概率统计习题课4 (2)

合集下载

概率与数理统计_习题集(含问题详解)

概率与数理统计_习题集(含问题详解)

《概率与数理统计》课程习题集西南科技大学成人、网络教育学院所有习题【说明】:本课程《概率与数理统计》〔编号为01008〕共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。

一、计算题11.设A,B,C表示三个随机事件,试将如下事件用A,B,C表示出来。

(1) A出现,B、C不出现;(2) A、B都出现,而C不出现;(3) 所有三个事件都出现;(4) 三个事件中至少一个出现;(5) 三个事件中至少两个出现。

2.在分别标有1,2,3,4,5,6,7,8的八卡片中任抽一。

设事件A为“抽得一标号不大于4的卡片〞,事件B为“抽得一标号为偶数的卡片〞,事件C为“抽得一标号为奇数的卡片〞。

试用样本点表示如下事件:〔1〕AB;〔2〕A+B;〔3〕B;〔4〕A-B;〔5〕BC3.写出如下随机试验的样本空间:〔1〕一枚硬币掷二次,观察能出现的各种可能结果;〔2〕对一目标射击,直到击中4次就停止射击的次数;〔3〕二只可识别的球,随机地投入二个盒中,观察各盒装球情况。

4.设A,B,C为三事件,用A,B,C的运算关系表示如下事件。

〔1〕A发生,B与C不发生;〔2〕A,B,C都发生;〔3〕A,B,C中不多于一个发生。

5.甲、乙、丙三人各向目标射击一发子弹,以A、B、C分别表示甲、乙、丙命中目标。

试用A、B、C的运算关系表示如下事件:〔1〕至少有一人命中目标〔2〕恰有一人命中目标〔3〕恰有二人命中目标〔4〕最多有一人命中目标〔5〕三人均命中目标6. 袋有5个白球与3个黑球。

从其中任取两个球,求取出的两个球都是白球的概率。

7. 两台车床加工同样的零件,第一台出现废品的概率是,第二台出现废品的概率是。

加工出来的零件放在一起,并且第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率。

8. 某地区的由7个数字组成〔首位不能为0〕,每个数字可从0,1,2,…,9中任取,假定该地区的用户已经饱和,求从码薄中任选一个的前两位数字为24的概率。

概率论与数理统计(经管类)第四章课后习题答案word档

概率论与数理统计(经管类)第四章课后习题答案word档

3. 设轮船横向摇摆的随机振幅X 的概率密度为f (x )=b 。

迅 χ>6 (0, X ≤ 0.求 E(X).+ ooX 2解:E(X) =匸]xf(x)dx =齐J)Oo X∙ e ≡^dx = 14. 设X 1, X 2,…Xn 独立同分布,均值为U,且设Y =Xi,求E(Y).解:E(Y) = EGJXIXi) = ^E(∑jl 1Xj) = nμ = μ5. 设(X,Y)的概率密度为(e^y ,0 ≤x ≤ l,y > 0,f(X ^y) =I 0,其他求 E(X+Y).解:E(X + Y)=亡 U (X + y)f(x, y)dxdy = Jm(X + y)Qdxdy =V Oo J , θ^y + Y * θ^yd Y = \习题4・11.设随机变量X 的概率密度为(2×, O ≤ X ≤ 1,I .(l)f(x) = I O 其他(2)f(x) =-e lx,, -oo<%< +求 E(X)X 3 1- 0解:(I)E(X) = J 二 xf(x)dx X ∙ 2xdx = 2 ・却⑵ E(X) = J 二 Xf(X)dx = D ∙∣e^lxl = 02.设连续型随机变量X 的分布函数为( O 1 X < -1,F(X) = ]a + b ∙ arcsinx l -1 ≤ x < 1,( 1, X > 1.试确定常数a,b,并求E(X). 解::arcsinx 的导数为「;:√ΓΣX Σ ;; 1!:arctanx 的导数为 T ;•2 :(1) f(×) = F'(x)=7⅛,-ι≤xvi0,其他+8Γ1 bf(x)dx = r dx = b ∙ arcsinx g λ1√1^21=bπ= 1,即 b = ^ —1 π 又因当一 ISXV 1时F(X) = ∫ f(x)dx =⑵ E(X) = J 二 Xf(X)dx = £ J ・ √⅛ = 0Γx 1 1 1----- dx = 一 ∙ arcsinx -ι∏ √1 -x 2 HXI =ZarCSinX + M即 a=;—1 R 226.设随机变量X b X 2相互独立,且X IZ X 2的概率密度分别为且E(X)=O.75,求常数C 和α.解:E(X)=仁7 Xf(X)血= JOI X ∙ CXadX = 0.75fι W = {2e"2x , X > 0, 0, X ≤ 0,f 2(χ) = {3e"3x, 0,X > 0, X ≤ O 1;该题服从描数分布"I I求:(1)E(2X 1 + 3X 2); (2)E(2X 1 - 3X 22); (3)E(X 1X 2). 解:(1) E(2X 1 + 3X 2) = 2E(X 1) + 3E(X 2) = 2*i÷3*i=223(2) E(2X 1 - 3X 22)==2E(X I )-3E(X 22)r +8 I X 2 3e^3x dx 0r +xI X 2 d(e~3x )] JO= 1-3*=1 - 3 * [-=1 - 3 * [-X 2 ∙ e"3x=1 - 3 * [0 +r+o ° 'e -3x 0+ oo 0 + 8e -3x ∙ 2x dx] r O=1 — 3 * [∣ J e -3x ∙ 3x dx]2 1=1 — 3 * — * —3 3(3) E(X 1X 2) = E(X 1)E(X 2) = ∣*i = ⅛ XO 1 2 1 0.1 0.2 0.1 20.30.10.2解:E(X) = ∑i ∑j X i P ij = 0 * 0.1 ÷ 0 * 0.3 ÷ 1 * 0.2 + 1 * 0.1 +*0.1÷2* 0.2 = 0.98.设随机变量X 的概率密度为7.己知二维随机变量(X,Y)的分布律为求E(X).0 ≤ X ≤ 1,其他.习题4・21.设离散型随机变最X 的分布律为X -1 0 0.5 1 2 P0.10.50.10.10.2求 E(X), E(X 2)1 D(X)・解:E(X) = (-1) *0.1 + 0* 0.5 ÷ 0.5 *0.1+ 1*0.1+2 * 0.2 = 0.45E(X 2) = (-1)2 *0.1 + 0* 0.5 + (0.5)2 * 0.1 + I 2 * 0.1 + 22 * 0.2 = 1.025D(X) = (一1 一 0.45)2 * 0.1 + (0 - 0.45)2 * 0.5 + (0.5 一 0.45)2 * 0.1 + (1 - 0.45)2 * 0.1 + (2 - 0.45)2 *0.2 = 0.82252. 盒中有5个球,其中有3个白球,2个黑球,从中任取两个球,求白球数X 的期望和方差. 解:X 的可能取值为0,1,2注总此处不可以用二项分布式:IP{X =k} = C⅛k q n ^k ;E(X) = 0 * 0.1 + 1 * 0.6 + 2 * 0.3 = 1.2D(X) = (O- 1.2)2 * 0.1 + (1 - 1.2)2 * 0.6 + (2 — 1.2)2 * 0.3 = 0.144 + 0.024 + 0.192 = 0.363. 设随机变量X,Y 相互独立,他们的概率密度分别为求 D(X+Y).1(-—0)249解:D(X + Y) = D(X) + D(Y)=亦 + 旨=涪4. 设随机变量X 的概率密度为且 E(X)=O.5F D(X)=0.15.求常数 a f b,c. 解:P{x = o} = I = 0.12e"2x f X > 0, O 1 X ≤ O 1fγ(y) = P<y≤^0,其他,fχ(x) = ie^∣x ∣,-∞ < X < +∞,求 D(X)解:E(X) =-IXIdX = 0;此为奇函数,故=OE(X 2)=^e-W dX = 2 Γ ^e -X -8 2 Loo 2打二夕小正负无:+∞2 —X I■x e=:穷带入结果都一样,故: •8ID(X)=E(X 2)- [E(X)]2 = 2 设随机变量X 与Y 相互独立,且D(X)JD(Yr2,求D(X-Y).解:D(X -Y) = D(X) + D(Y) =1 + 2 = 36.若连续型随机变量X 的概率密度为ax 2 + bx + c l 0 < X < 1, 0, 其他,5. f(x)=I =2∫+°∙^e -×J —OO 2P{X=2} = ∣∣ =1E(XY) = J [J *(x + y)dy]dx = J 47 71Cov(X, Y) = E(XY) 一 E(X)E(Y) =—3.设二维随机变量(X,Y)的概率密度为Cf 、 fye^(X+y), x>0,y>0, 3珂0,其他求X 与Y 的相关系数pxy∙ 解:r+o ° r+o °=I ( I χyθ^(χ+y)dy)dx =Jo 丿OE(Y)y 2e^(χ+Y) dx)dyE(X) f 1 7 a=I x(ax ÷ bx ÷ c) dx = - ÷ 丿0b C尹厂0・51 a b C E(X 2) = I x 2(ax 2 + bx + c)dx = -÷-÷- = 0.15 + (0.5)2= 0.4 丿 O S 4β dr+∞r i a b I f(x)cix = I (ax 2÷ bx ÷ c)dx = ^∙÷^∙÷ c = 1 J-∞ JO 3 / 解得 a=12,b=-12,c=3.习题4・31. 设两个随机变最X Z Y 相互独立,方差分别为4和2,则随机变量3X-2Y 的方差是 _ A. 8B. 16C. 28D. 442. 设二维随机变S(X z Y)的概率密度为1§(X + y), 0 ≤ X ≤ 2,0 ≤ y0,其他 求 COV(X,Y). 解:+ 8(a + b + cx)dx -8E(X) = JQq ∣(χ + y)dy]dx =r 2 X 2 __'0⅛∙y + 8,E(Y) =[Q 》x + y)dx|dy =右E(X)=(a∙x + b∙x+c∙e_y ∙ y dy = 2r+ o ° r + o °E(XY) = I (I xy 2e _(x+y)dy)dx = 2 JO 丿OCOV(X l Y) = E(XY) 一 E(X)E(Y) = 2-2*1 =04. 设二维随机变M(X z Y)HK 从二维正态分布卫 E(X)=O j E(Y)=O, D(X)=I6, D(Y)=25, COV(X Z Y)=12,求(X”)的联合概 率密度函数f(x,y).解:--------- 1e ~Ξ(I⅛{⅛^2πσιθ2√ 1—p 2∙∙∙ E(X) = O l E(Y) = 0 ∙*∙ AI = 0,旳=θ*・・・ D(X) = 16, D(Y) = 25 ・•・ σ1 = 4, σ2 = 5 ・・・ COV(X l Y) = 12Cov(X, Y) 12 3:■ P = --------------------- = ----------- =—√D(X)√D(Y)4*5 51 _25比_3Xy 丄 y2、:∙ f(x,y) = R—e 宓 16一 50 十刃J32π5. 证明 D(X-Y)=D(X)+D(Y)-2Cov(X z Y).y 2e"x e"y cix)dyy 2 d(e"y )运用分部积分法.:^o °e-×∙ydy 服从入“的指数分布:所以PXy =Cov(X l Y) √D(χ)√oσ)2 (X -^I)(y-^2⅜ I (y~μz)21H σi∏2O22'f(χ,y)=证:D(X - Y) = E[X-Y - E(X 一Y)]2= E[(X-E(X))-(Y-E(Y))]2=E [(X - E(X))2] -2E[X- E(X)] ∙ E[Y 一E(Y)] ÷ E [(Y - E(Y))2]= D(X) +D(Y)-2Cov(X,Y)6. 设(X,Y)的协方差矩阵为C = (J43;),求X与Y的相矢系数P×y. 解:・・・c=c V)・•・ Cov(X, Y) = -3, D(X) = 4, D(Y) = 9Cov(X, Y) -3 1:∙ PXV = —一―= ----------- =———√D(X)√D(Y) 2*3 2自测题4一、选择题1.设随机变量X服从参数为0.5的指数分布,则下列各项中正确的是_A. E(X)=O.5, D(X)=O.25B. E(X)=2z D(X)=4C. E(X)=O.5, D(X)=4D. E(X)=2, D(X)=O.25解:指数分布的E(X)=?D(X) = W2. 设随机变最X Z Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y÷1)= C A.-14 B. 13C. 40D. 41解:D(X) = npq = 16 * 0.5 * 0.5 = 4f D(Y) = λ= 9D(X - 2Y + 1) = D(X)十4D(Y)十D(I) = 4 + 4*9 + 0 = 403. 己知D(X)=25,D(Y)=1, PXy=O.4, WlJ D(X-Y)= BA.6B. 22C. 30D. 464. 设(X,Y)为二维连续随机变量,则X与Y不相关的充分必要条件是_.A. X 与Y 相互独立B. E(X+Y)=E(X)+E(Y)C. E(XV)= E(X)E(Y)D. (X Z YrN(μ1, μ2, σ12,022,0)解:・・・X与Y不相关:、PXy = 0,・•・ COV(X l Y) = 0・・・ E(XY) = E(X)E(Y)5. 设二维随机变量(X,Y)~N(1,1,4,9,)则COV(X,Y)= B .A.iB. 3C. 18D. 36解:・・• PXy = J =-COV(X J Y) — COV(X#Y) . QCv∖— Q JD(X)JD(Y) 2»3 ,CθV(X, Y) 3已知随机变最X 与Y 相互独立,且它们分别在区间卜1,3]利2,4]上服从均匀分布,则E(XY)= A A. 3 B. 6C. 10D. 12解:・・・X~U(73),Y 〜U(2,4)a+b —1+32+4・・・ E(X) = 丁 == 1, E(Y) = 丁 = 3E(XY) = E(X)E(Y) =1*3 = 3设二维随机变M(X z YrN(0,0,1,1,0),0(x)为标准正态分布函数,则下列结论中错误的是 C .A. X 与Y 都服从N(0,l)正态分布B. X 与Y 相互独立C. COV(X z Y)=ID. (X,Y)的分布函数是O)(X) ∙ Φ(y)填空题若二维随机变M(X Z YrN(μr μ2, σ12, σ22,0),且X 与Y 相互独立,则P=_0令 Y=2X+1,则 E(Y)=解:E(2X+l)=(2*-l+l)*0.1+(2*0+l)*0.2+(2*l+l)*0.3+(2*2+l)*0.4=3 己知随机变最X 服从泊松分布,且D(X)=I z 则P{X=l}=-e-1-.解:・・・D(X) = λ= 1λ1e"λ IΛP{X=l} = ^r =e -1设随机变量X 与Y 相互独立,且D(X)= D(Y)=I z 则D(X-Y) = 2己知随机变量X 服从参数为2的泊松分布,ECX 2)= 6解:・・・ E(X) = λ = 2, D(X) =λ = 2,・•・ E(X 2) = E 2(X) + D(X) = 4 + 2 = 6设X 为随机变量,且E(X)=2, D(X)=4,则E(X2)= 8 .己知随机变量X 的分布函数为0, X < 0 X-,0< X < 41, x≥4则 E(X) = 2 .(X=0≤x<4 4.0,其他 r 4 XE(X) = JO ξdx = 0 设随机变量X 与Y 相互独立,且D(X)=乙D(Y)=I,则D(X-2Y+3)≡_6 设随机变量X 的概率密度函数为O l 其他6. 7.二 1. 2. 3. 4.5.6.7. 8. 三、F(X) =解:f(X )= F 〃”'(X )=f(x)=IX 2, -1 ≤x≤ 1, 3解:VCOV(X Z Y)=O设随机变量X 的分布律为3试求:(I)E(XL D(X); (2)P{∣X 一 E(X)I < 2D(X)}. 解:(1) E(X) = U ∣x 3 dx = Orl β 3 χ5 ] 13D(X)= E(XZ) -E2(X) = L I 2χ4^2'T ∣-1^5(2) P{∣x 一 E(X)I < 2D(X)} = P {∣X ∣ <∣} = Gf(X)dx = ∫J l 1∣x 2dx= 1四.设随机变量X 的概率密度为X O ≤x ≤ 12 -X, 1 ≤ x< 20,其他试求:(I)E(XL D(X); (2)E(X n )Z 其中n 为正整数. 解:⑴ E(X) = ∫o 1χ2dx + ∫12χ(2-x)dx = i÷i= 1r 1「2] /]4 15\ 1D(X) = E(χ2) — E2(X) = J X 3 dx + J X “(2 — x) — 1 = & + ( -------------------------------- —J -I =—⑵ E(X n ) = £ x n+1 dx +『x n (2 -X) =设随机变量X l 与X2相互独立,且XrN(μ, σ2L X 2~N(μl 亍).令X = x 1+x 2/ Y = χr χ2. 求:(I)D(X), D(Y); (2)X 与 Y 的相关系数 pxy.解:(1) D(X) = D(X I + X 2) = D(X l ) + D(X 2) = σ2 + σ2 = 2σ2 D(Y) = D(X I 一 X 2) = D(X I ) + D(X 2) = 2σ2⑵ Cov(X,Y) = E(XY) 一 E(X)E(Y) = 0Cov(KY) nPXy = J , ------- = 0(1) 求 E(X),D(X); (2) 令Y =求Y 的概率密度f γ(y).解:(1) E(X)= J o FoO 2xe-¾ =f +∞ IIIID(X) = E(X 2) - E 2(X) = I 2x 2e^2x dx ------------------------- ----------------JQ 4 2 4 4!2(2口+1_1)(n+l)(n+2) 五、六. 设随机变量X 的概率密度为f(x)=2e"2x l X > O 1 0, X ≤ 0由Y=2X-1得X =马岂X ,=i2 2七、设二维随机变量(X,Y)的概率密度为(2, 0 ≤ X ≤ l l 0 ≤ y ≤ %,f(X ^) =I0,其他求:(I)E(X+Y); (2)E(XY); (3) P{X + Y ≤ 1}.解:(1) E(X+Y) = &dxj ;2(x + y)dy = Jθl 2x 2 ÷ x 2dx = 1 (2) E(XY) = J O I dx∫^2xydy = ∫θx 3dx = J(3) P{X + Y≤1} = U x+ysl ‰y)dxdy = ⅛(^"y 2dx)dy = J^2-4ydy = |八.设随机变最X 的分布律为X •10 1P111亍3 3i≡ Y=X 2,求:(I)D(XL D(Y);(2) pxy.解:⑴ E(X) = (― 1)*J ÷0*^∙+1*J = 0/、 7 1 9 1 9 1 2D(X) = (-1 - O)2 * 2 + (0 - O)2 * 2 ÷ (1 - O)2 * J = J1 1 1 2E(Y) = (-1)2*^ + 0*3 + 12*3 = 32 1 2 1 2 12D(Y) = (I-3)2*3 +(°-3)2*3 +(I -3)2*3 = 9Y = X Z E(X) =√θ(X)-(y+气 y > -1 O, y ≤ -1(2)(X,Y)的分布律为1 2 12 12E(XY) = (O -1).^÷(1 ・一l)-g + (0∙0)∙^+(0∙l) ^+(l∙0)∙g + (l∙l)∙5 = 02 CCOV(X l Y)= =E(XY) 一E(X)E(Y) =0-0*^=0COV(X I Y)√D(X)√D(Y)。

《大学数学概率论及试验统计》第四章_课后答案(余家林主编)

《大学数学概率论及试验统计》第四章_课后答案(余家林主编)

2.设 X 的分布规律如下,试证明 X 与 Y= X 2 不相关又不相互独立。
da
-1 1/3 0 1/3 DX=EX2 -(EX)2 =2/3, =0 ∴X 与 Y 不相关.
后 答
X P 解:EX=-1 ×
1 1 1 + 0 × +1× = 0 3 3 3
w.
∴ρ ( X ,Y ) =0−0× 2 3Fra bibliotekda5
后 答
1 (3)E(XY)= ∫ dy ∫ xydx= , 0 0 6
2
1−
y 2
D(XY)= ∫ dy ∫ ( xy− ) dx =
2 0 0
w.
2 1− y 2
DY= ∫ ∫ ( y − EY ) p( x, y) dxdy=∫ dy ∫ ( y− ) dx=
2
2 3
2 9
i =1
i
独立 5 = ∑ DX i =1
1.44 2 .4 =0.6,∴p=0.4 ,n= =6 2 .4 0 .4
2 10、设 X 与 Y 相互独立,分布密度同为 p(z)= 2 z θ ,0< z <θ 则 E( X+2Y) =________
0
p=P(X > 1) = 1 − P( X ≤ 1) ∴p=1-0.95 -5×0.1×0.94 =0.08146 设一天中调整机器 Y 次。则 Y~ B(4,p), EY=4× p=4×0.08146=0.32584
1 1 2π 1 2 sin x dx = (1−cos2 x )= ∫ ∫ 2π 4π 0 2 0
w.
1 15 15 ,D(-2X+1)=(-2) 2 DX=4 × = 16 4 2 1 3 1 1 5 (3)EX2 = (−1) 2 × 1 + 0 2 × 3 + 1 2 × 1 + 2 2 × 1 = 1 ,EX 4 =( −1) 4 × +04 × +14× +2 4× = 4 8 4 8 2 4 8 4 8 5 3 DX 2 =EX 4 −( EX 2 ) 2 = −12 = 2 2

概率论与数理统计》课后习题答案第四章

概率论与数理统计》课后习题答案第四章

习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。

解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。

解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。

5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。

《概率论与数理统计》课后习题答案

《概率论与数理统计》课后习题答案

习题解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)}{=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。

试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)CB AC B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。

《概率论与数理统计 B》习题四答案

《概率论与数理统计 B》习题四答案
2
E Y 2 02 0.7 12 0.3 0.3,D Y 0.3 0.3 0.21
2
E X 2Y E X 2 E Y 0.5 2 0.3 0.1 E 3 XY 3E XY 3 0 0 0.3 0 1 0.2 1 0 0.4 11 0.1 3 0.1 0.3 cov X , Y E XY E X E Y 0.1 0.5 0.3 0.05 cov X , Y D X D Y 0.05 21 21 0.25 0.21
E ( XY ) , E ( X 2 Y 2 ) , D( X ) , D(Y ) 。
4
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
1 4 3 x 4 x3dx , E Y y 12 y 2 1 y dy , 0 0 5 5 1 X 1 E XY xy 12 y 2 dydx , 0 0 2
Y Pr
0.5
0.5
0 0.7
1 0.3
E X 0 0.5 1 0.5 0.5,E X 2 02 0.5 12 0.5 0.5 ,
D X 0.5 0.5 0.。
1 1 1 2 2 (2) E X x 2(1 x)dx , x 2(1 x)dx ; 0 0 3 6 1 1 2 1 2 2 故 D( X ) E ( X ) ( E ( X )) ( ) 。 6 3 18
解: (1) E X
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案

概率论与数理统计 许承德 习题二 课后答案

概率论与数理统计 许承德   习题二   课后答案

习 题 二1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =, 所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+ 所以 312()()()0.60.30.9P A P A P A =+=+= 131()()0.6P A A P A == 故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =,则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++.5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -. 解 ()()()() 1.1()(|) 1.10P A B P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

概率论与数理统计第四版课后习题答案

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2的矩估计是6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。

(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ 其中θ>0,θ为未知参数。

(5)()p p m x p p x X P xm x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。

解:(1)Xθcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX X θ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp 令mp =X, 解得mX p=ˆ3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni iθn nni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。

概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新

概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新

答案仅供参考习题2参考答案2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 2.2解根据10kkXP得10kkae即1111eae。

故1ea 2.3解用X 表示甲在两次投篮中所投中的次数XB20.7 用Y表示乙在两次投篮中所投中的次数YB20.4 1 两人投中的次数相同PXY PX0Y0 PX1Y1 PX2Y2 0011220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CCCCCC2甲比乙投中的次数多PXgtY PX1Y0 PX2Y0 PX2Y1 1020211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CCCCCC2.4解:1P1≤X≤3 PX1 PX2 PX312321515155 2 P0.5ltXlt2.5PX1 PX212115155 2.5解1PX246…246211112222k1111441314kklim 答案仅供参考2PX≥31―PXlt31―PX1- PX21111244 2.6解设iA表示第i次取出的是次品X的所有可能取值为012 123412131241230PXPAAAAPAPAAPAAAPAAAA18171615122019181719 112341234234123412181716182171618182161817162322019181720191817201918172 019181795PXPAAAAPAAAAPAAAAPAAAA 1232321011199595PXPXPX 2.7解1设X表示4次独立试验中A发生的次数则XB40.4343140443340.40.60.40.60.1792PXPXPXCC 2设Y表示5次独立试验中A发生的次数则YB50.4 34532415055533450.40.60.40.60.40.60.31744PXPXPXPXCCC 2.81XPλP0.5×3 P1.5 01.51.500PXe1.5e 2XPλP0.5×4 P2 0122222210111301PXPXPXeee 2.9解设应配备m名设备维修人员。

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。

概率统计课后习题答案

概率统计课后习题答案

一次的概率等于19/27,求事件在每次试验中出现的概率. 解 记{在第次试验中出现},
依假设 所以, , 此即 .
17.加工一零件共需经过3道工序,设第一、二、三道工序的次品率 分别为2%、3%、5%. 假设各道工序是互不影响的,求加工出来的零件 的次品率。
解 注意到,加工零件为次品,当且仅当1-3道工序中至少有一道出 现次品。记 {第道工序为次品}, 则次品率
(2) 只有两次抽到废品。 解 (1); (2); (3);
(4); (5). 6. 接连进行三次射击,设={第次射击命中},,{三次射击恰好命中二 次},{三次射击至少命中二次};试用表示和。

习题二解答
1.从一批由45件正品、5件次品组成的产品中任取3件产品,求其中 恰有1件次品的概率。
解 这是不放回抽取,样本点总数,记求概率的事件为,则有利于的 样本点数. 于是
概 率 X的分布函数 0 =
1 4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5,从中随机地取 3个,以X表示取出的3个球中最大号码,写出X的分布律和分布函数。 解 依题意X可能取到的值为3,4,5,事件表示随机取出的3个球 的最大号码为3,则另两个球的只能为1号,2号,即;事件表示随机取 出的3个球的最大号码为4,因此另外2个球可在1、2、3号球中任选,此 时;同理可得。 X的分布律为
(ⅳ) 有利于的样本点数,故 . 3.一个口袋中装有6只球,分别编上号码1至6,随机地从这个口袋 中取2只球,试求:(1) 最小号码是3的概率;(2) 最大号码是3的概率。 解 本题是无放回模式,样本点总数. (ⅰ) 最小号码为3,只能从编号为3,4,5,6这四个球中取2只,且 有一次抽到3,因而有利样本点数为,所求概率为 . (ⅱ) 最大号码为3,只能从1,2,3号球中取,且有一次取到3,于是 有利样本点数为,所求概率为 . 4.一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放 回抽样,接连取2次,每次取1只,试求下列事件的概率: (1) 2只都合格; (2) 1只合格,1只不合格; (3) 至少有1只合格。 解 分别记题(1)、(2)、(3)涉及的事件为,则 注意到,且与互斥,因而由概率的可加性知 5.掷两颗骰子,求下列事件的概率: (1) 点数之和为7;(2) 点数之和不超过5;(3) 点数之和为偶数。 解 分别记题(1)、(2)、(3)的事件为,样本点总数 (ⅰ)含样本点,(1,6),(6,1),(3,4),(4,3) (ⅱ)含样本点(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,2),(2,3),(3,2)

习题课4

习题课4

第二步: 第二步 对似然函数取对数 ln L(θ ); 第三步:对 求导并令其等于0, 得似然方程(组 第三步 对ln L(θ )求导并令其等于 得似然方程 组) 第四步: 求解似然方程. 第四步 求解似然方程 注:当似然方程无解的时候, 应直接寻求 当似然方程无解的时候 使似然函数达到最大的解求得极大似然估计。 使似然函数达到最大的解求得极大似然估计。
2
n
n
2 i
− nX .
2
点评:以上公式极其简单 点评:以上公式极其简单, 却是统计学中常 用公式, 务必熟记. 用公式 务必熟记
9
是取自正态总体N(0, 22)的 例2 设X1, X2, X3, X4是取自正态总体 的 一个样本, 一个样本 令
Y = a ( X 1 − 2 X 2 )2 + b( 3 X 3 − 4 X 4 )2 ,
1 . F −α (n1, n2 ) = 1 F (n2 , n1 ) α
2
4. 两个抽样分布定理的重要结论 两个抽样分布定理的重要结论: 单个正态总体): 单个正态总体 Th6.2.4 (单个正态总体 2 X −µ (n − 1)S2 σ ~ t(n − 1); ~ χ 2 (n − 1). X ~ N(µ , ); σ2 n S n 两个独立正态总体): 两个独立正态总体 Th6.2.5 (两个独立正态总体
1 1 Y1 = ( X 1 + X 2 + ⋯ + X 6 ), Y2 = ( X 7 + X 8 + X 9 ), 6 3 1 9 2 2 2(Y1 − Y2 ) S = ∑ ( X i − Y2 ) , Z= . 2 i =7 S
证明: 证明:Z ~ t (2) . 点评: 点评: 历史上研究生入学试题. 历史上研究生入学试题

概率论与数理统计课后习题答案习题第四章

概率论与数理统计课后习题答案习题第四章

y 2 i4e −4 y dy =
00
3
1 2 E ( X ) = ∫ xi2 xdx = , 0 3
圣才统计学习网
tj
圣才学习网
求 E(XY). 【解】方法一:先求 X 与 Y 的均值
.c
⎧ 2 x, 0 ≤ x ≤ 1, 其他; ⎩0,
5.设随机变量 X 的概率密度为
N
∑ kP{ X = k}
k =0
N
求 E(X) ,D(X). 【解】 E ( X ) =

+∞
−∞
xf ( x)dx = ∫ x 2 dx + ∫ x(2 − x)dx
0 1
1
2
w.
1 2 0 1
3 ⎡1 3 ⎤ ⎡ 2 x ⎤ = ⎢ x ⎥ + ⎢ x − ⎥ = 1. 3 ⎦1 ⎣ 3 ⎦0 ⎣
12.袋中有 12 个零件,其中 9 个合格品,3 个废品.安装机器时,从袋中一个一个地取出(取 出后不放回) ,设在取出合格品之前已取出的废品数为随机变量 X,求 E(X)和 D(X). 【解】设随机变量 X 表示在取得合格品以前已取出的废品数,则 X 的可能取值为 0,1,2, 3.为求其分布律,下面求取这些可能值的概率,易知
2
8.设随机变量(X,Y)的概率密度为

【解】 (1) E[U ] = E (2 X + 3Y + 1) = 2 E ( X ) + 3E (Y ) + 1
= 2 × 5 + 3 × 11 + 1 = 44.
因Y , Z 独立E (Y )i E ( Z ) − 4 E ( X )
= 11× 8 − 4 × 5 = 68.

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。

概率统计习题课

概率统计习题课

概率统计习题课⼀随机事件及其概率1. ,,A B C 为三个随机事件,事件“,,A B C 不同时发⽣”可表⽰为,事件“,,A B C 都不发⽣”可表⽰为,事件“,,A B C ⾄少发⽣两件”可表⽰为。

2.从1,2,3,4中随机取出两个数,则组成的两位数是奇数的概率是,事件“其中⼀个数是另⼀个数的两倍”的概率是。

3. 有r 个球,随机地放在n 个盒⼦中(r n ≤),则某指定的r 个盒⼦中各有⼀球的概率为_ __ __。

4.把3个球随机放⼊编号为1,2,3的三个盒⼦(每个盒⼦能容纳多个球),则三个盒⼦各放⼊⼀球的概率是___________。

5. 设,A B 为随机事件,()0.7P A =, ()0.3P A B -=,则()P A B =__ ___。

6.事件A 发⽣必然导致事件B 发⽣,且()0.1,()0.2,P A P B ==,则()P A B =____。

7. 盒中有6个⼤⼩相同的球,4个⿊球2个⽩球,甲⼄丙三⼈先后从盒中各任取⼀球,取后不放回,则⾄少有⼀⼈取到⽩球的概率为___________。

8. 甲⼄两个盒⼦,甲盒中有2个⽩球1个⿊球,⼄盒中有1个⽩球2个⿊球,从甲盒中任取⼀球放⼊⼄盒,再从⼄盒中任取⼀球,取出⽩球的概率是。

9.某球员进⾏投篮练习,设各次进球与否相互独⽴,且每次进球的概率相同,已知他三次投篮⾄少投中⼀次的概率是,则他的投篮命中率是。

10. 将⼀枚硬币抛掷3次,观察出现正⾯(记为H )还是反⾯(记为T ),事件A ={恰有⼀次出现正⾯},B ={⾄少有⼀次出现正⾯},以集合的形式写出试验的样本空间Ω和事件,A B ,并求(),(),()P A P B P A B11. 已知()0.1,()0.2P A P B ==,在下列两种情况下分别计算()P A B 和()P A B :(1) 如果事件,A B 互不相容; (2) 如果事件,A B 相互独⽴。

12. 盒中有3个⿊球7个⽩球,从中任取⼀球,不放回,再任取⼀球,(1)若第⼀次取出的是⽩球,求第⼆次取出⽩球的概率 (2)两次都取出⽩球的概率 (3) 第⼆次取出⽩球的概率 (4) 若第⼆次取出的是⽩球,求第⼀次取出⽩球的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[思路] 首先利用分布函数的性质求出常数 a, b, 再用已确定的分布函数来求分布律. 解
利用分布函数 F ( x ) 的性质 :
P { X x i } F ( x i ) F ( x i 0 ),
F ( ) 1 ,

1 2
P { X 2}
(a b ) ( 2a b
1 2
e
x
;
所以 X 的分布函数为
1 x e , x 0, 2 F (x) 1 1 e x , x 0 . 2
( 3 ) 由于 Y X
2
0,
故当 y 0 时 , 有 F Y ( y ) P {Y y } 0 ; 当 y 0 时 ,有
F Y ( y ) P {Y y } P { X
19 P { X 1 } , 则 P {Y 1 } ____ . 27 9
5
5 ) 设 随 机 变 量
P(X k) a (b ) k!
k
X
的 分 布 律 为 是
, k 0 ,1 , 2 , , 其 中 b , 0
b
已知常数,则a
______ . e
且 a b 1.
2 3
a)
2 3
,
由此解得
a
1 6
,b
5 6
.
因此有
0, 1 , 6 F (x) 1 , 2 1,
x 1, 1 x 1, 1 x 2, x 2.
从而 X 的分布律为
X P
1 1 2
1 6
1 3
1 2
例3 已知随机变量
于是 a P { A1 A 2 A 3 } 1 P ( A1 A 2 A 3 )
1 P ( A1 ) P ( A 2 ) P ( A 3 ),
由三个电子元件服从同
一分布 ,

p P ( Ai )
( i 1 , 2 , 3 ),
由指数分布求出
p , 便可得解 .

P { y X
2
y}
y}
y

由于

y y
1 2
e
x
d x 2
1 2
e
x
d x,
0
F Y ( y ) f Y ( y ),
故当 y 0 时 , 有
d d y
FY ( y )
d d y

[
y
y
e
x
d x]
0
e
2
1 y
,
从而 , Y 的概率密度为
第二章
随机变量及其分布 习 题 课
一、重点与难点 二、主要内容
三、典型例题
一、重点与难点
1.重点
(0-1)分布、二项分布和泊松分布的分布律 正态分布、均匀分布和指数分布的分布函数、 密度函数及有关区间概率的计算
2.难点
连续型随机变量的概率密度函数的求法
二、主要内容
密 度 函 数 连 续 型 随机变量 分 布 函 数 分 布 律 离 散 型 随机变量
用 X i ( i 1 , 2 , 3 ) 表示第 i 个元件的使用寿命 X i ( i 1 , 2 , 3 ) 的概率密度为
x
,
由题设知
1 e 600 , x 0 , f ( x ) 600 0, x 0.
从而
P { X i 200 }

200
1 e fY ( y ) 2 y 0,
y
,y 0 y 0.
例4 设某城市成年男子的身
( 单位 : cm ) ( 1 ) 问应如何设计公共汽车 车门顶碰头的几率小于 ( 2 ) 若车门高为
高 X ~ N ( 170 , 6 )
2
车门的高度 0 . 01 ?
, 使男子与

i
pi 1,

1

i
pi
1 a

3 2aBiblioteka 5 4a7 8a

37 8a
,

a
37 8
,
因此 X 的分布律为
X P
2 0 2 5
8 37
12 37
10 37
7 37
从而
P { X 2 X 0} P { X 2, X 0} P { X 0}

P { X 0} P { X 2} P { X 0} P { X 2} P { X 5}
)
3
1e
1
.
例 6、设 X~N(3,2
2

X 3 2
~ N 0,1
(1)求 P {2<X≤5},P {-4<X≤10},P{|X|>2}, (2)决定 C 使得 P {X > C }=P {X≤C}
解: ) (1
P{2 X 5} P{
23

X 3

53
}
2 2 2 (1) 0.5 (1) 0.5 1 0.5328
随 机 变 量
均 匀 分 布
指 数 分 布
正 态 分 布
随机变量 的函数的 分 布
定 义
两 点 分 布
二 项 分 布
泊 松 分 布
三、典型例题
一.填空题:
1 ) 设 离 散 型 随 机 变 量X 分 布 律 为
P { X k } 5 A (1 / 2 ) ( k 1,2 , ) 1 则 A __________ 5
2
0
a
f ( x )dx
0
;
2 F (a ) 1
a
f ( x )dx
; D) F ( a )
a
C) F ( a )
F ( a )

解:由对称性得 F (0) P{ X 0} 0.5,
F ( a ) P{ X a }
1 2 f ( x )dx
182 cm , 求 100 个成年男子与车门 2 的概率 .
顶碰头的人数不多于
[思路]
设车门高度为 l cm , 那么按设计要求应有
P { X l } 0.01, 确定 l . 第二问首先要求出 100名男 子中身高超过 182cm 的人数的分布律, 然后用此分 布律 , 求其不超过 2的概率.
x
x 0 x 0

D ) F ( x )
解:由F ( x )的性质
f ( t )dt
, 其 中
f ( t )dt 1
0 F ( x) 1 F ( ) 1
F ( x ) 不减 F ( x ) 右连续
F ( ) 0
以及 f ( x ) 0 得 B 正确
k
解: 由 pk 1
k 1


5 A(1 / 2) 1
k k 1


A
1 5
2) 已 知 随 机 变 量X 的 密 度 为
ax b , 0 x 1 f (x) , 且 P { X 0 .5 } 5 / 8 , 0 , 其它 1 1 a ________ b ________ 2
0 a
f ( x )dx

a

f ( x )dx
3) 下 列 函 数 中 , 可 作 为 某 一 随 机 变 量 的 分布函数是 A) F (x) C)
1 1
2
B
x x 0 . 5 ( 1 e ), F (x) 0,
x
B) F (x)

1 2

1

arctan
由于 n 100 较大 , p 0 . 0228 较小 , 故可用泊松分 布来计算 , 其中 λ np 2 . 28 ,
从而
P {Y 2 } 2 . 28 e 0!
0 . 6013 .
0 2 . 28

2 . 28 e 1!
2 . 28

2 . 28 e 2!
2
2 . 28
查表得
l 170 6
l 183 . 98 ( cm ).
( 2 ) 设任一男子身高超过
182 cm 的概率为
p.

182 170 X 170 p P { X 182 } P 6 6
1 ( 2 ) 0 . 0228 .
设 Y 为 100 个男子中身高超过
f ( x) Ae ( 1 ) 求系数
x
X 的概率密度为 , x .
A; F ( x ); .

( 2 ) 求 X 的分布函数 (3) 求 Y X

2
的概率密度
,有
Ae
x
解 ( 1 ) 由概率密度的性质
1

f ( x)d x


d x 2
P{4 X 10} P{
二、 选择题:
1) 设
X ~ N ( ,
2
) ,那 么 当
增大时,
P{ X }
C
A)增大; C)不变;
B) 减 少 ; D)增减不定。
X
解:由 P{ X } P {

1}
1 1 21 1
2) X 的密度函数为 f ( x ) ,分布函数为 F ( x ) , 设 且 f ( x ) f ( x ) ,那么对任意给定的 a 都有 B A) F ( a ) 1 1 B) F ( a )
相关文档
最新文档