴Δ=(-4)2-4×2×(-5)=56,∴x=4± 562×2=2± 142, 即x 1=2+ 142,x 2=2- 142. (2)x 2-4x+1=0(配方法);解:移项,得x 2-4x=-1,配方,得x 2-4x+4=-1+4,即(x-2)2=3,直接开平方,得x-2=± 3,即x1=2+3,x2=2-3.(3)(y-1)2+2y(1-y)=0(因式分解法).解:整理,得(y-1)2-2y(y-1)=0,因式分解,得(y-1)(y-1-2y)=0,∴y-1=0或y-1-2y=0,解得y1=1,y2=-1.四、(本大题共2小题,每小题8分,满分16分)17.已知关于x的方程x2-2(k+1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3x1x2-6,求k的值.解:(1)∵方程x2-2(k+1)x+k2=0有两个实数根x1,x2,∴Δ≥0,即4(k+1)2-4×1×k2≥0,解得k≥-1,2∴k的取值范围为k≥-1.2(2)∵方程x2-2(k+1)x+k2=0有两个实数根x1,x2,∴x1+x2=2(k+1),x1x2=k2.∵x1+x2=3x1x2-6,∴2(k+1)=3k2-6,即3k2-2k-8=0,∴k1=2,k2=-4.3∵k≥-1,∴k=2.218.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2014年盈利1500万元,到2016年盈利2160万元,且从2014年到2016年,每年盈利的年增长率相同.(1)求该公司2015年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2017年盈利多少万元? 解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160,解得x1=0.2,x2=-2.2(不合题意,舍去),则1500×(1+0.2)=1800(万元).答:该公司2015年盈利1800万元.(2)2160×(1+0.2)=2592(万元).答:预计2017年盈利2592万元.五、(本大题共2小题,每小题10分,满分20分)19.阅读以下材料,解答问题:例:设y=x2+6x-1,求y的最小值.解:y=x2+6x-1=x2+2·3·x+32-32-1=(x+3)2-10,∵(x+3)2≥0,∴(x+3)2-10≥-10即y的最小值是-10.问题:(1)设y=x2-4x+5,求y的最小值.(2)已知:a2+2a+b2-4b+5=0,求ab的值.解:(1)∵y=x2-4x+5,∴y=x2-4x+4+1=(x-2)2+1.∵(x-2)2≥0,∴(x-2)2+1≥1,即y的最小值是1.(2)∵a2+2a+b2-4b+5=0,∴a2+2a+1+b2-4b+4=0,∴(a+1)2+(b-2)2=0,∵(a+1)2≥0,(b-2)2≥0,∴a+1=0,b-2=0,∴a=-1,b=2,∴ab=-1×2=-2.20.已知关于x的方程x2-(k+2)x+2k=0.(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰△ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.解:(1)Δ=(k+2)2-4×2k=(k-2)2,∵(k-2)2≥0,即Δ≥0,∴无论k取任何实数值,方程总有实数根.(2)当b=c时,Δ=(k-2)2=0,则k=2,方程化为x2-4x+4=0,解得x1=x2=2,∴△ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1-(k+2)+2k=0,解得k=1,方程化为x2-3x+2=0,解得x1=1,x2=2,即△ABC的另一边长为2,不合题意,此情况舍去,∴△ABC的周长为5.六、(本题满分12分)21.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.×10+20×(40-4)=1008(元).解:(1)45答:商场每件衬衫降价4元,则商场每天可盈利1008元.(2)设每件衬衫应降价x元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20.∵要尽量减少库存,∴x=20.答:每件衬衫应降价20元.(3)不可能.理由如下:令(40-x)(20+2x)=1600,整理得x2-30x+400=0,∵Δ=900-4×400<0,∴商场平均每天不可能盈利1600元.七、(本题满分12分)22.已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.(1)判断方程根的情况;(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;(3)若△ABC的两边AB,AC的长是方程的两根,第三边BC的长为5,①则k为何值时,△ABC是以BC为斜边的直角三角形?②k为何值时,△ABC是等腰三角形,并求出△ABC的周长.解:(1)∵在方程x2-(2k+3)x+k2+3k+2=0中,Δ=b2-4ac=[-(2k+3)]2-4(k2+3k+2)=1>0,∴方程有两个不相等的实数根. (2)∵x1+x2=2k+3,x1·x2=k2+3k+2,∴由(x1-1)(x2-1)=5,得x1·x2-(x1+x2)+1=5,即k2+3k+2-2k-3+1=5,整理,得k2+k-5=0,解得.k=-1±212(3)∵x2-(2k+3)x+k2+3k+2=(x-k-1)(x-k-2)=0,∴x1=k+1,x2=k+2.①不妨设AB=k+1,AC=k+2,∴斜边BC=5时,有AB2+AC2=BC2,即(k+1)2+(k+2)2=25,解得k1=2,k2=-5(舍去).∴当k=2时,△ABC是直角三角形.②∵AB=k+1,AC=k+2,BC=5,由(1)知AB≠AC,故有两种情况:(Ⅰ)当AC=BC=5时,k+2=5,∴k=3,AB=3+1=4,∵4,5,5满足任意两边之和大于第三边,∴此时△ABC的周长为4+5+5=14;(Ⅱ)当AB=BC=5时,k+1=5,∴k=4,AC=k+2=6,∵6,5,5满足任意两边之和大于第三边,∴此时△ABC的周长为6+5+5=16.综上可知,当k=3时,△ABC是等腰三角形,此时△ABC的周长为14;当k=4时,△ABC是等腰三角形,此时△ABC的周长为16.八、(本题满分14分)23.合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿? 解:(1)设2015至2017年的平均增长率是x ,依题意有64(1+x )2=121,解得x 1=0.375,x 2=-2.375.故2015至2017年的平均增长率为37.5%.(2)设双人间的数量为y 间,则四人间的数量为5y 间,依题意有20≤600-2y-4×5y ≤30,解得251011≤y ≤26411, ∵y 为整数,∴y=26,600-2y-4×5y=600-52-520=28.故单人间的数量是28间.(3)由于四人间的数量是双人间的5倍,则四人间和双人间的数量是5+1=6的倍数,双人间与四人间总数量在150~160之间.∵150~160间6的最大倍数是156,∴双人间156÷6=26(间),四人间的数量26×5=130(间),单人间180-156=24(间),24+26×2+130×4=596(名).答:该校的寝室建成后最多可供596名师生住宿.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.解方程:025)32(2=-+x
1.解方程:75532=+-x x
1.解方程:0462=--x x
2.配方写顶点:3422++-=x x y
2.配方写顶点:24632+-=x x y
2.配方写顶点:432
12
+-=x x y
1.解方程:0242=-+x x
1.解方程:x x 3122=+
1.解方程:01262=--x x
2.配方写顶点:x x y 422+=
2.配方写顶点:162++-=x x y
2.配方写顶点:4322+-=x x y
1.解方程:0122=--x x
1.解方程:x x 4342=-
1.解方程:012=-+x x
2.配方写顶点:1322-+-=x x y
2.配方写顶点:322++-=x x y
2.配方写顶点:17
621
2-+-=x x y
1.解方程:0352=++x x
1.解方程:1332+=+x x
1.解方程:66)1(2+=+x x
2.配方写顶点:562-+-=x x y
2.配方写顶点:23212--=
x x y
2.配方写顶点:352++-=x x y
1.解方程:725102=+-x x
1.解方程:)1(332+=+x x
1.解方程:01822=-+y y
2.配方写顶点:1422---=x x y
2.配方写顶点:4
41
2-+-=x x y
2.配方写顶点:24632--=x x y
1.解方程:0
1
6
22=
-
-x
x
1.解方程:0
1
4
22=
+
-x
x
1.解方程:)1
2(2
)1
2(
3+
=
+x
x
x 2.配方写顶点:2
9
3
2
1
2-
+
-
=x
x
y
2.配方写顶点:
3
2
2
1
2+
-
=x
x
y
2.配方写顶点:2
3
2
1
2+
-
=x
x
y
1.解方程:01622=--x x
1.解方程:)2(5)2(3+=+x x x
1.解方程:0132=+-x x
2.配方写顶点:462++=x x y
2.配方写顶点:34
1
2+--=x x y
2.配方写顶点:3422+-=x x y
1.解方程:0432=--x x
1.解方程:02
1
422=-+x x
1.解方程:)2(5)2(2-=-x x
2.配方写顶点:132
1
2++=x x y
2.配方写顶点:842-+-=x x y
2.配方写顶点:8822-+-=x x y
1.解方程:01322=--x x
1.解方程:0742=-+x x
1.解方程:)3)(1()3(5-+=-x x x x
1.解方程:0622=--x x
2.配方写顶点:3422++-=x x y
2.配方写顶点:4
32
12
+-=
x x y
2.配方写顶点:622+--=x x y
2.配方写顶点:742++=x x y
1.解方程:)2()12
1
(-=-x x x
1.解方程:2325x x =+
1.解方程:)32(3)32(2+=+x x
1.解方程:061032=+-x x
2.配方写顶点:1422+--=x x y
2.配方写顶点:1832-+=x x y
2.配方写顶点:221x x y -+=
2.配方写顶点:432--=x x y
1.解方程:0
2
7
22=
-
-x
x
1.解方程:)
3
1(2
)1
3(2x
x-
=
-
1.解方程:)2
(3
)2
(2+
=
+x
x 2.配方写顶点:6
4
22-
-
=x
x
y
2.配方写顶点:
4
2
12
+
-
-
=x
x
y
2.配方写顶点:2
2
4
1x
x
y-
-
=
1.解方程:)12(3)12(2+=+x x
1.解方程:01072=+-x x
1.解方程:0152=+-x x
2.配方写顶点:6422--=x x y
2.配方写顶点:4
2
12
+--
=x x y
2.配方写顶点:2241x x y --=
1.解方程:)2()2(3-=-x x x
1.解方程:052222=--x x
1.解方程:22)13()2(-=+y y
1.解方程:032)12(2
1
2=--x
2.配方写顶点:12
12
-+=x x y
2.配方写顶点:162++-=x x y
2.配方写顶点:1322+-=x x y
2.配方写顶点:81232-+-=x x y
1.解方程:)1(412+=-x x
1.解方程:0132=-+x x
1.解方程:)2(2)2(2-=-x x
2.配方写顶点:)3)(1(2+--=x x y
2.配方写顶点:x x y 332+=
2.配方写顶点:)1)(3(---=x x y
1.解方程:26)13(4-=-x x x
1.解方程:0322=-+x x
1.解方程:63)2(-=-x x x
2.配方写顶点:x x y 422-=
2.配方写顶点:2532+--=x x y
2.配方写顶点:3
21
2+--=x x y
1.解方程:09922=--x x
1.解方程:0122=--x x
1.解方程:01432=++x x
2.配方写顶点:12++=x x y
2.配方写顶点:2161312-+=
x x y
2.配方写顶点:)6(-=x x y
1.解方程:3312
-=-x x
1.解方程:01432=++x x
1.解方程:0)1(2)1(2=+++x x x
1.解方程:16)4(22-=+x x
2.配方写顶点:273212+
+-=x x y
2.配方写顶点:7442-+=x x y
2.配方写顶点:10
421
2++-=x x y
2.配方写顶点:7352--=x x y
1.解方程:10110252=++x x
1.解方程:3)1)(3(-=+-x x x
1.解方程:062372=+-x x
2.配方写顶点:=y
2.配方写顶点:=y
2.配方写顶点:=y
1.解方程:039642=--x x
1.解方程:01822=--x x
1.解方程:)12(3)12(2-=-x x
2.配方写顶点:11822-+=x x y
2.配方写顶点:2
4
12
+-=
x x y
2.配方写顶点:3422+-=x x y
1.解方程:1842+=y y
1.解方程:0232=-+x x
1.解方程:)15(3)15(2-=-x x
2.配方写顶点:7822---=x x y
2.配方写顶点:21
62
12
+-=
x x y
2.配方写顶点:24632--=x x y。