低电压穿越技术资料

合集下载

低电压穿越原理

低电压穿越原理

低电压穿越原理
低电压穿越原理是指在电力系统中,当电压降至较低水平时,电流能够继续穿越导线,保持电力传输的正常运行。

它是电力系统中一项重要的保护措施,可防止系统中断电或设备损坏。

低电压穿越原理基于欧姆定律,即电流等于电压除以电阻。

当电压降低时,电流可以通过降低电阻或增加电流来实现电力传输。

在电力系统中,常用的低电压穿越方式有以下几种:
1. 电流增大:当电压降低时,可以通过增大电流来保持电力传输。

这可以通过增加电源的输出电流或使用电流增强设备来实现。

2. 降低负载:降低负载可使电流减小,从而使电力传输能够继续。

这可以通过减少负载的电流需求或使用负载控制装置来实现。

3. 提高导线导电能力:导线的导电能力主要由其截面积和导体材料决定。

通过增加导线的截面积或使用更好的导体材料,可以提高导线的导电能力,从而使电流能够在低电压下穿越。

4. 使用补偿装置:补偿装置可以通过提供额外的电力来弥补电压降低。

这可以通过使用电容器、电感器或稳压装置等来实现。

综上所述,低电压穿越原理是通过增加电流、降低负载、提高导线导电能力或使用补偿装置等方式来保持电力传输的正常运
行。

这些方法可以根据实际情况和需求来选择和应用,以确保电力系统的稳定运行。

低电压穿越.

低电压穿越.

(2)PMSG的LVRT实现
①故障时间短且电压跌落幅值小
适当地增大直流侧电容的容量,提高直流电容的 额定电压,这样在电压跌落的时候,可以把直流母线的 电压限定值调高,使功率不平衡发生时,过剩的能量能 在电容上得到暂时的缓冲,以储存多余的能量,并且允 许网侧的逆变器电流增大,以输出更多的能量,最终达 到两侧的功率基本平衡。
1、低电压穿越技术的定义 2、FSIG、PMSG、DFIG在电网电压跌落时的 暂态特性 3、不同类型风机的LVRT实现方法
1、低电压穿越技术
低电压穿越(LVRT ,Low Voltage Ride Through)技术是指风力发电机并网点电压跌落到一 定值的情况下,风机能够不脱离电网而继续维持运 行,甚至还可以为系统提供一定无功支持以帮助系 统恢复电压的一种技术。
(1)FSIG和DFIG的暂态特性
(2)同步直驱式风机(PMSG)的电压跌落暂态特性
PMSG定子经变流器与电网相接,发电机和电网不存在 直接耦合。
3.不同类型风机的LVRT实现方法
(1)FSIG的LVRT实现
FSIG在电网电压跌落时最大的问题就是电磁转矩 的衰减使得转速上升。 ①判断故障后快速变桨以改变机械转矩,从而降低转 速; ②安装一个静态无功补偿器,来对各种功率等级无功 进行实时补偿; ③通过采用静态同步补偿器来调节电压,该方法也能 使FISG低电压穿越能力得到提高,而且该方法的补偿 电流不会随着电压的下降而下降。
④转子侧方法
(a)双向晶闸管型Crowbar
(b)带旁路电阻的 Crowbar
谢谢!Biblioteka (3) DFIG的LVRT实现
①基于双馈风机定子电压动态补偿的控制策略
Lm Ls Lr L2 m r s I r s ( Ls1 Lr1 ) I r Ls Ls

低电压穿越技术规范书

低电压穿越技术规范书

低电压穿越技术规范书1 总则1.1低电压穿越技术规范书适用于光伏发电站并网验收、风电场接入并网验收、光伏逆变器型式试验、风力发电机组的低电压穿越检测平台,包括主要设备及其辅助设备的功能设计、结构、性能、安装和试验等方面的技术要求。

1.2低电压穿越技术规范书要求该检测平台能够同时满足现场安装在风电场的单台风电机组低电压穿越能力检测,满足光伏发电站并网接入验收的低电压穿越能力检测,满足光伏逆变器与风电发电机组的型式试验的低电压穿越试验检测。

1.3低电压穿越技术规范书所提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文。

供方应保证提供符合本规范书和工业标准的优质产品。

2 低电压穿越技术使用条件2.1低电压穿越技术环境条件a) 户外环境温度要求:-40℃~ 50℃;b) 户外环境湿度要求:0~90% ;c) 海拔高度:0~2000米(如果超过2000米,需要提前说明)。

2.2安装方式:标准海运集装箱内固定式安装。

2.3储存条件a)环境温度-50℃~50℃;b)相对湿度0~95% 。

2.4低电压穿越技术工作条件a) 环境温度-40 ºC~40ºC;b) 相对湿度10%~90%,无凝露。

2.5低电压穿越技术电力系统条件a) 电网电压最高额定值为35kV,电压运行范围为31.5kV~40.5kV;同时也可以同时满足10kV\20kV电网电压的试验检测。

b) 电网频率允许范围:48~52Hz;c) 电网三相电压不平衡度:<= 4%;d) 电网电压总谐波畸变率:<= 5%。

2.6负载条件负载包括直驱或双馈式等风力发电机组,其总容量不大于6.0MVA。

其控制和操作需要满足国家关于风电机组电电压穿越测试与光伏发电站的相关测试规程技术要求。

本检测平台能够同时满足同等条件下光伏电站或光伏逆变器的低电压穿越能力测试。

2.7接地电阻:<=5Ω。

3低电压穿越技术检测平台的技术要求3.1 结构及原理要求根据模拟实际电网短路故障的要求,测试系统须采用阻抗分压方式,原理如下图1所示(以实际为准)。

低电压穿越原理

低电压穿越原理

低电压穿越原理
低电压穿越原理指的是在电力系统中,电源向终端输送电能时会出现电压降低的情况。

电压降低可能是由于电能输送过程中导线电阻、变压器损耗、输电线路长度等因素造成的。

低电压会对供电设备造成影响,如降低电动机的运行效率、减少灯光的亮度、影响电子设备的稳定性等。

为了保证供电设备正常工作,需要了解低电压穿越原理。

低电压穿越原理主要包括以下几点:
1. 电源电压波动:电源电压在不同时间段会有所波动,特别是在用电高峰期,电压有可能降低。

这是由于电网负荷增加导致的。

2. 输电线路电压降低:长距离输电线路上,由于电流流过电缆的电阻会引起电压降低。

这种电阻损耗会导致电压的降低。

3. 变压器损耗:在电力传输过程中,变压器会损耗部分电能,导致输出电压下降。

4. 电源电压调整:为了解决电压降低的问题,电力系统会通过电压调整装置来提高输出电压,以保持终端电压稳定。

通过了解低电压穿越原理,电力系统可以采取一系列措施来保证终端设备正常工作。

例如,可以对输电线路进行优化,减少电阻损耗;合理调整电力供应策略,尽量避免电压降低;加强
变压器的维护和管理,减少损耗等。

总之,低电压穿越原理是了解电力系统中电压降低问题的重要基础,只有充分了解原理并采取相应措施,才能确保电力设备正常运行。

低电压穿越

低电压穿越

zzzzzzzzz 转子保护技术
优:其结构简单,容易 实现;是目前采用得较 多的方法, 缺:需要增加新的保护 装置从而增加了系统成 本;虽然励磁变流器和 转子绕组得到了保护, 但此时按感应电动机方 式运行的机组将从系统 中吸收大量的无功功率 ,这将导致电网电压稳 定性的进一步恶化;旁 路的投切操作会对系统 产生暂态冲击。
低电压穿越技术的种类 转子短路保护技术VS新型拓扑结构VS合理的励磁控制算法。
1、转子短路保护技术 、 在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网 系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转 子 子回路的旁路保护装置,达到限制通过励磁 , 变 变流器的电流和转子绕组过电压的作用, 以 以此来维持发电机不脱网运行
低电压穿越的发展
在2009年,国家电网公司已经颁布了《风电场接入电网技术规定》,明确要 求风电场电压跌落到额定电压的20%持续时间不超过625毫秒、在2秒时间以 内电压恢复到90%额定电压的范围内,风电场不允许脱网,超过此范围风电 场允许脱网。 但是这一企业标准对风机制造企业并不具备约束力,绝大多数风机在出厂后 都不具备该项功能。 而根据电监会的事故通报表明:风机不具备低电压穿越能力是根源所在。 未来,风电的发展趋势是机组由小变大,并网容量由少变多,风电在很多地 方可能成为第二或第三大电源,这就要求风电场和风电设备制造商不断提高 技术水平。未来二至三年,风机如果要作为主力电源,一定要满足更加严格 的并网要求。 因此对于那些不具备低电压穿越能力,不满足接入电力系统 的技术规定的风机组必须进行升级改造。这样才能推进风电的发展,保证电 网的安全稳定。
Байду номын сангаас
低电压穿越的发展
具备低电压穿越能力的风电场是今后风力发电快速健康发展的方向。 目前风电机组实现低电压穿越需要克服的难点有: (1)提高风电场、风电机组的低电压穿越能力,必然会导致工程的造价增加。且 导致工程的造价增加。 导致工程的造价增加 对低电压能力要求越严格,工程造价就越高。 (2)电网电压跌落时,不同类型机组的暂态特性不同,没有一个统一的方法 没有一个统一的方法,必 没有一个统一的方法 须根据具体的机组进行分析,给低电压穿越的普及带来不便。 (3)所采取的对策应具备各种故障类型下的有效性。电网运行时经常出现的是不 电网运行时经常出现的是不 对称故障情况,当电网出现不对称故障时,会使过压、过流的现象更加严重,因为 对称故障情况 在定子电压中含有负序分量,而负序分量可以产生很高的滑差。然而目前严重故障 下进行的研究大都是针对电网对称故障的情况,无法满足实际电网故障情况要求, 不能实现工程实际应用。

浅析双馈式风力发电机低电压穿越技术

浅析双馈式风力发电机低电压穿越技术

浅析双馈式风力发电机低电压穿越技术一、双馈式风力发电机简介双馈式风力发电机是一种能有效调节转子速度的风力发电机,其主要特点是在转子绕组中引入了一个次级电流,较大地提高了发电机的转矩与功率因数,从而提高了风力发电机的整体性能。

与传统的固定式风力发电机相比,双馈式风力发电机有着更高的风能利用效率和更好的低电压穿越能力。

其工作原理主要是通过定子绕组的多级变压器和双馈路,使得风力发电机能够在较低的电网电压下继续运行,从而提高了风电的可靠性和稳定性。

1. 低电压穿越现象在一些特殊情况下,比如电网故障或者风速急剧下降等情况下,风力发电系统所接入的电网电压可能急剧下降,甚至出现短暂的停电情况。

针对这种情况,传统的固定式风力发电机可能因为电网电压下降而无法继续正常运行,甚至发生机组停机。

而双馈式风力发电机则能够通过其特有的双馈路和多级变压器的设计,使得发电机能够在较低的电网电压下继续运行,从而避免了由于电网电压下降而引起的停机现象,提高了风力发电系统的可靠性。

双馈式风力发电机低电压穿越技术的主要原理是通过其次级电流的调节,使得风力发电机能够在电网电压下降的情况下,自动地调节转子速度和输出功率,以保证发电机的安全稳定运行。

具体来说,当电网电压下降时,通过次级电流的调节,可以在一定程度上提高转子的磁场励磁,从而提高发电机的输出功率,使得风力发电系统在低电压情况下仍能够继续正常运行。

双馈式风力发电机低电压穿越技术具有以下几点优势:(1)提高了风力发电系统的可靠性和稳定性。

在电网电压下降的情况下,双馈式风力发电机可以通过调节次级电流和转矩,使得发电机能够在较低的电网电压下继续运行,避免了由于电网电压下降而引起的停机现象,提高了风力发电系统的可靠性。

(2)提高了风能的利用效率。

通过低电压穿越技术,双馈式风力发电机可以在较低的电网电压下继续正常运行,保证了风能的稳定利用,提高了风力发电系统的整体性能。

(3)降低了对电网的影响。

低电压穿越

低电压穿越

5、仅停止低电压穿越装置
1、一拖的两台给煤机同时检修情况,变频器及低电压穿越装置均需停止
1、手动停止变频器运行; 2、变频器停止工作后,拍下低电压穿越装置柜体前门的“ 急停”按钮; 3、依次断开变频器交流开关、低电压穿越装置交流断路器 QF1; 4、手动断开低电压穿越装置柜体内部的开关12SW,装置控 制器断电; 5、如需断开变频器控制柜电源,手动断开低电压穿越装置 的11SW、13SW和21SW、22SW; 6、长按UPS机箱上的“开/关机”键(大概4秒),关闭UPS 。 7、长按UPS2机箱上的“开/关机”键(大概4秒),关闭 UPS2。
@月呀呀 /24681099
低电压穿越开机流程
手动闭合变频器柜的交流开关,变频器开始上电。 操作低电压穿越装置前需将屏柜正面的“急停”按钮拍下。 手动闭合低电压穿越装置内的16SW和17SW,则装置和变频器连接上。 手动闭合低电压穿越装置内的11SW,则装置通过交流电源给UPS进行充电。手动闭合低电压穿越装置 内的21SW,则装置通过交流电源给UPS2进行充电。(空预器的装置无需此步骤) 长按UPS机箱上的“开/关机”键(大概4秒),听到“嗒”的一声,看到UPS机箱上的“功能键”处绿 灯点亮,则UPS已经开始工作。给煤机的装置还需要长按UPS2机箱上的“开/关机”键(大概4秒), 听到“嗒”的一声,看到UPS2机箱上的“功能键”处绿灯点亮,则UPS2已经开始工作。 闭合低电压穿越装置内部的手动开关12SW,低电压穿越装置控制板、操作电源、风扇上电。 手动闭合低电压穿越装置内的13SW,则装置输出220V单相交流电,为变频器控制柜提供控制电源。给 煤机的装置还需要手动闭合低电压穿越装置内的22SW,则装置输出220V单相交流电,为一拖二的另一 台变频器控制柜提供控制电源。并手动闭合变频器控制柜内控制电源开关。 手动闭合低电压穿越装置的交流侧断路器QF1。 关闭穿越装置柜门,拨出柜体正面的“急停”按钮,按下“复位”按钮,装置开始依次合内部接触器 ,进入工作状态。 设定变频器转速及相关指令,给煤机开始工作。

风力发电机组低电压穿越

风力发电机组低电压穿越

摘要风力发电机因为电网故障引起网电压跌落到一定值以下并且保持625ms不脱离电网而继续维持运行,并仍能为系统提供有功功率以至少每秒10%额定功率的变化率恢复至故障前的能力称作是低电压穿越能力。

关键词低电压穿越技术;风电机组;并网目录1.低电压穿越技术 (1)2.低电压穿越特性及与保护动作时间关系 (2)3.实现低电压穿越需要风电场各种保护的配合 (3)3.1.风电机组保护 (3)3.1.1.对于电压越限所进行的保护 (3)3.1.2.对于频率越限所进行的保护 (3)3.1.3.对于电流所进行的保护 (3)3.2.风电机变流器保护 (3)3.3.箱变保护 (3)3.4.风电场内部电网保护 (4)3.5.集电线路的保护 (4)3.6.母线保护 (4)3.7.风电场中的主变保护 (4)3.8.高压母线保护 (4)3.9.继电保护 (4)4.风力发电场中的并网技术严格要求 (4)引言中国在颁布《在再生能源法》并且实施配套政策后,在2011年颁布国家标准GB/T19963-2011《风电场接入电力系统技术规定》对低电压穿越技术的明确规定。

是目前主流的风电机组是双馈型和直驱型风电机组,因具有优异的无功和电压控制能力而得到广泛的应用,但由于变流器容量、低电压穿越期间的控制不同,具体情况有差异。

国内外对这项技术的研究工作都取得了巨大成果,并且对不同机组提出了多种方案。

风电场电气部分由一次部分和二次部分构成,一次主要包括风电机组、集电环节、升压变电站、厂用电;二次主要包括风电机组监控与保护、箱变监控与保护、变电站监控与保护、线路监控与保护。

风电场是由主变、箱变、无功补偿设备、集电线路等组成。

中国在2008年4月9日吉林大范围风电机组切机事故,故障位置从白城至开发变66KV线路(19km),发生两相短路(B-C)。

这事故说明即使风电场都具备低电压穿越技术,风电场也有低电压穿越失败的可能,风电场无功补偿装置如果没有具备快速电压调节能力,将会造成大量无功涌入电网。

[gb18030] 低电压穿越

[gb18030] 低电压穿越

电压跌落情况下锁相环技术改进
电压跌落情况下锁相环技术改进
基于双二阶广义积分器的软件锁相方法:方案的基本出发点是基于对称分量法的正序电压
分解该法通过基于二阶广义积分器的自适应滤波器来实现电网电压正、负序分量的检测计算,并在此 过程中对电网的谐波分量进行了滤除,该方法能在电网平衡和不平衡条件下精确地获取电网正、负序 分量的相位、幅值及频率信息,因此也具有较好的电网适应性。
电压跌落情况下锁相环技术改进
SOGI优点: 1.当电网出现三相跌落时,锁相环能快速且精确地获取电网电压正序分量的频 率和相位信息。 2.当电网出现三相频率突变(50Hz 变成 30Hz)时,锁相环依旧能快速准确 地获取电网电压正序分量的频率和相位信息。 3.当电网出现三相频率突变且同时含有低次谐波时,锁相环依旧能快速准 确地获取电网电压正序分量的频率和相位信息。
零电压穿越方案
李阳
目录
低电压穿越概述
电压跌落情况下锁相环技术改进 电压跌落并网电流控制方法的改 进
低电压穿越概述
低电压穿越:当电网故障或扰动引起光伏并网系统逆变器并网点的电压跌落 时,在一定电压跌落的范围内,光伏并网逆变器能够不间断并网运行。 对光伏并网逆变器的影响: 硬件: 可能会导致过电压过电流以及随之而来的电磁干扰等问题导致主电路硬件 的损坏 导致数字控制板或驱动电路等受到干扰而丧失控制能力 软件: 低电压冲击意味着各项参数的突然变化,系统的主控算法、锁相环算法、 保护逻辑算法、光伏发电特有的最大功率点跟踪等算法是否可以做出相应的 快速调整,给出准确有力的控制信号 低电压穿越对光伏电池阵列的影响 不再工作于最大功率点状态,而是根据瞬时的功率迅速调节自身输出的电 压和电流,建立起暂态平衡。此时会造成直流母线上的电容电压升高,但是 不会超过光伏电池阵列的开路电压

低电压穿越技术措施

低电压穿越技术措施

低电压穿越技术措施《低电压穿越技术措施》低电压穿越技术措施指的是在电力系统中,为了应对低电压问题而采取的一系列技术手段和措施。

低电压是指输电、配电过程中出现的电压偏低的现象,它可能给电力系统的正常运行和终端用户的电气设备带来一系列的问题。

低电压的主要影响之一是导致电力系统的电压稳定性降低,可能会引发电力设备的故障。

此外,低电压还会影响终端用户的电气设备正常运行,特别是对一些对电压变化敏感性较高的设备来说,如计算机、电视机、电冰箱、空调等,低电压会使其工作不稳定、效率低下甚至损坏。

为了避免和解决低电压问题,需要采取以下一些技术措施:1. 电力系统的电压控制和调节。

通过分布式电源的增加、输电线路及变电站的规划和改造等方式,提升电力系统的电压控制能力,保证系统内各个节点的电压稳定。

2. 减小电力线路的输电损耗。

减小输电线路的损耗可以进一步提高输电效率,降低线路电压降低的可能性。

这可以通过合理选择导线、减小线路的电阻、优化线路的设计和运行等方法来实现。

3. 采用补偿装置和电压稳定器。

通过在电网中安装合适的电容器、电抗器等补偿装置,可以对低电压区域进行补偿,提高电压的稳定性和恢复到正常水平。

此外,电压稳定器的使用可以实时监测并稳定电网中的电压波动,有效地抑制低电压现象的发生。

4. 完善终端用户的电压保护装置。

在终端用户的电气设备中加装电压保护装置,一旦检测到低电压情况,及时进行报警或自动切断电源,以避免设备受损。

综上所述,《低电压穿越技术措施》是关于应对电力系统中低电压问题的一篇技术指南。

通过合理的电压控制和调节、减小输电损耗、补偿装置的使用以及完善用户保护装置等措施,可有效应对低电压问题,保证电力系统的稳定运行和终端用户的正常用电需求。

低电压穿越

低电压穿越

一、定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。

二、问题的提出:对于变频恒速双馈风力发电机,在电网电压跌落的情况下,容易在其转子侧感应出较大的电流,损坏变流设备,导致风力发电机组与电网解列。

在以前风力发电机容量较小的时候,为了保护转子侧的励磁装置,就采取与电网解列的方式,但目前风力发电的容量都很大,与电网解列后会影响整个电网的稳定性,甚至会产生连锁故障。

于是,根据这种情况,专家就提出了风力发电低电压穿越的问题。

三、基本要求:从图中曲线可以看出:曲线以上的区域是风电场需要保持同电力系统连接的部分,只有在曲线以下的区域才允许脱离电网。

风电场必须具有在电网电压跌落至额定电压15%能够维持并网运行625ms的低电压穿越能力;风电场并网点电压在发生跌落故障后2s内能够恢复到额定电压的90%时,风电场必须保持并网运行。

只有当电力系统出现在曲线下方区域所示的故障时才允许脱离电网。

四、低电压穿越技术实现的种类:1、转子短路保护技术2、新型拓扑结构3、采用新的励磁控制策略转子短路保护技术在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行目前比较典型的crowbar电路有如下几种:(1)混合桥型crowbar电路:每个桥臂由控制器件和二极管串联而成。

(2) IGBT型crowbar电路和带有旁路电阻的crowbar电路出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。

双馈感应异步风机的一种简单的低电压穿越技术针对不同的发电机类型有不同的实现方法,最早采用也是最普遍的方案是采用Crowbar电路, 有的已经安装在变频器之中,根据不同的系统要求选择低电压穿越能力的大小,即电压跌落深度和时间,具体要求根据电网标准要求。

低电压穿越标准(一)

低电压穿越标准(一)

低电压穿越标准(一)低电压穿越标准——你需要了解的内容什么是低电压穿越标准?低电压穿越标准是指电力系统中电压出现短暂的下降和上升时,电气设备能够正常运行的一种标准。

低电压穿越通常发生在电力系统负荷瞬间变化或者系统故障时。

低电压穿越标准的意义低电压穿越标准对电力系统的安全可靠运行起着重要的作用。

它可以有效地保护电气设备不被过度损害,减少设备故障率,延长设备寿命,提高设备的使用效率,同时也能够保证电力系统的稳定运行。

低电压穿越标准的分类低电压穿越标准一般可以分为两种类型:设备的低电压穿越标准和系统的低电压穿越标准。

设备的低电压穿越标准是指电器设备在电力系统出现电压下降时,设备本身的性能要求。

系统的低电压穿越标准是指电力系统运行过程中出现电压下降,影响到电力系统正常运行的要求。

低电压穿越标准与电气设备的应用低电压穿越标准在电气设备的应用过程中显得非常重要。

电气设备需要依照低电压穿越标准进行设计、制造和测试,以确保在电力系统的变化中能够正常运行。

同时,在现实应用中,电气设备需要以能够承受一定程度的低电压穿越为设计目标,并进行相关测试,以满足设备的实际使用需求。

结论低电压穿越标准在电力系统安全运行中的作用不言而喻。

对于电力系统的设计、制造和运行来说,规范的低电压穿越标准是非常重要的。

在实际应用中,电气设备也需要遵守标准和进行相应的测试,以确保设备的可靠运行。

我们相信,在有了完善的低电压穿越标准的支持下,电力系统的稳定运行会更加可靠,设备的使用寿命会更长,同时也能够提高电气设备的安全性能,为电力系统的可持续发展提供有力保障。

参考文献•盛雪琴, 郑汝华. 低电压穿越试验常识[J]. 测控技术, 2006, 25(12):65-67.•宋海峰,等. 对低压穿越概念的深入认识[J]. 电力科技,2000(4):1-4.•低电压电能质量技术标准[D]. 上海交通大学,2009.以上参考文献均对低电压穿越标准进行了介绍和解析,可以帮助读者更深入地理解和应用低电压穿越标准。

浅析双馈式风力发电机低电压穿越技术

浅析双馈式风力发电机低电压穿越技术

浅析双馈式风力发电机低电压穿越技术
双馈式风力发电机是目前广泛应用于风力发电场的一种发电机。

其特点是通过转子上
布置的双馈转换器将风能转化为电能。

在发电过程中,双馈转换器可以实现对转子和线路
的双重控制,提高了发电机的效率和可靠性。

在风力发电场中,由于复杂的环境和风能波动的影响,双馈式风力发电机可能会出现
低电压情况。

低电压会导致发电机无法正常工作,影响发电场的稳定运行。

为了解决这个
问题,研究人员提出了低电压穿越技术。

低电压穿越技术是指在低电压情况下,通过改变双馈转换器的运行模式,使发电机能
够继续运行并输出电能。

目前常用的低电压穿越技术主要有两种:定子电流反向控制和转
子电流反向控制。

定子电流反向控制是指在低电压情况下,通过改变双馈转换器中的定子电流方向,使
发电机能够继续工作。

具体来说,当发电机检测到低电压时,控制系统会将定子电流反向,从而改变发电机的工作模式。

这种方法可以在低电压情况下提供一定的电压和功率输出,
但是由于改变了定子电流方向,会增加发电机的损耗和热量。

双馈式风力发电机低电压穿越技术是目前解决发电场低电压问题的有效途径。

不论是
定子电流反向控制还是转子电流反向控制,都可以使发电机在低电压情况下继续运行,并
提供一定的电压和功率输出。

不同的控制方案各有优劣,需要根据具体情况选择合适的技
术方案。

低电压穿越综述

低电压穿越综述

(1)FSIG和DFIG的暂态特性
Байду номын сангаас
(2)同步直驱式风机(PMSG)的电压跌落暂态特性
PMSG定子经变流器与电网相接,发电机和电网不存在 直接耦合。
3.不同类型风机的LVRT实现方法
(1)FSIG的LVRT实现
FSIG在电网电压跌落时最大的问题就是电磁转矩 的衰减使得转速上升。 ①判断故障后快速变桨以改变机械转矩,从而降低转 速; ②安装一个静态无功补偿器,来对各种功率等级无功 进行实时补偿; ③通过采用静态同步补偿器来调节电压,该方法也能 使FISG低电压穿越能力得到提高,而且该方法的补偿 电流不会随着电压的下降而下降。
风电并网低压穿越的相关规定:
2、电网电压跌落时FSIG、PMSG、DFIG的暂态特 性
电压跌落(Voltage Dip)也称电压骤降、电压 下跌或电压凹陷,是供电系统的一种较为突出的电能 质量问题,指电网电压均方根值在短时间突然下降的 事件,电气与电子工程师协会(IEEE),将其定义为下降 到额定值的90%~10%。 • 大电机启动引起的电压跌落 • 电机的再加速引起的电压跌落 • 电网故障引起的电压跌落
(3) DFIG的LVRT实现
①基于双馈风机定子电压动态补偿的控制策略
Lm Ls Lr L2 m r s I r s ( Ls1 Lr1 ) I r Ls Ls
②定子侧方法
定子侧加电阻阵列
电网侧串联变换器
③直流母线上方法
(a)直流 Crowbar
(b)带 UPS 的直流Crowbar
1、低电压穿越技术的定义 2、FSIG、PMSG、DFIG在电网电压跌落时的 暂态特性 3、不同类型风机的LVRT实现方法
1、低电压穿越技术

低电压穿越(1)

低电压穿越(1)

1.1文献[1]文中以发电厂给煤机变频器为例,分析低电压穿越产生的原因和危害,并结合生产现场经验,从安全性、经济性分析防范措施,提出优化DCS控制逻辑和变频器控制电源是防止变频器低电压穿越事故的最佳解决方案。

方案 1,即参照《大型汽轮发电机组一类辅机变频器高、低电压穿越技术规范》要求,提高变频器自身躲过低电压穿越能力。

经投入运行的一类辅机变频器。

方案2,即一方面变频器控制电源采用UPS供电,保证控制电源不中断;另一方面优化DCS控制策略,并结合不同系统的设备允许电动机停运时间增加延时来躲过低电压穿越情况,当电源供电恢复时,及时实现变频器自启动。

[1]周道军.变频器防低电压穿越分析[J].江苏电机工程.2015.34(2):37-40.1.2文献[2]本文主要研究了在给煤机变频器交流电源输入部分加装抗低电压扰动设备的技术方案。

提出两种解决方案:方案一,在变频器中间直流环节加装 UPS(蓄电池)。

方案二,在辅机变频器前部加装抗低电压扰动设备。

并分析了电网故障情况下辅机安全运行问题,通过仿真验证了该技术方案在系统电压跌落至 20% 且持续 10 s 的情况下不灭火、不跳闸和其出力波动≤10% 的技术指标且必须保证各种运行方式下机组都具有足够的低电压穿越能力。

[2]张东明,姚秀萍,王维庆,常喜强,王海云.含低电压穿越电源的火电厂辅机变频器的研究[J].华东电力.2013.41.(6):1345-1347.1.3文献[3]本文主要阐述了高低压变频器结构,总结了各种低电压穿越改造方案,提出并联蓄电池,并联升压电路,并联升压电路加少量蓄电池,并联升压电路加厂内保安电源,串联UPS,串联升压电路等,并分析了各种方案的优缺点。

其中并联蓄电池和串联UPS取得了很好的效果。

国家电网对变频器低电压穿越的定义是:变频器及供电对象设备外部故障或扰动引起的暂态、动态或长时间电源进线电压降低到规定的低电压穿越区内时,能够可靠供电,保障供电对象的安全运行。

低电压穿越技术

低电压穿越技术

低电压穿越技术一、低电压穿越技术概述随着风力发电在电网中所占比例的增加,电网公司要求风力发电系统需像传统发电系统一样,在电网发生故障时具有继续并网运行的能力。

电网发生故障引起电压跌落会给风力发电机组带来一系列暂态过程(如转速升高、过电压和过电流等),当风力发电在电网中占有较大比例时,机组的解列会增加系统恢复难度,甚至使故障恶化。

因此目前新的电网规则要求当电网发生短路故障时风力发电机组能够保持并网,甚至能够向电网提供一定的无功功率支持,直到电网恢复正常,这个过程被称为风力发电机组“穿越”了这个低电压时间(区域),即低电压穿越(Low Voltage Ride Through,LVRT)。

1.风力发电机组故障穿越并网要求各国相继提出了越来越严格的故障穿越标准,要求机组在电网故障情况下能够按照标准规定的时间继续并网运行。

图4-26为德国、英国、美国和丹麦4国故障穿越标准中电网电压跌落程度与风电机组需持续并网运行的时间的规定。

图4-26 各国故障穿越标准各国制定的故障穿越标准中,除包含图4-26所示的并网时间要求外,一般都包含以下4个方面的规定:(1)公共耦合点的电网电压有效值的跌落程度与要求机组继续并网运行时间长短的关系。

(2)电网线电压有效值的跌落程度与输出无功功率的关系。

(3)故障切除后,有功功率的恢复速率。

(4)频率的波动与输出有功功率的关系。

我国国家电网公司制定了风力发电机组低电压穿越标准。

标准规定:风电场内的风电机组具有在并网点电压跌至20%额定电压时能保持并网运行625ms的低电压穿越能力,如图4-27所示。

风电场并网点电压在发生跌落2s内能够恢复到额定电压90%时,风电场内的风电机组能够保持不脱网运行。

2.关于双馈风力发电机的低电压穿越的特殊性图4-27 中国的低电压穿越标准与其他机型相比,双馈异步风力发电机在电压跌落期间面临的威胁最大。

电压跌落出现的暂态转子过电流、过电压会损坏电力电子器件,而电磁转矩的衰减也会导致转速的上升。

低电压穿越技术资料

低电压穿越技术资料

几种双馈式变速恒频风电机组低电压穿越技术对比分析13.1 新型旁路系统[11-13]如图5所示,这种结构与传统的软启动装置类似,在双馈感应发电机定子侧与电网间串联反并可控硅电路。

在正常运行时,这些可控硅全部导通,在电网电压跌落与恢复期间,转子侧可能出现的最大电流随电压跌落的幅度的增大而增大,为了承受电网故障电压大跌落所引起的的转子侧大电流冲击,转子侧励磁变流器选用电流等级较高的大功率igbt器件,这样来保证变流器在电网故障时不与转子绕组断开时的安全。

电网电压跌落再恢复时,转子侧最大电流可能会达到电压跌落前的几倍。

因此,当电网电压跌落严重时,为了避免电压回升时系统在转子侧所产生的大电流,在电压回升以前,将双馈感应发电机通过反并可控硅电路与电网脱网。

脱网以后,转子励磁变流器重新励磁双馈感应发电机,电压一旦回升到允许的范围之内,双馈感应发电机便能迅速地与电网达到同步。

再通过开通反并可控硅电路使定子与电网连接。

这样可以减小对igbt耐压、耐流的要求。

对于短时间内能够接受大电流的igbt模块,可以减少双馈感应发电机的脱网运行时间。

转子侧大功率馈入直流侧会导致直流侧电容电压的升高,而直流侧的耐压等级依赖于直流侧电容的大小,因此直流侧设计crowbar电路,在直流侧安装电阻来作吸收电路,将直流侧电压限制在允许范围内。

这种方式的不足之处是:该方案需要增加系统的成本和控制的复杂性。

考虑到定子故障电流中的直流分量,需要可控硅器件能通过门极关断,这要求很大的门极负驱动电流,驱动电路太复杂。

这里的可控硅串联电路如果采用穿透型igbt的话,igbt必须串联二极管。

而采用非穿透型igbt的话,通态损耗会很大。

理论上,如果利用接触器来代替可控硅开关的话,虽通态时无损耗,但断开动作时间太长。

而且由于该方案在输电系统故障时发电机脱网运行,因此对电网恢复正常运行起不到积极的支持作用。

3.2 串联连接变流器通常双馈感应发电机的背靠背式励磁变流器采用如图6a)所示的与电网并联方式[13-16],这意味着励磁变流器能向电网注入或吸收电流。

低电压穿越技术

低电压穿越技术

低电压穿越时对10兆瓦的风力涡轮机多级电网侧变流器的热分析柯玛,会员,IEEE,佛雷格布拉布叶格,研究员,IEEE,马可李斯锐,研究员,IEEE摘要由于单个风力涡轮机的功率等级不断上升甚至达到7MW,风力发电系统要求更可靠和能够承受极端的电网干扰。

此外,风力发电系统应在电网中更加灵活和能够通过在电网故障期间注入有助于电网恢复的无功电流,这已经成为一种需要。

因此,全功率变换器解决方案正变得越来越流行来满足不断增长在风力发电应用中的挑战。

然而,全功率转换器中的功率器件的加载,特别是在电网故障期间,可能会妥协可靠性能和进一步增加了系统的成本。

在本文中,三个具有好前景的用于新一代的10兆瓦的风力涡轮机的电网侧的多级变换器的拓扑结构被提出,和基本上作为案例学习而设计。

运行状态,和可靠性相关性能一样,研究的目的在不同的低电压穿越(LVRT)条件下。

发现所有提出的转换器拓扑结构都将一些低电压穿越操作时高负载的功率器件(特别是二极管)中遭受交界处的温度较高。

此外,本三电平和五电平H桥拓扑比著名的三电平中性点钳位拓扑结构在减少不对称性和设备应力等级方面表现出更大的潜力。

关键词:低电压穿越(LVRT),多层次变换器,热分析,风力发电。

一、引言欧盟致力于到2020年其能源的20%从可再生能源中获得[ 1 ]。

作为最有前景的候选对象,并入电网的风能生产在全世界蓬勃发展。

同时,单个风力发电机组的容量不断增加从而降低了生产每千瓦时的价格,作为尖端成就,7兆瓦海上风机已经出现在市场上[ 2 ]-[ 4 ]。

因此,由于与以前相比在电网故障或断开后会对电网的更为重要的影响,风力发电系统要求更加可靠,能承受一些极端的电网扰动。

传动系统运营商已经颁布更严格的低电压穿越(LVRT)电网的标准,如图1所示的[5] 对于不同的国家,在图中定义了各种电压骤降和允许的扰动时间的边界。

此外,风力发电系统还提供无功电流(高达转换器额定电流容量的100%)来有助于电网恢复,当低电压穿越出现,如图2所示,所需要的与电网电压相关的无功电流由德国的电网规范指示[ 6 ]。

有关风力发电低电压穿越技术的分析分析技术风力发电低电压穿越风力发电机

有关风力发电低电压穿越技术的分析分析技术风力发电低电压穿越风力发电机

有关风力发电低电压穿越技术的分析摘要:近些年来,风力发电在供电总量中的比重逐年增加,再加上风力穿透功率的不断上升,风力发电对于地区性电网稳定性影响越来越大,如果电网出现故障导致电压跌落,风力机组通过解列来解决问题势必会造成系统的不稳定,严重还会造成局部甚至是整个系统的全面崩溃,而低电压穿越技术就是在这个背景下开始受到各界的关注。

文章首先描述了我国目前风力发电低电压穿越技术的相关规定,其次分析不同风机主要机型在电网电压跌落时表现的具体特征,最后对不同机型暂态特征以及低电压穿越技术进行了详细分析。

关键词:风力发电;低电压;穿越技术中图分类号: TM315 文献标识码: A1.前言当今世界风力发电厂装机容量正处于逐年上升的态势,目前在欧美一些发达国家,风力发电在全国电网供电中所占的比重非常高,例如欧洲的丹麦风力大点比例已经超过了20%,而风力发电有比较容易产生运行故障,所以必须考虑在电网发生故障的时候风机的运行状态对整个电网稳定性的影响,所以目前世界上众多的电网公司都集合自身实际对风力发电机组并网提出了更多更高的技术性要求,而低电压穿越技术正是能够解决这个问题的新技术,而低电压穿越技术又是公认的风电机组设计中最难的一项技术,穿越技术的使用性能将会直接的影响到风机的大规模使用。

低电压穿越技术就是在风机并网点电压出现跌落现象的过程中,风机仍然能够保持并网,甚至还可能会给电网提供一定量的功率,支持电网的恢复,还有可能直接坚持到电网恢复正常。

电压跌落必然会给电机带来相应的暂态过程,例如过电压、过电流或者是转速上升等现象,情况严重还会影响到风机以及风机控制系统安全运作。

通常情况下如果是电网出现故障,风机就会实行被动式的自我保护程序,也就是立刻解列,还会保障风机的安全运行,这在风力发电电网穿透率相对较低的时候是可以接受的,但是一旦风力发电在整个电网中占得比重很大,那么整个系统的恢复难度就会增加,可能会增加故障产生的可能性,严重的会导致整个系统的解列瘫痪,所以有效的低电压穿越技术能够有效的稳定风场电网。

低电压穿越技术(2011-9-28)

低电压穿越技术(2011-9-28)

风力发电低电压穿越技术1. 低电压穿越技术的提出在风电场容量相对较小并且分散接入时,系统故障时风电场退出运行不会对系统稳定造成影响。

随着风电装机容量在系统中所占比例增加,风电场的运行对系统稳定性的影响将不容忽视。

世界各国电力系统对风电场接入电网时的要求越来越严格,甚至以火电机组的标准对风电场提出要求。

包括低电压穿越(Low Voltage Ride Through ,LVRT )能力,无功控制能力,甚至是有功功率控制能力等,其中LVRT 被认为是对风电机组设计制造技术的最大挑战。

2. 低电压穿越的定义及要求定义:低电压穿越(LVRT ),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。

要求①:我国对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,要求该电网电机组能够保证不脱网连续运行。

3. LVRT 国内外研究现状风力发电系统,根据发电机转速,可以分为失速型与变速恒频型,其中变速恒频又可以分为双馈型和直驱型;根据传动链组成,可以分为有齿轮箱和直接驭动型;有齿轮箱又可以分为多级齿轮+高速发电机型与单级齿轮+低速发电机型。

目前市场上风机类型可概括为三类,即直接并网的定速异步机FSIG(fixed speed induction generator)、同步直驱式风机PMSG(permanent magnetic synchronous generator)和双馈异步式风机DFIG(doubly-fed induction generator)。

这三种机型, FSIG 属于淘汰机型,以后的发展趋势是PMSG 和DFIG 。

①目前,各国对低电压穿越的要求不同,其中在行业中影响最大的是德国的E.ON 标准。

②低电压穿越特性曲线主要是由故障期间的电压最低值(即低电压穿越曲线中U/UN 的最小值)电压最低点的时间长度和故障恢复时间来决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种双馈式变速恒频风电机组低电压穿越技术对比分析11 引言并网风力发电是近十年来国际上发展速度最快的可再生能源技术。

并网风力发电机与传统的并网发电设备最大的区别在于,其在电网故障期间并不能维持电网的电压和频率,这对电力系统的稳定性非常不利。

电网故障是电网的一种非正常运行形式,主要有输电线路短路或断路,如三相对地,单相对地以及线间短路或断路等,它们会引起电网电压幅值的剧烈变化。

双馈式变速恒频风电机组是目前国内外风电机组的主流机型,其发电设备为双馈感应发电机,当出现电网故障时,现有的保护原则是将双馈感应发电机立即从电网中脱网以确保机组的安全。

随着风电机组单机容量的不断增大和风电场规模的不断扩大,风电机组与电网间的相互影响已日趋严重。

人们越来越担心,一旦电网发生故障迫使大面积风电机组因自身保护而脱网的话,将严重影响电力系统的运行稳定性。

因此,随着接入电网的双馈感应发电机容量的不断增加,电网对其要求越来越高,通常情况下要求发电机组在电网故障出现电压跌落的情况下不脱网运行(fault ride-through),并在故障切除后能尽快帮助电力系统恢复稳定运行,也就是说,要求风电机组具有一定低电压穿越(low voltage ride-through)能力。

为此,国际上已有一些新的电网运行规则被提出。

例如:德国北部的电力公司(e.on netz公司)要求风电场能够在图1所示的电压范围内(即图中阴影区)不脱网运行[1][33],电网电压跌落到15%以后风电机组不脱网运行时间须持续达300ms,当电网电压跌落低于曲线后才允许风电机组脱网。

这里电压指的是风电场连接点的电压。

而为英国部分地区供电的national grid电力公司则要求当高于200kv 的输电线路发生故障时,所有并网运行的电站或风电场必须在140ms内保持不脱网运行[2]。

另外苏格兰电力公司(scottish hydro-electric公司)对电网故障时电站或风电场不脱网运行也有类似的要求[3]。

图1 e.on netz公司对电网故障时风电场不脱网运行的电压范围要求[33]为了提高风电机组的低电压穿越能力,必须针对当前主流风电机组中的双馈感应发电机的运行特点进行研究,研究它们在电网故障与故障恢复过程中的暂态行为,消除或减轻在不离网控制情况下可能引起的机组损害。

许多文献[4-7]报道了在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。

这是因为双馈感应发电机在电网电压瞬间跌落的情况下,定子磁链不能跟随定子端电压突变,从而会产生直流分量,由于积分量的减小,定子磁链几乎不发生变化,而转子继续旋转,会产生较大的滑差,这样便会引起转子绕组的过压、过流。

如果电网出现的是不对称故障的话,会使转子过压与过流的现象更加严重,因为在定子电压中含有负序分量,而负序分量可以产生很高的滑差。

过流会损坏转子励磁变流器,而过压会使发电机的转子绕组绝缘击穿。

为了保护发电机励磁变流器,采用过压、过流保护措施势在必行。

为了保证电网故障时双馈感应发电机及其励磁变流器能安全不脱网运行,适应新电网运行规则的要求,国内外学术界和工程界对电网故障时双馈感应发电机的保护原理与控制策略进行了大量研究。

据文献的报道,当前的低电压穿越技术一般有三种方案:一种是采用了转子短路保护技术(crowbar protection),二种是引入新型拓扑结构,三是采用合理的励磁控制算法。

下面逐一分析介绍。

2 转子短路保护技术[8]这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。

目前比较典型的crowbar电路有如下几种:(1) 混合桥型crowbar电路[9],如图2所示,每个桥臂由控制器件和二极管串联而成。

图2 混合桥型crowbar(2) igbt型crowbar电路[9],如图3所示,每个桥臂由两个二极管串联,直流侧串入一个igbt器件和一个吸收电阻。

图3 igbt型crowbar(3) 带有旁路电阻的crowbar电路[10],如图4所示,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。

图4 旁路电阻型crowbar励磁变流器在电网故障期间,与电网和转子绕组一直保持连接,因而在故障期间和故障切除期间,双馈感应发电机都能与电网一起同步运行。

当电网故障消除时,关断功率开关,便可将旁路电阻切除,双馈感应发电机转入正常运行。

采用crowbar电路的转子短路保护技术存在这样一些缺点:首先,需要增加新的保护装置从而增加了系统成本;另外,电网故障时,虽然励磁变流器和转子绕组得到了保护,但此时按感应电动机方式运行的机组将从系统中吸收大量的无功功率,这将导致电网电压稳定性的进一步恶化,而且传统的crowbar 保护电路的投切操作会对系统产生暂态冲击。

文献[1]提出了改进方案,该方案与传统方案的区别在于:在转子短路保护电阻切除后,将转子电流控制指令设定为该时刻转子电流的实际值,从而防止由于转子电流控制器指令电流与实际电流不等而引起的暂态冲击。

然后通过逐渐改变转子电流指令,实现转子电流控制器的软起动。

在转子电流控制器的作用下发电机将逐步恢复到正常运行。

这缓解了crowbar保护电路的投切操作对系统产生的暂态冲击,在一定程度上缩短了发电机低电压穿越的过渡时间。

但该文献仅限于研究对称故障发电机不脱网运行,未讨论电网故障运行初始条件对不脱网运行效果的影响。

3 引入新型拓扑结构除了上述典型crowbar技术的应用外,一些文献还提出了一些新型低压旁路系统,如图5、图6所示。

图 5 新型旁路系统图6a) 并联连接网侧变流器图6b) 串联连接网侧变流器3.1 新型旁路系统[11-13]如图5所示,这种结构与传统的软启动装置类似,在双馈感应发电机定子侧与电网间串联反并可控硅电路。

在正常运行时,这些可控硅全部导通,在电网电压跌落与恢复期间,转子侧可能出现的最大电流随电压跌落的幅度的增大而增大,为了承受电网故障电压大跌落所引起的的转子侧大电流冲击,转子侧励磁变流器选用电流等级较高的大功率igbt器件,这样来保证变流器在电网故障时不与转子绕组断开时的安全。

电网电压跌落再恢复时,转子侧最大电流可能会达到电压跌落前的几倍。

因此,当电网电压跌落严重时,为了避免电压回升时系统在转子侧所产生的大电流,在电压回升以前,将双馈感应发电机通过反并可控硅电路与电网脱网。

脱网以后,转子励磁变流器重新励磁双馈感应发电机,电压一旦回升到允许的范围之内,双馈感应发电机便能迅速地与电网达到同步。

再通过开通反并可控硅电路使定子与电网连接。

这样可以减小对igbt耐压、耐流的要求。

对于短时间内能够接受大电流的igbt模块,可以减少双馈感应发电机的脱网运行时间。

转子侧大功率馈入直流侧会导致直流侧电容电压的升高,而直流侧的耐压等级依赖于直流侧电容的大小,因此直流侧设计crowbar电路,在直流侧安装电阻来作吸收电路,将直流侧电压限制在允许范围内。

这种方式的不足之处是:该方案需要增加系统的成本和控制的复杂性。

考虑到定子故障电流中的直流分量,需要可控硅器件能通过门极关断,这要求很大的门极负驱动电流,驱动电路太复杂。

这里的可控硅串联电路如果采用穿透型igbt的话,igbt必须串联二极管。

而采用非穿透型igbt的话,通态损耗会很大。

理论上,如果利用接触器来代替可控硅开关的话,虽通态时无损耗,但断开动作时间太长。

而且由于该方案在输电系统故障时发电机脱网运行,因此对电网恢复正常运行起不到积极的支持作用。

3.2 串联连接变流器通常双馈感应发电机的背靠背式励磁变流器采用如图6a)所示的与电网并联方式[13-16],这意味着励磁变流器能向电网注入或吸收电流。

为了提高系统的低电压穿越能力,文献[17]提到了一种新的连接方式,即将变流器与电网进行串联连接,比如,变流器通过发电机定子端的串联变压器实现与电网串联连接,则双馈感应发电机定子端的电压为网侧电压和变流器输出的电压之和。

这样便可以通过控制变流器的电压来控制定子磁链,有效的抑制由于电网电压跌落所造成的磁链振荡,从而阻止转子侧大电流的产生,减小系统受电网扰动的影响,达到强化电网的目的。

但这种方式将增加系统许多成本,控制也比较复杂。

4 采用新的励磁控制策略从制造成本的角度出发,最佳的办法是不改变系统硬件结构,而是通过修改控制策略来达到相同的低电压穿越效果:在电网故障时,使发电机能安全度越故障,同时变流器继续维持在安全工作状态。

文献[18]利用数值仿真的方法对电网三相对称故障时发电机不脱网运行的励磁控制进行了研究。

研究结果表明,通过适当提高现有双馈感应发电机励磁控制器中pi 调节器的比例和积分系数,能够在一定范围内维持电网故障时发电机不脱网运行。

然而该文献未对故障时发电机不脱网运行的范围进行详细地研究计算。

该文献提出的方法仅适用于系统对称三相故障引起发电机母线电压轻微下降时保持发电机不脱网运行,当故障引起发电机母线电压严重下降时,励磁变流器将出现过电压和过电流。

文献[19]则利用硬性负反馈的方式补偿发电机定子电压和磁链变化对有功、无功解耦控制性能的影响,该方案能够在一定程度上提高双馈感应发电机在输电系统故障时的运行特性,并能够在一定范围内限制发电机转子电流,保护转子励磁变流器。

但该方案对转子电流的有效控制是在提高转子电压的前提下实现的,考虑到转子侧励磁变流器输出最大电压的限制,该方案仅适用于输电系统故障引起发电机电压轻度骤降的场合,对于引起发电机定子电压严重骤降的电网故障,该方案会由于转子侧励磁变流器无法提供足够高的励磁电压而失去对转子电流的控制。

另外,文献[20]还建议充分利用发电机电网侧变流器在电网故障过程中对电网电压的支持作用,通过协调转子和电网侧变流器的控制提高电网故障时发电机不脱网运行的控制效果。

文献[27-32] 提出了一种灭磁保护原理。

在理解电网短路故障时发电机的暂态物理过程的基础上,提出了电网短路故障时双馈感应发电机不脱网运行的励磁控制策略。

为保证故障期间双馈感应发电机励磁变频器安全运行,新的励磁控制策略针对故障过程中发电机内部电磁变量的暂态特点,控制发电机转子电流产生的磁链(故障暂态时该磁通只通过漏磁路径,是漏磁链)以抵消定子磁链中的“有害”暂态直流分量对转子侧的影响。

相关文档
最新文档