高中数学概率统计2
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1求概率的步骤是:
第一步,确定事件性质
即所给的问题归结为四类事件中的某一种.
第二步,判断事件的运算
即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
第三步,运用公式 求解
第四步,答,即给提出的问题有一个明确的答复.
例1.在五个数字 中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).
(2)几何分布
在独立重复试验中,某事件第一次发生时所作的试验的次数 是一个取值为正整数的离散型随机变量,“ ”表示在第k次独立重复试验时事件第一次发生.
随机变量 的概率分布为:
1
2
3
…
k
…
P
p
qp
…
…
例12.
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n.
考点2离散型随机变量的分布列
1.随机变量及相关概念
①随机试验的结果可以Baidu Nhomakorabea一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
③随机变量可以取某区间的一切值,这样的随机变量叫做连续型随机变量.
2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
一般地,设离散型随机变量 可能取的值为 , ,……, ,……, 取每一个值 ( 1,2,……)的概率P( )= ,则称下表.
…
…
P
P1
P2
…
…
为随机变量 的概率分布,简称 的分布列.
(Ⅰ)求事件 :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率 ;
(Ⅱ)求 的分布列及期望 .
例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是
A.70,25 B.70,50 C.70,1.04D.65,25
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:
(1) , 1,2,…;(2) …=1.
②常见的离散型随机变量的分布列:
(1)二项分布
次独立重复试验中,事件A发生的次数 是一个随机变量,其所有可能的取值为0,1,2,…n,并且 ,其中 , ,随机变量 的分布列如下:
0
1
…
…
P
…
称这样随机变量 服从二项分布,记作 ,其中 、 为参数,并记: .
例13.
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为 、 、 ,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为 ,求随机变量 的分布列与数学期望.
(注:本小题结果可用分数表示)
例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)
例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件 :“取出的2件产品中至多有1件是二等品”的概率 .
(1)求从该批产品中任取1件是二等品的概率 ;
例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:
ε
0
1
2
η
0
1
2
P
P
则比较两名工人的技术水平的高低为.
例15.
某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为
1
2
3
4
5
0.4
0.2
0.2
0.1
0.1
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元. 表示经销一件该商品的利润.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;
(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数 的分布列及期望 ,并求出该商家拒收这批产品的概率.
特例:对立事件的概率:P(A)+P( )=P(A+ )=1.
(3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);
特例:独立重复试验的概率:Pn(k)= .其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项.
(4)解决概率问题要注意“四个步骤,一个结合”:
(2)若该批产品共100件,从中任意抽取2件,求事件 :“取出的2件产品中至少有一件二等品”的概率 .
例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率
是(结果用分数表示).
例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.由甲,乙两袋中各任取2个球.
概率统计
考点1.求等可能性事件、互斥事件和相互独立事件的概率
解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P(A)= = ;
等可能事件概率的计算步骤:
1计算一次试验的基本事件总数 ;
2设所求事件A,并计算事件A包含的基本事件的个数 ;
3依公式 求值;
4答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P(A+B)=P(A)+P(B);
考点3离散型随机变量的期望与方差
随机变量的数学期望和方差
(1)离散型随机变量的数学期望: …;期望反映随机变量取值的平均水平.
⑵离散型随机变量的方差: … …;
方差反映随机变量取值的稳定与波动,集中与离散的程度.
⑶基本性质: ; .
(4)若 ~B(n,p),则 ; D =npq(这里q=1-p);
如果随机变量 服从几何分布, ,则 ,D = 其中q=1-p.
考点4抽样方法与总体分布的估计
抽样方法
1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).
第一步,确定事件性质
即所给的问题归结为四类事件中的某一种.
第二步,判断事件的运算
即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
第三步,运用公式 求解
第四步,答,即给提出的问题有一个明确的答复.
例1.在五个数字 中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).
(2)几何分布
在独立重复试验中,某事件第一次发生时所作的试验的次数 是一个取值为正整数的离散型随机变量,“ ”表示在第k次独立重复试验时事件第一次发生.
随机变量 的概率分布为:
1
2
3
…
k
…
P
p
qp
…
…
例12.
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n.
考点2离散型随机变量的分布列
1.随机变量及相关概念
①随机试验的结果可以Baidu Nhomakorabea一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
③随机变量可以取某区间的一切值,这样的随机变量叫做连续型随机变量.
2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
一般地,设离散型随机变量 可能取的值为 , ,……, ,……, 取每一个值 ( 1,2,……)的概率P( )= ,则称下表.
…
…
P
P1
P2
…
…
为随机变量 的概率分布,简称 的分布列.
(Ⅰ)求事件 :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率 ;
(Ⅱ)求 的分布列及期望 .
例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是
A.70,25 B.70,50 C.70,1.04D.65,25
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:
(1) , 1,2,…;(2) …=1.
②常见的离散型随机变量的分布列:
(1)二项分布
次独立重复试验中,事件A发生的次数 是一个随机变量,其所有可能的取值为0,1,2,…n,并且 ,其中 , ,随机变量 的分布列如下:
0
1
…
…
P
…
称这样随机变量 服从二项分布,记作 ,其中 、 为参数,并记: .
例13.
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为 、 、 ,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为 ,求随机变量 的分布列与数学期望.
(注:本小题结果可用分数表示)
例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)
例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件 :“取出的2件产品中至多有1件是二等品”的概率 .
(1)求从该批产品中任取1件是二等品的概率 ;
例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:
ε
0
1
2
η
0
1
2
P
P
则比较两名工人的技术水平的高低为.
例15.
某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为
1
2
3
4
5
0.4
0.2
0.2
0.1
0.1
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元. 表示经销一件该商品的利润.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;
(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数 的分布列及期望 ,并求出该商家拒收这批产品的概率.
特例:对立事件的概率:P(A)+P( )=P(A+ )=1.
(3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);
特例:独立重复试验的概率:Pn(k)= .其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项.
(4)解决概率问题要注意“四个步骤,一个结合”:
(2)若该批产品共100件,从中任意抽取2件,求事件 :“取出的2件产品中至少有一件二等品”的概率 .
例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率
是(结果用分数表示).
例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.由甲,乙两袋中各任取2个球.
概率统计
考点1.求等可能性事件、互斥事件和相互独立事件的概率
解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P(A)= = ;
等可能事件概率的计算步骤:
1计算一次试验的基本事件总数 ;
2设所求事件A,并计算事件A包含的基本事件的个数 ;
3依公式 求值;
4答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P(A+B)=P(A)+P(B);
考点3离散型随机变量的期望与方差
随机变量的数学期望和方差
(1)离散型随机变量的数学期望: …;期望反映随机变量取值的平均水平.
⑵离散型随机变量的方差: … …;
方差反映随机变量取值的稳定与波动,集中与离散的程度.
⑶基本性质: ; .
(4)若 ~B(n,p),则 ; D =npq(这里q=1-p);
如果随机变量 服从几何分布, ,则 ,D = 其中q=1-p.
考点4抽样方法与总体分布的估计
抽样方法
1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).