(完整版)解一元二次方程配方法练习题
《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+=2. 用适当的数(式)填空: 23x x -+(x =- 2); 2x px -+ =(x -2) 23223(x x x +-=+ 2)+ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A.3x =± B.3x = C.3x =- D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2B .-2±C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。
(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。
1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。
32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。
1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。
《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+= 2. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=; (3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A.3x =± B.3x =C.3x =- D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为()A.2±B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:(1)3x2-5x=2.(2)x2+8x=91x2-x-4=0(3)x2+12x-15=0 (4)411.用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。
《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+=2. 用适当的数(式)填空:23x x -+ ﻩ(x =- 2); 2x px -+ =(x - 2)23223(x x x +-=+ ﻩﻩ2)+ﻩﻩ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是ﻩﻩﻩ. 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A .3x =±ﻩﻩB .3x =ﻩﻩC .3x =-ﻩ D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x2-5x+ =(x- )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b)2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a)2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A.3 B.-3 C.±3 D.以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-17.把方程x+3=4x 配方,得( )A.(x-2)2=7 B.(x+2)2=21 C .(x -2)2=1 D .(x +2)2=2 8.用配方法解方程x 2+4x=10的根为( )A .2± B.-2 C.-2 D.29.不论x、y 为什么实数,代数式x 2+y2+2x-4y+7的值( )A.总不小于2B.总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x =2. (2)x2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=011.用配方法求解下列问题(1)求2x 2-7x +2的最小值 ;(2)求-3x 2+5x+1的最大值。
(完整版)一元二次方程求解(配方法求解)

一元二次方程求解(配方法求解)一.解答题(共30 小题)1 .解方程:X2- 6x- 4=0.2. 解方程:«+4x-仁0.3. 解方程:x2- 6x+5=0 (配方法)4. 解方程:x2- 2x=4.5. 用配方法解方程:2x2- 3x- 3=0.6. 解方程:x2+2x- 5=0.7. 用配方法解方程2x2- 4x- 3=0.8. 解方程:x2- 2x- 2=0.9. 用配方法解方程:x2- 2x- 4=0.10. 解方程:2x2- 4x+1=0.11. 2X2- 5x+2=0 (配方法)12.解方程:x2- 2x- 4=0.13.解方程:( 2x- 1 ) 2=x( 3x+2)- 7.14 .解一元二次方程:x2- 6x+3=0.15 .解方程:x2- 2x- 5=0.16. 有n 个方程:x2+2x- 8=0; x2+2X 2x- 8 X22=0;•••X+2nx-8n2=0.小静同学解第一个方程x2+2x- 8=0的步骤为:①x2+2x=8;②x2+2x+仁8+1;③(x+1)2=9;④x+仁±3;⑤x=1 ± 3;⑥X1=4, x2= - 2. ”(1)小静的解法是从步骤—开始出现错误的.(2)用配方法解第n个方程x2+2nx- 8n2=0.(用含有n的式子表示方程的根)17. 解方程:4/-6x- 4=0 (用配方法)18 .用配方法解方程:2x2+3x -仁0.19 .用配方法解方程:貳+x - 2=0.20.用配方法解方程:2X2+1=3X.21 .用配方法解方程:3x2+6x -仁0.22.用配方法解方程:2x2+2x-仁0.23 .解方程:x2- 6x+2=0 (用配方法).24.解下列方程:(1)«+6x+7=0 (用配方法解)26. 用配方法解方程:6x2-x- 12=0.2 «+2x- 1=0.25 .用配方法解方程:4x2- 3=4x.27. 用配方法解方程:2x2- 8x- 198=0.28. 用配方法解方程:6x2- x- 12=0.29. 用配方法解方程:2x2- 5x+2=0.30. 用配方法解方程:2x2- x- 1=0.一元二次方程求解(配方法求解)参考答案与试题解析一•解答题(共30小题)1. (2015?大连)解方程:x2- 6x- 4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2- 6x=4,配方得x2- 6x+9=4+9,即(x- 3)2=13,开方得x- 3=± I ';,x i=3+.;「.,X2=3-L.i 匚【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可. (2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成X+px+qrO,然后配方.2(2016?淄博)解方程:x2+4x-仁0.【分析】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解答】解:••• x2+4x-仁0•x2+4x=1•x2+4x+4=1+4••(x+2)2=5•x=- 2±!■• X1 = —2+. ~,x2= - 2-个仟【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1, 一次项的系数是2的倍数.3. (2016?金乡县一模)解方程:x2-6x+5=0 (配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2- 6x=- 5,等式两边同时加上一次项系数一半的平方32.得x2- 6x+32=- 5+32,即(x - 3) 2=4,二x=3± 2,•••原方程的解是:X1=5, x2=1 .【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项左边就是完全平方的系数是2的倍数. 33(2016?安徽)解方程:x2- 2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方, 式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方X2- 2x+1=4+1•( x- 1) 2=5•x=1± 口解题方法.5. (2016?天门模拟)用配方法解方程:2x 2- 3x - 3=0.【分析】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加 上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方 根的定义即可求解.【解答】解:2« - 3x - 3=0,:x-2 x 2 — 2 (r 好使方程的二次项的系数为1,一次项的系数是2的倍数.6. (2015?畐州模拟)解方程:x 2+2x - 5=0.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系 数化为1; (3)等式两边同时加上一次项系数一半的平方.【解答】解::《+2x - 5=0,••• X+2x=5,«+2x+1=5+1,•(x+1) 2=6,• x+1=± 「',• x=- 1 ± '-.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应• X 1=1+ 一 -, x 2= 1-「.9 =9 + 3 16 15 2,■= + 二 4 — 4 x 【点评】在实数运算中要注意运算顺序, 在解一元二次方程时要注意选择适宜的x 2-W33 4【点评】此题考查利用配方法解一元二次方程, 解得:x i = ,x 2= 用配方法解一元二次方程时,最2— 16用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7. (2015?岳池县模拟)用配方法解方程2X2- 4x- 3=0.【分析】借助完全平方公式,将原方程变形为工_ .-—,开方,即可解决问题.【解答】解::2x2 - 4x-3=0,【点评】该题主要考查了用配方法来解一元二次方程的问题;准确配方是解题的关键.8. (2015?厦门校级质检)解方程:x2-2x- 2=0.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数- 2的一半的平方.【解答】解:移项,得x2- 2x=2,配方,得x2- 2x+1= 2+1,即(x- 1)2=3,开方,得x- 1=±:.解得X1 = 1+J^,x2=1 - Vs.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可. (2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成X+px+qr。
配方法解一元二次方程基础练习30题含详细答案

即 ,
故选D.
10.B
【解析】
试题分析: , , .故选B.
考点:解一元二次方程-配方法.
11.C
【分析】
常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.
【详解】
解:∵ ,
∴ ,即 ,
故选:C.
【点睛】
本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.
【详解】
a=3,b=-2,c=-2,
b2-4ac=(-2)2-4×3×(-2)=28>0,
∴x= = ,
, .
【点睛】
本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.
19.(1) ;(2) 是方程的解.
【解析】
【详解】
A、由原方程,得 ,
等式的两边同时加上一次项系数2的一半的平方1,得 ;
故本选项正确;
B、由原方程,得 ,
等式的两边同时加上一次项系数−7的一半的平方,得, ,
故本选项正确;
C、由原方程,得 ,
等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;
故本选项错误;
D、由原方程,得3x2−4x=2,
12.用配方法解一元二次方程 ,配方正确的是().
A. B.
C. D.
13.用配方法解下列方程时,配方有错误的是()
A. 化为 B. 化为
C. 化为 D. 化为
14.用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是( )
A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40
(完整版)解一元二次方程配方法练习题

解一元二次方程练习题(配方法)步骤:(1)移项;(2)化二次项系数为1 ;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.1 •用适当的数填空:①X2+6X+__ = (x+ _) 2;② x2—5x+ = (x —_) 2;③X2+ X+ ___ = ( X+ _) 2;④ X2—9X+ = (X—_) 22 .将二次三项式2X2-3X-5进行配方,其结果为•3. 已知4x2-ax+1可变为(2x-b) 2的形式,贝V ab= _______ .4. 将一元二次方程X2-2X-4=0用配方法化成(x+a) 2=b的形式为_______ , ?所以方程的根为___________ .5. 若x2+6x+m2是一个完全平方式,则m的值是()A . 3B . -3 C.± 3 D .以上都不对6. 用配方法将二次三项式a2-4a+5变形,结果是( )A. (a-2) 2+1B. (a+2) 2-1C. (a+2) 2+1 D . ( a-2) 2-17. 把方程X+3=4X配方,得()A . ( X-2 ) 2=7B . ( X+2)2=21C. (X-2 ) 2=1 D . ( X+2)2=2&用配方法解方程X2+4X=10的根为()A. 2± \10B. -2 ±14C. -2+ 10D. 2- -109. 不论X、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2B.总不小于7C.可为任何实数 D .可能为负数10. 用配方法解下列方程:(1) 3X2-5X=2 . (2) X2+8X=9(5) 6X2-7X+仁0 (6) 4X2-3X=5211.用配方法求解下列问题(1)求2X2-7X+2的最小值;(2)求-3X2+5X+1的最大值。
(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1 .用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= ______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2C.D.9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7 C .可为任何实数 D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9 x2+12x-15=01x2-x-4=0 所以方程的根为?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
21 、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。
1 、.y2?6y?6?0 、3x2?2?4x 、x2?4x?964 、x2?4x?5?05 、2x2?3x?1?0 、3x2?2x?7?07 、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。
32y 、3y2?1?2y1 、x2?2x?8?0 、4y?1?4 、2x2?5x?1?0 、?4x2?8x??16、2x2?3x?2?08εθeεe×∂2×' Ze9 •乙U乙乙9乙X乙X ' 17C"乙乙乙说"、Le 0=9+2×ε'82OdLdXZ∂2×9' 920∂0C∂×2∂2×2 P o=2k×l7+×'£ 0乙乙陀乙q乙X陀乙乙X ' 乙况LL0∂2e×6∂2×ε ' L OaC×cZ× '00乙q乙X乙乙Xe ^IZCaCKCCZCKC^ZLOd2θeθe×∂2× '和乙q乙陀乙X£2乙乙q<iZx' PIoCQZCZac×Zc ' 2L 乙比X乙£乙乙乂X乙X17 '0∂θC∂×∂2×ε '6L9C∂×εLC∂2× ' 9L乙帥乙乙q乙X%乙乙X、CL兀乙比心乙说心' OL 0∂0C∂×Z∂2×、60“%"£ '0乙说乙比X* ' LOCCzC×c×ccZc×cP ccZc×ccZc×c ' OdOLd×Ze2× ' 陀0乙9〃乙乙X ε×9eεe×2 Zc9c×c×ccU×c×Z ' 比o SW~3r-≡±⅛IW≡⅛^宙、荘OCZC Oc×cZ× 9凸说乙17 ' P0∂8e×9∂2× ' OCZCZ ' X乙乙乙X ' Lo畐卑盪二卫一陋丄搦滚搦岳芒厘宙'H26 、5x2?8x??1 7、x2?2mx?3nx?3m2?mn?2n2?、0 ?22x30 、3x2?4x?1 、x2?4?5x3 、2x2?5x?4?0 、2x2?2x?30?06 、x2+4x-12=0 、x2?x?139 、3y2?1?2y 解一元二次方程配方法练习题1 .用适当的数填空:①、x2=2;③、x22;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= _______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,以方程的根为 ____________ .5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2D .9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7C .可为任何实数D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9x2+12x-15=0 1x2-x-4=0所?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
解一元二次方程练习题(配方法)
步骤:(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空:
①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2
+ x+ =(x+ )2
;④ x 2
-9x+ =(x - )2
2.将二次三项式2x 2-3x-5进行配方,其结果为_________.
3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.
4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b
的形式为_______,•所以方程的根为_________. 5.若
x 2+6x+m 2是一个完全平方式,则
m 的值是( )
A .3
B .-3
C .±3
D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2
8.用配方法解方程x 2+4x=10的根为( ) A .2
B .-2
C .
D .
9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2.
(2)x 2+8x=9
(3)x 2+12x-15=0 (4)4
1
x 2-x-4=0
(5)6x 2-7x+1=0 (6)4x 2-3x=52
11.用配方法求解下列问题
(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。
12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3
13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,
其中正确的是( )
A .x 2-8x+(-4)2=31
B .x 2-8x+(-4)2=1
C .x 2+8x+42=1
D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。
(1)你选的m 的值是 ;(2)解这个方程.
15.如果x 2-4x+y 2
,求(xy )z 的值
- 2 -
解一元二次方程练习题(公式法)
1、用公式法解下列方程.
(1)2x 2-4x-1=0 (2)5x+2=3x 2
(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0
(5)2 x 2+x -6=0; (6) 0422
=+-x x ;
(7)5x 2-4x -12=0; (8)4x 2+4x +10=1-8x.
(9)2220x x +-=; (10)2
3470x x +-=;
(11)2
2810y y +-=; (12)2
12308
x x -+
=
2、某数学兴趣小组对关于x 的方程(m+1)22
m x
++(m-2)
x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.
(2)若使方程为一元二次方程m 是否存在?若存在,请求出.你能解决这个问题吗?
3.用公式法解方程4x 2-12x=3,得到( ). A .
B .
C .
x=
32-± D .
x=32
± 4
x 2
=0的根是( ). A .x 1
x 2
B .x 1=6,x 2
C .x 1
x 2
D .x 1=x 2
5.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).
A .4
B .-2
C .4或-2
D .-4或2
6.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.
7.当x=______时,代数式x 2-8x+12的值是-4.
8.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.
9、用公式法解方程:3x (x -3) =2(x -1) (x +1).
10、一元二次方程的根的判别式
关于x 的一元二次方程)0(02
≠=++a c bx ax 的根的判
别式是: 11、性质 (1)当b 2-4ac >0时, ; (2)当b 2-4ac =0时, ; (3)当b 2-4ac <0时, 12、不解方程,判别方程05752
=+-x x 的根的情况。
13、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,求m 的取值范围。
.
用配方法解一元二次方程练习题答案:
1.①9,3 ②2.52,2.5 ③0.52,0.5 ④4.52,4.5
2.2(x-3
4
)2-
49
8
3.4 4.(x-1)2=5,1
5.C
6.A 7.•C 8.B 9.A
10.(1)方程两边同时除以3,得x2-5
3
x=
2
3
,
配方,得x2-5
3
x+(
5
6
)2=
2
3
+(
5
6
)2,
即(x-5
6
)2=
49
36
,x-
5
6
=±
7
6
,x=
5
6
±
7
6
.
所以x1=5
6
+
7
6
=2,x2=
5
6
-
7
6
=-
1
3
.
所以x1=2,x2=-1
3
.
(2)x1=1,x2=-9
(3)x1
x2
11.(1)∵2x2-7x+2=2(x2-7
2
x)+2=2(x-
7
4
)2-
33
8
≥-
33
8
,
∴最小值为-33
8
,
(2)-3x2+5x+1=-3(x-5
6
)2+
37
12
≤
37
12
,•
∴最大值为37 12
.
另外:12.B 13.B 二、
1.答案不唯一
2.∵(x-2)2+(y+3)2
,
∴x=2,y=-3,z=-2,(xy)z=(-6)-2=1
36
- 3 -。