解一元二次方程十道小测题(配方法)
(完整版)配方法解一元二次方程专项练习及测试(含专练60道)
![(完整版)配方法解一元二次方程专项练习及测试(含专练60道)](https://img.taocdn.com/s3/m/13ee0a1b680203d8ce2f249e.png)
一、填空题1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若方程20x m -=有整数根,则m 的值可以是 (只填一个).6.用配方法解一元二次方程的一般步骤是:化二次项系数为1,把方程化为20x mx n ++=的形式;把常数项移到方程右边即 方程两边同时加上24m ,整理得到24m n =-;当204m n -≥时,(2m x +=,当204m n -<时,原方程 .二、选择题7.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对8.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-19.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=210用配方法解方程x 2+4x=10的根为( )A .2±B .-2C .D .11.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数三、解答题12.用配方法解下列方程:(1)x 2+8x=9 (2)x 2+12x-15=0. (3)3x 2-5x=2 (4)41 x 2-x-4=013.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
《配方法解一元二次方程》练习题
![《配方法解一元二次方程》练习题](https://img.taocdn.com/s3/m/5004faf48bd63186bcebbcf6.png)
《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+= 2. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=; (3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A.3x =± B.3x =C.3x =- D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为()A.2±B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:(1)3x2-5x=2.(2)x2+8x=91x2-x-4=0(3)x2+12x-15=0 (4)411.用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。
(完整版)一元二次方程求解(配方法求解)
![(完整版)一元二次方程求解(配方法求解)](https://img.taocdn.com/s3/m/535cffe9a300a6c30d229f2f.png)
一元二次方程求解(配方法求解)一.解答题(共30 小题)1 .解方程:X2- 6x- 4=0.2. 解方程:«+4x-仁0.3. 解方程:x2- 6x+5=0 (配方法)4. 解方程:x2- 2x=4.5. 用配方法解方程:2x2- 3x- 3=0.6. 解方程:x2+2x- 5=0.7. 用配方法解方程2x2- 4x- 3=0.8. 解方程:x2- 2x- 2=0.9. 用配方法解方程:x2- 2x- 4=0.10. 解方程:2x2- 4x+1=0.11. 2X2- 5x+2=0 (配方法)12.解方程:x2- 2x- 4=0.13.解方程:( 2x- 1 ) 2=x( 3x+2)- 7.14 .解一元二次方程:x2- 6x+3=0.15 .解方程:x2- 2x- 5=0.16. 有n 个方程:x2+2x- 8=0; x2+2X 2x- 8 X22=0;•••X+2nx-8n2=0.小静同学解第一个方程x2+2x- 8=0的步骤为:①x2+2x=8;②x2+2x+仁8+1;③(x+1)2=9;④x+仁±3;⑤x=1 ± 3;⑥X1=4, x2= - 2. ”(1)小静的解法是从步骤—开始出现错误的.(2)用配方法解第n个方程x2+2nx- 8n2=0.(用含有n的式子表示方程的根)17. 解方程:4/-6x- 4=0 (用配方法)18 .用配方法解方程:2x2+3x -仁0.19 .用配方法解方程:貳+x - 2=0.20.用配方法解方程:2X2+1=3X.21 .用配方法解方程:3x2+6x -仁0.22.用配方法解方程:2x2+2x-仁0.23 .解方程:x2- 6x+2=0 (用配方法).24.解下列方程:(1)«+6x+7=0 (用配方法解)26. 用配方法解方程:6x2-x- 12=0.2 «+2x- 1=0.25 .用配方法解方程:4x2- 3=4x.27. 用配方法解方程:2x2- 8x- 198=0.28. 用配方法解方程:6x2- x- 12=0.29. 用配方法解方程:2x2- 5x+2=0.30. 用配方法解方程:2x2- x- 1=0.一元二次方程求解(配方法求解)参考答案与试题解析一•解答题(共30小题)1. (2015?大连)解方程:x2- 6x- 4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2- 6x=4,配方得x2- 6x+9=4+9,即(x- 3)2=13,开方得x- 3=± I ';,x i=3+.;「.,X2=3-L.i 匚【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可. (2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成X+px+qrO,然后配方.2(2016?淄博)解方程:x2+4x-仁0.【分析】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解答】解:••• x2+4x-仁0•x2+4x=1•x2+4x+4=1+4••(x+2)2=5•x=- 2±!■• X1 = —2+. ~,x2= - 2-个仟【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1, 一次项的系数是2的倍数.3. (2016?金乡县一模)解方程:x2-6x+5=0 (配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2- 6x=- 5,等式两边同时加上一次项系数一半的平方32.得x2- 6x+32=- 5+32,即(x - 3) 2=4,二x=3± 2,•••原方程的解是:X1=5, x2=1 .【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项左边就是完全平方的系数是2的倍数. 33(2016?安徽)解方程:x2- 2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方, 式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方X2- 2x+1=4+1•( x- 1) 2=5•x=1± 口解题方法.5. (2016?天门模拟)用配方法解方程:2x 2- 3x - 3=0.【分析】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加 上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方 根的定义即可求解.【解答】解:2« - 3x - 3=0,:x-2 x 2 — 2 (r 好使方程的二次项的系数为1,一次项的系数是2的倍数.6. (2015?畐州模拟)解方程:x 2+2x - 5=0.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系 数化为1; (3)等式两边同时加上一次项系数一半的平方.【解答】解::《+2x - 5=0,••• X+2x=5,«+2x+1=5+1,•(x+1) 2=6,• x+1=± 「',• x=- 1 ± '-.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应• X 1=1+ 一 -, x 2= 1-「.9 =9 + 3 16 15 2,■= + 二 4 — 4 x 【点评】在实数运算中要注意运算顺序, 在解一元二次方程时要注意选择适宜的x 2-W33 4【点评】此题考查利用配方法解一元二次方程, 解得:x i = ,x 2= 用配方法解一元二次方程时,最2— 16用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7. (2015?岳池县模拟)用配方法解方程2X2- 4x- 3=0.【分析】借助完全平方公式,将原方程变形为工_ .-—,开方,即可解决问题.【解答】解::2x2 - 4x-3=0,【点评】该题主要考查了用配方法来解一元二次方程的问题;准确配方是解题的关键.8. (2015?厦门校级质检)解方程:x2-2x- 2=0.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数- 2的一半的平方.【解答】解:移项,得x2- 2x=2,配方,得x2- 2x+1= 2+1,即(x- 1)2=3,开方,得x- 1=±:.解得X1 = 1+J^,x2=1 - Vs.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可. (2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成X+px+qr。
解一元二次方程练习题(配方法、公式法)
![解一元二次方程练习题(配方法、公式法)](https://img.taocdn.com/s3/m/34f98fdeb14e852458fb5733.png)
解一元二次方程练习题(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程练习题(公式法)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.2.方程ax 2+bx+c=0(a ≠0)有两个相等的实数根,则有____ ____ ,•若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.5.用公式法解方程4y 2=12y+3,得到6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0解一元二次方程练习题(因式分解法)因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
解一元二次方程(配方法,直接开方法)练习题
![解一元二次方程(配方法,直接开方法)练习题](https://img.taocdn.com/s3/m/67a81cf3bed5b9f3f80f1ca0.png)
解一元二次方程演习题(配办法)1.用恰当的数填空:①.x2+6x+ =(x+ )2;②.x2-5x+ =(x-)2;③.x2+ x+ =(x+ )2;④.x2-9x+ =(x-)22.将一元二次方程x2-2x-4=0用配办法化成(x+a)2=b的情势为_______,•所以方程的根为_________.3.若x2+6x+m2是一个完整平方法,则m的值是()A.3 B.-3 C.±3 D.以上都不合错误4.把方程x2+3=4x配方,得()A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=25.用配办法解方程x2+4x=10的根为()A.2.-2..2-6.用配办法解下列方程:(2)x2+8x=9 (3)x2+12x-15=0 (4)41x2-x-4=0解一元二次方程演习题(配办法)1.用恰当的数填空:①.x2+6x+ =(x+ )2;②.x2-5x+ =(x-)2;③.x2+ x+ =(x+ )2;④.x2-9x+ =(x-)22.将一元二次方程x2-2x-4=0用配办法化成(x+a)2=b的情势为_______,•所以方程的根为_________.3.若x2+6x+m2是一个完整平方法,则m的值是()A.3 B.-3 C.±3 D.以上都不合错误4.把方程x2+3=4x配方,得()A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=25.用配办法解方程x2+4x=10的根为()A.2.-2..2-6.用配办法解下列方程:(2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=07.用直接开平办法解下列一元二次方程. 1.0142=-x 2.2)3(2=-x 3.()512=-x 4.()162812=-x8.用配办法解下列一元二次方程.1..0662=--y y2.x x 4232=-3.9642=-x x4.1322=-+x x 5.07232=-+x x6.01842=+--x x7.用直接开平办法解下列一元二次方程. 1.0142=-x 2.2)3(2=-x 3.()512=-x 4.()162812=-x8.用配办法解下列一元二次方程.1..0662=--y y2.x x 4232=-3.9642=-x x4.1322=-+x x 5.07232=-+x x6.01842=+--x x。
(完整版)解一元二次方程配方法练习题
![(完整版)解一元二次方程配方法练习题](https://img.taocdn.com/s3/m/4fe26125a0116c175f0e48e4.png)
解一元二次方程练习题(配方法)步骤:(1)移项;(2)化二次项系数为1 ;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.1 •用适当的数填空:①X2+6X+__ = (x+ _) 2;② x2—5x+ = (x —_) 2;③X2+ X+ ___ = ( X+ _) 2;④ X2—9X+ = (X—_) 22 .将二次三项式2X2-3X-5进行配方,其结果为•3. 已知4x2-ax+1可变为(2x-b) 2的形式,贝V ab= _______ .4. 将一元二次方程X2-2X-4=0用配方法化成(x+a) 2=b的形式为_______ , ?所以方程的根为___________ .5. 若x2+6x+m2是一个完全平方式,则m的值是()A . 3B . -3 C.± 3 D .以上都不对6. 用配方法将二次三项式a2-4a+5变形,结果是( )A. (a-2) 2+1B. (a+2) 2-1C. (a+2) 2+1 D . ( a-2) 2-17. 把方程X+3=4X配方,得()A . ( X-2 ) 2=7B . ( X+2)2=21C. (X-2 ) 2=1 D . ( X+2)2=2&用配方法解方程X2+4X=10的根为()A. 2± \10B. -2 ±14C. -2+ 10D. 2- -109. 不论X、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2B.总不小于7C.可为任何实数 D .可能为负数10. 用配方法解下列方程:(1) 3X2-5X=2 . (2) X2+8X=9(5) 6X2-7X+仁0 (6) 4X2-3X=5211.用配方法求解下列问题(1)求2X2-7X+2的最小值;(2)求-3X2+5X+1的最大值。
九年级数学解一元二次方程专项练习试题(带答案解析)[40道]
![九年级数学解一元二次方程专项练习试题(带答案解析)[40道]](https://img.taocdn.com/s3/m/54d610d487c24028905fc347.png)
解一元二次方程专项练习题(带答案)1、用配方法解以下方程:(1)x2+12 x+25=0(3)x2-6x=112、用配方法解以下方程:(1)6x2-7x+1=0(3)4x2-3x=523、用公式法解以下方程:(1) 2x 2-9x+8=0(3)16x2+8x=34、运用公式法解以下方程:(1)5x 2+ 2x-1= 0(2)x2+4x=10(4)x2-2 x-4=0(2)5x2-18=9x(4)5x2=4-2x(2)9x2+6x+1=0(4)2x2-4x-1=0(2)x2+6 x+9=7( 3)5x+ 2=3x 2(4)( x- 2)(3x-5)=15、用分解因式法解以下方程:( 1)9x2+6x+1=0(2)3x( x-1)=2-2x( 3)(2x+3)2=4(2 x+3)(4)2(x-3)2=x2-96、用适合方法解以下方程:(1)(3 x)2 x2 5 (2)x2 2 3x 3 0( 3)(3x 11)( x 2) 2 ;(4) x(x 1) 1 ( x 1)( x 2)3 47、解以下对于x 的方程 :(1) x2+2x- 2=0(2)3x2+4x- 7=(3) (x+3)( x-1)=5(4)(x- 2 )2+4 2 x=08、解以下方程( 12 分)( 1)用开平方法解方程:( x 1)2 4 (2)用配方法解方程: x2—4x+1=0( 3)用公式法解方程:3x2+5(2 x+1)=0(4)用因式分解法解方程:3(x- 5)2=2(5 - x)9、用适合方法解以下方程:( 1)x( x-14)=0(2)x2+12x+27=0( 3)x2=x+56(4)x(5x+4)=5x+4( 5)4x2-45=31x(6)-3x2+22 x-24=0( 7)( x+8)( x+1)=-12(8)(3x+2)( x+3)=x+14解一元二次方程专项练习题答案1、【答案】(1)-611;(2)-214;(3) 3 2 5;(4)1 52、【答案】x =, x =1(2)x=3,x=-6(1)11 2 1 26 5( 3)x1=4,x2=-13(4)x=-121 4 53、【答案】( 1)x=917 ( 2)x1=x2=-14 3( 3)x1=1,x2=-3( 4)x=264 4 24、【答案】(1)x1= 1 6, x2 1 6 (2). x1=- 3+ 7 ,x2=- 3-7 5 5() x =2 , x =-1( 4)x=11133 1 2635、【答案】( 1)x1=x2=-1(2)x1=1,x2=-2 3 3( 3)x=-3, x =1(4)x =3 , x =91 2 1 22 26、【答案】(1)x1=1,x2=2 ( 2)x1=x2=- 3( 3)x1 5, x2 4;( 4)x1 2, x23 37、【答案】(1)x=- 1± 3 ;7 (2) x1=1, x2=-3(3)x1=2, x2=- 4; 1=x2=- 28、【答案】解:( 1)x13, x21 ( 2)x123, x2 23( 3)x1510 , x2 5 10 ( 4)x15, x2 13 。
解一元二次方程练习题(求根公式、配方法)
![解一元二次方程练习题(求根公式、配方法)](https://img.taocdn.com/s3/m/5e3dde25fe00bed5b9f3f90f76c66137ef064f74.png)
解一元二次方程练习题(求根公式、配方法)问题1已知一元二次方程 $ax^2 + bx + c = 0$,求解下列方程:1. $x^2 - 4x + 3 = 0$2. $2x^2 - 5x - 3 = 0$3. $3x^2 + 2x - 7 = 0$解答1求根公式对于一元二次方程 $ax^2 + bx + c = 0$,其求根公式为:$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$1. 对于方程 $x^2 - 4x + 3 = 0$,可以得到 $a = 1$,$b = -4$,$c = 3$。
代入求根公式,可得两个解:$$x_1 = \frac{-(-4) + \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$ $$x_2 = \frac{-(-4) - \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$ 简化后得:$$x_1 = 3$$$$x_2 = 1$$2. 对于方程 $2x^2 - 5x - 3 = 0$,可以得到 $a = 2$,$b = -5$,$c = -3$。
代入求根公式,可得两个解:$$x_1 = \frac{-(-5) + \sqrt{(-5)^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2}$$$$x_2 = \frac{-(-5) - \sqrt{(-5)^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2}$$简化后得:$$x_1 = 3$$$$x_2 = -\frac{1}{2}$$3. 对于方程 $3x^2 + 2x - 7 = 0$,可以得到 $a = 3$,$b = 2$,$c = -7$。
代入求根公式,可得两个解:$$x_1 = \frac{-2 + \sqrt{2^2 - 4 \cdot 3 \cdot (-7)}}{2 \cdot 3}$$ $$x_2 = \frac{-2 - \sqrt{2^2 - 4 \cdot 3 \cdot (-7)}}{2 \cdot 3}$$ 简化后得:$$x_1 = \frac{1}{3}(\sqrt{43} - 2)$$$$x_2 = \frac{1}{3}(-\sqrt{43} - 2)$$配方法对于一元二次方程 $ax^2 + bx + c = 0$,可以使用配方法进行求解。
配方法解一元二次方程专项练习111题(有答案)ok
![配方法解一元二次方程专项练习111题(有答案)ok](https://img.taocdn.com/s3/m/b01d66aaf90f76c660371a24.png)
配方法解一元二次方程专项练习111题(有答案)ok配方法解一元二次方程专项练习111题(有答案)1.x2﹣2x=4.2.3x2=5x+23.2x2﹣4x+1=0.4. x2+2x=2;5.x2﹣2x﹣4=0.6..7.x2+4x﹣1=0.8.2x2+x﹣30=0 9.x2﹣28x﹣4=010.x2﹣8x﹣1=0.11.x2+2x=5.12.2x2+6=7x13.2x2+1=8x14.3x2﹣2x﹣6=015..16.x2+2x﹣15=0.17.x2+6x﹣16=018.2x2﹣5x﹣3=019.x2﹣4x+2=020.(x+3)(x﹣1)=1221.2x2﹣12x+6=022.2x2﹣3x﹣2=0.23.x(x+2)﹣5=0.24.x2﹣6x+2=025.3x2﹣6x﹣1=0 26.2x2+4x﹣1=0 27.x2﹣4x+3=0.28.x2﹣6x﹣3=0 29.2x2﹣8x+3=0.30.3x2﹣4x+1=0;31.x2﹣6x+1=0.32.2x2﹣4x+1=0 33.x2+5x﹣3=0.34.x2+2x﹣4=035.2x2﹣4x+1=0.36..37.5(x2+17)=6(x2+2x)38.4x2﹣8x+1=039.2x2+1=3x.40.x2+x﹣2=0.41.x2﹣6x+1=042.x2﹣8x+5=043.x2+3x﹣4=0.44.3x2+8x﹣3=045.x2+8x=2.46.x2+3x+1=047. 2x2﹣3x+1=048.x2﹣4x﹣6=049. x2﹣8x+1=050.x2+4x+1=051.x2﹣4x+1=052.x2﹣6x﹣7=0 54. x2﹣6x﹣5=0.55.2x2+1=3x56. x2+3x+1=0 57.x2﹣8x+1=0.58. x2﹣8x﹣16=0 59..60.6x2﹣7x﹣3=0 61. x2﹣6x=﹣8;62. 2x2﹣5x+1=0.63.3x2+8x﹣3=064.3x2﹣4x+1=065.2x2+3x﹣1=0.66.2x2﹣5x﹣1=067.4x2﹣8x﹣1=068.3x2+4x﹣7=069.3移项得3x2﹣10x=﹣6.70.3x2﹣10x﹣5=071.2x2+3=7x72.x2+2x﹣224=073.x2﹣5x﹣14=074..75.x2+8x﹣20=076.x2﹣x+.77.2t2﹣6t+3=0.78.3x2﹣6x﹣12=0.79.x2﹣4x+1=080. 3x2﹣3=2x.81.2x2﹣5x+1=0.82.2y2+8y﹣1=083.x2﹣6x﹣18=084.x2﹣2x﹣1=0.85. x2﹣4x﹣1=0;86. 2x2+3x+1=0.87.2x2﹣6x﹣7=0 88.ax2+bx+c=0(a≠0).89.4x2﹣4ax+a2﹣b2=0.90. x2﹣4x﹣2=091. x(x+4)=6x+1292. 2x2+7x﹣4=093. 3(x﹣1)(x+2)=x+494. 3x2﹣6x=895. 2x2﹣x﹣30=0,96. x2+2=2x,97.x2+px+q=O(p2﹣4q≥O),98. m2x2﹣28=3mx(m≠O),99. x2﹣6x+7=0;100. 2x2+6=7x;101. ﹣5x2+10x+15=0.102. x2+6x+8=0;103. x2=6x+16;104.2x2+3=7x;105. (2x﹣1)(x+3)=4.106. x2+4x=﹣3;107. 2x2+x=0.108.x2+4x﹣3=0;109.x2+3x﹣2=0;110. x2﹣x+=0;111. x2+2x﹣4=0.参考答案:1.x2﹣2x=4.配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.2. 3x2=5x+2x2﹣x+=+=x=2,x=﹣3.2x2﹣4x+1=0.由原方程,得2(x﹣1)2=1,∴x=1±,∴原方程的根是:x1=1+,x2=1﹣.4.x2+2x=2;原式可化为x2+2x﹣2=0即x2+2x+1﹣3=0(x+1)2=3x=1.5.x2﹣2x﹣4=0.由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+x2=1﹣.6..,移项得:x2﹣2x=,配方得:x2﹣2x+1=+1,(x﹣1)2=,x﹣1=,7.x2+4x﹣1=0.解:移项得:x2+4x=1,配方得:x2+4x+4=1+4,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.8.2x2+x﹣30=0原方程变形为x2+x=15∴x2+x+()2=15+()2.∴(x+)2=,∴x1=﹣3,x2=.9.x2﹣28x﹣4=0原方程可化为x2﹣28x+142=4+142(x﹣14)2=200x﹣14=∴x1=14+,x2=14﹣.10.原方程移项得,x2﹣8x=1,⇒x2﹣8x+16=1+16,(x﹣4)2=17,⇒解得11.x2+2x=5.x2+2x+1=5+1,即(x+1)2=6,所以x+1=±,解得:x1=﹣1+,x2=﹣1﹣.12.2x2+6=7x移项得:2x2﹣7x=﹣6,二次项的系数化为1得:,解得:x1=2,.2∴2x2﹣8x=﹣1,∴x2﹣4x=﹣,即(x﹣2)2=,∴x﹣2=,∴x1=2+,x2=2﹣14.3x2﹣2x﹣6=0系数化1得,x2﹣x﹣2=0方程两边加上一次项系数一半的平方即得:∴(x ﹣)2=∴x1=,x2=15..配方得:x2﹣2x+3=12,即(x ﹣)2=12,开方得:x ﹣=±2,则x1=3,x2=﹣.16.x2+2x﹣15=0.x2+2x=15,x2+2x+1=15+1.(x+1)2=42.x+1=±4.∴x1=3,x2=﹣5.17.(1)x2+6x﹣16=0 由原方程,得x2+6x=16,等式的两边同时加上一次项系数6的一半的平方,得x2+6x+9=25,即(x+3)2=25,直接开平方,得x+3=±5,∴x1=2,x2=﹣8;18.2x2﹣5x﹣3=0(用配方法)∴∴;19. x2﹣4x+2=0x2﹣4x+4=﹣2+4(x﹣2)2=2,,∴;两边都加上12,得x2+2x+12=15+12即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4∴x1=3,x2=﹣521.2x2﹣12x+6=0 (配方法).把方程2x2﹣12x+6=0的常数项移到等号的右边,得到2x2﹣12x=﹣6,把二次项的系数化为1得:x2﹣6x=﹣3,程两边同时加上一次项系数一半的平方,得到x2﹣6x+9=﹣3+9即(x﹣3)2=6,∴x﹣3=±,∴x=3±,∴x1=3+,x2=3﹣.22.2x2﹣3x﹣2=0.移项得:2x2﹣3x=2化二次项系数为1,得:x2﹣x=1,配方得:x2﹣x+=1+,即=,∴x ﹣=或x ﹣=﹣,∴x1=2,x2=﹣.23.x(x+2)﹣5=0.x(x+2)﹣5=0,去括号得:x2+2x﹣5=0,移项得:x2+2x=5,左右两边加上1,变形得:(x+1)2=6,开方得:x+1=±,即x=﹣1±,∴x1=﹣1+,x2=﹣1﹣24.x2﹣6x+2=0x2﹣6x+2=0移项,得x2﹣6x=﹣2,即x2﹣6x+9=﹣2+9,∴(x﹣3)2=7,解得x﹣3=±,即x=3±.∴x1=3+,x2=3﹣.25.把方程x2﹣2x ﹣=0的常数项移到等号的右边,得到x2﹣2x=配方得(x﹣1)2=开方得x﹣1=移项得x=+126.2x2+4x﹣1=0原方程变形为2x2+4x=1即x2+2x=∴x2+2x+1=1+即(x+1)2=∴∴,27.x2﹣4x+3=0.∵x2﹣4x+3=0∴x2﹣4x=﹣3∴x2﹣4x+4=﹣3+4∴(x﹣2)2=1∴x=2±1∴x1=3,x2=128.x2﹣6x﹣3=0x2﹣6x=3,(x﹣3)2=12,x﹣3=.∴x1=3+,x2=3﹣29.2x2﹣8x+3=0.原方程变形为∴∴∴x﹣2=.∴x1=2+,x2=2﹣.30.3x2﹣4x+1=0;3(x2﹣x)+1=0(x ﹣)2=∴x1=1,x2=31.x2﹣6x+1=0.x2﹣6x=﹣1.x2﹣6x+9=﹣1+9,(x﹣3)2=8,.,32.2x2﹣4x+1=0原方程化为配方得即开方得∴,33.x2+5x﹣3=0.由原方程移项,得x2+5x=3,等式两边同时加上一次项系数一半的平方,得,∴∴解得,∴,.34.x2+2x﹣4=0移项得x2+2x=4,配方得x2+2x+1=4+1,即(x+1)2=5,开方得x+1=±,∴x1=,x2=﹣35.2x2﹣4x+1=0.由原方程,得x2﹣2x=﹣,等式的两边同时加上一次项系数一半的平方,得配方,得(x﹣1)2=,直接开平方,得x﹣1=±,x1=1+,x2=1﹣.36..∵x2﹣x+=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=0解得x1=x2=.37.5(x2+17)=6(x2+2x)5(x2+17)=6(x2+2x),整理得:5x2+85=6x2+12x,x2+12x﹣85=0,x2+12x=85,x2+12x+36=85+36,(x+6)2=121,x+6=±11,x1=5,x2=﹣1738.4x2﹣8x+1=0方程4x2﹣8x+1=0同除以4,得x2﹣2x+=0,把方程4x2﹣8x+1=0的常数项移到等于号的右边,得x2﹣2x=﹣,方程两边同时加上一次项一半的平方,得到,x2﹣2x+1=,∴x﹣1=±,解得x1=,x2=.39.2x2+1=3x.由原方程,移项得2x2﹣3x=﹣1,化二次项系数为1,得x2﹣x=﹣,等式的两边同时加上一次项系数一半的平方,得配方,得(x ﹣)2=,开平方,得x ﹣=±,解得,x1=1,x2=.40.x2+x﹣2=0.配方,得x2+x ﹣=2+,即=,所以x+=或x+=﹣.解得 x1=1,x2=﹣2.41.x2﹣6x+1=0移项,得x2﹣6x=﹣1,配方,得x2﹣6x+9=﹣1+9,即(x﹣3)2=8,解得x﹣3=±2,∴x1=3+2,x2=3﹣2.42.x2﹣8x+5=0原方程可变为,x2﹣8x=﹣5,方程两边同时加上一次项系数一半的平方得,到x2﹣8x+16=11,配方得,(x﹣4)2=11,直接开平方得,x﹣4=±,解得x=4+或4﹣.43.x2+3x﹣4=0.x2+3x﹣4=0x2+3x=4x2+3x+=4+=∴x+=±所以x1=1,x2=﹣4.44.3x2+8x﹣3=0∵3x2+8x﹣3=0,∴3x2+8x=3,∴x2+x=1,∴x2+x+=1+,∴(x+)2=,解得x1=,x2=﹣345.移项,得x2+8x=2.两边同加上42,得x2+8x+16=2+16,即(x+4)2=18.利用开平方法,得x+4=或x+4=﹣.解得x=﹣4+或x=﹣4﹣3.所以,原方程的根是x1=﹣4+,x2=﹣4﹣.46.x2+3x+1=0∵x2+3x+1=0∴x2+3x=﹣1∴x2+3x+=﹣1+∴(x+)2=∴x=∴x1=,x2=.47. 2x2﹣3x+1=0∵2x2﹣3x+1=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=∴x=∴x1=,x2=48.x2﹣4x﹣6=0x2﹣4x﹣6=0x2﹣4x=6x2﹣4x+4=4+6(x﹣2)2=10x﹣2=±∴49. x2﹣8x+1=0∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得2配方得,x2+4x+22=﹣1+4,(x+2)2=3,,解得,51.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴x2﹣4x+4=4﹣1,⇒(x﹣2)2=3,⇒,∴,解得,.52.x2﹣6x﹣7=0x2﹣6x+9=7+9(x﹣3)2=16开方得x﹣3=±4,∴x1=7,x2=﹣153..由原方程,得x2﹣2x=3,等上的两边同时乘以2,得x2﹣4x=6,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=10,配方得(x﹣2)2=10.∴,∴,54. x2﹣6x﹣5=0.移项得x2﹣6x=5,方程两边都加上9得 x2﹣6x+9=5+9,即(x﹣3)2=14,则x﹣3=±,所以x1=3+,x2=3﹣55.2x2+1=3x移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2,即(x ﹣)2=,开方,得x ﹣=±,∴x1=1,x2=.56. x2+3x+1=0移项,得x2+3x=﹣1,配方得x2+3x+=﹣1+,即(x+)2=,开方,得x+=±,∴x1=﹣+,x2=﹣﹣57.x2﹣8x+1=0.配方得,(x﹣4)2=15,开方得,x﹣4=±,x1=4+,x2=4﹣58. x2﹣8x﹣16=0(x﹣4)2﹣16﹣16=0,(x﹣4)2=32,即或,解得:,.59..移项得:x2﹣x=﹣3,配方得:x2﹣x+()2=﹣3+()2,即(x ﹣)2=,开方得:x ﹣=或x ﹣=﹣,解得:x1=2,x2=.60.6x2﹣7x﹣3=0解:6x2﹣7x﹣3=0,b2﹣4ac=(﹣7)2﹣4×6×(﹣3)=121,∴x=,∴x1=,x2=﹣.61. x2﹣6x=﹣8;配方得x2﹣6x+9=﹣8+9,即(x﹣3)2=1,开方得x﹣3=±1,∴x1=4,x2=262. 2x2﹣5x+1=0.移项得2x2﹣5x=﹣1,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=63.3x2+8x﹣3=0∵3x2+8x﹣3=0∴3x2+8x=3∴x2+x=1∴x2+x+=1+∴(x+)2=∴x=∴x1=,x2=﹣3.64.3x2﹣4x+1=0x2﹣x=﹣,x2﹣x+=﹣,即(x ﹣)2=,x ﹣=±;解得:x1=1,.65.2x2+3x﹣1=0.x2+(1分)x2+(3分)(4分)x+(6分)x1=66.2x2﹣5x﹣1=0(限用配方法);原方程化为2x2﹣5x=1,x2﹣x=,x2﹣x+()2=+()2,(x ﹣)2=,即x ﹣=±,x1=+,x2=﹣67.4x2﹣8x﹣1=0移项得:4x2﹣8x=1,二次项系数化1:x2﹣2x=,x2﹣2x+1=+1,(x﹣1)2=,x﹣1=±,x1=1+,x2=1﹣.68.3x2+4x﹣7=0移项,得3x2+4x=7,把二次项的系数化为1,得x2+x=,等式两边同时加上一次项系数一半的平方,得x2+x+=,∴=,∴x=±,∴x1=1,x2=﹣.69.3移项得3x2﹣10x=﹣6.二次项系数化为1,得x2﹣x=﹣2;配方得x2﹣x+(﹣)2=﹣2+,即(x ﹣)2=,开方得:x ﹣=±,∴x1=,x2=x2﹣10x+6=0 70.3x2﹣10x﹣5=0∵3x2﹣10x﹣5=0,∴3x2﹣10x=5,∴x2﹣x=,∴x2﹣x+=+,∴(x ﹣)2=,∴x=,∴x1=,x2=71.2x2+3=7x移项,得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.72.x2+2x﹣224=0移项,得x2+2x=224,在方程两边分别加上1,得x2+2x+1=225,配方,得(x+1)2=225,∴x+1=±15,∴x1=14,x2=﹣16;73.x2﹣5x﹣14=0x2﹣5x﹣14=0,x2﹣5x=14,x2﹣5x+=14+,(x ﹣)2=,x ﹣=±,∴x1=7,x2=﹣2.74..把二次项系数化为1,得x2﹣x ﹣=0,将常数项﹣移项,得x2﹣x=,两边同时加上一次项系数﹣的一半的平方,得x2﹣x+=+,配方得,(x ﹣)2=,∴x ﹣=∴x1=1,x2=﹣.75.x2+8x﹣20=0∵x2+8x﹣20=0∴x2+x=20∴x2+x+=20+∴(x+)2=∴x+=±,∴x=﹣,即x1=4,x2=﹣5.76.x2﹣x+.配方得(x ﹣)2=0,解得x1=x2=.77.2t2﹣6t+3=0.移项、系数化为1得,t2﹣3t=﹣配方得t2﹣3t+=﹣,即(t ﹣)2=,开方得t ﹣=±,∴x1=,x2=78.3x2﹣6x﹣12=0.3x2﹣6x﹣12=0,移项,得3x2﹣6x=12,把二次项的系数化为1,得x2﹣2x=4,等式两边同时加上一次项系数﹣2一半的平方1,得x2﹣2x+1=5,∴(x﹣1)2=5,∴79.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴(x﹣2)2=﹣1+4,∴(x﹣2)2=3,∴x﹣2=±,∴x1=2+;x2=2﹣;80. 3x2﹣3=2x.移项,得3x2﹣2x=3,二次项系数化为1,得x2﹣x=1,配方,得(x ﹣)2=1+,x ﹣=±,解得x1=;x2=81.2x2﹣5x+1=0.移项,得2x2﹣5x=﹣1,化二次项系数为1,得x2﹣x=﹣,方程的两边同时加上,得(x ﹣)2=,直接开平方,得x ﹣=±,∴x1=,x2=82.2y2+8y﹣1=0方程两边同时除以2得:y2+4y ﹣=0,移项得:y2+4y=,左右两边加上4,变形得:(y+2)2=,开方得:y+2=±,∴y1=﹣2+,y2=﹣2﹣.83.x2﹣6x﹣18=0由原方程移项,得x2﹣6x=18,方程两边同时加上一次项系数一半的平方,得x2﹣6x+9=27,配方,得(x﹣3)2=27,开方,得x﹣3=±3,解得,x1=3+3,x2=3﹣384.x2﹣2x﹣1=0.由原方程,得x2﹣2x=1,等式的两边同时加上一次项系数﹣2的一半的平方,得x2﹣2x+1=2,即(x﹣1)2=2,直接开平方,得x﹣1=±,∴x1=1+,x2=1﹣.85. x2﹣4x﹣1=0;移项,得x2﹣4x=1,等式两边同时加上一次项系数一半的平方4,得x2﹣4x+4=1+4,∴(x﹣2)2=5(1分)∴x﹣2=±(1分)∴x=2±,解得,x1=2+,x2=2﹣86. 2x2+3x+1=0.移项,得2x2+3x=﹣1,把二次项的系数化为1,得x2+x=﹣,等式两边同时加上一次项系数一半的平方,得x2+x+=﹣+∴(x+)2=(1分)∴x+=±(1分)∴x=﹣±解得,x1=﹣,x2=﹣187.2x2﹣6x﹣7=0x2﹣3x ﹣=0,x2﹣3x=,x2﹣3x+=,=,x ﹣=±,x=±,∴x1=,x2=.88.ax2+bx+c=0(a≠0).∵a≠0,∴两边同时除以a得:x2+x+=0,x2+x=﹣,x2+x+=﹣,=,∵a≠0,∴4a2>0,当b2﹣4ac≥0时,两边直接开平方有:x+=±,x=﹣±,∴x1=,x2=89.4x2﹣4ax+a2﹣b2=0.原式可化为:x2﹣ax+=0,整理得,x2﹣ax+()2﹣()2=﹣即:(x ﹣)2=,解得x1=或x2=.90. x2﹣4x﹣2=0,配方,得x2﹣4x+4﹣4﹣2=0,则x2﹣4x+4=6,所以(x﹣2)2=6,即x﹣2=±.所以x1=+2,x2=﹣+2.91. 原方程变形得x2﹣2x=12,配方得x2﹣2x+()2﹣()2=12,即(x﹣1)2=13,所以x﹣1=±.x1=1+,x2=1﹣.(运用配方法解形如x2+bx+c=0的方程的规律是把原方程化为一般式即为x2+bx+c=0形式,再配方得x2+bx+()2﹣()2+c=0,(x+)2=,再两边开平方,得其解.)92. 2x2+7x﹣4=0,两边除以2,得x2+x﹣2=0,配方,得x2+x+()2=2+()2,(x+)2=,则x+=±.所以x1=,x2=﹣4.93. 原方程变形为3x2+2x﹣10=0.两边除以3得x2+x ﹣=0,配方得x2+x+()2=+.即(x+)2=,则x+=±.所以x1=﹣,x2=.94. 方程两边除以3得x2﹣2x=.配方得x2﹣2x+1=+1.⇒(x﹣1)2=.所以x﹣1=±,解得x1=+1,x2=1﹣95. 2x2﹣x﹣30=0,2x2﹣x=30,x2﹣x=15,x2﹣x+=15,(x ﹣)2=;x ﹣=±,x1==3,x2=﹣=﹣;96. x2+2=2x,x2﹣2x=﹣2,x2﹣2x+3=﹣2+3;(x ﹣)2=1,x ﹣=±1,x1=1+,x2=﹣1+;97.x2+px+q=O(p2﹣4q≥O),x2+px=﹣q,x2+px+=﹣q+,(x+)2=,∵p2﹣4q≥O,∴x+=±,∴x1=,x2=;98. m2x2﹣28=3mx(m≠O),(mx)2﹣3mx﹣28=0,(mx﹣7)(mx+4)=0,mx=7或mx=﹣4,∵m≠0,∴x1=,x2=.99. x2﹣6x+7=0;移项得x2﹣6x=﹣7,配方得x2﹣6x+9=﹣7+9,即(x﹣3)2=2,开方得x﹣3=±,∴x1=3+,x2=3﹣.100. 2x2+6=7x;移项得2x2﹣7x=﹣6,二次项系数化为1,得x2﹣x=﹣3.配方,得x2﹣x+()2=﹣3+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=2,x2=.101. ﹣5x2+10x+15=0.移项得﹣5x2+10x=﹣15.二次项系数化为1,得x2﹣2x=3;配方得x2﹣2x+1=3+1,即(x﹣1)2=4,开方得:x﹣1=±2,∴x1=3,x2=﹣1.102. 移项得x2+6x=﹣8,配方得x2+6x+9=﹣8+9,即(x+3)2=1,开方得x+3=±1,∴x1=﹣2,x2=﹣4.103. 移项得x2﹣6x=16,配方得x2﹣6x+9=16+9,即(x﹣3)2=25,开方得x﹣3=±5,∴x1=8,x2=﹣2.104. 移项得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.105. 整理得2x2+5x=7.二次项系数化为1,得x2+x=;配方得x2+x+()2=+()2,即(x+)2=,开方得:x+=±,∴x1=1,x2=﹣.106. x2+4x=﹣3;方程化为:x2+4x+4=﹣3+4,(x+2)2=l,x+2=±1,x=﹣2±1,∴x1=﹣l,x2=﹣3;107. 2x2+x=0.方程化为:x2+x=0,x2+x+=,=,x+=±,x=﹣±,∴x1=0,x2=﹣.108. ∵x2+4x﹣3=0∴x2+4x=3∴x2+4x+4=3+4∴(x+2)2=7∴x1=﹣2,x2=﹣﹣2.109. 移项得x2+3x=2,配方得x2+3x+=2+,即(x+)2=,开方得x+=±,∴x1=,x2=.110. 移项得x2﹣x=﹣,配方得x2﹣x+=﹣+,即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=.111. 移项得,x2+2x=4配方得,x2+2x+2=4+2,即(x+)2=6,开方得x+=,∴x1=,x2=﹣.。
(完整版)解一元二次方程练习题(配方法)(最新整理)
![(完整版)解一元二次方程练习题(配方法)(最新整理)](https://img.taocdn.com/s3/m/791b6f97804d2b160b4ec0f9.png)
(7) 5x 2 -3x+2 =0
(8) 7x 2 -4x-3 =0
(9) -x 2 -x+12 =0
(10) x 2 -6x+9 =0
韦达定理:对于一元二次方程 ax2 bx c 0(a 0) ,如果方程有两个实数根 x1, x2 ,那么
x1
x2
b a
,
x1x2
c a
说明:(1)定理成立的条件 0
2.已知 x1,x2 是方程 2x2-7x+4=0 的两根,则 x1+x2=
,x1·x2=
,
(x1-x2)2=
1
3.已知方程 2x2-3x+k=0 的两根之差为 2 ,则 k=
;
2
4.若方程 x2+(a2-2)x-3=0 的两根是 1 和-3,则 a=
;
5.若关于 x 的方程 x2+2(m-1)x+4m2=0 有两个实数根,且这两个根互为倒数,那么 m 的值为
(2)注意公式重
x1
x2
b a
的负号与
b
的符号的区别
根系关系的三大用处
(1)计算对称式的值
例 若 x1, x2 是方程 x2 2x 2007 0 的两个根,试求下列各式的值:
(1) x12 x22 ;
(2) 1 1 ; x1 x2
(3) (x1 5)(x2 5) ;
(4) | x1 x2 | .
25、 5x2 7x 1 0
26、 5x2 8x 1
27、 x2 2mx 3nx 3m2 mn 2n2 0
28、3x2+5(2x+1)=0
29、 (x 1)(x 1) 2 2x
30、 3x2 4x 1
解一元二次方程练习题(配方法)
![解一元二次方程练习题(配方法)](https://img.taocdn.com/s3/m/d54e121a55270722192ef75c.png)
解一元二次方程练习题(配方法)1.用适当的数填空:①、x2+6x+ =(x+ )2;②、x2-5x+ =(x-)2;③、x2+ x+ =(x+ )2;④、x2-9x+ =(x-)22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.5.若x2+6x+m2是一个完全平方式,则m的值是()A.3 B.-3 C.±3 D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是()A.(a-2)2+1 B.(a+2)2-1C.(a+2)2+1 D.(a-2)2-17.把方程x+3=4x配方,得()A.(x-2)2=7 B.(x+2)2=21C .(x-2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2± B .-2±C .-2+ D .2-9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41x 2-x-4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。
用配方法解一元二次方程练习题答案:1.①9,3 ②2.52,2.5 ③0.52,0.5 ④4.52,4.52.2(x-34)2-498 3.4 4.(x-1)2=5,1 5.C6.A 7.•C 8.B 9.A 10.(1)方程两边同时除以3,得 x 2-53x=23,配方,得 x 2-53x+(56)2=23+(56)2,即 (x-56)2=4936,x-56=±76,x=56±76.所以 x 1=56+76=2,x 2=56-76=-13.所以 x 1=2,x 2=-13.(2)x 1=1,x 2=-9(3)x 1x 211.(1)∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338,(2)-3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712.。
解一元二次方程试题(配方法)
![解一元二次方程试题(配方法)](https://img.taocdn.com/s3/m/f6d03ac9a8956bec0975e3b0.png)
解一元二次方程试题(配方法)————————————————————————————————作者:————————————————————————————————日期:解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2±10B .-2±14C .-2+10D .2-109.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
1、0142=-x2、2)3(2=-x3、()512=-x4、()162812=-x二、 用配方法解下列一元二次方程。
解一元二次方程(直接开方法 配方法)练习题100+XXX
![解一元二次方程(直接开方法 配方法)练习题100+XXX](https://img.taocdn.com/s3/m/1c6efac57d1cfad6195f312b3169a4517723e5e8.png)
解一元二次方程(直接开方法配方法)练习题100+XXX①、x2+6x+9=(x+3)2;②、x2-5x+4=(x-2)2;③、x2+ 2x+1=(x+1)2;④、x2-9x+9=(x-3)22)x2+8x-9=0,化为(x+4)2=25,所以方程的根为x=-4±5;3)x2+12x-15=0,化为(x+6)2=51,所以方程的根为x=-6±√51;4)2x2+5x-3=0,化为(2x-1)(x+3)=0,所以方程的根为x=1/2或x=-3.1、4x2-4x+1=0,化为(2x-1)2=0,所以方程的根为x=1/2;2、3x2-6x+2=0,化为3(x-1)2+1=0,无实数根。
1、y-6y+9=0,化为(y-3)2=0,所以方程的根为y=3;2、3x2-5x+2=0,化为(3x-2)(x-1)=0,所以方程的根为x=2/3或x=1;4、2x2-8x+7=0,化为(2x-1)(x-7/2)=0,所以方程的根为x=1/2或x=7/2.27.解方程 x2-4x+3=0,可以使用因式分解法,将其拆分为(x-1)(x-3)=0,因此 x=1 或 x=3.28.解方程 x2-6x-3=0,可以使用求根公式,得到x=(6±√(36+4×3))/2,即x=3±√10.29.解方程 2x2-8x+3=0,可以使用求根公式,得到x=(8±√(64-4×2×3))/4,即x=2±√7/2.30.解方程 3x2-4x+1=0,可以使用求根公式,得到x=(4±√(16-4×3×1))/6,即 x=1/3 或 x=1.31.解方程 x2-6x+1=0,可以使用求根公式,得到x=(6±√(36-4×1×1))/2,即x=3±√8.32.解方程 2x2-4x+1=0,可以使用求根公式,得到x=(4±√(16-4×2×1))/4,即 x=1/2.33.解方程 x2+5x-3=0,可以使用求根公式,得到 x=(-5±√(25+4×3))/2,即 x=(-5±√37)/2.34.解方程 x2+2x-4=0,可以使用求根公式,得到 x=(-2±√(4+4×4))/2,即 x=-1±√5.35.解方程 2x2-4x+1=0,可以使用求根公式,得到x=(4±√(16-4×2×1))/4,即 x=1/2.36.删除37.5(x+17)=6(x+2x),化简得到 5x+85=8x,解得 x=85/3.38.删除39.解方程 2x2+1=3x,可以移项得到 2x2-3x+1=0,然后使用求根公式,得到x=(3±√(9-4×2×1))/4,即 x=1 或 x=1/2.40.解方程 x2+x-2=0,可以使用因式分解法,将其拆分为(x-1)(x+2)=0,因此 x=1 或 x=-2.41.解方程 x2-6x+1=0,可以使用求根公式,得到x=(6±√(36-4×1×1))/2,即x=3±√8.42.解方程 x2-8x+5=0,可以使用求根公式,得到x=(8±√(64-4×1×5))/2,即x=4±√6.43.解方程 x2+3x-4=0,可以使用因式分解法,将其拆分为(x+4)(x-1)=0,因此 x=-4 或 x=1.44.解方程 3x2+8x-3=0,可以使用求根公式,得到 x=(-8±√(64+4×3×3))/6,即 x=(-4±√19)/3.45.解方程 x2+8x-2=0,可以使用求根公式,得到 x=(-8±√(64+8))/2,即 x=-4±√18.46.x+3x+1=0,化简得到 4x=-1,解得 x=-1/4.47.解方程 2x2-3x+1=0,可以使用求根公式,得到x=(3±√(9-4×2×1))/4,即 x=1/2 或 x=1.48.解方程 x2-4x-6=0,可以使用求根公式,得到x=(4±√(16+4×6))/2,即x=2±√10.49.解方程 x2-8x+1=0,可以使用求根公式,得到x=(8±√(64-4×1×1))/2,即x=4±√15.50.解方程 x2+4x+1=0,可以使用求根公式,得到 x=(-4±√(16-4×1×1))/2,即 x=-2±√3.51.解方程 x2-4x+1=0,可以使用求根公式,得到x=(4±√(16-4×1×1))/2,即 x=2.52.解方程 x2-6x-7=0,可以使用因式分解法,将其拆分为(x-7)(x+1)=0,因此 x=7 或 x=-1.53.解方程 x2-6x-5=0,可以使用因式分解法,将其拆分为(x-1)(x-5)=0,因此 x=1 或 x=5.54.解方程 2x2-3x-1=0,可以使用求根公式,得到x=(3±√(9+8))/4,即 x=1 或 x=-1/2.55.删除56.删除57.解方程 x2-8x+1=0,可以使用求根公式,得到x=(8±√(64-4×1×1))/2,即x=4±√15.58.解方程 x2-8x-16=0,可以使用因式分解法,将其拆分为 (x-4)(x-4-4)=0,因此 x=8 或 x=-2.59.删除60.解方程 6x2-7x-3=0,可以使用求根公式,得到x=(7±√(49+4×6×3))/12,即 x=1/2 或 x=-3/2.61.解方程 x2-6x+8=0,可以使用因式分解法,将其拆分为(x-4)(x-2)=0,因此 x=4 或 x=2.62.解方程 2x2-5x+1=0,可以使用求根公式,得到x=(5±√(25+4×2×1))/4,即x=(5±√17)/4.63.解方程 3x2+8x-3=0,可以使用求根公式,得到 x=(-8±√(64+4×3×3))/6,即 x=(-4±√19)/3.64.解方程 3x2-4x+1=0,可以使用求根公式,得到x=(4±√(16-4×3×1))/6,即 x=1/3 或 x=1.65.删除66.解方程 2x2-5x-1=0,可以使用求根公式,得到x=(5±√(25+4×2))/4,即x=(5±√33)/4.67.解方程 4x2-8x-1=0,可以使用求根公式,得到x=(8±√(64+4×4))/8,即x=1±√5/2.68.解方程 3x2+4x-7=0,可以使用求根公式,得到 x=(-4±√(16+4×3×7))/6,即 x=(-2±√22)/3.69.解方程 3x2-10x+6=0,可以使用因式分解法,将其拆分为 3(x-1)(x-2)=0,因此 x=1 或 x=2.70.解方程 3x2-10x-5=0,可以使用求根公式,得到x=(10±√(100+4×3×5))/6,即x=(5±√35)/3.71.解方程 2x2-7x+3=0,可以使用求根公式,得到x=(7±√(49-4×2×3))/4,即x=(7±√37)/4.72.解方程 x2+2x-224=0,可以使用因式分解法,将其拆分为 (x+16)(x-14)=0,因此 x=-16 或 x=14.73.解方程 x2-5x-14=0,可以使用因式分解法,将其拆分为 (x-7)(x+2)=0,因此 x=7 或 x=-2.74.删除75.解方程 x2+8x-20=0,可以使用求根公式,得到 x=(-8±√(64+4×20))/2,即 x=-4±2√6.76.解方程 x2-x=0,可以使用因式分解法,将其拆分为x(x-1)=0,因此 x=0 或 x=1.77.解方程 2t2-6t+3=0,可以使用求根公式,得到t=(6±√(36-4×2×3))/4,即t=3±√3/2.78.解方程 3x2-6x-12=0,可以使用因式分解法,将其拆分为 3(x-2)(x+2)=0,因此 x=2 或 x=-2.79.解方程 x2-4x+1=0,可以使用求根公式,得到x=(4±√(16-4×1×1))/2,即x=2±√3.80.解方程 3x2-2x-3=0,可以使用求根公式,得到x=(2±√(4+4×3×3))/6,即x=(1±√19)/3.81.解方程 2x2-5x+1=0,可以使用求根公式,得到x=(5±√(25+4×2×1))/4,即x=(5±√17)/4.82.解方程 2y2+8y-1=0,可以使用求根公式,得到 y=(-8±√(64+4×2))/4,即 y=-2±√3/2.83.解方程 x2-6x-18=0,可以使用因式分解法,将其拆分为 (x-9)(x+2)=0,因此 x=9 或 x=-2.84.解方程 x2-2x-1=0,可以使用求根公式,得到x=(2±√(4+4×1))/2,即x=1±√2.85.解方程 x2-4x-1=0,可以使用求根公式,得到x=(4±√(16+4))/2,即x=2±√5.86.解方程 2x2+3x+1=0,可以使用求根公式,得到 x=(-3±√(9-4×2×1))/4,即 x=(-3±√5)/4.87.解方程 2x2-6x-7=0,可以使用因式分解法,将其拆分为 (x-7/2)(2x+1)=0,因此 x=7/2 或 x=-1/2.88.删除89.解方程 4x2-4ax+a2-b2=0,可以使用因式分解法,将其拆分为 (2x-a-b)(2x-a+b)=0,因此 x=(a+b)/2 或 x=(a-b)/2.90.解方程 x2-4x-2=0,可以使用求根公式,得到x=(4±√(16+8))/2,即x=2±√6.91.将等式 x(x+4)=6x+12 化简为 x2-2x-12=0,然后使用因式分解法,将其拆分为 (x-4)(x+3)=0,因此 x=4 或 x=-3.92.解方程 2x2+7x-4=0,可以使用求根公式,得到 x=(-7±√(49+4×2×4))/4,即98.给定方程 m2x2﹣28=3mx(m≠0),求解 x 的值。
完整版)解一元二次方程练习题(配方法)
![完整版)解一元二次方程练习题(配方法)](https://img.taocdn.com/s3/m/1f585d05a22d7375a417866fb84ae45c3b35c2fc.png)
完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。
1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。
1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。
1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。
1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。
1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。
1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。
九年级数学解一元二次方程专项练习题(带答案)【40道】
![九年级数学解一元二次方程专项练习题(带答案)【40道】](https://img.taocdn.com/s3/m/c91bf3075b8102d276a20029bd64783e09127de0.png)
九年级数学解一元二次方程专项练习题(带答案)【40道】1、用配方法解下列方程:1) 12x + 25 = 2x + 4x + 22化简得:6x = -3,解得x = -1/22) x^2 + 4x = 10x + 22移项化简得:x^2 - 6x - 22 = 0使用配方法解得:x = 3,x = -43) x^2 - 6x - 11 = 0使用配方法解得:x = 3 + 2√3,x = 3 - 2√32、用配方法解下列方程:1) 6x^2 - 7x + 1 = 0使用配方法解得:x = 1/2,x = 1/33) 4x^2 - 3x - 52 = 0使用配方法解得:x = 4,x = -3/43、用公式法解下列方程:1) 2x^2 - 9x + 8 = 0使用公式法解得:x = 4/2,x = 1/23) 16x^2 + 8x - 3 = 0使用公式法解得:x = 1/4,x = -3/44、运用公式法解下列方程:1) 5x^2 + 2x - 1 = 0使用公式法解得:x = 1/5,x = -14) 5x^2 + 2x + 4 = 0使用公式法解得:无实数解2) 9x^2 + 6x + 1 = 0使用公式法解得:x = -1/3,x = -1/34) 2x^2 - 4x - 1 = 0使用公式法解得:x = 1 + √3/2,x = 1 - √3/22) x^2 + 6x + 9 = 7移项化简得:x^2 + 6x + 2 = 0使用公式法解得:x = -3 + √7,x = -3 - √7 3) 2x + 3 = 3x移项化XXX:x = 34) (x - 2)(3x - 5) = 15化简得:3x^2 - 11x + 20 = 0使用公式法解得:x = 5/3,x = 20/36、用分解因式法解下列方程:1) 9x^2 + 6x + 1 = 0分解因式得:(3x + 1)^2 = 0,解得x = -1/32) 3x(x - 1) = 2 - 2x移项化简得:3x^2 - 3x + 2 = 0无法分解因式,使用公式法解得:x = (3 ± √17)/6 3) 2x + 3 = 4(2x + 3)移项化简得:-6x = -9,解得x = 3/24) 2(x - 3) = x - 9移项化XXX:x = 37、解下列关于x的方程:1) x^2 + 2x - 2 = 0使用公式法解得:x = -1 ± √32) 3x^2 + 4x - 7 = 0使用公式法解得:x = (-2 ± √10)/33) (x + 3)(x - 1) = 5化简得:x^2 + 2x - 8 = 0使用公式法解得:x = -4,x = 24) (x - 2)^2 + 42x = 0移项化简得:x^2 - 2x - 4 = 0使用公式法解得:x = 1 ± √58、解下列方程:1) 2√(x - 1) = 4移项化简得:x - 1 = 4,解得x = 52) x^2 - 4x + 1 = 0使用公式法解得:x = 2 + √3,x = 2 - √3 3) 3x^2 + 10x + 5 = 0使用公式法解得:x = (-5 ± √5)/34) 3(x - 5)^2 = 2(5 - x)化简得:3x^2 - 34x + 75 = 0使用公式法解得:x = 5/3,x = 25/3 5) 4x - 45 = 31x移项化简得:x = -15/276) -3x + 22x - 24 = 0化简得:19x = 24,解得x = 24/197) (x + 8)(x + 1) = -12移项化简得:x^2 + 9x + 20 = 0使用公式法解得:x = -4,x = -58) (3x + 2)(x + 3) = x + 14移项化简得:3x^2 + 7x - 8 = 0使用公式法解得:x = -8/3,x = 1/31.解一元二次方程专项练题答案1) $x=-6\pm\sqrt{11}$2) $x_1=2-2\sqrt{3}。
解一元二次方程(直接开方法配方法)练习题100道
![解一元二次方程(直接开方法配方法)练习题100道](https://img.taocdn.com/s3/m/a67558960129bd64783e0912a216147917117e8a.png)
解一元二次方程(直接开方法配方法)练习题100道1.用适当的数填空:①、x2+6x+9=(x+3)2;②、x2-5x+4=(x-2)2;③、x2+2x+1=(x+1)2;④、x2-9x+81=(x-9)22.将一元二次方程x2-2x-4=0用配方法化成(x-1)2=5的形式为,所以方程的根为x=1±√5.3.若x2+6x+m2是一个完全平方式,则m的值是±3.4.把方程x2+3=4x配方,得(x-2)2=1.5.用配方法解方程x2+4x=10的根为x=-2±2√3.6.用配方法解下列方程:2)x2+8x-9=0,解为x=-4±√13;3)x2+12x-15=0,解为x=-6±√51;4)2x2+3x-1=0,解为x=1/2或x=-1.7.用直接开平方法解下列一元二次方程:1)4x2-1=0,解为x=±1/2;7)x2+4x-1=0,解为x=-2±√5.8.用配方法解下列一元二次方程:1)y-6y+9=0,解为y=3;2)3x2-2x-1=0,解为x=1/3或x=-1;4)2x2+3x-1=0,解为x=1/2或x=-1;5)3x2+2x-7=0,解为x=-1±√10;6)-4x2-8x+1=0,解为x=1/2或x=-1/4;7)x2-6x-6=0,解为x=3±√15.27.解方程x2-4x+3=0.28.解方程x2-6x-3=0.29.解方程2x2-8x+3=0.30.解方程3x2-4x+1=0.31.解方程x2-6x+1=0.32.解方程2x2-4x+1=0.33.解方程x2+5x-3=0.34.解方程x2+2x-4=0.35.解方程2x2-4x+1=0.37.化简方程5(x2+17)=6(x2+2x)。
38.解方程4x2-8x+1=0.39.解方程2x2+1=3x。
40.解方程x2+x-2=0.41.解方程x2-6x+1=0.42.解方程x2-8x+5=0.43.解方程x2+3x-4=0.44.解方程3x2+8x-3=0.45.解方程x2+8x=2.46.解方程x2+3x+1=0.47.解方程2x2-3x+1=0.48.解方程x2-4x-6=0.49.解方程x2-8x+1=0.50.解方程x2+4x+1=0.51.解方程x2-4x+1=0.52.解方程x2-6x-7=0.53.解方程x2-6x-5=0.54.解方程2x2+1=3x。
解一元二次方程练习题(配方法、公式法)
![解一元二次方程练习题(配方法、公式法)](https://img.taocdn.com/s3/m/a6c03a797fd5360cba1adb6f.png)
解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程练习题(公式法)一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2-4ac≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.2.方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则有____ ____ ,•若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.5.用公式法解方程4y 2=12y+3,得到6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0。