初中数学 配方法解一元二次方程

合集下载

初中九年级数学一元二次方程的解法配方法教案

初中九年级数学一元二次方程的解法配方法教案

第四课:一元二次方程的解法(3)教学目的:掌握解一元二次方程的配方法重点、难点:用配方法解一元二次方程教学过程:一、复习;填空:(1)())222+=++a ab a ((2)x 2+6x +( )=(x + )2;(3)x 2-8x +( )=(x - )2;(4)x 2+23x +( )=(x + )2; (5)4x 2-6x +( )=4(x - )2=(2x - )2.二、新课:1、复习:解方程:612=+)(x解:2、思考:解方程:(1)6122=++x x (2)522=+x x3、把一元二次方程化成( )2=a 的形式,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.4、用配方法解下列方程:(1)x 2-6x -7=0; (2)x 2+3x +1=0.解:移项: 解:配方 x 2-2·x ·3+32=即 ( )2==原方程的解是 x 1= ,x 2=5、巩固练习:(1)x 2-4x +3=0. (2) x 2+8x -2=0(3)x 2-5 x -6=0. (4)01242=-+x x5、思 考:如何用配方法解下列方程?(1)4x 2-12x -1=0; (2) 3x 2+2x -3=05、用配方法解一元二次方程的一般步骤:(1) 一化:先将常数项移到方程右边,后将二次项系数化为1;(2) 二配:方程左、右两边都加上一次项系数一半的平方;(3) 三成方:将方程左边化为一个含有未知数的完全平方式;(4) 四开:直接开平方;(5) 五写:写出方程的解。

6、巩固练习:用配方法解下列方程(1)03722=+-x x (3)x x 6132=-(4)22x =x 73- (5)1422=+x x三、课后练习:1、填空1)224)(+=++x x x 2)223)(-=+-x x x 3)22425)(-=++y y y 4)2232)(-=+-x x x 2、方程0582=+-x x 左边配成一个完全平方式后,所得的方程是()A )1162=-)(xB )1142=-)(xC )2142=-)(xD )以上的答案都不对3、用配方法解方程01582=+-x x 的过程中,配方正确的是( )A )=-+-2248)(x x 31B )=-+-2248)(x x 1C )142=+)(xD )1142-=-)(x4、如果二次三项式226m x x +-是一个完全平方式,那么m 的值是5、用配方法解下列方程(1)024102=+-x x(2)01582=+-x x(3)0252=++y y(4)0322=++-x x(5)02522=+-x x(6)041892=--y y(7)12232=+y y(8)0231322=-+y y(9)162=+x x (10)2532=+x xB 组:1、若的值。

初中数学计算配方法解一元二次方程专项练习111题(有答案22页

初中数学计算配方法解一元二次方程专项练习111题(有答案22页

配方法解一元二次方程专项练习1.x2﹣2x=4.2.3x2=5x+2 3.2x2﹣4x+1=0.4. x2+2x=2;5.x2﹣2x﹣4=0.6..7.x2+4x﹣1=0.8.2x2+x﹣30=09.x2﹣28x﹣4=010.x2﹣8x﹣1=0.11.x2+2x=5.12.2x2+6=7x13.2x2+1=8x14.3x2﹣2x﹣6=015..16.x2+2x﹣15=0.17.x2+6x﹣16=018.2x2﹣5x﹣3=019.x2﹣4x+2=0 20.(x+3)(x﹣1)=12 21.2x2﹣12x+6=0 22.2x2﹣3x﹣2=0.23.x(x+2)﹣5=0.24.x2﹣6x+2=0 25.3x2﹣6x﹣1=026.2x2+4x﹣1=027.x2﹣4x+3=0.28.x2﹣6x﹣3=029.2x2﹣8x+3=0.30.3x2﹣4x+1=0;31.x2﹣6x+1=0.32.2x2﹣4x+1=033.x2+5x﹣3=0.34.x2+2x﹣4=035.2x2﹣4x+1=0.36..37.5(x2+17)=6(x2+2x)38.4x2﹣8x+1=039.2x2+1=3x.40.x2+x﹣2=0.41.x2﹣6x+1=042.x2﹣8x+5=0 43.x2+3x﹣4=0.44.3x2+8x﹣3=045.x2+8x=2.46.x2+3x+1=047. 2x2﹣3x+1=048.x2﹣4x﹣6=049. x2﹣8x+1=050.x2+4x+1=051.x2﹣4x+1=052.x2﹣6x﹣7=054. x2﹣6x﹣5=0.55.2x2+1=3x56. x2+3x+1=0 57.x2﹣8x+1=0.58. x2﹣8x﹣16=0 59..60.6x2﹣7x﹣3=0 61. x2﹣6x=﹣8;62. 2x2﹣5x+1=0.63.3x2+8x﹣3=064.3x2﹣4x+1=065.2x2+3x﹣1=0.66.2x2﹣5x﹣1=067.4x2﹣8x﹣1=068.3x2+4x﹣7=069.3移项得3x2﹣10x=﹣6.70.3x2﹣10x﹣5=071.2x2+3=7x72.x2+2x﹣224=073.x2﹣5x﹣14=074..75.x 2+8x ﹣20=076.x 2﹣x+.77.2t 2﹣6t+3=0.78.3x 2﹣6x ﹣12=0.79.x 2﹣4x+1=0 80. 3x 2﹣3=2x .81.2x 2﹣5x+1=0.82.2y 2+8y ﹣1=083.x 2﹣6x ﹣18=084.x 2﹣2x ﹣1=0.85. x 2﹣4x ﹣1=0;86. 2x 2+3x+1=0.87.2x 2﹣6x ﹣7=088.ax 2+bx+c=0(a ≠0).89.4x 2﹣4ax+a 2﹣b 2=0.90. x 2﹣4x ﹣2=091. x (x+4)=6x+1292. 2x2+7x﹣4=093. 3(x﹣1)(x+2)=x+494. 3x2﹣6x=895. 2x2﹣x﹣30=0,96. x2+2=2x,97.x2+px+q=O(p2﹣4q≥O),98. m2x2﹣28=3mx(m≠O),99. x2﹣6x+7=0;100. 2x2+6=7x;101. ﹣5x2+10x+15=0.102. x2+6x+8=0;103. x2=6x+16;104.2x2+3=7x;105. (2x﹣1)(x+3)=4.106. x2+4x=﹣3;107. 2x2+x=0.108.x2+4x﹣3=0;110. x2﹣x+=0;109.x2+3x﹣2=0;111. x2+2x﹣4=0.配方法解一元二次方程111题参考答案:1.x2﹣2x=4.配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.2. 3x2=5x+2x2﹣x+=+=x=2,x=﹣3.2x2﹣4x+1=0.由原方程,得2(x﹣1)2=1,∴x=1±,∴原方程的根是:x1=1+,x2=1﹣.4.x2+2x=2;原式可化为x2+2x﹣2=0即x2+2x+1﹣3=0(x+1)2=3x=1.5.x2﹣2x﹣4=0.由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+x2=1﹣.6..,移项得:x2﹣2x=,配方得:x2﹣2x+1=+1,(x﹣1)2=,x﹣1=,解得x1=1+,x2=1﹣.7.x2+4x﹣1=0.解:移项得:x2+4x=1,配方得:x2+4x+4=1+4,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.8.2x2+x﹣30=0原方程变形为x2+x=15∴x2+x+()2=15+()2.∴(x+)2=,∴x1=﹣3,x2=.9.x2﹣28x﹣4=0原方程可化为x2﹣28x+142=4+142(x﹣14)2=200x﹣14=∴x1=14+,x2=14﹣.10.原方程移项得,x2﹣8x=1,⇒x2﹣8x+16=1+16,(x﹣4)2=17,⇒解得11.x2+2x=5.x2+2x+1=5+1,即(x+1)2=6,所以x+1=±,解得:x1=﹣1+,x2=﹣1﹣.12.2x2+6=7x移项得:2x2﹣7x=﹣6,二次项的系数化为1得:,解得:x1=2,.13.2x2+1=8x∵2x2+1=8x,∴2x2﹣8x=﹣1,∴x2﹣4x=﹣,即(x﹣2)2=,∴x﹣2=,∴x1=2+,x2=2﹣14.3x2﹣2x﹣6=0系数化1得,x2﹣x﹣2=0方程两边加上一次项系数一半的平方即得:∴(x ﹣)2=∴x1=,x2=15..配方得:x2﹣2x+3=12,即(x ﹣)2=12,开方得:x ﹣=±2,则x1=3,x2=﹣.16.x2+2x﹣15=0.x2+2x=15,x2+2x+1=15+1.(x+1)2=42.x+1=±4.∴x1=3,x2=﹣5.17.(1)x2+6x﹣16=0 由原方程,得x2+6x=16,等式的两边同时加上一次项系数6的一半的平方,得x2+6x+9=25,即(x+3)2=25,直接开平方,得x+3=±5,∴x1=2,x2=﹣8;18.2x2﹣5x﹣3=0(用配方法)∴∴;19. x2﹣4x+2=0x2﹣4x+4=﹣2+4(x﹣2)2=2,,∴;20.(x+3)(x﹣1)=12(用配方法)将原方程整理,得x2+2x=15两边都加上12,得x2+2x+12=15+12即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4∴x1=3,x2=﹣521.2x2﹣12x+6=0 (配方法).把方程2x2﹣12x+6=0的常数项移到等号的右边,得到2x2﹣12x=﹣6,把二次项的系数化为1得:x2﹣6x=﹣3,程两边同时加上一次项系数一半的平方,得到x2﹣6x+9=﹣3+9即(x﹣3)2=6,∴x﹣3=±,∴x=3±,∴x1=3+,x2=3﹣.22.2x2﹣3x﹣2=0.移项得:2x2﹣3x=2化二次项系数为1,得:x2﹣x=1,配方得:x2﹣x+=1+,即=,∴x ﹣=或x ﹣=﹣,∴x1=2,x2=﹣.23.x(x+2)﹣5=0.x(x+2)﹣5=0,去括号得:x2+2x﹣5=0,移项得:x2+2x=5,左右两边加上1,变形得:(x+1)2=6,开方得:x+1=±,即x=﹣1±,∴x1=﹣1+,x2=﹣1﹣24.x2﹣6x+2=0x2﹣6x+2=0移项,得x2﹣6x=﹣2,即x2﹣6x+9=﹣2+9,∴(x﹣3)2=7,解得x﹣3=±,即x=3±.∴x1=3+,x2=3﹣.25.把方程x2﹣2x ﹣=0的常数项移到等号的右边,得到x2﹣2x=方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=+1配方得(x﹣1)2=开方得x﹣1=移项得x=+126.2x2+4x﹣1=0原方程变形为2x2+4x=1即x2+2x=∴x2+2x+1=1+即(x+1)2=∴∴,27.x2﹣4x+3=0.∵x2﹣4x+3=0∴x2﹣4x=﹣3∴x2﹣4x+4=﹣3+4∴(x﹣2)2=1∴x=2±1∴x1=3,x2=128.x2﹣6x﹣3=0x2﹣6x=3,(x﹣3)2=12,x﹣3=.∴x1=3+,x2=3﹣29.2x2﹣8x+3=0.原方程变形为∴∴∴x﹣2=.∴x1=2+,x2=2﹣.30.3x2﹣4x+1=0;3(x2﹣x)+1=0(x ﹣)2=∴x ﹣=±∴x1=1,x2=31.x2﹣6x+1=0.x2﹣6x=﹣1.x2﹣6x+9=﹣1+9,(x﹣3)2=8,.,32.2x2﹣4x+1=0原方程化为配方得即开方得∴,33.x2+5x﹣3=0.由原方程移项,得x2+5x=3,等式两边同时加上一次项系数一半的平方,得,∴∴解得,∴,.34.x2+2x﹣4=0移项得x2+2x=4,配方得x2+2x+1=4+1,即(x+1)2=5,开方得x+1=±,∴x1=,x2=﹣35.2x2﹣4x+1=0.由原方程,得x2﹣2x=﹣,等式的两边同时加上一次项系数一半的平方,得x2﹣2x+1=,配方,得(x﹣1)2=,直接开平方,得x﹣1=±,x1=1+,x2=1﹣.36..∵x2﹣x+=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=0解得x1=x2=.37.5(x2+17)=6(x2+2x)5(x2+17)=6(x2+2x),整理得:5x2+85=6x2+12x,x2+12x﹣85=0,x2+12x=85,x2+12x+36=85+36,(x+6)2=121,x+6=±11,x1=5,x2=﹣1738.4x2﹣8x+1=0方程4x2﹣8x+1=0同除以4,得x2﹣2x+=0,把方程4x2﹣8x+1=0的常数项移到等于号的右边,得x2﹣2x=﹣,方程两边同时加上一次项一半的平方,得到,x2﹣2x+1=,∴x﹣1=±,解得x1=,x2=.39.2x2+1=3x.由原方程,移项得2x2﹣3x=﹣1,化二次项系数为1,得x2﹣x=﹣,等式的两边同时加上一次项系数一半的平方,得x2﹣x+=﹣+,配方,得(x ﹣)2=,开平方,得x ﹣=±,解得,x1=1,x2=.40.x2+x﹣2=0.配方,得x2+x ﹣=2+,即=,所以x+=或x+=﹣.解得 x1=1,x2=﹣2.41.x2﹣6x+1=0移项,得x2﹣6x=﹣1,配方,得x2﹣6x+9=﹣1+9,即(x﹣3)2=8,解得x﹣3=±2,∴x1=3+2,x2=3﹣2.42.x2﹣8x+5=0原方程可变为,x2﹣8x=﹣5,方程两边同时加上一次项系数一半的平方得,到x2﹣8x+16=11,配方得,(x﹣4)2=11,直接开平方得,x﹣4=±,解得x=4+或4﹣.43.x2+3x﹣4=0.x2+3x﹣4=0x2+3x=4x2+3x+=4+=∴x+=±所以x1=1,x2=﹣4.44.3x2+8x﹣3=0∵3x2+8x﹣3=0,∴3x2+8x=3,∴x2+x=1,∴x2+x+=1+,∴(x+)2=,⇒x=,解得x1=,x2=﹣345.移项,得x2+8x=2.两边同加上42,得x2+8x+16=2+16,即(x+4)2=18.利用开平方法,得x+4=或x+4=﹣.解得x=﹣4+或x=﹣4﹣3.所以,原方程的根是x1=﹣4+,x2=﹣4﹣.46.x2+3x+1=0∵x2+3x+1=0∴x2+3x=﹣1∴x2+3x+=﹣1+∴(x+)2=∴x=∴x1=,x2=.47. 2x2﹣3x+1=0∵2x2﹣3x+1=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=∴x=∴x1=,x2=48.x2﹣4x﹣6=0x2﹣4x﹣6=0x2﹣4x=6x2﹣4x+4=4+6(x﹣2)2=10x﹣2=±∴49. x2﹣8x+1=0∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得50.x2+4x+1=0移项得,x2+4x=﹣1,配方得,x2+4x+22=﹣1+4,(x+2)2=3,,解得,51.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴x2﹣4x+4=4﹣1,⇒(x﹣2)2=3,⇒,∴,解得,.52.x2﹣6x﹣7=0x2﹣6x+9=7+9(x﹣3)2=16开方得x﹣3=±4,∴x1=7,x2=﹣1 53..由原方程,得x2﹣2x=3,等上的两边同时乘以2,得x2﹣4x=6,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=10,配方得(x﹣2)2=10.∴,∴,54. x2﹣6x﹣5=0.移项得x2﹣6x=5,方程两边都加上9得 x2﹣6x+9=5+9,即(x﹣3)2=14,则x﹣3=±,所以x1=3+,x2=3﹣55.2x2+1=3x移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2,即(x ﹣)2=,开方,得x ﹣=±,∴x1=1,x2=.56. x2+3x+1=0移项,得x2+3x=﹣1,配方得x2+3x+=﹣1+,即(x+)2=,开方,得x+=±,∴x1=﹣+,x2=﹣﹣57.x2﹣8x+1=0.配方得,(x﹣4)2=15,开方得,x﹣4=±,x1=4+,x2=4﹣58. x2﹣8x﹣16=0(x﹣4)2﹣16﹣16=0,(x﹣4)2=32,即或,解得:,.59..移项得:x2﹣x=﹣3,配方得:x2﹣x+()2=﹣3+()2,即(x ﹣)2=,开方得:x ﹣=或x ﹣=﹣,解得:x1=2,x2=.60.6x2﹣7x﹣3=0解:6x2﹣7x﹣3=0,b2﹣4ac=(﹣7)2﹣4×6×(﹣3)=121,∴x=,∴x1=,x2=﹣.61. x2﹣6x=﹣8;配方得x2﹣6x+9=﹣8+9,即(x﹣3)2=1,开方得x﹣3=±1,∴x1=4,x2=262. 2x2﹣5x+1=0.移项得2x2﹣5x=﹣1,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=63.3x2+8x﹣3=0∵3x2+8x﹣3=0∴3x2+8x=3∴x2+x=1∴x2+x+=1+∴(x+)2=∴x=∴x1=,x2=﹣3.64.3x2﹣4x+1=0x2﹣x=﹣,x2﹣x+=﹣,即(x ﹣)2=,x ﹣=±;解得:x1=1,.65.2x2+3x﹣1=0.x2+(1分)x2+(3分)(4分)x+(6分)x1=66.2x2﹣5x﹣1=0(限用配方法);原方程化为2x2﹣5x=1,x2﹣x=,x2﹣x+()2=+()2,(x ﹣)2=,即x ﹣=±,x1=+,x2=﹣67.4x2﹣8x﹣1=0移项得:4x2﹣8x=1,二次项系数化1:x2﹣2x=,x2﹣2x+1=+1,(x﹣1)2=,x﹣1=±,x1=1+,x2=1﹣.68.3x2+4x﹣7=0移项,得3x2+4x=7,把二次项的系数化为1,得x2+x=,等式两边同时加上一次项系数一半的平方,得x2+x+=,∴=,∴x=±,∴x1=1,x2=﹣.69.3移项得3x2﹣10x=﹣6.二次项系数化为1,得x2﹣x=﹣2;配方得x2﹣x+(﹣)2=﹣2+,即(x ﹣)2=,开方得:x ﹣=±,∴x1=,x2=x2﹣10x+6=070.3x2﹣10x﹣5=0∵3x2﹣10x﹣5=0,∴3x2﹣10x=5,∴x2﹣x=,∴x2﹣x+=+,∴(x ﹣)2=,∴x=,∴x1=,x2=71.2x2+3=7x移项,得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.72.x2+2x﹣224=0移项,得x2+2x=224,在方程两边分别加上1,得x2+2x+1=225,配方,得(x+1)2=225,∴x+1=±15,∴x1=14,x2=﹣16;73.x2﹣5x﹣14=0x2﹣5x﹣14=0,x2﹣5x=14,x2﹣5x+=14+,(x ﹣)2=,x ﹣=±,∴x1=7,x2=﹣2.74..把二次项系数化为1,得x2﹣x ﹣=0,将常数项﹣移项,得x2﹣x=,两边同时加上一次项系数﹣的一半的平方,得x2﹣x+=+,配方得,(x ﹣)2=,∴x ﹣=∴x1=1,x2=﹣.75.x2+8x﹣20=0∵x2+8x﹣20=0∴x2+x=20∴x2+x+=20+∴(x+)2=∴x+=±,∴x=﹣,即x1=4,x2=﹣5.76.x2﹣x+.配方得(x ﹣)2=0,解得x1=x2=.77.2t2﹣6t+3=0.移项、系数化为1得,t2﹣3t=﹣配方得t2﹣3t+=﹣,即(t ﹣)2=,开方得t ﹣=±,∴x1=,x2=78.3x2﹣6x﹣12=0.3x2﹣6x﹣12=0,移项,得3x2﹣6x=12,把二次项的系数化为1,得x2﹣2x=4,等式两边同时加上一次项系数﹣2一半的平方1,得x2﹣2x+1=5,∴(x﹣1)2=5,∴79.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴(x﹣2)2=﹣1+4,∴(x﹣2)2=3,∴x﹣2=±,∴x1=2+;x2=2﹣;80. 3x2﹣3=2x.移项,得3x2﹣2x=3,二次项系数化为1,得x2﹣x=1,配方,得(x ﹣)2=1+,x ﹣=±,解得x1=;x2=81.2x2﹣5x+1=0.移项,得2x2﹣5x=﹣1,化二次项系数为1,得x2﹣x=﹣,方程的两边同时加上,得(x ﹣)2=,直接开平方,得x ﹣=±,∴x1=,x2=82.2y2+8y﹣1=0方程两边同时除以2得:y2+4y ﹣=0,移项得:y2+4y=,左右两边加上4,变形得:(y+2)2=,开方得:y+2=±,∴y1=﹣2+,y2=﹣2﹣.83.x2﹣6x﹣18=0 由原方程移项,得x2﹣6x=18,方程两边同时加上一次项系数一半的平方,得x2﹣6x+9=27,配方,得(x﹣3)2=27,开方,得x﹣3=±3,解得,x1=3+3,x2=3﹣384.x2﹣2x﹣1=0.由原方程,得x2﹣2x=1,等式的两边同时加上一次项系数﹣2的一半的平方,得x2﹣2x+1=2,即(x﹣1)2=2,直接开平方,得x﹣1=±,∴x1=1+,x2=1﹣.85. x2﹣4x﹣1=0;移项,得x2﹣4x=1,等式两边同时加上一次项系数一半的平方4,得x2﹣4x+4=1+4,∴(x﹣2)2=5(1分)∴x﹣2=±(1分)∴x=2±,解得,x1=2+,x2=2﹣86. 2x2+3x+1=0.移项,得2x2+3x=﹣1,把二次项的系数化为1,得x2+x=﹣,等式两边同时加上一次项系数一半的平方,得x2+x+=﹣+∴(x+)2=(1分)∴x+=±(1分)∴x=﹣±解得,x1=﹣,x2=﹣187.2x2﹣6x﹣7=0x2﹣3x ﹣=0,x2﹣3x=,x2﹣3x+=,=,x ﹣=±,x=±,∴x1=,x2=.88.ax2+bx+c=0(a≠0).∵a≠0,∴两边同时除以a得:x2+x+=0,x2+x=﹣,x2+x+=﹣,=,∵a≠0,∴4a2>0,当b2﹣4ac≥0时,两边直接开平方有:x+=±,x=﹣±,∴x1=,x2=89.4x2﹣4ax+a2﹣b2=0.原式可化为:x2﹣ax+=0,整理得,x2﹣ax+()2﹣()2=﹣即:(x ﹣)2=,解得x1=或x2=.90. x2﹣4x﹣2=0,配方,得x2﹣4x+4﹣4﹣2=0,则x2﹣4x+4=6,所以(x﹣2)2=6,即x﹣2=±.所以x1=+2,x2=﹣+2.91. 原方程变形得x2﹣2x=12,配方得x2﹣2x+()2﹣()2=12,即(x﹣1)2=13,所以x﹣1=±.x1=1+,x2=1﹣.(运用配方法解形如x2+bx+c=0的方程的规律是把原方程化为一般式即为x2+bx+c=0形式,再配方得x2+bx+()2﹣()2+c=0,(x+)2=,再两边开平方,得其解.)92. 2x2+7x﹣4=0,两边除以2,得x2+x﹣2=0,配方,得x2+x+()2=2+()2,(x+)2=,则x+=±.所以x1=,x2=﹣4.93. 原方程变形为3x2+2x﹣10=0.两边除以3得x2+x ﹣=0,配方得x2+x+()2=+.即(x+)2=,则x+=±.所以x1=﹣,x2=.94. 方程两边除以3得x2﹣2x=.配方得x2﹣2x+1=+1.⇒(x﹣1)2=.所以x﹣1=±,解得x1=+1,x2=1﹣95. 2x2﹣x﹣30=0,2x2﹣x=30,x2﹣x=15,x2﹣x+=15,(x ﹣)2=;x ﹣=±,x1==3,x2=﹣=﹣;96. x2+2=2x,x2﹣2x=﹣2,x2﹣2x+3=﹣2+3;(x ﹣)2=1,x ﹣=±1,x1=1+,x2=﹣1+;97.x2+px+q=O(p2﹣4q≥O),x2+px=﹣q,x2+px+=﹣q+,(x+)2=,∵p2﹣4q≥O,∴x+=±,∴x1=,x2=;98. m2x2﹣28=3mx(m≠O),(mx)2﹣3mx﹣28=0,(mx﹣7)(mx+4)=0,mx=7或mx=﹣4,∵m≠0,∴x1=,x2=.99. x2﹣6x+7=0;移项得x2﹣6x=﹣7,配方得x2﹣6x+9=﹣7+9,即(x﹣3)2=2,开方得x﹣3=±,∴x1=3+,x2=3﹣.100. 2x2+6=7x;移项得2x2﹣7x=﹣6,二次项系数化为1,得x2﹣x=﹣3.配方,得x2﹣x+()2=﹣3+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=2,x2=.101. ﹣5x2+10x+15=0.移项得﹣5x2+10x=﹣15.二次项系数化为1,得x2﹣2x=3;配方得x2﹣2x+1=3+1,即(x﹣1)2=4,开方得:x﹣1=±2,∴x1=3,x2=﹣1.102. 移项得x2+6x=﹣8,配方得x2+6x+9=﹣8+9,即(x+3)2=1,开方得x+3=±1,∴x1=﹣2,x2=﹣4.103. 移项得x2﹣6x=16,配方得x2﹣6x+9=16+9,即(x﹣3)2=25,开方得x﹣3=±5,∴x1=8,x2=﹣2.104. 移项得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.105. 整理得2x2+5x=7.二次项系数化为1,得x2+x=;配方得x2+x+()2=+()2,即(x+)2=,开方得:x+=±,∴x1=1,x2=﹣.106. x2+4x=﹣3;方程化为:x2+4x+4=﹣3+4,(x+2)2=l,x+2=±1,x=﹣2±1,∴x1=﹣l,x2=﹣3;107. 2x2+x=0.方程化为:x2+x=0,x2+x+=,=,x+=±,x=﹣±,∴x1=0,x2=﹣.108. ∵x2+4x﹣3=0∴x2+4x=3∴x2+4x+4=3+4∴(x+2)2=7∴x1=﹣2,x2=﹣﹣2.109. 移项得x2+3x=2,配方得x2+3x+=2+,即(x+)2=,开方得x+=±,∴x1=,x2=.110. 移项得x2﹣x=﹣,配方得x2﹣x+=﹣+,即(x﹣)2=,开方得x﹣=±,∴x1=,x2=.111. 移项得,x2+2x=4配方得,x2+2x+2=4+2,即(x+)2=6,开方得x+=,∴x1=,x2=﹣.。

【观课记录】配方法解一元二次方方程_数学_初中_宫冬果

【观课记录】配方法解一元二次方方程_数学_初中_宫冬果

《配方法-解一元二次方程》观课记录授课人:宫冬果听课人:王加廷课题: 一元二次方程1、教学导入联系生活实际,为学生创设问题情境,激发了学生的求知欲。

2、教学中不但注重基础知识和基本技能的训练,而且较好地关注过程方法和情感的体验。

教学中采用类比思想,让学生亲身经历一元二次方程组的探究过程,使结论和过程有机的结合在一起,知识和能力得到和谐发展。

授课人:宫冬果听课人:刘晓华课题: 一元二次方程宫老师的这节课思路清晰,环节紧凑,重难点突出,设计合理,引导得也很到位。

充分体现了学生的主体和教师的主导作用。

是一堂值得学习的教改示范课。

主要表现在以下几方面:1、采取多种教学方式,帮助学生掌握学习方法。

能够创造性的运用教材,以问题为中心,以学生自主、合作、探究为主要教学方式把学习的主动权交给学生,让学生在自学中进行独立思考,鼓励学生发表自己的意见,与同伴交流,并充分给足学生思考、交流、合作的时间和空间。

2、关注学生的思维发展过程,注重数学思想方法的渗透,善于营造民主、宽松、和谐的课堂气氛,面向全体学生因材施教,实施分层教学。

让学生畅所欲言学习数学知识、体验探究知识,感受成功的喜悦,个性得到发展。

3、教态自然,用普通话教学,语言精练并带有一定鼓动性,充分调动学生的情绪。

讲解清楚,精讲多练,充分体现以学为主,先学后教,以练为主,以导为辅的教学原则。

注重教学过程评价,对学生的评价中肯。

需改进几点:1、在课堂中安排一定时间留给学生自己看书和思考。

2、上课要“留白”,引导学生去发现问题、质疑提岀有价值问题,并展示争论。

让学生带着问题进课堂,带着更多问题出课堂。

授课人:宫冬果听课人:刘云课题: 一元二次方程宫老师的这节课思路清晰,环节紧凑,重难点突出,设计到位, 1、教学目标明确、具体,问题设计层次性强,符合学,以学定教;现教学的有效性;2、老师课堂激情高,师生关系融洽,教学环节紧凑,课堂效果好3、采取多种教学方式,帮助学生掌握学习方法;以问题为中心,以学生自主、合作、探究为主要教学方法.授课人:宫冬果听课人:杨月银课题: 一元二次方程教师语言表述能力好,课堂讲解层次清晰,注重启发、拓展,教师的基本功扎实,讲解中注重知识的记忆、整理,结合习题在授课中及时巩固,并做到精练精讲。

初中数学 如何求解一元二次方程的分数解

初中数学  如何求解一元二次方程的分数解

初中数学如何求解一元二次方程的分数解求解一元二次方程的分数解可以通过配方法、求根公式或图像法等方法来实现。

下面将详细介绍这些方法的步骤。

方法一:配方法配方法是一种通过将方程转化为完全平方的形式来求解一元二次方程的方法。

它的步骤如下:1. 将方程表示成标准形式:ax² + bx + c = 0,其中a,b和c是已知的实数常数,且a ≠ 0。

2. 如果方程的系数a不为1,可以通过除以a的方式,将方程转化为首项系数为1的形式。

3. 计算配方项的系数:将方程中的b项除以2,得到b/2。

4. 将方程两边加上(b/2)²,即将方程转化为完全平方的形式。

5. 将完全平方形式的方程进行因式分解。

6. 使用零乘法,将方程拆分为两个线性因式。

7. 解这两个方程,得到方程的解。

举个例子:考虑方程2x² + 3x - 1 = 0。

1. 将方程表示成标准形式,得到2x² + 3x - 1 = 0。

2. 方程的系数a为2,不为1,我们可以通过除以2的方式,将方程转化为首项系数为1的形式,得到x² + (3/2)x - 1/2 = 0。

3. 配方项的系数为3/2除以2,得到3/4。

4. 将方程两边加上(3/4)²,得到x² + (3/2)x + (9/16) - 1/2 - (9/16) = 0。

即得到(x + 3/4)² - 1/2 - 9/16 = 0。

5. 整理得到(x + 3/4)² - 25/16 = 0。

6. 将方程进行因式分解,得到[(x + 3/4) + √(25/16)][(x + 3/4) - √(25/16)] = 0。

简化得到[(x + 3/4) + 5/4][(x + 3/4) - 5/4] = 0。

7. 使用零乘法,得到(x + 8/4)(x - 2/4) = 0。

进一步简化得到(x + 2)(x - 1/2) = 0。

初中数学教学课例《用配方法求解一元二次方程》课程思政核心素养教学设计及总结反思

初中数学教学课例《用配方法求解一元二次方程》课程思政核心素养教学设计及总结反思

要性和作用,基于学生的学习心理规律,在学习了估算
法求解一元二次方程的基础上,学生自然会产生用简单
方法求其解的欲望;同时在以前的数学学习中学生已经
经历了很多合作学习的过程,具有了一定的合作学习的
经验,具备了一定的合作与交流的能力。
活动目的:利用实际问题,让学生初步体会开方法
在解一元二次方程中的应用,为后面学习配方法作好铺
两边都加上(一次项系数 8 的一半的平方),得
x2+8x+42=9+42.
(x+4)2=25
开平方,得 x+4=±5,
即 x+4=5,或 x+4=-5.
所以 x1=1,x2=-9.
(2)解决梯子底部滑动问题:(仿照例 1,学生
独立解决)
解:移项得 x2+12x=15,
两边同时加上 62 得,x2+12x+62=15+36,即
可以根据学生的实际情况进行适当调整。学生在初一、
初二已经学过完全平方公式和如何对一个正数进行开
方运算,而且普遍掌握较好,所以本节课从这两个方面 入手,利用几个简单的实际问题逐步引入配方法。教学 中将难点放在探索如何配方上,重点放在配方法的应用 上。本节课老师安排了三个例题,通过前两个例题规范 用配方法解一元二次方程的过程,帮助学生充分掌握用 配方法解一元二次方程的技巧,同时本节课创造性地使 用教材,把配方法(3)中的一个是设计方案问题改编 成一个实际应用问题,让学生体会到了方程在实际问题 中的应用,感受到了数学的实际价值。培养了学生分析 问题,解决问题的能力。
一个正数的两个平方根,并且也学习了完全平方公式。
在本章前面几节课中,又学习了一元二次方程的概念,
并经历了用估算法求一元二次方程的根的过程,初步理

初中数学九年级上册第二章 一元二次方程用配方法求解一元二次方程

初中数学九年级上册第二章 一元二次方程用配方法求解一元二次方程

第二章一元二次方程2.用配方法求解一元二次方程(二)一、学生知识状况分析学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。

学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。

二、教学任务分析在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。

这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是:①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:探究析疑;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小测;第六环节:课堂小结;第七环节:布置作业。

第一环节:复习回顾活动内容:1、将下列各式填上适当的项,配成完全平方式(口头回答).(1).x2+2x+________=(x+______)2(2).x2-4x+________=(x-______)2(3).x2+5x+________ =(x+______)2活动目的:回顾配方法解二次项系数为1的一元二次方程的基本步骤。

为本节课研究二次项系数不为1的二次方程的解法打下基础。

实际效果:学生对口答题的积极抢答,调动了各自的思维,进入了积极学习的状态;教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,x2-6x-40=0 移项,得 x2-6x= 40方程两边都加上32(一次项系数一半的平方),得x2-6x+32=40+32即(x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x1=10,x2=-4学生一般都能整理出配方法解方程的基本步骤:移项,配方,开平方,求解及注意事项。

初中数学 如何求解一元二次方程的小数解

初中数学  如何求解一元二次方程的小数解

初中数学如何求解一元二次方程的小数解要求解一元二次方程的小数解,我们可以使用配方法、求根公式或图像法。

下面将详细介绍这三种方法的步骤和应用。

方法一:配方法配方法是一种通过变换方程的形式来求解一元二次方程的方法。

它的基本思想是将方程转化为完全平方形式,然后求解。

步骤:1. 将方程表示成标准形式:ax² + bx + c = 0,其中a,b和c是已知的实数常数,且a ≠ 0。

2. 如果方程的系数a不为1,则将方程两边都除以a,使得方程的首项系数为1。

3. 将方程的常数项c分解为两个数的乘积,这两个数的和等于方程的一次项系数b。

假设这两个数为m和n。

4. 重新排列方程,将一次项bx拆分为mx + nx。

5. 将方程按照完全平方的形式进行重新组合,即(x + m)(x + n) = 0。

6. 使用零乘法,将方程拆分为两个线性因式,即x + m = 0和x + n = 0。

7. 解这两个方程,得到x的值。

这些值即为方程的小数解。

举例来说,考虑方程2x² + 5x - 3 = 0。

1. 将方程表示成标准形式,得到2x² + 5x - 3 = 0。

2. 系数a为2,不为1,所以我们将方程两边都除以2,得到x² + (5/2)x - 3/2 = 0。

3. 将常数项-3/2分解为两个数的乘积,这两个数的和等于5/2。

我们可以将-3/2分解为1/2和-2,因为1/2 + (-2) = 5/2。

4. 重新排列方程,得到x² + (1/2)x - 2x - 3/2 = 0。

5. 将方程按照完全平方的形式进行重新组合,即(x + 1/2)(x - 2) = 0。

6. 使用零乘法,将方程拆分为两个线性因式,即x + 1/2 = 0和x - 2 = 0。

7. 解这两个方程,得到x = -1/2和x = 2。

这两个值即为方程的小数解。

方法二:求根公式求根公式是一种通过直接计算方程的根的公式来求解一元二次方程的方法。

配方法解一元二次方程教案

配方法解一元二次方程教案

配方法解一元二次方程教案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】配方法解一元二次方程(一)一、教材分析方程是刻画现实世界中数量关系的一个有效数学模型,应用比较广泛,而从实际问题中抽象出方程,并求出方程的解是解决问题的关键。

配方法既是解一元二次方程的一种重要方法,同时也是推导公式法的基础。

配方法又是初中数学的重要内容,在二次根式、代数式的变形及二次函数中都有广泛应用。

二、教学目标1.知识与技能:理解配方法的意义,会用配方法解二次项系数为1的一元二次方程;2.过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法;3.情感态度价值观:学生在独立思考和合作探究中感受成功的喜悦,并体验数学的应用价值,增强学生学习数学的兴趣。

三、教学重点运用配方法解二次项系数为1的一元二次方程。

四、教学难点发现并理解配方的方法。

五、学情分析学生的知识基础:学生会解一元一次方程,了解平方根的概念、平方根的性质以及完全平方公式,并刚刚学习了一元二次方程的概念和直接开平方法解一元二次方程;学生的技能基础:学生在之前的学习中已经学习过“转化” “整体”等数学思想方法,具备了学习本课时内容的较好基础;学生活动经验基础:以前的数学学习中学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验和能力。

本节课中研究的方程不具备直接开平方法的结构特点,需要合理添加条件进行转化,即“配方”,而学生在以前的学习中没有类似经验,理解起来会有一定的困难,同时完全平方公式的理解对学生来说也是一个难点,所以在教学过程中要注意难点的突破。

六、教具准备教学课件七、教学过程设计环节一:创设情境,引出新知如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?在知识引入阶段,创设了一个实际问题的情境,将学生放置在实际问题的背景下,既让学生感受到生活中处处有数学,又有利于激发学生的主动性和求知欲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配方法解一元二次方程
教学目标
1、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
2、通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.
重点:讲清“直接降次有困难”,如x2+6x-16=0的一元二次方程的解题步骤.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
【课前预习】
导学过程
阅读教材部分,完成以下问题
解下列方程
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9
填空:
(1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2
(3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2
问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?
思考?
1、以上解法中,为什么在方程x 2+6x=16两边加9?加其他数行吗?
2、什么叫配方法?
3、配方法的目的是什么? 这也是配方法的基本
4、配方法的关键是什么? 用配方法解下列关于x 的方程
(1)2x 2-4x-8=0 (2)x 2-4x+2=0 (3)x 2-21x-1=0 (4)2x 2+2=5
总结:用配方法解一元二次方程的步骤:
【课堂活动】
活动1、预习反馈
活动2、例习题分析 例1用配方法解下列关于x 的方程:
(1)x 2-8x+1=0 (2)2x 2+1=3x (3)3x 2-6x+4=0
【课堂练习】:
活动3、知识运用
1. 填空:
(1)x 2+10x+______=(x+______)2;(2)x 2-12x+_____=(x-_____)2
(3)x 2+5x+_____=(x+______)2.(4)x 2-3
2x+_____=(x-_____)2 2.用配方法解下列关于x 的方程
(1) x 2-36x+70=0. (2)x 2+2x-35=0 (3)2x 2-4x-1=0
(4)x 2-8x+7=0 (5)x 2+4x+1=0 (6)x 2+6x+5=0
(7)2x 2+6x-2=0 (8)9y 2-18y-4=0 (9)x 2x
归纳小结:用配方法解一元二次方程的步骤:
【课后巩固】
一、选择题
1.将二次三项式x 2-4x+1配方后得( ).
A .(x-2)2+3
B .(x-2)2-3
C .(x+2)2+3
D .(x+2)2-3
2.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ).
A .x 2-8x+(-4)2=31
B .x 2-8x+(-4)2=1
C .x 2+8x+42=1
D .x 2-4x+4=-11
3.如果m x 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,
则m 等于( ).
A .1
B .-1
C .1或9
D .-1或9
二、填空题
1.(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2
(3)x 2+px+_____=(x+______)2.
2、方程x 2+4x-5=0的解是________. 3.代数式2
221x x x ---的值为0,则x 的值为________. 三、计算:
(1)x 2+10x+16=0 (2)x 2-x-4
3=0
(3)3x 2+6x-5=0 (4)4x 2-x-9=0
四、综合提高题
1.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.
2.如果x 2-4x+y 2+13=0,求(xy )z 的值.。

相关文档
最新文档