大学物理第六章练习答案

合集下载

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

大学物理 第六章(中国农业出版社 张社奇主编)答案

大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)

0.03
cos[4
(t

9 20
)


]

0.03
cos[4
t

14
5
]m
(2) uT u 2 20 2 10m

4
O点振动比A点振动在相位上提前
2 x 2 5

10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75


0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0

波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75

大学物理第6章(题库)含答案

大学物理第6章(题库)含答案

06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。

2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。

4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。

5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。

6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。

7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。

理想气体做功为 500 J 。

补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。

8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。

9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。

(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε 根据电荷分布的对称性知,0==z y E E式中:θ为dq 到场点的连线与x 轴负向的夹角。

下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。

直线段受到的电场力大小为 方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。

求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。

解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y E 故 RE E x 0π2ελ==,方向沿x 轴正向。

大学物理习题答案第六章

大学物理习题答案第六章

[习题解答]6-2 一个运动质点的位移与时间的关系为m ,其中x的单位是m,t的单位是s。

试求:(1)周期、角频率、频率、振幅和初相位;(2) t = 2 s时质点的位移、速度和加速度。

解(1)将位移与时间的关系与简谐振动的一般形式相比较,可以得到角频率s 1, 频率, 周期, 振幅, 初相位.(2) t = 2 s时质点的位移.t = 2 s时质点的速度.t = 2 s时质点的加速度.6-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。

若弹簧受10 N的拉力,其伸长量为5.0 cm,求物体的振动周期。

解根据已知条件可以求得弹簧的劲度系数,于是,振动系统的角频率为.所以,物体的振动周期为.6-4求图6-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解以平衡位置O为坐标原点,建立如图6-5所示的坐标系。

若物体向右移动了x,则它所受的力为.根据牛顿第二定律,应有图6-5,改写为.所以,.6-5 求图6-6所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解以平衡位置O为坐标原点,建立如图6-6所示的图6-6坐标系。

当物体由原点O向右移动x时,弹簧1伸长了x1 ,弹簧2伸长了x2 ,并有.物体所受的力为,式中k是两个弹簧串联后的劲度系数。

由上式可得, .于是,物体所受的力可另写为,由上式可得,所以.装置的振动角频率为,装置的振动频率为.6-6仿照式(6-15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式。

解由教材中的例题6-3,单摆的角位移θ与时间t的关系可以写为θ = θ0 cos (ω t+ϕ) ,单摆系统的机械能包括两部分, 一部分是小物体运动的动能,另一部分是系统的势能,即单摆与地球所组成的系统的重力势能.单摆系统的总能量等于其动能和势能之和,即,因为, 所以上式可以化为.于是就得到,由此可以求得单摆系统中物体的速度为.这就是题目所要求推导的单摆系统中物体的速度与角位移的关系式。

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。

解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

大学物理第六章练习答案

大学物理第六章练习答案

第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后 A (A) 温度不变,熵增加; B 温度升高,熵增加;C 温度降低,熵增加;D 温度不变,熵不变; 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值; C A 等容降压过程; B 等温膨胀过程; C 等压压缩过程; D 绝热膨胀过程; 3. 一定量的理想气体,分别经历如图11所示的abc 过程图中虚线ac 为等温线和图12所示的def 过程图中虚线df 为绝热线 ; 判断这两过程是吸热还是放热: A A abc 过程吸热,def 过程放热; B abc 过程放热,def 过程吸热; C abc 过程def 过程都吸热; D abc 过程def 过程都放热;4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B A p =B p ,则无论经过的是什么过程,系统必然 B(A) 对外做正功; B 内能增加; C 从外界吸热; D 向外界放热; 二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量; 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J,则该过程中需吸热__-200__ ___J;3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J,气体向外界放热620J,则气体的内能 减少,填增加或减少,21E E = -380 J;4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B,将从外界吸热416 J,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C,将从外界吸热582 J,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J ;图.2图1图3三.计算题1. 一定量氢气在保持压强为×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了×104J 的热量;1 求氢气的摩尔数2 氢气内能变化多少3 氢气对外做了多少功4 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: 1由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ 24,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯ 344(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ 444.2910Q E J =∆=⨯2. 一定量的理想气体,其体积和压强依照V =aP 的规律变化,其中a 为常数,试求:1 气体从体积1V 膨胀到2V 所做的功;2体积为1V 时的温度1T 与体积为2V 时的温度2T 之比;1:⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV Va PdV W 2: 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功;1 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量2 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量 是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+1∵a 沿acb 过程达到状态b,系统的内能变化是:560356204ab acb acb E Q W J J J =-=-=由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J =系统吸收的热量是:204220424ab acb Q E W J J J =+=+=2系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-[]204(282)486ba ba Q W J J ∴+=-+-=-即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程, A →C 等温过程,A →D 绝热过程;其中吸热最多的过程 AA 是A →B ; B 是A →C ; C 是A →D ; D 既是A →B,也是A → C,两者一样多;2. 用公式V E C T ∆=μ∆ 式中V C 为定容摩尔热容量,μ为气体摩尔数,计算理想气体内能增量时,此式 D(A) 只适用于准静态的等容过程; B 只适用于一切等容过程; C 只适用于一切准静态过程; D 适用于一切始末态为平衡态的过程;3. 用下列两种方法: 1 使高温热源的温度1T 升高T ∆, 2 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: BA 1∆η> 2∆η;B 2∆η>1∆η;C 1∆η= 2∆η;D 无法确定哪个大; 二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 ;1 2图1图32. 常温常压下,一定量的某种理想气体视为刚性分子,自由度为i ,在等压过程中吸热为Q,对外做功为A ,内能增加为E ∆, 则A/Q =i +22, ∆E/Q = ii +2; 3.一卡诺热机可逆的,低温热源的温度为27℃,热机效率40%,其高温热源温度为C 127T 1=;今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加C 200T =∆;4.如图2所示,一定量的理想气体经历a →b →c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化∆E , 请在以下空格内填上>0或<0或=0; Q >0 , ∆E >0 ; 三. 计算题1. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞忽略摩擦,使左室气体的体积膨胀为右室的2倍,问外力必须做多少功 解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰2. 比热容比γ = 的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K; 1求状态B 、C 的温度;2计算各过程中气体吸收的热量、气体所做的功和气体内能的增量;RT MmPV =得:KT C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,EJ T i R m M Q W ∆-==∆==15002图2图4图5JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程JE W Q J T R i m M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线;该循环的工质是一定质量的理想气体;其,V m C 和γ均已知且为常量;已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程;求:1 c 点的温度;2 循环的效率;解: 1c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭2a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r c V m b c V m V m T V Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小图1中阴影部分分别为S 1和S 2 ,则二者的大小关系是 BA S 1 > S 2 ;B S 1 = S 2 ;C S 1 < S 2 ;D 无法确定; 2. 在下列说法中,哪些是正确的 C1 可逆过程一定是平衡过程;2 平衡过程一定是可逆的;3 不可逆过程一定是非平衡过程;4 非平衡过程一定是不可逆的;A 1、4 ;B 2、3 ;C 1、2、3、4 ;D 1、3 ; 3. 根据热力学第二定律可知 DA 功可以全部转换为热,但热不能全部转换为功;B 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C 不可逆过程就是不能向相反方向进行的过程;D 一切自发过程都是不可逆的;4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”;对此说法,有以下几种评论,哪种是正确的 CA 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律; 二. 填空题1. 如图2的卡诺循环:1abcda,2dcefd,3abefa ,其效率分别为:1η= 1/3 , 2η= 1/2 ,3η= 2/3 ;2. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/T 1-T 2 式中A 为外界对系统做的功,则每一循环中外界必须做功A= 200J ;3. 1 mol 理想气体设γ = C p / C V 为已知的循环过程如图3的T —V 图所示,其中CA 为绝热过程,A 点状态参量T 1,V 1和B 点的状态参量T 1,V 2为已知,试求C 点的状态量:V c =2V ,T c =1121T VV r -⎪⎪⎭⎫ ⎝⎛,P c =r r V V RT 2111-;三. 计算题1. 一热机在1000K 和300K 的两热源之间工作,如果 1 高温热源提高为1100K ;2 低温热源降低为200K,从理论上说,热机效率各可增加多少为了提高热机效率哪一种方案为好 热机在1000K 和300K 的两热源之间工作,121T T T -=η,%7010003001000=-=η 解: 高温热源提高为1100K :%73.72110030011001=-=η,效率提高:%73.2=η∆低温热源降低为200K : %80100020010002=-=η,效率提高:%10=η∆提高热机效率降低低温热源的温度的方案为好;2. 1 mol 单原子分子理想气体的循环过程如图4的T —V 图所示, 其中c 点的温度为T c =600K,试求: 1ab 、bc 、ca 各个过程系统吸收的热量;2经一循环系统所做的净功;3循环的效率;注: 循环效率η=A/Q 1,A 为循环过程系统对外做的净功,Q 1为循环过程系统从外界吸收的热量,1n2=解: 由b b b a a a T VP T V P =,得K T b 300=J V V RT Q baca 0.34562ln 60031.8ln=⨯⨯== 等温过程 ()()J T T C Q b c v bc 5.373930060031.823=-⨯=-= 等容过程 ()()J T T C Q a b b ab 5.623260030031.825-=-⨯=-= 等压过程图2图3图4()6232.524932ab ab b a iW Q E R T T J=-∆=---=-J Q W ca ca 0.3456==%38.132********=+-==bcca Q Q Q A η。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)

第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。

解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。

解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。

大学物理课后答案第六章真空中的静电场

大学物理课后答案第六章真空中的静电场

⼤学物理课后答案第六章真空中的静电场习题66-1 解:以x 轴上的点电荷Q 作为研究对象,其受q 的作⽤⼒具有对称性,所受合⼒沿x 轴,即F=qx Q x F F F 2+=其中:202)2(4a Q F Q πε=;02045cos 4aqQ F qx πε=所以:02020245cos 42)2(4a qQ a Q F πεπε+=令上式为零可得:q Q 22-= 6-2 解:据分析,3E 只能取垂直⽅向,D 点的场强如图所⽰:xa1q q 3(1)D 点的合场强的垂直分量为零,0cos 32=+E E θ,即32co s E E -=θ带⼊点电荷场强关系式,得203220422)2(41aq a q πεπε-=?C q 9310*9.9--= (2)22201021?+=+=a q a q E E E πεπε =m v /10*79.16-6-3 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解:如题6-3图所⽰(1)在带电直线上取线元x d ,其上电量q d 在P 点产⽣场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==?-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ0.5-?=λ1m C -?, 5.12=a cm 代⼊得21074.6?=P E 1C N -? ⽅向⽔平向右(2)同理 2220d d π41d +=x xE Q λε⽅向如题8-6图所⽰由于对称性?=l Qx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ?==lQyQy E E ?-+2223222)d (d l l x x2220d4π2+=l lελ0.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代⼊得21096.14?==Qy Q E E 1C N -?,⽅向沿y 轴正向6-4 ⼀个半径为R 的均匀带电半圆环,电荷线密度为λ,求环⼼处O 点的场强.解: 如6-4图在圆上取?Rd dl =题6-4图λλd d d R l q ==,它在O 点产⽣场强⼤⼩为 20π4d d R R E ε?λ=⽅向沿半径向外则 ??ελd sin π4sin d d 0RE E x ==ελπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελελπ==0d cos π400=-=?ελπRE y∴ RE E x 0π2ελ=6-5解:如图所⽰,将半球⾯分割成⽆数半径不等环⾯与X 轴垂直的细圆环,图中圆环所带电荷量θθπλλγd ds dq sin 22==,该带电细圆环在O 点产⽣的电场强度为E d =()i xdqy x o224123+επ由⼏何关系,θγcos =x θγs i n =yγ222=+yx有 E d=()i xdq y x o224123+επ = επo41i dθθπσθγγγsin 2cos 2=i d oθθθσεcos sin 2球⼼处的电场强度:i i d E d E o oεεσθθθσπ4cos sin 220===??6-6解:将球⾯沿垂直于X轴的⽅向分割成⽆数半径不等的细圆环,圆中阴影环的带电荷量为:ααπσσRd R ds dq sin 2==在P 点的场强为:θααπσπεθπεαcos sin 241cos 42020r Rd R r d dE ?==(1)⽅向沿X 轴正⽅向(设0>α)如图由余弦定理θc o s 2222xy r x R -+=得: xrR r x 2cos 222-+=θ(2)⼜由余弦定理得:(3)式两边微分得:ααd Rx rdr sin 22= 得:xr dd R =ααs i n(4)将(1)、(2)、(3)式代⼊(1)式得:dr rR x x R rx R r x xr Rrdr E d 2222022220142241-+=-+?=εσπσπε(1)球⾯外(R x >)任⼀点P 的场强值+-= ?-+==x R x R x qdr r R x x R dE E 2022220414πεεσ(2)球⾯内:(R x <)+-=?-+==x R x R dr r R x x R dE E 01422220εσ6-7均匀带电的细线弯成正⽅形,边长为l ,总电量为q .求这正⽅形轴线上离中⼼为r 处的场强E .解: 如6-7图⽰,正⽅形⼀条边上电荷4q在P 点产⽣物强P E d ⽅向如图,⼤⼩为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=π4d 22220l r l l r E P ++=ελP Ed 在垂直于平⾯上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题6-7图由于对称性,P 点场强沿OP ⽅向,⼤⼩为2)4(π44d 422220l r l r lrE E P ++==⊥ελE P ++=ε⽅向沿OP6-8如题6-8)图所⽰,在点电荷q 的电场中取半径为R 的圆平⾯.q 在该平⾯轴线上的A 点处,求:通过圆平⾯的电通量.解:题6-8图∵通过半径为R 的圆平⾯的电通量等于通过半径为22x R +的球冠⾯的电通量,球冠⾯积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠⾯积的计算:见题8-9(c)图ααα)cos 1(π22α-=r6-9 解: ⾼斯定理0d ε∑?=?q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E15r =cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=3.98≈1C N -?,⽅向沿半径向外. 50r =cm 时,3π4∑=ρq -3(外r )内3r∴ ()33204π3 1.064πr r E r ρε-=≈外内 1C N -? 沿半径向外. 6-10 解:由⾼斯定理得:= dv s d E Sρε0球体内: E(r)? 4πr 2='rr k 041πεr d r ''2=4r k επ r e kr r E24)(ε= ,0球体外:4202414)(R R r d r r k r r E Rεππεπ=''?'=2044)(r rkR r Eε= (r>R ) 6-11 半径为1R 和2R (2R >1R )的两⽆限长同轴圆柱⾯,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: ⾼斯定理0d ε∑?=q S E s取同轴圆柱形⾼斯⾯,侧⾯积rl S π2=则 rl E S E Sπ2d =??对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >题6-12图6-12 两个⽆限⼤的平⾏平⾯都均匀带电,电荷的⾯密度分别为1σ和2σ,试求空间各处场强.解: 如题6-12图⽰,两带电平⾯均匀带电,电荷⾯密度分别为1σ与2σ,两⾯间, n E)(21210σσε-=1σ⾯外, n E)(21210σσε+-= 2σ⾯外, n E)(21210σσε+= n:垂直于两平⾯由1σ⾯指为2σ⾯.6-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去⼀块半径为r <R 的⼩球体,如题8-13图所⽰.试求:两球⼼O 与O '点的场强,并证明⼩球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀⼩球的组合,见题6-13图(a).(1) ρ+球在O 点产⽣电场010=E,ρ- 球在O 点产⽣电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产⽣电场'd π4d 3430301OO E ερπ=' ρ-球在O '产⽣电场002='E∴ O ' 点电场 003ερ='E'OO题6-13图(a) 题6-13图(b)(3)设空腔任⼀点P 相对O '的位⽮为r',相对O 点位⽮为r (如题6-13(b)图)E PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.6-15解:将这⼀平⾯看作是由⼀系列环带所组成,取以O 为圆⼼,半径为r, 宽度为dr 的环带作为⾯元,该⾯元所带电量为rdrds dq πσσ2=?=rdr dq πσ2=该带电圆环在其轴线上P 点处的电场强度E d的⽅向沿X 轴正向,其⼤⼩为2322023220)(2)(41r x rdrx r x xdqdE +??=+?=εσπε做积分可得轴线上P 点的总场强:+2122023220)(2)(2x R xr x rdr x E R +?=+?=?∞εσεσ6-16解:① aqa q a q a q U 0002334πεπεπεπε-=-+-+=② aqQQ U U A 0023)(πε-=?-=∞题6-17图6-17 如题6-17图所⽰,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另⼀正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场⼒作的功.解: 如题6-17图⽰0π41ε=O U 0)(=-RqR q0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=6-18 如题6-18图所⽰的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中⼼O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产⽣的场强互相抵消,取θd d R l =则θλd d R q =产⽣O 点Ed 如图,由于对称性,O 点场强沿y 轴负⽅向题6-18图θεθλππcos π4d d 222R E E y R 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产⽣电势,以0=∞U===AB200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产⽣ 2ln π40 2ελ=U半圆环产⽣ 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 6-19解:⑴如图所⽰,建⽴坐标V ala x dx U la ap 300105.2ln 44?=+==?+πελπελV x b dxU l l Q 32220103.44?=+=?-πελ6—22解:⑴在板状圆环上取半径为为1r ,宽为dr 的环带作为⾯元,该⾯元的带电量为:rdr rdr ds dq πσπσσ22=?==该带电圆环在轴线上P 点的电势为21)(2)(42221220r x rdr r x dq dU +?=+=πσπε积分可得点P 的总电势+-+=+=+=212222022021222|2)(22121R x R x r x r x rdr U R R R R P εσεσεσ⑵⼩球在下落过程中,电场⼒和重⼒都在对⼩球做功,我们对⼩球应⽤质点动能定理,则有221mv A A =+电重下落过程中重⼒的做功为:mgx A =重电场⼒能做的功为:)(00U U q l d E q A p p--=?-=?电由第⼀问得的结果可知,环⼼处的电势为:)(21200R R U -=εσ由此可知,)(2)(2121221200R x R x R R q U U q A p +++--=--=εσ电将上述结果带⼊动能定理中得由此可得⼩球到环⼼O 处的速度为()121222212022??+++--+=R x R x R R gx v εσ6—23解:参考6—19题i xa ar x U E x z dzU p p aap 220220244+?=??-=+=?-πελπεσ。

大学物理第六章课后习题答案(马文蔚第五版)汇总

大学物理第六章课后习题答案(马文蔚第五版)汇总

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理第六章 习题答案

大学物理第六章 习题答案

第六章 热力学基础 习题答案一、单选题1-5 DAACD 6-10 ADCDA二、填空题1. 500J; 700J2. 3/2 P 1V 1;03. 1/2; 24.33.3% ; 8.31⨯103J5. 320K ; 4三、计算题1.解:由题意可知:气体经历等压变化,且对外做功为:(1)若气体为单原子分子,即: i=3(2)若气体为双原子分子,即: i=52.解:(1)因为气体为卡诺循环,且高温T 1 = 1000 K ,低温T 2 = 300 K 该循环的效率满足:(2)若低温热源不变,设高温热源温度为T 1,则有:解得: T 1 = 1500 K 即高温热源温度需提高500K(3)若高温热源不变,设低温热源温度为T 2,则有:JT R MV p A 200=∆=∆=μJ A T R i M Q p 50025221==∆+=μJ A T R i M Q p 70027222==∆+=μ%7010003001000112=-=-=T T η%8030011112=-=-=T T T T η%80100010001212=-=-=T T T η解得: T 2 = 200 K 即低温热源温度需降低100K3.解:氦气(1)定容过程,V =常量,W =0 由Q E W =∆+ 知21()623 J V M Q E C T T μ=∆=-=(2)定压过程,P =常量 321() 1.0410 J P M Q C T T μ=-=⨯与(1)相同(3)与(1)相同 (外界对系统做功)4.解:(1)等容过程等温过程(2)等温过程等容过程3=i E ∆J 417=∆-=E Q W 0=Q E ∆J 623-=∆-=E W 0W 1=()()J 5.1246208031.82511211=-⨯⨯⨯=-=∆=∴T T C Mm E Q V 02=∆E ()J 3.20332ln 8027331.812ln d W 2222=⨯+⨯⨯====∴⎰VV RT M m V p Q V V J 3.203321=+=∴W W W J 5.1246=∆E J 8.93273.20335.124621=+=+=∴Q Q Q 03=∆E ()J 7.16872ln 2027331.812ln 133=⨯+⨯⨯===∴VV RT M m W Q 04=W()()J 5.1246208031.82511244=-⨯⨯⨯=-=∆=∴T T C Mm E Q V J 7.168743=+=∴W W W J2.29345.12467.168743=+=+=∴Q Q Q J 5.124643=∆+∆=∆E E E。

大学物理第六章课后习题答案(马文蔚第五版)

大学物理第六章课后习题答案(马文蔚第五版)

第六章静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 -2 将一带负电的物体M靠近一不带电的导体N,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则()(A) N上的负电荷入地(B)N上的正电荷入地(C) N上的所有电荷入地(D)N上所有的感应电荷入地分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。

因而正确答案为(A)。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d,参见附图。

设无穷远处为零电势,则在导体球球心O 点有()(A)(B)(C)(D)分析与解达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A)。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理第六章课后习题答案(马文蔚第五版)

大学物理第六章课后习题答案(马文蔚第五版)

第六章静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 -2 将一带负电的物体M靠近一不带电的导体N,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则()(A) N上的负电荷入地(B)N上的正电荷入地(C) N上的所有电荷入地(D)N上所有的感应电荷入地分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。

因而正确答案为(A)。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d,参见附图。

设无穷远处为零电势,则在导体球球心O 点有()(A)(B)(C)(D)分析与解达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A)。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理答案6.第六章

大学物理答案6.第六章

大学物理答案6.第六章第六章机械运动和机械波思考题6-35简谐振动中相位为φ、π+φ、2π+φ、3π+φ、….时描述的是同一运动状态吗?为什么?6-36 对一简谐振动系统,画出其动能和势能关于时间变量的曲线,并分析两者反相的物理意义。

6-37 将单摆摆线从铅直方向拉到φ角的位置撒手任其摆动。

这里φ角是初相位吗?若不是,它将对应什么物理量?6-38 若以一装满水的空心球作为单摆的摆钟,并让水从球体缓慢流出,试描述其摆动周期的变化情况。

6-39 利用受迫振动的稳定解(6.19)式说明为什么恒力不能导致受迫振动。

(提示:恒力的频率ω可视为零)6-40 在太空中能听到声音吗?为什么?6-41 在较长时间间隔(Δt>>T)内,任意以t为变量的正弦(或余弦)型函数的平均值均为零,例如:==0,其中α是任意常数。

试据此推导(6.11)、(6.12)及(6.40)式。

6-42 海啸是一种波长约为几十至几百千米、在海水中传播的波动现象。

它在深海区域并不易被察觉,但一旦海啸接近岸边往往会造成巨大的灾害。

试从能量角度分析其中的原因。

6-43 描述机械波时间周期性的物理量由周期T、频率v和圆频率ω给出。

类似地,我们可以用λ、1λ、2πλ描述波的空间周期性,试说明这三个量对应的物理意义。

6-44 试解释弦乐器的以下现象:(1)较松的弦发生的音调较低,而较紧的弦则音调较高;(2)较细的弦发生的音调较高,而较粗的弦则音调较低(古人称之为“小弦大声,大弦小声”);(3)正在振动的两端固定的弦,若用手指轻按弦的中点时,音调变高到两倍,若改按弦的三分之一处时,音调增至三倍;(4)用力弹拨琴弦(而非用手指按弦)时,能同时听到若干音调各异的声音。

(提示:音调高低与弦振动的频率成正比。

此外,在(4)情形中弦以基频振动的同时还以若干泛频振动。

)习题6-1 如题6-1图所示,用一根金属丝把一均匀圆盘悬挂起来,悬线oc 通过圆盘质心,圆盘呈水平状态,这个装置称为扭摆,当使圆盘转过一个角度时,金属丝受到扭转,从而产生一个扭转的恢复力矩。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理第六章练习答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后( A ) (A) 温度不变,熵增加; (B) 温度升高,熵增加;(C) 温度降低,熵增加; (D) 温度不变,熵不变。

2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值。

( C ) (A) 等容降压过程; (B) 等温膨胀过程; (C) 等压压缩过程; (D) 绝热膨胀过程。

3. 一定量的理想气体,分别经历如图1(1)所示的abc 过程(图中虚线ac 为等温线)和图1(2)所示的def 过程(图中虚线df 为绝热线) 。

判断这两过程是吸热还是放热:( A )(A) abc 过程吸热,def 过程放热; (B) abc 过程放热,def 过程吸热; (C) abc 过程def 过程都吸热; (D) abc 过程def 过程都放热。

4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B(A p =B p ),则无论经过的是什么过程,系统必然( B ) (A) 对外做正功; (B) 内能增加; (C) 从外界吸热; (D) 向外界放热。

二.填空题图.2图11. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量。

2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J ,则该过程中需吸热__-200__ ___J 。

3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少,(填增加或减少),21E E -= -380 J 。

4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J 。

三.计算题1. 一定量氢气在保持压强为4.00×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了6.0×104J 的热量。

(1) 求氢气的摩尔数 (2) 氢气内能变化多少 (3) 氢气对外做了多少功 (4) 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: (1)由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ (2)4,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯(3)44(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ (4)44.2910Q E J =∆=⨯图32. 一定量的理想气体,其体积和压强依照V =a P 的规律变化,其中a 为常数,试求:(1) 气体从体积1V 膨胀到2V 所做的功;(2)体积为1V 时的温度1T 与体积为2V 时的温度2T 之比。

(1):⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV Va PdV W (2): 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功。

(1) 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量(2) 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量?是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+(1)∵a 沿acb 过程达到状态b ,系统的内能变化是: 560356204ab acb acb E Q W J J J =-=-=由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J = 系统吸收的热量是:204220424ab acb Q E W J J J =+=+=(2)系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-[]204(282)486ba ba Q W J J ∴+=-+-=- 即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程, A →C 等温过程,A →D 绝热过程。

其中吸热最多的过程 ( A )(A) 是A →B ; (B) 是A →C ; (C) 是A →D ; (D) 既是A →B ,也是A → C ,两者一样多。

2. 用公式V E C T ∆=μ∆ (式中V C 为定容摩尔热容量,μ为气体摩尔数),计算理想气体内能增量时,此式( D ) (A) 只适用于准静态的等容过程; (B) 只适用于一切等容过程; (C) 只适用于一切准静态过程; (D) 适用于一切始末态为平衡态的过程。

3. 用下列两种方法: (1) 使高温热源的温度1T 升高T ∆, (2) 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: ( B )(A) 1∆η> 2∆η; (B) 2∆η>1∆η; (C) 1∆η= 2∆η; (D) 无法确定哪个大。

图1图3二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 。

2. 常温常压下,一定量的某种理想气体(视为刚性分子,自由度为i ),在等压过程中吸热为Q ,对外做功为A ,内能增加为E ∆, 则A/Q =i+22, ∆E/Q = ii+2。

3.一卡诺热机(可逆的),低温热源的温度为27℃,热机效率40%,其高温热源温度为 C 127T 1=。

今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加 C 200T =∆。

4.如图2所示,一定量的理想气体经历a →b →c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化∆E , 请在以下空格内填上>0或<0或=0。

Q >0 , ∆E >0 。

三. 计算题1. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞(忽略摩擦),使左室气体的体积膨胀为右室的2倍,问外力必须做多少功? 解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰图22. 比热容比γ = 1.40的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K 。

(1)求状态B 、C 的温度;(2)计算各过程中气体吸收的热量、气体所做的功和气体内能的增量。

RT Mm PV =得:K T C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,E J T i R m M Q W ∆-==∆==15002JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程J E W Q J T R im M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线。

该循环的工质是一定质量的理想气体。

其,V m C 和γ均已知且为常量。

– – P (Pa)V (m 3) 400 300 200 100 4 26A BC O图4已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程。

求: (1) c 点的温度;(2) 循环的效率。

解: (1)c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭(2)a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r cV m b c V m V m TV Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小(图1中阴影部分)分别为S 1和S 2 ,则二者的大小关系是( B ) (A) S 1 > S 2 ; (B) S 1 = S 2 ; (C) S 1 < S 2 ; (D) 无法确定。

2. 在下列说法中,哪些是正确的(C )(1) 可逆过程一定是平衡过程;(2) 平衡过程一定是可逆的;(3) 不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。

(A) (1)、(4) ;(B) (2)、(3) ;(C) (1)、(2)、(3)、(4);(D) (1)、(3) 。

3.根据热力学第二定律可知( D )(A) 功可以全部转换为热,但热不能全部转换为功;(B)热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;(C) 不可逆过程就是不能向相反方向进行的过程;(D)一切自发过程都是不可逆的。

4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”。

对此说法,有以下几种评论,哪种是正确的(C)(A) 不违反热力学第一定律,但违反热力学第二定律;(B)不违反热力学第二定律,但违反热力学第一定律;(C)不违反热力学第一定律,也不违反热力学第二定律;(D)违反热力学第一定律,也违反热力学第二定律。

二. 填空题1. 如图2的卡诺循环:(1)abcda,(2)dcefd,(3)abefa,其效率分别为:η= 1/3 ,2η= 1/2 ,3η= 2/3 。

12. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/(T 1-T 2) (式中A 为外界对系统做的功),则每一循环中外界必须做功A= 200J 。

相关文档
最新文档