高中解析几何辅导练习:椭圆的的方程及其性质

合集下载

椭圆的标准方程及性质

椭圆的标准方程及性质

椭圆的标准方程及性质
椭圆是平面上一个动点到两个定点的距离之和等于常数的点的轨迹。

在直角坐
标系中,椭圆的标准方程为:
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]
其中a和b分别为椭圆的长半轴和短半轴。

下面我们将详细介绍椭圆的标准方
程及其性质。

首先,我们来看椭圆的标准方程。

椭圆的标准方程是一个二次方程,其中x和
y的平方项系数分别为a的平方和b的平方。

通过这个方程,我们可以轻松地确定
椭圆的长短半轴,进而画出椭圆的图形。

其次,让我们来了解一下椭圆的性质。

椭圆有许多独特的性质,这些性质在数
学和实际应用中都有着重要的作用。

首先,椭圆上任意一点到两个焦点的距离之和等于常数,这个性质被称为椭圆的定义性质。

其次,椭圆的长半轴和短半轴的长度决定了椭圆的形状,长短半轴之比称为离心率,离心率越接近于零,椭圆形状越接近于圆。

另外,椭圆还有对称性,关于x轴、y轴和原点对称的性质。

除此之外,
椭圆还有着许多其他有趣的性质,如切线与法线的性质、椭圆的焦点和直径等。

总之,椭圆的标准方程及性质是数学中一个重要的概念,它不仅有着丰富的数
学内涵,而且在物理、工程等领域都有着广泛的应用。

通过学习椭圆的标准方程及性质,我们可以更好地理解椭圆的几何特征,为解决实际问题提供数学工具和思路。

希望本文对您有所帮助,谢谢阅读!。

椭圆的标准方程及性质

椭圆的标准方程及性质

椭圆的标准方程及性质椭圆作为二维空间中的图形,具有一些独特的性质和特点。

本文将介绍椭圆的标准方程以及其相应的性质。

一、椭圆的标准方程椭圆的标准方程可以通过平面几何的推导得出。

设椭圆的中心为点(h,k),椭圆的长轴为2a,短轴为2b,则可得出椭圆的标准方程:(x-h)^2/a^2 +(y-k)^2/b^2 = 1其中,h和k分别是椭圆的中心在x轴和y轴上的坐标,a和b分别是椭圆长轴和短轴的一半。

二、椭圆的性质1. 中心:椭圆的中心即标准方程中的点(h,k),表示椭圆在平面上的位置。

2. 焦点:椭圆上的每个点到两个焦点的距离之和等于定值2a,即椭圆的长轴长度。

焦点是椭圆的重要特点,用于定义椭圆的几何性质。

3. 长轴和短轴:标准方程中a和b分别表示椭圆的长轴和短轴的一半。

长轴是椭圆的最长直径,短轴是椭圆的最短直径。

4. 离心率:椭圆的离心率定义为焦距与长轴之比,通常用e表示。

离心率决定了椭圆的扁平程度,e<1时表示椭圆,e=0时表示圆。

5. 直径:椭圆上的两个端点同时到椭圆内一点的距离相等,则这两个端点和该内点连成的线段叫做该椭圆的直径。

6. 弦:椭圆上任意两点连线和椭圆的直径所围内部的线段叫做椭圆的弦。

7. 准线:椭圆上与两个焦点连线垂直的直线,与椭圆的侧弦相切。

8. 焦散性:入射到椭圆的平行光线在反射后会汇聚到另一个焦点上,这是椭圆焦散性的一个重要表现。

三、椭圆的应用椭圆作为一种常见的数学曲线,在现实生活中有广泛的应用。

以下是一些椭圆应用的例子:1. 天体运动:行星围绕太阳的轨迹、人造卫星轨道等可以近似看作椭圆。

2. 光学器件:抛物面镜、椭圆面镜等。

3. 固定时间下的最短路径问题。

4. 卫星通信:卫星的定位和通信领域中使用椭圆轨道。

4. 造船工业:船体的椭圆剖面设计,可以减少水的阻力。

5. 圆锥曲线中的一类,在几何光学中,椭球曲面可以聚焦光线。

总结:本文介绍了椭圆的标准方程及其性质。

椭圆作为一种重要的数学曲线,其在几何和物理学中有着广泛的应用。

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a by a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为所以所求椭圆标准方程为925=+ ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10=∴a 又2=c所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为:∵100)35(0)35(222=+-+++=a ,2c =6.∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a bx a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为: ∵P(0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是136100=+. 题2。

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析椭圆是高中数学中一个重要的几何图形,它有着独特的性质和应用。

本文将从椭圆的定义、性质以及相关题目解析等方面进行阐述,帮助高中学生更好地理解和应用椭圆。

一、椭圆的定义与性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,线段F1F2的长度为2c,a和c之间的关系为a > c。

椭圆的长轴是通过焦点的直线段,长度为2a;短轴是与长轴垂直的直线段,长度为2b,且满足a > b > c。

椭圆的离心率e定义为e = c / a,离心率决定了椭圆的形状。

当e < 1时,椭圆是一个封闭曲线;当e = 1时,椭圆变成一个抛物线;当e > 1时,椭圆变成一个双曲线。

椭圆的焦点和准线的性质也是我们需要了解的。

焦点到椭圆上任意一点的距离之和等于椭圆的长轴长度,即PF1 + PF2 = 2a;准线是与长轴平行且过焦点的直线,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即PD =e * PF。

二、椭圆的相关题目解析1. 题目:已知椭圆的长轴长为10,短轴长为8,求椭圆的离心率。

解析:根据椭圆的定义,我们知道a = 5,b = 4。

将a和c的值代入离心率公式e = c / a,可得e = 4 / 5。

2. 题目:已知椭圆的焦点坐标分别为F1(-3, 0)和F2(3, 0),且焦点到准线的距离为2,求椭圆的方程。

解析:根据椭圆的性质,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即2 = e * a。

由于焦点到准线的距离为2,而椭圆的长轴长度为2a,所以a = 1。

再根据焦点的坐标,可得椭圆的中心为O(0, 0)。

因此,椭圆的方程为x^2 + y^2 / 1^2 = 1,即x^2 + y^2 = 1。

3. 题目:已知椭圆的焦点坐标分别为F1(-2, 0)和F2(2, 0),准线方程为x = 3,求椭圆的方程。

2021届新高考数学艺考生百日冲刺专题30椭圆的方程及几何性质 (解析版)

2021届新高考数学艺考生百日冲刺专题30椭圆的方程及几何性质 (解析版)

1 / 14专题30 椭圆的方程及几何性质一、椭圆的标准方程和几何性质-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a焦半径公式:称P 到焦点的距离为椭圆的焦半径① 设椭圆上一点()00,P x y ,则1020,PF a ex PF a ex =+=-(可记为“左加右减”) ② 焦半径的最值:由焦半径公式可得:焦半径的最大值为a c +,最小值为a c - 焦点三角形面积:122tan2PF F S b θ=(其中12PF F θ=∠)2 / 14题型一、椭圆离心率的值例1、【2018年高考全国Ⅱ理数】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以212||2||PF F F c ==,由AP2tan PAF ∠=,所以2sin PAF ∠=,2cos PAF ∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2225sin()3c a c PAF ==+-∠, 所以4a c =,14e =,故选D .3 / 14变式1、(2016年江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.【答案】:.63【解析】:由题意得y =b 2与椭圆x 2a 2+y 2b 2=1的交点的坐标分别为⎝⎛⎭⎫±32a ,b2,因为F (c,0),且∠BFC =90°,所以FB →·FC →=0,即⎝⎛⎭⎫c -32a ⎝⎛⎭⎫c +32a +b 24=0,即3c 2=2a 2,所以e =63.变式2、(2017苏北四市一模) 如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.【答案】:.5-12【解析】:因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F →=(c ,-b ),B 1A →=(a ,b ).因为FB 2⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).题型二、椭圆离心率的范围例2、【江苏省南通市2019-2020学年高三上学期期初】已知1F ,2F 分别为椭圆E :()222210x y a b a b +=>>的左,右焦点,点A ,B 分别是椭圆E 的右顶点和上顶点,若直线4 / 14AB 上存在点P ,使得12PF PF ⊥,则椭圆C 的离心率e 的取值范围是______.【答案】 【解析】12PF PF ⊥,即P 在以12F F 为直径的圆上,即222x y c +=.直线AB :1x ya b+=,即0bx ay ab +-=,圆心到直线的距离d c =≤,即422430a a c c -+≤,即4231001e e e -+≤<<,,所以解得1e >≥故答案为:1,1)2. 变式1、(2020届浙江省高中发展共同体高三上期末)已知椭圆()222210x y a b a b+=>>的内接ABC ∆的顶点B 为短轴的一个端点,右焦点F ,线段AB 中点为K ,且2CF FK =,则椭圆离心率的取值范围是___________.【答案】⎛ ⎝⎭【解析】由题意可设()0,B b ,(),0F c ,线段AB 中点为K ,且2CF FK =, 可得F 为ABC ∆的重心,设()11,A x y ,()22,C x y , 由重心坐标公式可得,1203x x c ++=,120y y b ++=,即有AC 的中点(),M x y ,可得12322x x c x +==,1222y y by +==-,5 / 14由题意可得点M 在椭圆内,可得2291144c a +<,由c e a =,可得213e <,即有03e <<.故答案为:⎛ ⎝⎭. 变式2、(2020届浙江省“山水联盟”高三下学期开学)设椭圆M 的标准方程为22221(0)x y a b a b +=>>,若斜率为1的直线与椭圆M相切同时亦与222:()C x y b b +-=(b 为椭圆的短半轴)相切,记椭圆的离心率为e ,则2e =__________.【答案】32- 【解析】设切线方程为y x m =+,代入椭圆方程可得:()2222222220ba x a mx a m ab +++-=.因为相切2220,m a b ∆=∴=+,由直线y x m =+与圆C 相切,,(1b m b =∴=+,或(1b -(舍去).则有2222(1b a b +=+,因为222b a c =-,所以可得22231)2,)2a c e -==∴.故答案为:32-. 题型三、椭圆的方程6 / 14例3、【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,7 / 14由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .变式1、【2020届江苏省南通市高三下学期3月开学考试】若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】∵点(1,12)在圆外,过点(1,12)与圆相切的一条直线为x =1,且直线AB 恰好经过椭圆的右焦点和上顶点,∴椭圆的右焦点为(1,0),即c =1,设点P(1,12),连接OP ,则OP ⊥AB ,∵k OP =12,∴k AB =-2.又直线AB 过点(1,0),∴直线AB 的方程为2x +y -2=0,∵点(0,b)在直线AB 上,∴b =2,又c =1,∴a 2=5,故椭圆方程是25x +24y =1.变式2、(泰州期末)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,若点P 的坐标为 (1,32),且△PQF 2的周长为8,则椭圆C 的方程为 .8 / 14【答案】x 24+y 23=1【解析】 因为△PQF 2的周长为4a ,所以,a =2,把P 的坐标为 (1,32)代入椭圆C ,得219144b +=,所以,23b =,椭圆C 的方程为x 24+y 23=1.变式3、在平面直角坐标系中,椭圆22221(0)x y a b a b +=>>椭圆的左、右焦点分别为,.已知和3(,)2e 都在椭圆上,其中e 为椭圆的离心率,则椭圆E 的方程为 .【答案】.【解析】 由题设知,,由点在椭圆上,得222211e a b+=,21b =,所以,.由点3(,)2e 在椭圆上,得22223()21e ab +=, 42440a a -+=,22a =.题型四、椭圆中点的求解例4、(2019泰州期末)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q.已知椭圆C 的离心率为12,点A 到右准线的距离为6.xoy 1(0)F c -,2(0)F c ,(1)e ,2212x y +=222==c a b c e a +,(1)e ,22=1c a -xOyPF 1F 2Q9 / 14(1) 求椭圆C 的标准方程;(2) 设点Q 的横坐标为x 0,求x 0的取值范围.【解析】 (1) 由题意得c a =12,a 2c +a =6,解得a =2,c =1,所以b =a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(4分)(2) 解法1设B(m ,n),则m 24+n 23=1.因为A(-2,0),AB ⊥BQ ,所以直线BQ 的方程为y =-m +2n(x -m)+n ,因为P 是AB 的中点,所以P(m -22,n 2),所以直线OP 的方程为y =nm -2x ,联立直线BQ ,OP 的方程得-m +2n (x -m)+n =nm -2x ,(8分)解得x 0=(m -2)(m 2+2m +n 2)m 2-4+n 2,由m 24+n 23=1得n 2=-34(m 2-4),代入上式化简得x 0=m +6,(14分) 因为-2<m<2,所以4<x 0<8.(16分)解法2 设直线AB 的方程为y =k(x +2),k ≠0.将y =k(x +2)代入椭圆方程x 24+y 23=1得(4k 2+3)x 2+16k 2x +16k 2-12=0,解得x B =-8k 2+64k 2+3,所以y B =k ⎝ ⎛⎭⎪⎫-8k 2+64k 2+3+2=12k 4k 2+3, 则直线BQ 的方程为y -12k 4k 2+3=-1k (x --8k 2+64k 2+3),10 / 14因为P 是AB 的中点,则x P =x A +x B 2=-2+-8k 2+64k 2+32=-8k 24k 2+3,y P =12y B =6k4k 2+3,所以直线OP 的斜率为6k4k 2+3-8k 24k 2+3=-34k ,则直线OP 的方程为y =-34k x ,(8分)联立直OP ,BQ 的方程得x 0=16k 2+244k 2+3=4+124k 2+3,(14分)因为4k 2+3>3,所以0<124k 2+3<4,4<4+124k 2+3<8,即4<x 0<8.(16分)解后反思 直线和椭圆相交求范围(最值)问题,第(2)问解法1设出关键点B 的坐标(m ,n),建立关于点中参数m ,n 的目标函数,进一步转化为函数法或不等式法来解决;解法2通常设出直线的方程,并与椭圆方程联立,进而转化关于x 或y 的一元二次方程,通过根与系数关系,运用设而不求的思想,得到点的坐标,建立关于线中参数m 的目标函数,进一步转化为函数法或不等式法来解决. 这两种解法都较常见. 解法1参量多一点,但运用得当,也很方便,这里解法1在建立目标函数后就显得很简单,解法2参量少目标集中. 变式1、(2019苏州期末)如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1) 求椭圆E 的标准方程;(2) 过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.【解析】:(1)设椭圆方程为x 2a 2+y 2b 2=1(a>b>0),半焦距为c ,因为椭圆的离心率为12,所以c a =12,即a =2c ,11 / 14又因为A 到右准线的距离为6,所以a +a 2c =3a =6,(2分)解得a =2,c =1,(4分) 所以b 2=a 2-c 2=3,所以椭圆E 的标准方程为x 24+y 23=1.(6分)(2) 直线AB 的方程为y =32(x +2),由⎩⎨⎧y =32(x +2),x 24+y23=1,得x 2+3x +2=0,解得x =-2或x =-1. 则B 点的坐标为⎝⎛⎭⎫-1,32.(9分) 由题意,右焦点F(1,0),所以直线BF 方程为y =-34(x -1),(11分)由⎩⎨⎧y =32(x +2),x 24+y 23=1,得7x2-6x -13=0,解得x =-1或x =137,(13分) 所以,点M 坐标为⎝⎛⎭⎫137,-914.(14分)1、【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b12 / 14【答案】B【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.2、【2019年高考全国Ⅰ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M的坐标为(.3、【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =得122x x -=,1212(1)y y -=-,13 / 14所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值.4、【2020届江苏省南通市高三下学期3月开学考试】若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】∵点(1,12)在圆外,过点(1,12)与圆相切的一条直线为x =1,且直线AB 恰好经过椭圆的右焦点和上顶点,∴椭圆的右焦点为(1,0),即c =1,设点P(1,12),连接OP ,则OP ⊥AB ,∵k OP =12,∴k AB =-2.又直线AB 过点(1,0),∴直线AB 的方程为2x +y -2=0,∵点(0,b)在直线AB 上,∴b =2,又c =1,∴a 2=5,故椭圆方程是25x +24y =1.5、(2017·全国卷)已知椭圆C :22221x y a b+=(a >b >0)的左,右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则椭圆C 的离心率为 .【答案】3614 / 14【解析】 以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,所以,椭圆C的离心率c e a == 6、 设1F ,2F 是椭圆E :()222210x y a b a b +=>>的左,右焦点,P 为直线l :53a x =上一点,△21F PF 是底角为30︒的等腰三角形,则椭圆E 的离心率为 .【答案】56【解析】 设直线l 与x 轴交于点A ,由题意得,∠PF 2F 1=120°,∠PF 2A =60°,AF 2=53ac -, 所以,PF 2=2AF 2=103a -2c= F 1F 2=2c ,56c e a ==,所以,椭圆E 的离心率为56. 7、(2017无锡期末) 设点P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2,若e 2=3e 1,则e 1=________. 【答案】53【解析】不妨设F 1,F 2分别是左、右焦点,椭圆的长半轴为a 1,双曲线的实半轴为a 2,P为椭圆与双曲线在第一象限内的交点,则根据椭圆和双曲线的定义可得⎩⎪⎨⎪⎧PF 1+PF 2=2a 1,PF 1-PF 2=2a 2,解得⎩⎪⎨⎪⎧PF 1=a 1+a 2,PF 2=a 1-a 2.因为PF 1⊥PF 2,所以PF 21+PF 22=F 1F 22,即(a 1+a 2)2+(a 1-a 2)2=(2c )2,化简得a 21+a 22=2c 2,所以⎝⎛⎭⎫a 1c 2+⎝⎛⎭⎫a 2c 2=2,即1e 21+1e 22=2,又因为e 2=3e 1,所以e 21=59,故e 1=53.。

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

解析几何04 椭圆及其性质一、具体目标:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.能处理与椭圆有关的问题.二、知识概述:1. 椭圆方程的第一定义:一个动点到两个定点的距离为一个常数(大于两定点之间的距离)则动点的轨迹就是椭圆.几何表示:()121222PF PF a a F F +=>.当()121222PF PF a a F F +=<无轨迹;当()121222=PF PF a a F F +=,以12,F F 为端点的线段.⑴①椭圆的标准方程:中心在原点,焦点在x 轴上:()222210x y a b a b +=>>.中心在原点,焦点在轴上:()222210y x a b a b+=>>.②一般方程:()2210,0Ax By A B +=>>.③椭圆的标准参数方程:的参数方程为(一象限应是属于02πθ<<).⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长. ③焦点:或.④焦距:.⑤准线:或.⑥离心率:()01c e e a=<<.⑦焦点半径:i. 设为椭圆()222210x y a b a b+=>>上的一点,为左、右焦点,则 y 12222=+b y a x ⎩⎨⎧==θθsin cos b y a x θ),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2221,2b a c c F F -==c a x 2±=c a y 2±=),(00y x P 21,F F 【考点讲解】⇒-=+=0201,ex a PF ex a PF由椭圆方程的第二定义可以推出.ii.设为椭圆()222210x y a b b a+=>>上的一点,为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:()210000a PF e x a ex x c ⎛⎫=+=+< ⎪⎝⎭()220000a PF e x ex a x c ⎛⎫=-=-> ⎪⎝⎭归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆()222210x y a b a b+=>>的离心率是,方程是大于0的参数,0a b >>的离心率也是 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.(6)椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 对称轴:坐标轴 对称中心:原点 A (-a,0),A (a,0) A (0,-a ),A (0,a ) ),(00y x P 21,F F →)sin ,cos (θθb a N ),(2222a b c a b d -=),(2ab c )(22b a c a c e -==tt b y a x (2222=+ace =12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb a PF PF 221=+2cot 2θ⋅b ⇒-=+=0201,ey a PF ey a PF1.【2019年高考全国Ⅰ卷】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【解析】本题考查椭圆标准方程及其简单性质.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n nn +-⋅⋅⋅=,解得2n =. 22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得【真题分析】223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【答案】B2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .8【解析】本题主要考查抛物线与椭圆的几何性质.因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y pp +=的一个焦点,所以23()2pp p -=,解得8p =,故选D . 【答案】D3.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【解析】本题考查椭圆的标准方程与几何性质.椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B. 【答案】B4.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3【解析】本题主要考查椭圆的方程及离心率.由题可得2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率2e ==,故选C . 【答案】C5.【2018年高考全国Ⅰ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F∠=︒,则C的离心率为()A.312-B.23-C.312-D.31-【解析】本题主要考查椭圆的定义和简单的几何性质.在12F PF△中,122190,60F PF PF F∠=∠=︒o,设2PF m=,则12122,c F F m PF===,又由椭圆定义可知1221)a PF PF m=+=,则212c cea a====,故选D.【答案】D6.【2018年高考全国Ⅱ理数】已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左、右焦点,A是C的左顶点,点P在过A且斜率为3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.14【解析】因为12PF F△为等腰三角形,12120F F P∠=︒,所以212||2||PF F F c==,由AP的斜率为6可得2tan6PAF∠=,所以2sin PAF∠=,2cos PAF∠=,由正弦定理得2222sinsinPF PAFAF APF∠=∠,所以2225sin()3ca c PAF==+-∠,所以4a c=,14e=,故选D.【答案】D7.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:2213x ym+=长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1][9,)+∞U B.[9,)+∞U C.(0,1][4,)+∞U D.[4,)+∞U【解析】本题考查的是以椭圆知识为背景的求参数范围的问题.解答问题时要利用条件确定ba,的关系,要借助题设条件ο120=∠AMB 转化为360tan =≥οba,简化求解过程. 当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60a b ≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,故选A . 【答案】A8.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用.方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PFk ==9.【2019年高考全国Ⅲ卷】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【解析】本题考查椭圆标准方程及其简单性质,解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y,22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【答案】(10.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 【解析】本题主要考查利用椭圆的性质来求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题, (1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,① 222x y c +=,② 22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥存在满足条件的点P .所以4b =,a的取值范围为)+∞. 【答案】(11;(2)4b =,a的取值范围为)+∞.11.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =.所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c +=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t . 因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【答案】(1)12;(2)2211612x y +=.12.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率. 【解析】主要考查椭圆的标准方程和几何性质、直线方程等基础知识. (1)设椭圆的半焦距为c,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =. 所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P py k x k -=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而5k =±.所以,直线PB的斜率为5或5-. 【答案】(1)22154x y +=;(2)230或230-. 13.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题.(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =. 记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ u k =+,221||uk k PG +=,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.1.【2017年高考浙江卷】椭圆22194x y +=的离心率是( )A B C .23 D .59【解析】椭圆22194x y +=的离心率e ==,故选B . 【答案】B2.【2017年高考全国Ⅲ】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,【模拟考场】直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A . 【答案】A3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 【解析】 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.【答案】 A4.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=, 所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值. 【答案】55.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1c a ==.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,所以222πtan 33n m ==,所以222222234m n m m e m m ++===,所以2e =.1 26.【2016北京理】已知椭圆C :22221+=x y a b(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,△OAB 的面积为1.(I )求椭圆C 的方程;(II )设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N . 求证:BM AN ⋅为定值.【分析】(I)根据离心率为2,即2=c a ,△OAB 的面积为1,即121=ab ,椭圆中222c b a +=列方程组进行求解;(II )根据已知条件分别求出BM AN ,的值,求其乘积为定值.【解析】(I )由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (II )由(I )知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N .所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.7.已知点M 是圆心为E的圆(2216x y ++=上的动点,点)F,线段MF 的垂直平分线交EM于点P .(1)求动点P 的轨迹C 的方程;(2)矩形ABCD 的边所在直线与曲线C 均相切,设矩形ABCD 的面积为S ,求S 的取值范围.【分析】1)利用定义法求椭圆的轨迹方程;(2)设AB 的方程为1y k x m =+, CD 的方程为1y k x m =-,直线AB 与CD 间的距离为1d =,直线BC 与AD 间的距离为2d =,S =S 的范围.【解析】(1)依题PM PF =,所以4PE PF PE PM ME +=+== (为定值),EF =>所以点P 的轨迹是以,E F为焦点的椭圆,其中24,2a c ==所以P 点轨迹C 的方程是2214x y += (2)①当矩形的边与坐标轴垂直或平行时,易得8S =;②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,设AB 的方程为1y k x m =+, BC 的方程为2y k x n =+,则CD 的方程为1y k x m =-, AD 的方程为2y k x n =-,其中121k k ⋅=-,直线AB 与CD 间的距离为1d ==,同理直线BC 与AD 间的距离为2d ==()12*S d d =⋅=L2222211111{ 21044x y k x k mx m y k x m+=⎛⎫⇒+++-= ⎪⎝⎭=+,因为直线AB 与椭圆相切,所以221410k m ∆=+-=,所以2141m k =+,同理2241n k =+,所以 S ===44==212112k k +≥ (当且仅当11k =±时,不等式取等号),所以4S <≤810S <≤, 由①②可知, 810S ≤≤.【答案】(1) 2214x y +=;(2) 810S ≤≤.。

椭圆标准方程及几何性质

椭圆标准方程及几何性质

椭圆的离心率
离心率是描述椭圆扁平程度的量,用 $e$表示。
VS
离心率定义为$e = frac{c}{a}$,其中 $c$是焦距,$a$是长轴半径。
03
椭圆的参数方程
参数方程的定义
参数方程
通过引入参数,将椭圆上的点与一组有序数对(参数)关联起来,表示椭圆上 的点的一种方法。
参数方程的一般形式
x=a*cos⁡(t)x = a cos(t)x=a∗cos(t) 和 y=b*sin⁡(t)y = b sin(t)y=b∗sin(t),其中 (a,b) 是椭圆的长短轴长度,t是参数。
通过极坐标方程,可以方便地解决与椭圆相关的几何问题,例如求 交点、判断点是否在椭圆上等。
05
椭圆的焦点三角形
焦点三角形的性质
焦点三角形是等腰三角形
01
由于椭圆上任意一点到两焦点的距离之和为常数,因此焦点三
角形是等腰三角形。
顶角为直角
02
由于椭圆上任意一点到两焦点的距离之差与到另一焦点的距离
之比为常数,因此顶角为直角。
当长短轴长度一定时,顶角越大,焦 点三角形面积越大。
焦点三角形的周长
01
02
03
周长公式
焦点三角形的周长公式为 (P = 2a + 2c),其中 (a) 为长轴长度,(c) 为焦距。
周长与长短轴关系
当长短轴长度一定时,离 心率越大,焦点三角形周 长越大。
周长与离心率关系
当长短轴长度一定时,长 短轴长度越接近,焦点三 角形周长越小。
THANKS
感谢观看
参数方程的应用
简化计算
在解决与椭圆相关的数学问题时,使用参数方程可以简化计算过程,特别是涉及到三角函数的问题。

椭圆方程高考知识点

椭圆方程高考知识点

椭圆方程高考知识点椭圆是解析几何中的一个重要概念,而椭圆方程作为椭圆研究的基础,也是高考数学中的一个重要知识点。

本文将对椭圆方程的定义、性质以及解题方法进行详细介绍,帮助学生更好地掌握这一知识点。

一、椭圆方程的定义椭圆方程是二次曲线方程的一种形式,以一般式表示为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$其中a和b分别代表椭圆在x轴和y轴上的半轴长。

根据a和b的大小,我们可以得到不同形态的椭圆:当a>b时,椭圆的长轴平行于x 轴;当a<b时,椭圆的长轴平行于y轴;当a=b时,椭圆为圆形。

二、椭圆方程的性质1. 椭圆的焦点和直径椭圆有两个焦点F1和F2,满足距离定理:对于椭圆上的任意一点P,FP1+FP2=2a。

此外,椭圆的两条相互垂直的直径称为主轴,其中长的一条为长轴,短的一条为短轴,且长轴的长度为2a,短轴的长度为2b。

2. 椭圆的离心率椭圆的离心率e定义为焦点与半直轴的比值,即e=c/a(c为焦点到原点的距离)。

离心率决定了椭圆的形状,当e=0时,椭圆退化为一个点;当e<1时,椭圆为实心椭圆;当e=1时,椭圆为抛物线;当e>1时,椭圆为双曲线。

3. 椭圆的标准方程椭圆方程可以根据其焦点和长轴、短轴的位置得到不同的标准方程。

例如,当椭圆的中心位于原点,长轴平行于x轴时,其标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$如果椭圆的中心不在原点,可以通过平移变换将其化为标准方程。

三、椭圆方程的解题方法1. 确定椭圆的性质和方程形式在解题过程中,首先需要根据题目给出的条件,确定椭圆的性质和方程形式。

例如,判断椭圆的长短轴、焦点位置和离心率大小,进而确定合适的计算方法。

2. 利用椭圆的性质解题在解题过程中,可以根据椭圆的性质进行分析和计算。

例如,利用椭圆的离心率和焦点位置,可以计算椭圆的长轴、短轴和焦点坐标等信息,从而进一步求解问题。

椭圆及其性质(二)

椭圆及其性质(二)

3-1 C. 2
D. 3-1
P
【解析】 由题设知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,

F1
o

F2
x
所以|PF2|=c,|PF1|= 3c.由椭圆的定义得|PF1|+|PF2|=2a,即 3c+c=2a,
所以( 3+1)c=2a,故椭圆 C 的离心率 e=ac= 32+1= 3-1.故选 D.
b2 所以 xP=c,将 xP=c 代入椭圆方程得 yP=ba2,即|PF|=ba2,则 tan∠PAF=||APFF||=a+a c=12,
结合 b2=a2-c2,整理得 2c2+ac-a2=0,两边同时除以 a2
得 2e2+e-1=0,解得 e=21或 e=-1(舍去). 故选 D.
b2 1 a2 ac 2b2
aac 2
上一页
返回导航
下一页
第二部分 专题五 解析几何
7
例 2.(1)已知椭圆 C:xa22+by22=1(a>b>0)的右焦点为 F,直线 l:2x-y=0 交椭圆 C 于 A,B 两点,且
|AF|+|BF|=6,若点 F 到直线 l 的距离不小于 2,则椭圆 C 的离心率 e 的取值范围是(
B.( 2-1,1)
C.(0, 3-1)
D.( 3-1,1)
解析:选 B.由题意得 F1(-c,0),F2(c,0),A-c,ba2,B-c,-ba2.
A
y
因为△ABF2 是锐角三角形,所以∠AF2F1<45°,所以 tan∠AF2F1<1,
b2 即2ac<1.整理,得 b2<2ac,所以 a2-c2<2ac.两边同时除以 a2 并整理,
的面积是( C )

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。

两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。

椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。

这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。

该性质主要用于求最值、轨迹检验等问题。

椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。

长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。

椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。

当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。

椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。

二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。

1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。

高二数学椭圆练习题推荐

高二数学椭圆练习题推荐

高二数学椭圆练习题推荐一、简介椭圆是解析几何中的一种重要图形,具有广泛的应用领域。

为了帮助高二学生更好地理解和掌握椭圆的相关知识,以下是一些针对椭圆的练习题推荐。

二、椭圆的基本性质1. 练习题一:已知椭圆的长轴长为8,短轴长为6,求该椭圆的离心率。

2. 练习题二:设椭圆的长轴长为10,离心率为0.6,求该椭圆的短轴长。

三、椭圆的方程与图像1. 练习题三:已知椭圆的焦点为F1(2,0)和F2(-2,0),离心率为2/3,求该椭圆的方程。

2. 练习题四:已知椭圆的焦点为F1(0,4)和F2(0,-4),过点A(6,0)的直线切这个椭圆,求切点的坐标。

四、椭圆的参数方程1. 练习题五:已知椭圆的参数方程为x=2cosθ,y=3sinθ,求该椭圆的面积。

2. 练习题六:给定椭圆C:x^2/16+y^2/9=1,求椭圆C上椭圆x^2/4+y^2/3=1和x^2/9+y^2/4=1的公共弦的值。

五、椭圆的应用1. 练习题七:一个邮局位于椭圆x^2/16+y^2/9=1的foci上,汽车只能沿着椭圆的路径行驶,求汽车从椭圆上离邮局最近的点行驶到椭圆上离邮局最远的点所需要的最短时间。

2. 练习题八:某游乐园的大草坪为椭圆形,已知椭圆的离心率为4/5,大草坪的长轴为60m,游乐园计划在椭圆的一个焦点处建立一个观景台,该焦点到椭圆的长轴的距离为多少?六、总结通过解答以上练习题,学生们可以巩固和加深对椭圆的理解,并且更熟练地运用椭圆的相关知识解决实际问题。

建议学生们在课后认真练习这些题目,以提高数学解题能力和应用能力。

同时,学生们还可以寻找更多相关的练习题来进一步拓展对椭圆的认识。

以上是关于高二数学椭圆练习题的推荐,希望对学生们的学习有所帮助,加深对椭圆知识的理解与掌握。

通过不断的练习和思考,相信学生们能够在椭圆这一知识点上取得更好的成绩。

高三数学专题训练- 椭圆的定义、标准方程及性质

高三数学专题训练- 椭圆的定义、标准方程及性质

高三数学专题练习30 椭圆的定义、标准方程及性质小题基础练○30一、选择题1.椭圆x 24+y 2=1的离心率为( ) A.12 B.32C.52 D .2 答案:B解析:由题意得a =2,b =1,则c =3,所以椭圆的离心率e =c a =32,故选B.2.[2019·佛山模拟]若椭圆mx 2+ny 2=1的离心率为12,则m n =( )A.34B.43C.32或233D.34或43 答案:D解析:若焦点在x 轴上,则方程化为x 21m +y 21n =1,依题意得1m -1n 1m=14,所以m n =34;若焦点在y 轴上,则方程化为y 21n +x 21m=1,同理可得m n =43.所以所求值为34或43.故选D.3.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2答案:B解析:因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.故选B.4.[2018·全国卷Ⅱ]已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3C.3-12 D.3-1 答案:D解析:在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D.5.[2019·河南豫北重点中学联考]已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△P AB 的面积为( )A .2 B.24 C.12 D .1 答案:D解析:由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △P AB =12×2a ×22=1,故选D.6.[2019·河南安阳模拟]已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1→·(OF1→+OP →)=0(O为坐标原点).若|PF1→|=2|PF 2→|,则椭圆的离心率为( ) A.6- 3 B.6-32C.6- 5D.6-52 答案:A解析:以OF 1,OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由PF 1→·(OF 1→+OP →)=0知此平行四边形的对角线互相垂直,则此平行四边形为菱形,∴|OP |=|OF 1|,∴△F 1PF 2是直角三角形,即PF 1⊥PF 2.设|PF 2|=x ,则⎩⎪⎨⎪⎧2x +x =2a ,(2x )2+x 2=(2c )2,∴⎩⎪⎨⎪⎧a =2+12x ,c =32x ,∴e =c a =32+1=6-3,故选A.7.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3C .6D .8 答案:C解析:由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x+3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP →取得最大值6.故选C.8.[2019·黑龙江大庆模拟]已知直线l :y =kx 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)交于A ,B 两点,其中右焦点F 的坐标为(c,0),且AF 与BF 垂直,则椭圆C 的离心率的取值范围为( )A.⎣⎢⎡⎭⎪⎫22,1B.⎝⎛⎦⎥⎤0,22C.⎝⎛⎭⎪⎫22,1 D.⎝⎛⎭⎪⎫0,22 答案:C解析:由AF 与BF 垂直,运用直角三角形斜边的中线即为斜边的一半,可得|OA |=|OF |=c ,由|OA |>b ,即c >b ,可得c 2>b 2=a 2-c 2,即c 2>12a 2,可得22<e <1.故选C.二、非选择题9.[2019·河南开封模拟]如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点.线段PF 的垂直平分线和半径PE 相交于Q .则动点Q 的轨迹Γ的方程为________.答案:x 24+y 2=1解析:连接QF ,因为Q 在线段PF 的垂直平分线上,所以|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4.又|EF |=23<4,得Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆即x 24+y 2=1.10.[2019·金华模拟]如果方程x 2+ky 2=2表示焦点在x 轴上,且焦距为3的椭圆,则椭圆的短轴长为________.答案: 5解析:方程x 2+ky 2=2可化为x 22+y 22k=1,则⎝ ⎛⎭⎪⎫322+2k =2⇒2k =54,∴短轴长为2×52= 5.11.[2019·陕西检测]已知P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是其左、右焦点,∠F 1PF 2取最大值时cos ∠F 1PF 2=13,则椭圆的离心率为________.答案:33解析:易知∠F 1PF 2取最大值时,点P 为椭圆x 2a 2+y 2b 2=1与y轴的交点,由余弦定理及椭圆的定义得2a 2-2a23=4c 2,即a =3c ,所以椭圆的离心率e =c a =33.12.[2019·“超级全能生”联考]已知椭圆C :x 28+y 22=1与圆M :x 2+y 2+22x +2-r 2=0(0<r <2),过椭圆C 的上顶点P 作圆M 的两条切线分别与椭圆C 相交于A ,B 两点(不同于P 点),则直线P A 与直线PB 的斜率之积等于________.答案:1解析:由题可得,圆心为M (-2,0),P (0,2).设切线方程为y =kx + 2.由点到直线的距离公式得,d =|-2k +2|1+k2=r ,化简得(2-r 2)k 2-4k +(2-r 2)=0,则k 1k 2=1.课时增分练○30一、选择题 1.[2019·河北省五校联考]以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2 答案:D解析:设a ,b ,c 分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,12×2cb =1⇒bc =1,2a =2b 2+c 2≥22bc =22,当且仅当b =c =1时,等号成立.故选D.2.[2019·深圳模拟]过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1B.x 210+y 215=1 C.x 215+y 210=1 D.x 210+y 25=1答案:C解析:椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2a 2+y 2b 2=1,可得9a 2+4b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求的椭圆方程为x 215+y210=1.故选C.3.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 答案:A解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12, 又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12得a 2=8,b 2=6,故椭圆方程为x 28+y26=1.故选A.4.[2018·全国卷Ⅱ]已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14 答案:D解析:如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2,tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14. 故选D. 5.[2019·广西桂林柳州联考]已知点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点.若PF 1⊥PF 2,tan ∠PF 2F 1=2,则椭圆的离心率e 为( )A.53B.13C.23D.12 答案:A解析:∵点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,PF 1⊥PF 2,tan ∠PF 2F 1=2,∴|PF 1||PF 2|=2.设|PF 2|=x ,则|PF 1|=2x ,由椭圆定义知x +2x =2a ,∴x =2a 3,∴|PF 2|=2a3,则|PF 1|=4a 3.由勾股定理知|PF 2|2+|PF 1|2=|F 1F 2|2,解得c =53a ,∴e =c a =53.故选A.6.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为 ( )A .6B .5C .4D .3 答案:A解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.故选A.7.[2019·贵州遵义联考]已知m 是两个数2,8的等比中项,则圆锥曲线x 2+y2m =1的离心率为( )A.32或52B.32或 5C.32 D. 5 答案:B解析:由题意得m 2=16,解得m =4或m =-4.当m =4时,曲线方程为x 2+y 24=1,故其离心率e 1=c a = 1-b 2a 2= 1-14=32;当m =-4时,曲线方程为x 2-y 24=1,故其离心率e 2=c a = 1+b 2a 2= 1+4= 5.所以曲线的离心率为32或 5.故选B.8.若椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2有四个交点,其中c 为椭圆的半焦距,则椭圆的离心率e 的取值范围为( )A.⎝ ⎛⎭⎪⎫55,35B.⎝⎛⎭⎪⎫0,25C.⎝ ⎛⎭⎪⎫25,35D.⎝ ⎛⎭⎪⎫35,55答案:A解析:由题意可知,椭圆的上、下顶点在圆内,左、右顶点在圆外,则⎩⎨⎧a >b2+c ,b <b2+c ,整理得⎩⎪⎨⎪⎧(a -c )2>14(a 2-c 2),a 2-c 2<2c ,解得55<e <35.故选A.二、非选择题9.[2019·铜川模拟]已知椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆交于点A 、B ,当△F AB 的周长最大时,△F AB 的面积是________.答案:3 解析:如图,设椭圆的右焦点为E ,连接AE 、BE .由椭圆的定义得,△F AB 的周长为|AB |+|AF |+|BF |=|AB |+(2a -|AE |)+(2a -|BE |)=4a +|AB |-|AE |-|BE |.∵|AE |+|BE |≥|AB |,∴|AB |-|AE |-|BE |≤0,∴|AB |+|AF |+|BF |=4a +|AB |-|AE |-|BE |≤4a .当直线AB 过点E 时取等号,此时直线x =m =c =1,把x =1代入椭圆x 24+y 23=1得y =±32,∴|AB |=3.∴当△F AB 的周长最大时,△F AB的面积是12×3×|EF |=12×3×2=3.10.[2019·辽宁沈阳东北育才学校月考]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A ,B 是C 的长轴的两个端点,点M 是C 上的一点,满足∠MAB =30°,∠MBA =45°.设椭圆C 的离心率为e ,则e 2=________.答案:1-33 解析:由椭圆的对称性,设M (x 0,y 0),y 0>0,A (-a,0),B (a,0).因为∠MAB =30°,∠MBA =45°,所以k BM =y 0x 0-a =-1,k AM =y 0x 0+a=33.又因为x 20a 2+y 20b 2=1,三等式联立消去x 0,y 0可得b 2a 2=33=1-e 2,所以e 2=1-33.11.[2019·云南昆明一中月考]已知中心在原点O ,焦点在x轴上的椭圆E 过点C (0,1),离心率为22.(1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于A ,B 两点,若△OAB 的面积为23,求直线l 的方程.解析:(1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由已知得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2,b 2=1,所以椭圆E 的方程为x 22+y 2=1.(2)由已知,直线l 过左焦点F (-1,0).当直线l 与x 轴垂直时,A ⎝ ⎛⎭⎪⎫-1,-22,B ⎝⎛⎭⎪⎫-1,22,此时|AB |=2,则S △OAB =12×2×1=22,不满足条件. 当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),A (x 1,y 2),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0, 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.因为S △OAB =12|OF |·|y 1-y 2|=12|y 1-y 2|,由已知S △OAB =23得|y 1-y 2|=43.11因为y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =k ·-4k 21+2k 2+2k =2k 1+2k 2, y 1y 2=k (x 1+1)·k (x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-k 21+2k 2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=4k 2(1+2k 2)2+4k 21+2k 2=43,所以k 4+k 2-2=0,解得k =±1,所以直线l 的方程为x -y +1=0或x +y +1=0.。

椭圆的标准方程与性质(有答案)

椭圆的标准方程与性质(有答案)

椭圆的标准方程与性质1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:2.2第1课时 椭圆及其标准方程一、选择题1.平面上到点A (-5,0)、B (5,0)距离之和为10的点的轨迹是( ) A .椭圆 B .圆 C .线段 D .轨迹不存在 2.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A .(±a -b ,0)B .(±b -a ,0)C .(0,±a -b )D .(0,±b -a )3.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977 D.944.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点P 的纵坐标是( )A .±34B .±22C .±32D .±345.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( )A.32 B.3 C.72D .4 6.(09·陕西理)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .208.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点F 2构成△ABF 2的周长是( )A .2B .4 C.2 D .2 29.已知椭圆的方程为x 216+y 2m 2=1,焦点在x 轴上,则m 的取值范围是( )A .-4≤m ≤4B .-4<m <4且m ≠0C .m >4或m <-4D .0<m <410.若△ABC 的两个顶点坐标为A (-4,0),B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 二、填空题11.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=______.12.已知A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为____________.13.(08·浙江)已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.14.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.三、解答题15.求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,且经过两个点(0,2)和(1,0). (2)坐标轴为对称轴,并且经过两点A (0,2),B (12,3)16.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.17.已知m 为常数且m >0,求证:不论b 为怎样的正实数,椭圆x 2b 2+m +y 2b 2=1的焦点不变.18.在面积为1的△PMN 中,tan M =12,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P (x 0,y 0)(y 0>0)的椭圆方程.2.2第2课时 椭圆的简单几何性质一、选择题1.将椭圆C 1∶2x 2+y 2=4上的每一点的纵坐标变为原来的一半,而横坐标不变,得一新椭圆C 2,则C 2与C 1有( )A .相等的短轴长B .相等的焦距C .相等的离心率D .相等的长轴长2.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( ) A.14 B.12 C.22 D.323.(2010·广东文,7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.154.已知椭圆2x 2+y 2=2的两个焦点为F 1,F 2,且B 为短轴的一个端点,则△F 1BF 2的外接圆方程为( )A .x 2+y 2=1B .(x -1)2+y 2=4C .x 2+y 2=4D .x 2+(y -1)2=45.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是( ) A .[6,10]B .[6,8]C .[8,10]D .[16,20]6.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k =1 (0<k <9)有( )A .等长的长轴B .相等的焦距C .相等的离心率D .等长的短轴7.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为( ) A.22 B.32 C.53 D.638.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为( )A.x 24+y 26=1B.x 26+y 24=1C.x 236+y 232=1或x 232+y 236=1D.x 236+y 232=1 9.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则( )A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 10.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b2=k (k >0)具有( )A .相同的长轴B .相同的焦点C .相同的顶点D .相同的离心率 二、填空题11.(2009·广东理)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.12.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.13.椭圆x 2a 2+y 2b 2=1上一点到两焦点的距离分别为d 1、d 2,焦距为2c ,若d 1、2c 、d 2成等差数列,则椭圆的离心率为________.14.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为________.三、解答题15.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.16.已知椭圆的中心在原点,它在x 轴上的一个焦点F 与短轴的两个端点B 1,B 2的连线互相垂直,且这个焦点与较近的长轴的端点A 的距离为10-5,求这个椭圆的方程.17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.求椭圆的方程.2.2第1课时 椭圆及其标准方程一、选择题 1.[答案] C[解析] 两定点距离等于定常数10,所以轨迹为线段. 2.[答案] D[解析] ax 2+by 2+ab =0可化为x 2-b +y 2-a=1∵a <b <0∴-a >-b >0,∴y 2-a +x 2-b =1,焦点在y 轴上,c =-a +b =b -a∴焦点坐标为(0,±b -a ) 3.[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.∴P 是横坐标为±7的椭圆上的点.(P 点不可能是直角顶点)设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.4.[答案] C[解析] 设F 1(-3,0)∴P 点横坐标为3代入x 212+y 23=1得y 23=1-34=14,y 2=34,∴y =±325.[答案] C[解析] 如图所示,由x 24+y 2=1知,F 1、F 2的坐标分别为(-3,0)、(3,0),即P 点的横坐标为x p=-3,代入椭圆方程得y p =12,∴|PF 1|=12,∵|PF 1|+|PF 2|=4.∴|PF 2|=4-|PF 1|=4-12=72.6. [答案] C[解析] 方程mx 2+ny 2=1表示焦点在y 轴上的椭圆⇔1n >1m>0⇔m >n >0.故选C. 7.[答案] C[解析] 2c =2,c =1,故有m -4=12或4-m =12,∴m =5或m =3且同时都大于0,故答案为C. 8.[答案] B[解析] ∵|AF 1|+|AF 2|=2,|BF 1|+|BF 2|=2,∴|AF 1|+|BF 1|+|AF 2|+|BF 2|=4, 即|AB |+|AF 2|+|BF 2|=4. 9.[答案] B[解析] 因为焦点在x 轴上,故m 2<16且m 2≠0,解得-4<m <4且m ≠0. 10.[答案] D[解析] 顶点C 满足|CA |+|CB |=10>|AB |,由椭圆定义知2a =10,2c =8 所以b 2=a 2-c 2=25-16=9, 故椭圆方程为x 225+y 29=1(y ≠0).二、填空题 11.[答案] 2 3[解析] 由题意S △POF 2=34c 2=3,则c 2=4⇒c =2 ∴P =(1,3)代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,求出b 2=2 3. 12. [答案] x 2+43y 2=1[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |,即动点P 的轨迹是以A 、F 为焦点的椭圆,a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.13. [答案] 8[解析] (|AF 1|+|AF 2|)+(|BF 1|+|BF 2|) =|AB |+|AF 2|+|BF 2|=4a =20,∴|AB |=8. 14.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35.三、解答题15.[解析] (1)由于椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0)由于椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1.⇒⎩⎪⎨⎪⎧a 2=4,b 2=1故所求椭圆的方程为y 24+x 2=1.(2)设所求椭圆的方程为x 2m +y 2n =1(m >0,n >0).∵椭圆过A (0,2),B (12,3),∴⎩⎨⎧0m +4n =1,14m +3n =1,解得⎩⎪⎨⎪⎧m =1,n =4.∴所求椭圆方程为x 2+y 24=1.16. [解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,代入得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1.当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1.故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.17. [解析] ∵m >0,b 2+m >b 2,∴焦点在x 轴上,由(b 2+m )-b 2=m ,得椭圆的焦点坐标为(±m ,0),由m 为常数,得椭圆的焦点不变.18. [解析] 以线段MN 的中点为原点,MN 所在直线为x 轴,建立坐标系. 设M (-c,0),N (c,0),c >0, 又P (x 0,y 0),y 0>0.由⎩⎪⎨⎪⎧y 0x 0-c=-2,y 0x 0+c =12,cy 0=1⇒⎩⎨⎧x 0=53c ,y 0=43c ,⇒P (523,23).设椭圆方程为x 2b 2+34+y 2b 2=1,又P 在椭圆上,故b 2(523)2+(b 2+34)(23)2=b 2(b 2+34),整理得3b 4-8b 2-3=0⇒b 2=3. 所以所求椭圆方程为x 2154+y 23=1.2.2第2课时 椭圆的简单几何性质一、选择题 1. [答案] C[解析] 把C 1的方程化为标准方程,即 C 1:x 22+y 24=1,从而得C 2:x 22+y 2=1.因此C 1的长轴在y 轴上,C 2的长轴在x 轴上.e 1=22=e 2,故离心率相等,选C. 2.[答案] D[解析] △ABF 1为等边三角形, ∴2b =a ,∴c 2=a 2-b 2=3b 2 ∴e =c a=c 2a 2=3b 24b 2=32. 3. [答案] B[解析] 本题考查了离心率的求法,这种题目主要是设法把条件转化为含a ,b ,c 的方程式,消去b 得到关于e 的方程,由题意得:4b =2(a +c )⇒4b 2=(a +c )2⇒3a 2-2ac -5c 2=0⇒5e 2+2e -3=0(两边都除以a 2)⇒e =35或e =-1(舍),故选B.4.[答案] A[解析] 椭圆的焦点为F 1(0,1),F 2(0,-1),短轴的一个端点为(1,0),于是△F 1BF 2的外接圆是以原点为圆心,以1为半径的圆,其方程为x 2+y 2=1.5.[答案] C[解析] 由题意知a =10,b =8,设椭圆上的点M (x 0,y 0),由椭圆的范围知,|x 0|≤a =10,|y 0|≤b =8,点M 到椭圆中心的距离d =x 20+y 20.又因为x 20100+y 2064=1,所以y 20=64(1-x 20100)=64-1624x 20,则d =x 20+64-1625x 20=925x 2+64,因为0≤x 20≤100,所以64≤925x 20+64≤100,所以8≤d ≤10. 6. [答案] B[解析] 依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=2(25-k )-(9-k )=8,故答案为B. 7.[答案] A[解析] 由题意知b =c ,∴a =2c ,∴e =c a =22.8.[答案] C[解析] ∵长轴长2a =12,∴a =6,又e =13∴c =2,∴b 2=a 2-c 2=32,∵焦点不定,∴方程为x236+y232=1或x232+y236=1.9. [答案] C[解析]∵点(3,2)在椭圆x2a2+y2b2=1上,∴由椭圆的对称性知,点(-3,2)、(3,-2)、(-3,-2)都在椭圆上,故选C.10. [答案] D[解析]椭圆x2a2+y2b2=1和x2a2+y2b2=k(k>0)中,不妨设a>b,椭圆x2a2+y2b2=1的离心率e1=a2-b2a,椭圆x2 a2k +y2b2k=1(k>0)的离心率e2=k a2-b2ka=a2-b2a.二、填空题11. [答案]x236+y29=1[解析]设椭圆G的标准方程为x2a2+y2b2=1(a>b>0),半焦距为c,则⎩⎪⎨⎪⎧2a=12ca=32,∴⎩⎪⎨⎪⎧a=6c=33,∴b2=a2-c2=36-27=9,∴椭圆G的方程为x236+y29=1.12. [答案]2120°[解析]依题知a=3,b=2,c=7,由椭圆定义得|PF1|+|PF2|=6,∵|PF1|=4,∴|PF2|=2. 又|PF1|=4,|PF2|=2,|F1F2|=27.在△F1PF2中,由余弦定理可得cos∠F1PF2=-12,∴∠F1PF2=120°.13. [答案]12[解析]由题意得4c=d1+d2=2a,∴e=ca=12.14. [答案]2b2a[解析]∵垂直于椭圆长轴的弦所在直线为x=±c,由⎩⎪⎨⎪⎧x=±cx2a2+y2b2=1,得y2=b4a2,∴|y|=b2a,故弦长为2b2a.三、解答题15. [解析] 椭圆方程可化为x 2m +y 2mm +3=1, ∵m -m m +3=m (m +2)m +3>0, ∴m >m m +3. 即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32得,m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1, ∴a =1,b =12,c =32. ∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0),F 2(32,0);四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12). 16. [解析] 由于椭圆中心在原点,焦点在x 轴上,可设其方程为x 2a 2+y 2b 2=1(a >b >0). 由椭圆的对称性知,|B 1F |=|B 2F |,又B 1F ⊥B 2F ,因此△B 1FB 2为等腰直角三角形,于是|OB 2|=|OF |,即b =c .又|F A |=10-5即a -c =10-5,且a 2+b 2=c 2.将以上三式联立,得方程组,⎩⎪⎨⎪⎧b =c a -c =10-5a 2=b 2+c 2解得⎩⎪⎨⎪⎧ a =10b =5 所求椭圆方程是x 210+y 25=1. 17. [解析] 由e =c a =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b . 由题意可知12×2a ×2b =4,即ab =2. 解方程组⎩⎪⎨⎪⎧ a =2b ,ab =2,得a =2,b =1, 所以椭圆的方程为x 24+y 2=1.。

第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第5节  第1课时  椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第五节椭圆第1课时椭圆的定义、标准方程及其简单几何性质1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于01常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的02焦点,两焦点间的距离叫做椭圆的03焦距.2.椭圆的标准方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围04-a≤x≤a且-b≤y≤b05-b≤x≤b且-a≤y≤a顶点06A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)07A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长为082b,长轴长为092a焦点10F1(-c,0),F2(c,0)11F1(0,-c),F2(0,c)焦距|F1F2|=122c对称性对称轴:13x轴和y轴,对称中心:14原点离心率e=ca(0<e<1)a,b,c的关系15a2=b2+c2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,S△F1PF2最大.(2)S△F1PF2=12|PF1|·|PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2 m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)x2 a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.()答案(1)×(2)√(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.1T3改编)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C .短轴长为14D .离心率为32答案D解析把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34,则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32.故选D.(2)(人教A 选择性必修第一册习题3.1T5改编)已知点P 为椭圆x 216+y 29=1上的一点,B 1,B 2分别为椭圆的上、下顶点,若△PB 1B 2的面积为6,则满足条件的点P 的个数为()A .0B .2C .4D .6答案C解析在椭圆x 216+y 29=1中,a =4,b =3,则短轴|B 1B 2|=2b =6,设椭圆上点P 的坐标为(m ,n ),由△PB 1B 2的面积为6,得12|B 1B 2|·|m |=6,解得m =±2,将m =±2代入椭圆方程,得n =±332,所以符合题意的点P ,22,共4个满足条件的点P .故选C.(3)(人教A 选择性必修第一册习题3.1T1改编)已知点M (x ,y )在运动过程中,总满足关系式x 2+(y -2)2+x 2+(y +2)2=8,则点M 的轨迹方程为________________.答案x 212+y 216=1解析因为x 2+(y -2)2+x 2+(y +2)2=8>4,所以点M 的轨迹是以(0,2),(0,-2)为焦点的椭圆,设椭圆方程为x 2b 2+y 2a 2=1(a >b >0),由题意得2a =8,即a =4,则b 2=a 2-c 2=12,所以点M 的轨迹方程为x 212+y 216=1.(4)(人教A 选择性必修第一册习题3.1T4改编)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为________________(写出满足题意的一个椭圆方程即可).答案x 24+y 23=1(答案不唯一)解析因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以ca=12,所以c 2a 2=a 2-b 2a2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).考点探究——提素养考点一椭圆的定义及其应用(多考向探究)考向1利用椭圆的定义求轨迹方程例1(2024·山东烟台一中质检)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程为________.答案x 29+y 25=1解析点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,且2a =6,2c =4,故所求的轨迹方程为x 29+y 25=1.【通性通法】在求动点的轨迹时,如果能够判断动点的轨迹满足椭圆的定义,那么可以直接求解其轨迹方程.【巩固迁移】1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 的周长为16,则顶点C 的轨迹方程为()A .x 225+y 216=1(y ≠0)B .y 225+x 216=1(y ≠0)C .x 216+y 29=1(y ≠0)D .y 216+x 29=1(y ≠0)答案A解析由题意,知点C 到A ,B 两点的距离之和为10,故顶点C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.其方程为x 225+y 216=1.又A ,B ,C 三点不能共线,所以x 225+y 216=1(y ≠0).故选A.考向2利用椭圆的定义解决焦点三角形问题例2(1)如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案43解析因为a 2=3,所以a = 3.△ABC 的周长为|AC |+|AB |+|BC |=|AC |+|CF 2|+|AB |+|BF 2|=2a +2a =4a =43.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析解法一:由题意,知c =a 2-4.又∠F 1PF 2=60°,|PF 1|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1||PF 2|cos60°=4a 2-3|PF 1||PF 2|=4a 2-16,∴|PF 1||PF 2|=163,∴S △PF 1F 2=12|PF 1||PF 2|sin60°=12×163×32=433解法二:S △PF 1F 2=b 2tan ∠F 1PF 22=4tan30°=433.【通性通法】将定义和余弦定理结合使用可以解决焦点三角形的周长和面积问题.【巩固迁移】2.(2023·全国甲卷)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=()A .25B .302C .35D .352答案B解析解法一:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1||PF 2|=152,|PF 1|2+|PF 2|2=21,而PO →=12(PF 1→+PF 2→),所以|PO |=|PO →|=12|PF 1→+PF 2→|,即|PO →|=12|PF 1→+PF 2→|=12|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=1221+2×152×35=302.故选B.解法二:设∠F 1PF 2=2θ,0<θ<π2,所以S △PF 1F 2=b 2tan∠F 1PF 22=b 2tan θ,由cos ∠F 1PF 2=cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=35,解得tan θ=12.由椭圆的方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3,所以S △PF 1F 2=12|F 1F 2|×|y P |=12×23×|y P |=6×12,解得y 2P =3,所以x 2P ==92,因此|PO |=x 2P +y 2P =3+92=302.故选B.解法三:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1|2+|PF 2|2=21,由中线定理可知,(2|PO |)2+|F 1F 2|2=2(|PF 1|2+|PF 2|2)=42,易知|F 1F 2|=23,解得|PO |=302.故选B.考向3利用椭圆的定义求最值例3已知F 1,F 2是椭圆C :x 216+y 212=1的两个焦点,点M ,N 在C 上,若|MF 2|+|NF 2|=6,则|MF 1|·|NF 1|的最大值为()A .9B .20C .25D .30答案C解析根据椭圆的定义,得|MF 1|+|MF 2|=8,|NF 1|+|NF 2|=8,因为|MF 2|+|NF 2|=6,所以8-|MF 1|+8-|NF 1|=6,即|MF 1|+|NF 1|=10≥2|MF 1|·|NF 1|,当且仅当|MF 1|=|NF 1|=5时,等号成立,所以|MF 1|·|NF 1|≤25,则|MF 1|·|NF 1|的最大值为25.故选C.【通性通法】在椭圆中,结合|PF 1|+|PF 2|=2a ,运用基本不等式或三角形任意两边之和大于第三边可求最值.【巩固迁移】3.(2024·河北邯郸模拟)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|PA |+|PF |的最大值为________,最小值为________.答案6+26-2解析由题意知a =3,b =5,c =2,F (-2,0).设椭圆的右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2或最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.考点二椭圆的标准方程例4(1)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则椭圆C 的方程为()A .x 22+y 2=1B .x 23+y 22=1C .x 29+y 26=1D .x 25+y 24=1答案B解析设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义,得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 221.故选B.(2)(2024·山西大同模拟)过点(2,-3),且与椭圆x 24+y 23=1有相同离心率的椭圆的标准方程为________________.答案x 28+y 26=1或y 2253+x 2254=1解析椭圆x 24+y 23=1的离心率是e =12,当焦点在x 轴上时,设所求椭圆的标准方程是x 2a 2+y 2b2=1(a >b >0)=12,b 2+c 2,+3b 2=1,2=8,2=6,∴所求椭圆的标准方程为x 28+y 26=1;当焦点在y 轴上时,设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0)=12,b 2+c 2,+4b 2=1,2=253,2=254,∴所求椭圆的标准方程为y 2253+x 2254=1.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.【通性通法】1.求椭圆方程的常用方法(1)定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程.(2)待定系数法求椭圆标准方程的一般步骤注意:一定先判断椭圆的焦点位置,即先定型后定量.2.椭圆标准方程的两个应用(1)方程x 2a 2+y 2b 2=1(a >0,b >0)与x 2a 2+y 2b2=λ(a >0,b >0,λ>0)有相同的离心率.(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0).恰当选用椭圆系方程,可使运算更简便.【巩固迁移】4.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b>0)的两个焦点,若P |PF 1|+|PF 2|=4,则椭圆C 的方程为________________.答案x 24+y 23=1解析由|PF 1|+|PF 2|=4得2a =4,解得a=2.又P C :x 2a 2+y 2b2=1(a >b >0)上,所以1222+1,解得b=3,所以椭圆C的方程为x24+y23=1.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,则该椭圆的方程为________________.答案x29+y23=1解析设椭圆的方程为mx2+ny2=1(m>0,n>0,且m≠n).因为椭圆经过P1,P2两点,所以点P1,P2的坐标满足椭圆方程,m+n=1,m+2n=1,=19,=13.所以所求椭圆的方程为x29+y23=1.考点三椭圆的简单几何性质(多考向探究)考向1椭圆的长轴、短轴、焦距例5已知椭圆x225+y29=1与椭圆x225-k+y29-k=1(k<9,且k≠0),则两椭圆必定() A.有相等的长轴长B.有相等的焦距C.有相等的短轴长D.有相同的离心率答案B解析由椭圆x225+y29=1,知a=5,b=3,c=4,所以长轴长是10,短轴长是6,焦距是8.在椭圆x225-k+y29-k1(k<9,且k≠0)中,因为a1=25-k,b1=9-k,c1=4,所以其长轴长是225-k,短轴长是29-k,焦距是8.所以两椭圆有相等的焦距.故选B.【通性通法】求解与椭圆几何性质有关的问题时,要理清顶点、焦点、长轴长、短轴长、焦距等基本量的内在联系.【巩固迁移】6.若连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,则长轴长与短轴长之比为()A.2B.23C.233D.4答案C解析因为连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,所以a=2c,所以b2=a 2-c 2=3c 2,所以b =3c ,故2a 2b =a b =2c 3c =233,所以长轴长与短轴长之比为233.故选C.7.(2024·河北沧州统考期末)焦点在x 轴上的椭圆x 2a 2+y 23=1的长轴长为43,则其焦距为________.答案6解析由题意,得2a =43,所以a 2=12,c 2=a 2-b 2=12-3=9,解得c =3,故焦距2c =6.考向2椭圆的离心率例6(1)(2024·江苏镇江模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率为________.答案33解析由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x=c ,由椭圆的对称性,可设它与椭圆的交点为,因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,又|AF 1|=|BF 1|,则△AF 1B 为等边三角形.解法一:由|F 1F 2|=3|AF 2|,可知2c =3·b 2a ,即3b 2=2ac ,所以3(a 2-c 2)=2ac ,即3e 2+2e -3=0,解得e =33(e =-3舍去).解法二:由|AF 1|+|BF 1|+|AB |=4a ,可知|AF 1|=|BF 1|=|AB |=43a ,又|AF 1|sin60°=|F 1F 2|,所以43a ×322c ,解得c a =33,即e =33.解法三:由|AF 1|+|BF 1|+|AB |=4a ,可知|AB |=|AF 1|=|BF 1|=43a ,即2b 2a =43a ,即2a 2=3b 2,所以e =c 2a 2=1-b 2a 2=33.(2)(2024·广东七校联考)已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案解析根据椭圆的对称性,不妨设焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),设F 1(-c ,0),F 2(c ,0).解法一:设M (x 0,y 0),MF 1→·MF 2→=0⇒(-c -x 0,-y 0)·(c -x 0,-y 0)=0⇒x 20-c 2+y 20=0⇒y 20=c2-x 20,点M (x 0,y 0)在椭圆内部,有x 20a 2+y 20b 2<1⇒b 2x 20+a 2(c 2-x 20)-a 2b 2<0⇒x 20>2a 2-a 4c2,要想该不等式恒成立,只需2a 2-a 4c 2<0⇒2a 2c 2<a 4⇒2c 2<a 2⇒e =c a <22,而e >0⇒0<e <22,即椭圆离心解法二:由MF 1→·MF 2→=0,可知点M 在以F 1F 2为直径的圆上,即圆x 2+y 2=c 2在椭圆x 2a 2+y 2b 2=1(a >b >0)内部,所以c <b ,则c 2<b 2,即c 2<a 2-c 2,所以2c 2<a 2,即e 2<12,又e >0,所以0<e <22,【通性通法】求椭圆离心率的方法方法一直接求出a ,c ,利用离心率公式e =ca求解方法二由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解方法三构造a ,c 的齐次式,可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e注意:解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式.【巩固迁移】8.(2023·新课标Ⅰ卷)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A .233B .2C .3D .6答案A解析由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.9.(2024·广东六校联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是________.答案33,解析设F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2,得|PF 2|=|F 1F 2|,即2c ,得m 2=4c 2=-a 4c2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1,即椭圆离心率的取值范围是33,考向3与椭圆几何性质有关的最值(范围)问题例7(2024·石家庄质检)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案3解析由题意知,圆E 的圆心为E (1,0),半径为1.因为直线MN 与圆E 相切于点N ,所以NE ⊥MN ,且|NE |=1.又E (1,0)为椭圆C 的右焦点,所以2≤|ME |≤4,所以当|ME |=2时,|MN |取得最小值,又|MN |=|ME |2-|NE |2,所以|MN |min =22-12= 3.【通性通法】与椭圆有关的最值(范围)问题的求解策略【巩固迁移】10.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案4解析由题意,知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1.设点P 的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2,所以当x 0=-2时,PF →·PA →取得最大值4.课时作业一、单项选择题1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为()A .x 29+y 2=1B .y 29+x 25=1C .y 29+x 2=1D .x 29+y 25=1答案D解析由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.故选D.2.(2024·九省联考)椭圆x 2a 2+y 2=1(a >1)的离心率为12,则a =()A .233B .2C .3D .2答案A解析由题意得e =a 2-1a=12,解得a =233.故选A .3.(2024·河南信阳模拟)与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是()A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1答案B解析由9x 2+4y 2=36,可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b=25,a 2=25,所以所求椭圆方程为x 220+y 225=1.4.设e 是椭圆x 24+y 2k =1的离心率,且e k 的取值范围是()A .(0,3)BC .(0,3)D .(0,2)答案C解析当k >4时,c =k -4,由条件,知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件,知14<4-k4<1,解得0<k <3.故选C.5.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部,且与圆C 1内切,与圆C 2外切,则动圆的圆心M 的轨迹方程是()A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1答案D解析设动圆的圆心M (x ,y ),半径为r ,因为圆M 与圆C 1:(x -4)2+y 2=169内切,与圆C 2:(x +4)2+y 2=9外切,所以|MC 1|=13-r ,|MC 2|=3+r .因为|MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,知M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆,则a =8,c =4,所以b 2=82-42=48,动圆的圆心M 的轨迹方程为x 264+y 248=1.故选D.6.(2023·全国甲卷)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()A .1B .2C .4D .5答案B解析解法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan45°=1=12|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.故选B.解法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16,又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.7.(2023·甘肃兰州三模)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF周长的最大值为()A .4+5B .6C .25+2D .8答案D解析设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|,当A ,B ,F 1三点共线时,|AB |-|BF 1|-|AF 1|=0,当A ,B ,F 1三点不共线时,|AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8.8.(2024·安徽三市联考)已知椭圆C 的左、右焦点分别为F 1,F 2,P ,Q 为C 上两点,2PF 2→=3F 2Q →,若PF 1→⊥PF 2→,则C 的离心率为()A .35B .45C .135D .175答案D解析设|PF 2→|=3m ,则|QF 2→|=2m ,|PF 1→|=2a -3m ,|QF 1→|=2a -2m ,|PQ |=5m ,在△PQF 1中,得(2a -3m )2+25m 2=(2a -2m )2,即m =215a .因此|PF 2→|=25a ,|PF 1→|=85a ,|F 2F 1→|=2c ,在△PF 1F 2中,得6425a 2+425a 2=4c 2,故17a 2=25c 2,所以e =175.故选D.二、多项选择题9.对于曲线C :x 24-k +y 2k -1=1,下列说法中正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,-k >0,-1>0,-1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,-1>0,-k >0,-k >k -1,解得1<k <2.5,D 正确.故选CD.10.(2024·海口模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B两点,则()A .|AF |+|BF |为定值B .△ABF 周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为6答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |,∴|AF |+|BF |=|AF |+|AF ′|=6,为定值,A 正确;△ABF 的周长为|AB |+|AF |+|BF |,∵|AF |+|BF |为定值6,|AB |的取值范围是6),∴△周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,解得-332,又F (6,0),∴AF →·BF →=0,∴AF ⊥BF ,∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1),∴S △ABF=12×26×1=6,D 正确.故选ACD.三、填空题11.(2023·四川南充三诊)若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为________.答案14解析将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m ,b =1,所以1m=2,m =14.12.(2024·南昌模拟)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为________.答案x 28+y 24=1解析椭圆E 的中心在原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,c =22-2,=22,=22,=2,从而a 2=8,b 2=4,所以椭圆E 的方程为x 28+y 24=1.13.(2024·河南名校教研联盟押题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,AF 的延长线交C 于点B ,若|AF |∶|BF |=2∶1,则C 的离心率为________.答案33解析解法一:如图,设椭圆C 的右焦点为F ′,则|AF |=|AF ′|=a ,因为|AF |∶|BF |=2∶1,所以|BF |=a 2,所以|AB |=|AF |+|BF |=3a 2,又|BF |+|BF ′|=2a ,所以|BF ′|=2a -|BF |=3a2,由余弦定理可知cos ∠BAF ′=|AB |2+|AF ′|2-|BF ′|22|AB ||AF ′|=13,设O 为坐标原点,椭圆C 的焦距为2c ,则离心率e =ca =sin ∠OAF ′,因为∠BAF ′=2∠OAF ′,故cos ∠BAF ′=1-2sin 2∠OAF ′=1-2e 2,所以e =33.解法二:设B 在x 轴上的射影为D ,由于|AF |∶|BF |=2∶1,所以|BD |=|OA |2=b 2,|FD |=|OF |2=c 2,即-3c 2,将B 的坐标代入C 的方程,得9c 24a 2+b 24b 2=1,得e =33.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案[1,4]解析由已知,得2b =2,故b =1.∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32,∴a -c=2-3,又a 2-c 2=(a -c )(a +c )=b 2=1,∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1|·|PF 2|=2a|PF 1|(2a -|PF 1|)=4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].四、解答题15.(2024·辽宁阜新校考期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 1P C 上.(1)求椭圆C 的方程;(2)设点A (0,-1),点M 是椭圆C 上任意一点,求|MA |的最大值.解(1)因为P 3,P 4关于坐标轴对称,所以P 3,P 4必在椭圆C 上,有1a 2+34b 2=1,将点P 1(1,1)代入椭圆方程得1a 2+1b 2>1a 2+34b 2=1,所以P 1(1,1)不在椭圆C 上,P 2(0,1)在椭圆C 上,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)点A (0,-1)是椭圆C 的下顶点,设椭圆上的点M (x 0,y 0)(-1≤y 0≤1),则x 204+y 20=1,即x 20=4-4y 20,所以|MA |2=x 20+(y 0+1)2=4-4y 20+(y 0+1)2=-3y 20+2y 0+5=-0+163,又函数y =-+163在∞,+,所以当y 0=13时,|MA |2取到最大值,为163,故|MA |的最大值为433.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b .(1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的标准方程.解(1)由题意,得A (-a ,0),直线EF 2的方程为x +y =c ,因为A 到直线EF 2的距离为62b ,即|-a -c |12+12=62b ,所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =ca ,所以2e 2+e -1=0,解得e =12或e =-1(舍去),所以椭圆C 的离心率为12.(2)由(1)知离心率e =c a =12,即a =2c ,①因为∠F 1PF 2=60°,△PF 1F 2的面积为3,所以12|PF 1|·|PF 2|sin60°=3,所以|PF 1|·|PF 2|=4,1|+|PF 2|=2a ,1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=(2c )2,所以a 2-c 2=3,②联立①②,得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.17.(多选)(2023·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆CD .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17答案ACD解析由题意知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1,即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去),则椭圆C 的离心率e =ca<13+52=15+12=5-12,又0<e <1,所以椭圆C 所以C 正确;由PF 1→=F 1Q →可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确.故选ACD.18.(多选)(2023·辽宁大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是()A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线PA 1与直线PA 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案CD解析由椭圆方程,知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0,即∠F 1PF 2的最大值小于π2,B 错误;若P (x ′,y ′),则k P A 1=y ′x ′+4,k P A 2=y ′x ′-4,有k P A 1·k P A 2=y ′2x ′2-16,而x ′216+y ′29=1,所以-16y ′2=9(x ′2-16),即有k P A 1·k P A 2=-916,C 正确;若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27,故y ′=±2,代入椭圆方程得x ′=±453,D 正确.故选CD.19.(2023·河北邯郸二模)已知O 为坐标原点,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为B ,线段BF 的中垂线交C 于M ,N 两点,交y 轴于点P ,BP →=2PO →,△BMN 的周长为16,求椭圆C 的标准方程.解如图,由题意可得|BP |=23b ,|PO |=13b ,连接PF .由题意可知|BP |=|PF |,在Rt △POF 中,由勾股定理,得|PO |2+|OF |2=|PF |2,+c 2,整理得b 2=3c 2,所以a 2-c 2=3c 2,即a 2=4c 2,所以椭圆C 的离心率e =c a =12.在Rt △BOF 中,cos ∠BFO =|OF ||BF |=c a =12,所以∠BFO =60°.设直线MN 交x 轴于点F ′,交BF 于点H ,在Rt △HFF ′中,有|FF ′|=|HF |cos ∠BFO =a =2c ,所以F ′为椭圆C 的左焦点,又|MB |=|MF |,|NB |=|NF |,所以△BMN 的周长等于△FMN 的周长,又△FMN 的周长为4a ,所以4a =16,解得a =4.所以c =2,b 2=a 2-c 2=12.故椭圆C 的标准方程为x 216+y 212=1.20.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解(1)不妨设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c .在△F 1PF 2中,由余弦定理,得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2,所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|=a 2,当且仅当|PF 1|=|PF 2|时,等号成立,所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12.又因为0<e <1,所以椭圆的离心率的取值范围是12,(2)证明:由(1)可知|PF 1|·|PF 2|=43b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|sin60°=12×43b 2×32=33b 2,所以△F 1PF 2的面积只与椭圆的短轴长有关.。

椭圆的标准方程及性质

椭圆的标准方程及性质

椭圆的标准方程及性质1. 椭圆的两种定义:(1)平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M ={P | |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹).其中两定点F 1,F 2叫焦点,定点间的距离叫焦距.(2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M ={P | e dPF=,0<e <1的常数}.2. 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0).其中22b a c -=(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c ).其中22b a c -=3.椭圆一般方程两种标准方程可用统一形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B 当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上),已知椭圆上的两个点这种形式用起来更方便. 4.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同。

与椭圆12222=+b y a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解。

5.共离心率椭圆方程的椭圆标准方程共离心率,则e 相同。

与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为 ,6:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace 准线方程 ca x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=x y O F F PA AB 11121222M M K K7.性质:对于椭圆12222=+by a x (a >b >0)如下性质必须熟练掌握:1.范围;②对称轴、对称中心;③顶点;④焦点、焦距;⑤准线方程;⑥离心率. 焦半径c a PF c a PF -=+=min max,. 2.焦准距c b p 2=;两准线间的距离c a 22=;通径长22b a⨯.半通径.3.最大角()12122max F PF F B F ∠=∠4.8.点),(00y x P 与椭圆)0(12222>>=+b a by ax 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;9.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔10.弦长公式11.对椭圆方程22221x ya b +=作三角换元可得椭圆的参数方程:⎩⎨⎧θ=θ=sin cos b y a x ,θ为参数.12.有关圆锥曲线弦的中点和斜率问题可利用“点差法”及结论:13对椭圆:12222=+b x a y ,则k AB =2020a xb y -.第三章:直线与方程的知识点倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ?12k k =;(2)12l l ⊥?121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;….直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:0y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A BA B ⇔≠.两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-.这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d =。

备战2022年高考数学复习之解析几何知识讲解专练05 椭圆(原卷版)

备战2022年高考数学复习之解析几何知识讲解专练05 椭圆(原卷版)

专题05 椭圆一相关知识点1.椭圆的定义把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.(1)当2a>|F1F2|时,P点的集合是椭圆;(2)当2a=|F1F2|时,P点的集合是线段;(3)当2a<|F1F2|时,P点不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)x2b2+y2a2=1(a>b>0)图形性质范围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a 对称性对称轴:坐标轴,对称中心:(0,0)顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长轴A1A2的长为2a,短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca,e∈(0,1)a,b,c的关系c2=a2-b23.i.点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1.(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P(x0,y0)在椭圆外⇔x20a2+y20b2>1.ii.焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.r1=|PF1|,r2=|PF2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:(1)当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;(2)S =b 2ta n θ2=c |y 0|,当|y 0|=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3) S △PF 1F 2=12|PF 1||PF 2|·sin θ,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值为bc .(4)焦半径公式:|PF 1|=a +ex 0,|PF 2|=a -ex 0. (5)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ. (6)a -c ≤|PF 1|≤a +c .(7)焦点三角形的周长为2(a +c ). (8)过点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b2=1.(9)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边长,a 2=b 2+c 2. (10)已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . 4.椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =-b 2a 2,即k AB =-b 2x 0a 2y 0.5.弦长公式:直线与圆锥曲线相交所得的弦长 (1)|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2] =1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为 2a .题型一 椭圆的定义及其应用1.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为2.已知动点P (x ,y )的坐标满足x 2+(y +7)2+x 2+(y -7)2=16,则动点P 的轨迹方程为________.3.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆题型二 椭圆的标准方程类型一 利用椭圆定义求椭圆的标准方程1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为2.在△ABC 中,A (-4,0),B (4,0),△ABC 的周长是18,则顶点C 的轨迹方程是A.x 225+y 29=1(y ≠0) B .y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D .y 216+x 29=1(y ≠0)3.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为4.与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为_______.5.已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为7.已知A ⎝⎛⎭⎫-12,0,B 是圆⎝⎛⎭⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.8.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆G 上一点到两个焦点的距离之和为12,则椭圆G 的方程为9.已知点P 是圆F 1:(x +1)2+y 2=16上任意一点(F 1是圆心),点F 2与点F 1关于原点对称.线段PF 2的垂直平分线m 分别与PF 1,PF 2交于M ,N 两点.求点M 的轨迹C 的方程.类型二 利用待定系数法求椭圆标准方程1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为________.2.已知椭圆C 经过点A (2,3),且点F (2,0)为其右焦点,则椭圆C 的标准方程为____________.3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为4.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线y 2=16x 的焦点相同,离心率为63,则此椭圆的方程为________.5.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是6.已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是________________.7.过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.8.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为9.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为10.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝⎛⎭⎫-32,52,(3,5),则椭圆方程 为11.与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3)的椭圆方程为12.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为10,一个焦点的坐标是(-5,0),则椭圆的标准方程为________.13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为14.椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为15.已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点的椭圆的标准方程为________.16.已知中心在坐标原点的椭圆过点A (-3,0),且离心率e =53,则椭圆的标准方程为________.17.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过P (-5,4),则椭圆的方程为________.18.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为19.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的标准方程为20.设F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB是面积为43的等边三角形,则椭圆C 的方程为__________.21.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.22.如图,已知椭圆C 的中心为原点O ,F (-5,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=6,则椭圆C 的方程为23.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.题型三 椭圆的几何性质类型一 识别椭圆相关性质概念1.椭圆x 216+y 225=1的焦点坐标为2.已知椭圆的标准方程为x 2+y 210=1,则椭圆的焦点坐标为 3.椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于4.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________.5.曲线C 1:x 225+y 29=1与曲线C 2:x 225-k +y 29-k=1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等6.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为____________.7.椭圆x 29+y 24+k =1的离心率为45,则k 的值为8.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于9.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是10.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.类型二 求离心率的值(或范围)1.椭圆x 29+y 24=1的离心率是2.若椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为3.已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为________.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y3=1,若过C 的左焦点和下顶点的直线与直线l 平行,则椭圆C 的离心率为5.若椭圆x 24+y 2m =1上一点到两焦点的距离之和为m -3,则此椭圆的离心率为6.焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为7.若一个椭圆长轴的长、短轴的长和焦距成等比数列,则该椭圆的离心率是8.如图,F 1,F 2是双曲线C 1:x 2-y 28=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限内的交点,若|F 1F 2|=|F 1A |,则C 2的离心率是A.23B.45C.35D.259.已知F 是椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点,A 为右顶点,P 是椭圆上的一点,PF ⊥x 轴,若|PF |=34|AF |,则该椭圆的离心率是________.10.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是11.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为12.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为13.P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠P AF =12,则椭圆的离心率e 为14.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为15.如图,底面直径为12 cm 的圆柱被与底面成30°角的平面所截,截口是一个椭圆,则这个椭圆的离心率为16.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay+2ab =0相切,则C 的离心率为17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin B sin C=________.18.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM ―→·NF ―→=0,则椭圆的离心率为19.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为20.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为21.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为22.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,AF →=2FB →.则椭圆C 的离心率是________.23.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点, 且PF 1―→·(OF 1―→+OP ―→)=0(O 为坐标原点),若|PF 1―→|=2|PF 2―→|,则椭圆的离心率为24.椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为椭圆的左、右焦点,O 为坐标原点,点P 为椭圆上一点, |OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,则椭圆的离心率为25.椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是26.在椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别是其左、右焦点,若|PF 1|=2|PF 2|,则该椭圆离心率的取值范围是27.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是__________.28.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为______.29.已知F 1,F 2是椭圆的两个焦点,满足MF →1·MF →2=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.30.已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆上存在点P 使得PF 1⊥PF 2,则该椭圆的离心率的取值范围是31.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为32.已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=2π3,记椭圆和双曲线的离心率分别为e 1,e 2,则3e 21+1e 22=33.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是34.已知椭圆x 2a 2+y 2b2=1(a >b >c >0,a 2=b 2+c 2)的左、右焦点分别为F 1,F 2,若以F 2为圆心,b -c 为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于32(a-c),则椭圆的离心率e的取值范围是____.35.已知F1,F2分别是椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A,B 上下两点,若△ABF2是锐角三角形,则该椭圆的离心率e的取值范围是36.如图,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.37.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使1-cos 2∠PF1F21-cos 2∠PF2F1=a2c2,求该椭圆的离心率的取值范围.38.已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ).(1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.类型三 求参数的值(或范围)1.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.2.若方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围是3.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是4.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是5.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.6.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.7.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8.已知椭圆mx 2+4y 2=1的离心率为22,则实数m 等于9.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.10.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 11.已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点, 若|BF 2|+|AF 2|的最大值为5,则b 的值是12.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是13.椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________.14.已知动点M 到定点F 1(-2,0)和F 2(2,0)的距离之和为4 2.(1)求动点M 的轨迹C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交C 于不同于N 的两点A ,B ,直线NA ,NB 的斜率分别为k 1,k 2,求k 1+k 2的值.类型四 焦点三角形1.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为________.2.过椭圆x 24+y 2=1的左焦点F 1作直线l 交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF 2的周长为3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.4.已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=5.F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为6.如图,椭圆x 2a 2+y 24=1(a >2)的左、右焦点分别为F 1,F 2,点P 是椭圆上的一点,若∠F 1PF 2=60°,那么△PF 1F 2的面积为7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.8.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为9.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为10.已知F 1,F 2是长轴长为4的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点, 则△PF 1F 2面积的最大值为________.11.P 为椭圆x 225+y 29=1上一点,F 1,F 2分别是椭圆的左焦点和右焦点,过P 点作PH ⊥F 1F 2于点H ,若PF 1⊥PF 2,则|PH |=12.设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2等于13.设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为 点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为14.设椭圆x 29+y 25=1的左、右焦点分别为F 1,F 2,过焦点F 1的直线交椭圆于A (x 1,y 1),B (x 2,y 2)两点,若△ABF 2的内切圆的面积为π,则|y 1-y 2|=15.设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为16.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是17.椭圆x 29+y 22=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为18.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.19.已知F 1,F 2分别为椭圆x 22+y 2=1的左、右焦点,过F 1的直线l 与椭圆交于不同的两点A ,B ,连接AF 2和BF 2.(1)求△ABF 2的周长;(2)若AF 2⊥BF 2,求△ABF 2的面积.类型五 与椭圆的几何性质有关的最值问题1.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为2.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|P A |+|PF |的最大值为 ,最小值为 .3.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为________.4.在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1), 则|P A |+|PB |的最大值为5.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4), 则|PM |+|PF 1|的最大值为________.6.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点, 则|PM |+|PN |的最小值、最大值分别为________.7.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为8.已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是9.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.。

高考总复习一轮数学精品课件 第9章 平面解析几何 课时规范练68 椭圆的定义、方程与性质

高考总复习一轮数学精品课件 第9章 平面解析几何 课时规范练68 椭圆的定义、方程与性质

1 2 3 4 5 6 7 8 9 10 11 12 13 14
解析 曲线 C:mx2+(1-m)y2=1 为焦点在 y 轴上的椭圆,
则曲线 C 的标准方程为
1

1-
>
2
1
1-
1
1
>0,即 <m<1,故

2
+
2
1

C 的离心率为 e=
C 的短轴长 2b=2
1
1
,当2<m<1

C 的焦距 2c=2
最短弦长为( B )
A.0.6 m
B.1.2 m
C.0.8 m
1 2 3 4 5 6 7 8 9 10 11 12 13 14
D.1.6 m
解析 根据题意,结合椭圆定义得,椭圆的长轴长为2a=1.5 m,焦距为2c=0.9
m,所以椭圆的短半轴长为 b=
2 - 2
=
3 2
9 2
- 20
4
=
144
)
D.15
2 -12

e2= 2
则 c= 2 -12=2,所以△PF1F2 的周长为 2a+2c=12.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
3)的两个焦点,
=
1
,解得
4
a=4,
5.(2024·安徽阜阳模拟)已知椭圆长轴、短轴的一个端点分别为A,B,F为椭
圆的一个焦点.若△ABF为直角三角形,则该椭圆的离心率为( C )
2
1 2 3 4 5 6 7 8 9 10 11 12 13 14
综合提升练
12.(2021·全国乙,文 11)设 B 是椭圆
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

训练四 椭圆的的方程及其性质一.概念:1.椭圆的定义及第二定义; 2.椭圆的标准方程; 3.椭圆的性质;4.椭圆的焦半径;5.直线与椭圆的问题.二. 例题1、(5分)(2001全国文7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为(A )43 (B )32 (C )21 (D )41 2、(5分)(2004河南理7)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23B .3C .27 D .4 3、(4分)(2004湖南文15)F 1,F 2是椭圆C :14822=+x x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为__________.4、(4分)(2004重庆理16)对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________5.过椭圆14922=+y x 内一点D (1,0)引动弦AB ,求弦AB 的中点M 的轨迹方程。

6.椭圆141622=+y x 上有两点P 、Q ,O 是原点,若OP 、OQ 斜率之积为41-。

求证22||||OQ OP +为定值。

训练题四: 椭圆及其性质1、(5分)(2004春安徽理3)已知F 1、F 2为椭圆22221x y a b+=(0a b >>)的焦点;M 为椭圆上一点,MF 1垂直于x 轴,且∠F 1MF 2=600,则椭圆的离心率为( )(A )21 (B )22 (C )33 (D )23 2、(5分)(2004湖北理6)已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .59B .3C .779D .49 3、(5分)(2004福建理4)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32C .22D .23 4、(5分)(2004重庆理10)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .735.一个圆的圆心在椭圆的右焦点2F 上,且过椭圆的中心D (0,0),该圆与椭圆交于点P ,设1F 是椭圆的左焦点,直线1PF 恰好与圆相切于点P ,则椭圆的离心率是( )A .13-B .32-C .22D .23 6.设椭圆1204522=+y x 的两个焦点分别为1F 和2F ,P 为椭圆上一点,并且21PF PF ⊥,则||||||21PF PF -等于( )A .56B .52C .531 D .532 7.过点M (-2,0)的直线l 与椭圆2222=+y x 交于1P 、2P 两点,线段21P P 的中点为P ,设直线l 的斜率为)0(11≠k k ,直线OP 的斜率为2k ,则21k k 的值为( )A .2B .-2C .21D .21- 8.方程1)4csc(3322=+-παy x 表示椭圆时,α适合的条件是( ) A .παπ4743≤≤ B .παπ4743<< C .)(472432Z ∈+<<+k k k ππαππ D .)(4743Z ∈+<<+k k k ππαππ 9.设b ≥2a>0,则曲线122=+by ax 上对两焦点张角为直角的点有( )A .0个B .0个或2个C .2 个或4个D .0个或2个或4个10.点P 在椭圆284722=+y x 上,则点P 到直线3x-2y-16=0的距离的最大值是( ) A .13132 B .131316 C .131324 D .131328 11、已知双曲线22154x y -=,若将该双曲线绕着它的右焦点逆时针旋转90︒后,所得双曲线的一条准线方程是 ( )(A )43y =- (B )43y = (C )163y = (D )163y =- 12、直线10x y --=与实轴在y 轴上的双曲线22(0)x y m m -=≠的交点在以原点为中心、边长为2且各边分别平行于坐标轴的正方形的内部,则m 的取值范围是 ( )(A )01m << (B )0m < (C )10m -<< (D )1m <-13.△ABC 中,三边a 、c 、b 成等差数列,且a>c>b ,若A (-1,0),B (1,0),则动点C 的轨迹方程为____________。

14.以(1,0),(3,0)为焦点且经过原点的椭圆的方程为__________。

15.过椭圆15922=+y x 的左焦点作一条长为12的弦AB ,将椭圆绕着其左准线在空间旋转120°,则弦AB 扫过的面积为_________。

16、(5分)(2004四川理15)设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .17.双曲线的中心在原点,实轴在x 轴上,它的渐近线与圆0201022=+-+x y x 相切,过点P (-4,0)作斜率为41的直线l ,使l 与双曲线交于A ,B 两点,和y 轴交于C 点,且点P 与线段AB 上,又满足∣P A ∣·∣PB ∣=∣PC ∣2.(Ⅰ)求双曲线的渐近线方程; (Ⅱ)求双曲线的方程.18.过椭圆2222=+y x 的一个焦点的直线交椭圆于A 、B 两点,求△AOB 的面积的最大值(O 为坐标原点)。

19.已知椭圆12222=+by a x (a>b>0),它的一条准线方程是x=1,倾斜角为45°的直线交椭圆于A 、B 两点,设AB 的中点为M ,直线AB 与OM 的夹角为α(1)当tan α=2时,求椭圆的方程;(2)当2<tan α<3时,证明2132<<b 。

20.已知点A 在圆C :31)2(22=-+y x 上运动,点B 在以)0,3(F 为右焦点的椭圆k ky x =+22上运动,求|AB|的最大值。

训练题四答案例题答案:1.C 2.C 3. 24.[-1,3] 5.提示:设),(11y x A ,),(22y x B ,AB 的中点M (x ,y ),则221x x x +=,221y y y +=,且36942121=+y x ① 36942222=+y x ②,①-②得 0))((9))((421212121=+-++-y y y y x x x x ∴y x y y x x x x y y 94)(9)(421212121-=++-=-- 又12121-===--x y k k x x y y DM AB ∴194-=-x y y x 即所求的轨迹方程为19)21(422=+-y x6.提示:设直线OP 的方程为y=kx ,则直线OQ 的方程为x ky 41-= 由⎪⎩⎪⎨⎧=+=141622y x kx y 得⎪⎪⎩⎪⎪⎨⎧+=+=1416141622222k k y k x ∴141616||22222++=+=k k y x OP 同理可求得1464||222+=k k OQ ∴2014464141616||||222222=+++++=+k k k k OQ OP 训练题答案:1 C 2.D 3.A 4.B 5.A. 6 B 7 D 8C 9.C 10 C 11.A 12.C13.)00(13422<≠=+x y y x 且 14.0412322=+-y x x 15. 6π 16、(5分)1222=+y x 17.x y 21).1(±= (2).172822=-y x 18.提示:由题意椭圆焦点为(0,±1),设直线AB 过焦点F (0,1),其方程为:y-1=kx ,代入2222=+y x 得012)2(22=-++kx x k ,设),(11y x A ,),(22y x B ,则1x 、2x 为该方程的两根,由222221)2()2(4421||||21k k k x x OF S AOB +++=-⋅=∆ 22111222≤+++=k k (当且仅当k=0时取等号),可知△AOB 面积的最大值为2219.提示:(1)由12=c a 得c a =2,又222c c c a b -=-= ∴椭圆方程为222)1(c c y x c -=+-将AB 的方程y=x+m 代入整理得02)2(222=-+++-c c m mx x c∴)2)1(,2(---c c m c m M 于是1-=c k OM ,由2|1111||1|tan =-++-=+-=c c k k k k OM AB OM AB α,得32=c 或c=--2(舍),于是所求椭圆方程为1292322=+y x (2)由(1)|2||1111|tan c c c c -=-++-=α,又3|2|2<-<c c ,得3221<<c ∴3241)21(22>+--=-=c c c b ,2141)21(22<+--=-=c c c b 即 20.提示:如图8-1所示∵22)3(1=-=k c ∴k=4∴椭圆的方程为1422=+y x 。

|AB|的最大值是椭圆4422=+y x 上动点B (x ,y )到圆C 的圆心(0,2)距离的最大值与圆的半径之和。

设B (x ,y )到(0,2)的距离为d ,则由两点的距离公式有222)2(-+=y x d 。

又B (x ,y )在椭圆上∴328)32(3843)2(44)2(2222222++-=+--=-+-=-+=y y y y y y x d 。

因为B (x ,y )是椭圆上的点∴-1≤y ≤1∴当32-=y 时,2d 最大为328 ∴3321231328||+=+=最大AB。

相关文档
最新文档