新人教版七年级下册第7章《平面直角坐标系》综合水平测试题(一)及答案
精选人教版七年级下册数学第七章平面直角坐标系单元检测试卷(含答案)(1)
人教版七年级数学下册第7章平面直角坐标系能力提升卷一.选择题(共10小题)1.如图,小手盖住的点的坐标可能为()A.(5,2) B.(-7,9) C.(-6,-8) D.(7,-1)2.若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1) B.(-1,1)C.(5,1)或(-1,1) D.(2,4)或(2,-2)3.若点A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°7.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点A的坐标为(2,1),现将线段AB先向左平移1个单位,再向下平移两个单位,则平移后B点的坐标为()A.(1,2) B.(1,-4)C.(-1,-1)或(5,-1) D.(1,2)或(1,-4)9.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.3二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”,例如,点P(1,4)的3级关联点”为Q(3×1+4,1+3×4)即Q(7,13),若点B的“2级关联点”是B'(3,3),则点B的坐标为;已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,则M′的坐标为.14.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.15.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.16.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是.三.解答题(共7小题)17.如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(-2,1)、(-1,1),如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A'、B′、C′分别为点A、B、C移动后的对应点.(1)请直接写出点A′、B'、C′的坐标;(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?19.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-4)点且与x轴平行的直线上.21.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(-4,4),点B位于点(3,1),则“帅”所在点的坐标为;"马”所在点的坐标为;"兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.22.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)=;(2)若点P(4,-4)在F变换下的对应点是它本身,则a=,b=.答案:1-5 CCBCA6-10 DDDCD11.-112.(-10,5)13. (1,1)(0,-16)14.915. B1016. (-1,-1)17. 解:(1)根据题意知,点A′的坐标为(2,1)、B'的坐标为(0,-1)、C′的坐标为(1,-1);(2)如图所示,△A′B′C′即为所求,S△A′B′C′=×1×2=1.18. 解:(1)∵|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∵|m-1|=2m-1=2或m-1=-2∴m=3或m=-1.19. 解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2).20. 解:(1)∵点P (2m+4,m-1),点P 在y 轴上,∴2m+4=0,解得:m=-2,则m-1=-3,故P (0,-3);21. 解:(1)由点A 位于点(-4,4人教版七年级下册第7章平面直角坐标系水平测试卷一.选择题(共10小题)1.在平面直角坐标系中,点()23,2P x -+所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各点中,位于第四象限的点是( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4) 3.已知点P(-4,3),则点P 到y 轴的距离为( )A .4B .-4C .3D .-34.已知m 为任意实数,则点()2,1A m m +不在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.已知点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为2.则点P 的坐标是( )A .(1、2)B .(-1,2)C .(2,1)D .(-2,1)6.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .( 8,0)7.已知点A(-3,0),则A 点在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( )A .(1,0)B .(1,2)C .(5,4)D .(5,0)9.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移2个单位得线段11,A B 以下点在线段11A B 上的是( )A .(0,3)B .(-2,1)C .(0,8)D .(-2,0)10.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)二.填空题(共6小题)11.若P(a-2,a+1)在x 轴上,则a 的值是 .12.在平面直角坐标系中,点A(-5,4)在第 象限.13.点P(3,-2)到y 轴的距离为 个单位.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成 .15.已知点A(m-1,-5)和点B(2,m+1),若直线AB ∥x 轴,则线段AB 的长为 .16.在平面直角坐标系中,已知点(A B 点C 在x 轴上,且AC+BC=6,写出满足条件的所有点C 的坐标三.解答题(共7小题)17.如图,在平面直角坐标系中,点A 、B 、C 、D 都在坐标格点上,点D 的坐标是(-3,1),点A 的坐标是(4,3).(1)将三角形ABC 平移后使点C 与点D 重合,点A ,B 分别与点E ,F 重合,画出三角形EFD .并直接写出E ,F 的坐标;(2)若AB 上的点M 坐标为(x,y),则平移后的对应点M 的坐标为.18.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC 向左平移5个单位长度,再向上平移4个单位长度,得到111,A B C 在图中画出111,A B C 并直接写出点1A 、1B 、1C 的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M到y轴的距离为l时,M的坐标?(2)点N(5,-1)且MN∥x轴时,M的坐标?21.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3 【解决问题】(1)求点(2,4),A B -+的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.22.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.23.对有序数对(m,n)定义“f 运算”:f(m,n)=11,,22m a n b ⎛⎫+- ⎪⎝⎭其中a 、b 为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F 变换下的对应点即为坐标为f(x,y)的点A ′.(1)当a=0,b=0时,f(-2,4)= ;(2)若点P(4,-4)在F 变换下的对应点是它本身,则a= ,b=.答案:1-5 BAADD6-10 CBDAC11.-112.二13.314. (3,4)15.916.. (3,0)或(-3,0)17. 解:(1)如图所示,△EFD即为所求,其中E(0,2)、F(-1,0).(2)由图形知将△ABC向左平移4个单位、再向下平移1个单位可得△EFD,∴平移后点M的坐标为(x-4,y-1),18. 解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2).19. 解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得:m=-1或m=-2,∴点M的坐标是(-2,1)或(-3,-1);(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得:m=3或m=-1,∴点M的坐标是:(2,9)或(-2,1).20. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点人教版七年级数学下册第七章平面直角坐标系复习检测试题一、选择题。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
人教版七年级数学下册第七章《平面直角坐标系》测试卷(一)(附答卷)
人教版七年级数学下册第七章《平面直角坐标系》测试卷1(附答卷)时间:120分钟满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A.(6,3)B.(3,6)C.(-3,-6)D.(-6,-3)2.若点A的坐标为(3,-2),则点A所在的象限是 ( )A第一象限B.第二象限C.第三象限D.第四象限,合3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)4.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y= ( )A.-1B.1C.5D.-55.若点P(a,b)在第三象限,则点Q(a-3,-b)一定在 ( )A.第一象限B.第二象限C.第三象限D第四象限6.点A的位置如图所示,则关于点A的位置下列说法中正确的是 ( )A.距点05km处B.北偏东60°方向上5km处C.在点O北偏东30°方向上5km处D.在点O北偏东60°方向上5km处7.已知点P在x轴上,且点P到y轴的距离为1,则点P的坐标为 ( )A.(0,1)B.(1,0)C.(0,1)或(0,-1)D.(1,0)或(-1,0)8.将点P(m+2,2m+1)向左平移1个单位长度到P′,且P′在y轴上,那么P′的坐标是 ( )B.(0,-2)A.(0,-1)C.(0.-D.(1,1)3)9.如图,长方形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将长方形OABC平移后,点B与点O重合,得长方形O1A1OC1,那么点O1的坐标为 ( )A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)10.如图,点A,B的坐标分别为(-5,6),(3,2),则三角形ABO的面积为 ( )A.12B.14C.16D.18二、填空题(每小题3分,共24分)11.点M(2,-1)到x轴的距离是________.12.点P到x轴的距离是2,到y轴的距离是3,且点P在第三象限,则点P的坐标是___________.13.平面直角坐标系中,点A(-3,2),C(x,y),若AC∥x轴,则点C的纵坐标为 _ __________.14.如图,在平面直角坐标系xOy中,点A(a2-4,3)在y轴上,点B在x轴上,且横坐标为a,则点B的坐标为___________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A,B的坐标分别为(1,2),(2,0),将△AOB沿x轴向右平移,得到△CDE,若DB=1,则点C的坐标为___________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则点A的坐标为___________.18.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD (1)将点A 向右平移5个单位长度,它将与点_____重合;(2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______;(3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?23.(12分)已知△ABC的三个顶点坐标分别为A(4,3),B(3,1),C(1,2)(1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC沿x轴的负方向平移5个单位长度,纵坐标不变,得到△A1B1C1,请在图中画出△A1B1C1,并写出△A1B1C1三个顶点的坐标;(3)将△ABC作怎样的平移,得到△A2B2C2,使得这个三角形三个顶点的坐标分别为A2(6,-2),B2(5,-4),C2(3,-3)24.(12分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.25.(12分)综合与实践.问题背景:(1)已知A(1,2),B(3,2),C(1,-1),D(-3,-3)在平面直角坐标系中描出这几个点,并分别找到线段AB和CD的中点P1,P2,然后写出它们的坐标,则P1___________, P2____________;探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为____________;拓展应用:(3)利用上述规律解决下列问题:已知三点E(-1,2),F(3,1),G(1,4),第四个点H(x,y)与点E,点F,点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.人教版七年级数学下册第七章《平面直角坐标系》测试卷(答卷)时间:120分钟 满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A .(6,3)B .(3,6)C .(-3,-6)D .(-6,-3) 2.若点A 的坐标为(3,-2),则点A 所在的象限是 ( ) A 第一象限 B .第二象限 C .第三象限 D .第四象限,合 3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0) 表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( ) A .(5,4) B .(4,5) C .(3,4) D .(4,3)4.若点P (x ,y )在第四象限,且|x |=2,|y |=3,则x +y = ( )A .-1B .1C .5D .-55.若点P (a ,b )在第三象限,则点Q (a -3,-b )一定在 ( ) A .第一象限 B .第二象限 C .第三象限 D 第四象限6.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是 ( ) A .距点O 5km 处 B .北偏东60°方向上5km 处C .在点O 北偏东30°方向上5km 处D .在点O 北偏东60°方向上5km 处7.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为 ( ) A .(0,1) B .(1,0) C .(0,1)或(0,-1) D .(1,0)或(-1,0) 8.将点P (m +2,2m +1)向左平移1个单位长度到P ′,且P ′在y 轴上,那么P ′的坐标是 ( )B D D A B D D A D.(1,1)3)-C.(0. B.(0,-2) A.(0,-1)9.如图,长方形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将长方形OABC 平移后,点B 与点O 重合,得长方形O 1A 1OC 1,那么点O 1的坐标为 ( ) A .(2,1) B .(-2,1) C .(-2,-1) D .(2,-1)10.如图,点A ,B 的坐标分别为(-5,6),(3,2),则三角形ABO 的面积为 ( ) A .12 B .14 C .16 D .18 二、填空题(每小题3分,共24分)11.点M (2,-1)到x 轴的距离是________.12.点P 到x 轴的距离是2,到y 轴的距离是3,且点P 在第三象限,则点P 的坐标是___________.13.平面直角坐标系中,点A (-3,2),C (x ,y ),若AC ∥x 轴,则点C 的纵坐标为 ___________.14.如图,在平面直角坐标系xOy 中,点A (a 2-4,3)在y 轴上,点B 在x 轴上,且横坐标为a ,则点B 的坐标为_____________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A ,B 的坐标分别为(1,2),(2,0),将△AOB 沿x 轴向右平移,得到△CDE ,若DB =1,则点C 的坐标为___________.C B 1 (-3,-2) 2 (2,0)或(-2,0) (1,0) (2,2)17.已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则点A 的坐标为_____________________.18.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度 的速度按图中箭头所示方向运动,第1秒运动到点(1,0), 第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P 所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是 (1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M (m -1,2m +3). (1)当点M 到x 轴的距离为1时,求点M 的坐标; (2)当点M 到y 轴的距离为2时,求点M 的坐标.(4,0)或(-4,0) (45,43) xy(1)建立平面直角坐标系如图所示:食堂(-5,5),图书馆(2,5)(2)办公室和教学楼的位置如图所示 (3)宿舍楼到教学楼的实际距离为: 8×30=240(米)教学楼 ·办公楼 ·(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2, ∴点M 的坐标是(-2,1)或(-3,-1)(2)∵|m-1|=2,∴|m-1|=2或|m-1|=-2,解得m=3或m=-1, ∴点M 的坐标是(2,9)或(-2,1)21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD(1)将点A 向右平移5个单位长度,它将与点_____重合; (2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______; (3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?A ·(1)根据题意,A 所以A 是“垂距点”,对于点B 而言,|21|+|-25|=3,所以B 不是“垂距点”,对于点C 而言≠C 不是“垂距点”(2)由题意可知:|23m|+|25m|=4,①当m>0时,则4m=4,解得m=1;②当m<0时,m=-1;∴m=±1平行 B 平行 D · C · B·(3)线段CD 是由线段AB 先向右平移1个单位长度,再向上平移3个单位长度得到的(答案不唯一)23.(12分)已知△ABC 的三个顶点坐标分别为A (4,3),B (3,1),C (1,2) (1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC 沿x 轴的负方向平移5个单位长度,纵坐标不变,得到△A 1B 1C 1,请在图中画出△A 1B 1C 1,并写出△A 1B 1C 1三个顶点的坐标;(3)将△ABC 作怎样的平移,得到△A 2B 2C 2,使得这个三角形三个顶点的坐标分别为A 2(6,-2),B 2(5,-4),C 2(3,-3)24.(12分)如图,在平面直角坐标系中,A (0,1),B (2,0),C (4,3) (1)求△ABC 的面积;(2)设点P 在x 轴上,且△ABP 与 △ABC 的面积相等,求点P 的坐标.(1)点A 、B 、C 三点的位置如图所示 B ·A · C ·(2)△A 1B 1C 1的位置如图所示,A 1(-1,3),B 1(-2,1),C 1(-4,2) (3)将△ABC 先沿x 轴的正方向平移2个单位长度,再沿y 轴的负方向平移5个单位长度可得到△A 2B 2C 2 A 2·C 2· B 2·A 1·C 1· B 1·10或x=-6,∴点P 的坐标为(10,0)或(-6,0))2,2(2121y y x x ++25.(12分)综合与实践. 问题背景:(1)已知A (1,2),B (3,2),C (1,-1),D (-3,-3)在平面直角坐标系中描出这几 个点,并分别找到线段AB 和CD 的中点P 1,P 2,然后写出它们的坐标,则 P 1___________, P 2____________; 探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 ; 拓展应用: ____________________(3)利用上述规律解决下列问题:已知三点E (-1,2),F (3,1),G (1,4),第四个 点H (x ,y )与点E ,点F ,点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.P 1·B · A · P 2·D ·(2, 2) (-1, -2) C ·。
人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析
人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。
人教版七年级下册数学第七章平面直角坐标系 综合测试试卷含答案
第7章平面直角坐标系测试题一.选择题(共8小题,满分40分)1.已知点M的坐标为(﹣2,1),则点M在直角坐标系中的位置位于()A.第一象限B.第二象限C.第三象限D.第四象限2.若点A(a+1,b﹣2)在第二象限,则点B(a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.点P(3,﹣4)到x轴的距离是()A.3B.﹣4C.4D.54.已知点Q(a﹣1,a+2)在x轴上,那么Q点的坐标为()A.(﹣3,0)B.(3,0)C.(0,3)D.(0,﹣3)5.在平面直角坐标系内有一点A,若点A到x轴的距离为3,到y轴的距离为1.且点A在第二象限,则点A坐标为()A.(1,﹣3)B.(﹣1,3)C.(﹣3,1)D.(3,﹣1)6.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)7.如图,象棋盘上,若“将”位于点(1,﹣1),“象”位于点(3,﹣1).则“炮”位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)8.如图,在平面直角坐标系中,一动点从原点O出发,按“向上、向右、向下、向下、向右、向上…”的方向依次不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),…那么点A23的坐标是()A.(7,﹣1)B.(8,1)C.(7,1)D.(8,﹣1)二.填空题(共8小题,满分40分)9.已知点P(a,b),ab>0,a+b>0,则点P在第象限.10.如果点P(m+3,2m﹣4)在y轴上,那么m的值是.11.已知A点(﹣2a+6,a)在一三象限夹角平分线上,则a的值为.12.在平面直角坐标系中,将点P(2,6)向上平移2个单位长度,再向左平移1个单位长度得到的点的坐标是.13.在平面直角坐标系中,点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是.14.如图,△OAB的顶点B的坐标是(5,0),把△OAB沿x轴向右平移得到△CDE,如果C点坐标是(3,0),那么OE的长为.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的三.解答题(共4小题,满分40分)17.已知平面直角坐标系内的不同两点A(3,a﹣1),B(b+1,﹣2).(1)若点A在第一、三象限的角平分线上,求a的值;(2)若点B在第二、四象限的角平分线上,求b的值;(3)若直线AB平行于x轴,求a,b的值或取值范围;(4)若直线AB平行于y轴,且AB=5,求a,b的值.18.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣4,3),B(﹣2,4),C(﹣1,1),若把△ABC向右平移5个单位长度,再向下平移3个单位长度得到△A'B'C',点A,B,C的对应点分别为A',B',C'.(1)写出A',B',C'的坐标;(2)在图中画出平移后的△A'B'C';(3)求△A'B'C'的面积.19.△ABC与△A'B'C'在平面直角坐标系中的位置如图.20.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B(0,4b)为y轴正半轴上一点,其中b满足方程:3(b+1)=6.(1)求点A、B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;(3)在x轴上是否存在点P,使得△PBC的面积等于△ABC的面积的一半?若存在,求出相应的点P的坐标;若不存在,请说明理由.参考答案1.B.2.B.3.C.4.A.5.B.6.A.7.B.8.D.二.填空题(共8小题,满分40分)9.一.10.﹣3.11.:2.12.(1,8).13.﹣1.14.8.15.(2021,1).16.(﹣506,﹣506).三.解答题(共4小题,满分40分)17.解:(1)∵点A在第一、三象限的角平分线上,∴3=a﹣1,解得a=4;(2)∵点B在第二、四象限的角平分线上,∴b+1=2,解得b=1;(3)∵直线AB平行于x轴,∴a﹣1=﹣2,b+1≠3解得a=﹣1,b≠2;(4)∵直线AB平行于y轴,∴b+1=3,解得b=2,∵AB=5,∴a﹣1=3或a﹣1=﹣7,解得a=4或a=﹣6.18.解:(1)由平移可得,A'(1,0),B'(3,1),C'(4,﹣2).(2)平移后的△A'B'C'如图所示.,∴△A'B'C'的面积为3.5.19.解:(1)如图所示:A'(﹣3,1),B′(﹣2,﹣2),C′(﹣1,﹣1);故答案为:(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)△ABC先向左平移4个单位,再向下平移2个单位得到△A'B'C';故答案为:先向左平移4个单位,再向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a ﹣4,b﹣2).故答案为:(a﹣4,b﹣2);(4)△ABC的面积为:S△ABC=6﹣×2×2﹣×1×3﹣×1×1=2.20.解:(1)解方程:3(b+1)=6,得:b=1,∴A(﹣3,0),B(0,4),(2)∵A(﹣3,0),∴OA=3,∵△ABC的面积为12,,∴BC=8,∵B(0,4),∴OB=4,∴OC=4,∴C(0,﹣4);(3)存在,∵△PBC的面积等于△ABC的面积的一半,C(0,﹣4),B(0,4),∴BC上的高OP为,∴点P的坐标(,0)或(﹣,0).。
人教版七年级数学(下册)第七章+平面直角坐标系检测题参考答案.doc
1第七章 平面直角坐标系检测题参考答案1.D 解析:因为 横坐标为正,纵坐标为负,所以点P (2,-3)在第四象限, 故选D .2.D 解析:由图可知,1P 在第二象限,点2P 在y 轴的正半轴上,点3P 在x 轴的负半轴上,所以,在第二象限内的有1P .故选D .3.D 解析:矩形的边长为4和2,因为物体乙的速度是物体甲的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×31=4,物体乙行的路程为12×32=8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×31=12,物体乙行的路程为12×3×32=24,在A 点相遇; …此时甲乙回到原出发点,则每相遇三次,两点回到出发点, 因为2 012÷3=670……2,故两个物体运动后的第2 012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇;此时相遇点的坐标为:(-1,-1),故选:D . 4.D 解析:因为点P 到两坐标轴的距离相等,所以,所以,当5.D 解析:因为 点在轴上,所以 纵坐标是0,即.又因为 点位于原点的左侧,所以 横坐标小于0,即,所以,故选D . 6.D7.D 解析:过点作⊥轴于点,则点的坐标为(3,0).因为点到轴的距离为4,所以.又因为,所以由勾股定理得,所以点的坐标为(6,0)或(0,0),故选D.8.A 解析:点A 变化前的坐标为(-4,6),将横坐标保持不变,纵坐标分别变为原来的21,则点A的对应点的坐标是(-4,3).故选A .9.C 解析:因为 在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2),“馬”位于点 (2,-2),所以可得出原点位置在棋子“炮”的位置,所以“兵”位于点:(-3,1),故选C .10.B 11.解析:因为点是第二象限的点,所以⎩⎨⎧>-<,,030a a 解得.12.3 -4 解析:因为点(13)A m -,与点(21)B n +,关于x 轴对称,所以横坐标不变,纵坐标互为2相反数,所以所以13.(3,2) 解析:一只蚂蚁由(0,0)先向上爬4个单位长度,则坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,则坐标变为(3,2),所以它所在位置的坐标为(3,2).14.一 解析:因为2m ≥0,1>0,所以 纵坐标2m +1>0.因为点A 的横坐标2>0,所以点A 一定在第一象限.15.关于原点对称 解析:因为点和点关于轴对称,所以点的坐标为;因为点与点关于轴对称,所以点的坐标为,所以,点和点关于原点对称.16. -1 解析:因为点A 在第二象限,所以,所以.又因为是整数,所以.17.(3,5) 解析:因为正方形ABCD 的边长为4,点A 的坐标为(-1,1), 所以点C 的横坐标为4-1=3,点C 的纵坐标为4+1=5, 所以点C 的坐标为(3,5).故答案为(3,5).18.(D ,6) 解析:由题意可知:白棋⑨在纵线对应D ,横线对应6的位置,故记作 (D ,6).19.解:设△A 1B 1C 1 的三个顶点的坐标分别为A 1(,将它的三个顶点分别向右平移4个单位,再向下平移3个单位,则此时三个顶点的坐标分别为 (,由题意可得=2,. 20. 解:(1)将线段AB 向右平移3个小格(向下平移4个小格),再向下平移4个小格(向右平移3个小格),得线段CD .(2)将线段BD 向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC . 21. 解:(1)因为(0,3)和(3,3)的纵坐标相同, ))和((0,40,2-的纵坐标也相同,因而BC ∥AD , 因为AD BC 故四边形是梯形.作出图形如图所示. (2)因为,,高,故梯形的面积是21227. (3)在Rt △中,根据勾股定理得,同理可得,因而梯形的周长是. 22.解:路程相等. 走法一:;走法二:;答案不唯一. 23.解:(1)因为点B (1,1)移动到点D (3,4)处,如图, 所以C (1,3);第21题答图3(2)向右平移2个单位长度,再向上平移3个单位长度即可得到CD .24.分析:(1)根据坐标的确定方法,读出各点的纵、横坐标,即可得出各个顶点的坐标;(2)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得④不能由③通过平移 得到;(3)根据对称性,即可得到①、②三角形顶点坐标. 解:(1)(-1,-1),(-4,-4),(-3,-5).(2)不能,下面两个点向右平移5个单位长度,上面一个点向右平移4个单位长度. (3)三角形②顶点坐标为(-1,1),(-4,4),(-3,5).(三角形②与三角形③关于轴对称);三角形①顶点坐标为(1,1),(4,4),(3,5)•(由③与①关于原点对称可得①的顶点坐标).第23题答图。
七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)
七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。
人教版七年级下册数学第七章平面直角坐标系 综合训练01含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第七章平面直角坐标系一、单选题1.下列叙述中,不能确定位置的是()A.小华在某会场的座位是5排8号B.某城市位于东经108°,北纬39°C.A城与B城相距15kmD.船C在观测点A北偏东40°方向上30km处2.下列数据中不能确定物体的位置的是()A.1单元201号B.北偏东60°C.清风路32号D.东经120°,北纬40°3.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(-4,5)B.(-5,4)C.(4,-5)D.(5,-4)4.已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为()A.(3,2)B.(-3,-2)C.(3,-2)D.(2,3),(2,-3),(-2,3),(-2,-3)5.体育老师把羽毛球场建立了如图所示的平面直角坐标系,则图中羽毛球落在的位置是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,象棋棋盘上.若“将“位于点(1,﹣2)“象“位于点(3,﹣2),则“炮“位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)点为坐标原点建立坐标系,如下图:由题意可得几个如图所示:。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、单选题(每题3分,共30分)1.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限2.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,0)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣1,0)5. 如图,△PQR是△ABC向左平移2个单位长度,再向上平移3个单位长度得到的,若P、Q、R分别对应A、B、C,则点C的坐标是()A. (-1,4) B.(-3,1) C. (2,-3) D. (3,-2)6.如图1,在5×4的方格纸中,每个小正方形的边长均为1,点O,A,B在方格线的交点(格点)上.在第四象限内的格点上找一点C,使三角形ABC 的面积为3,则这样的点C 共有( )图1A.2个B.3个C.4个D.5个 7.到x 轴的距离等于2的点组成的图形是 ( )A.过点(0,2)且与x 轴平行的直线B.过点(2,0)且与y 轴平行的直线C.过点(0,-2)且与x 轴平行的直线D.分别过点(0,2)和点(0,-2)且与x 轴平行的两条直线8.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( ) A .114m -<<- B .74m -<<-C .7m <-D .4m >-9.点P()在平面直角坐标系的轴上,则点P 的坐标为( ) A .(0,2)B .(2,0)C .(0,-2)D .(0,-4)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2020的面积是( )A .5052mB .504.52mC .505.52mD .10102m二、填空题(每题3分,共30分)11.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.12.如图,长方形ABCD 中AB=3,BC=4,且点A 在坐标原点,(4,0)表示D 点,那么C 点的坐标为______.13.将点(2,3)P -先向右平移2个单位,再向下平移3个单位,得到点P ',则点P '的坐标为__________.14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果“士”所在位置的坐标为()1,2--,“相”所在位置的坐标为()2,2-,那么棋子“炮”的位置的坐标为________________________。
最新人教版七年级下册数学第七章平面直角坐标系单元综合练习题(含答案)(1)
人教版七年级下册第七章平面直角坐标系单元测试卷一、选择题:1.若点 P(x , y) 在第三象限,且点 P 到 x 轴的距离为 3,到 y 轴的距离为 2,则点 P 的坐标是( )A.(-2 ,-3)B.(-2, 3)C.(2, -3)D.(2, 3)2.若点 A(2 , m)在 x 轴上,则点 B(m﹣ 1, m+1)在 ()A. 第一象限B.第二象限C.第三象限D. 第四象限3.点 A(5,– 7) 对于 x轴对称的点 A 的坐标为 ().12A.( – 5,–7)B.( –7 , –5)C.(5, 7)D.(7,– 5)4.一个长方形在平面直角坐标系中,三个极点的坐标分别是(-1 ,-1) 、 (-1,2) 、(3 ,-1) ,则第四个极点的坐标是()A.(2 , 2)B.(3, 2)C.(3 , 3)D.(2 , 3)5.若点 A(m,n) 在第二象限 , 那么点 B(-m,│ n│ ) 在 ()A. 第一象限B. 第二象限 ;C. 第三象限D. 第四象限6.若点 P 对于 x 轴的对称点为 P (2a+b , 3) ,对于 y 轴的对称点为P (9 , b+2) ,则点 P的坐12标为()A.(9 , 3)B.(﹣9, 3)C.(9,﹣ 3)D.( ﹣ 9,﹣ 3)7.已知点 P(x , y) ,且,则点 P 在()A. 第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,若点P(m- 3, m+ 1) 在第二象限,则 m的取值范围为 ()A. - 1< m<3B.m> 3C.m<- 1D.m >- 19.坐标平面上有一点 A,且 A 点到 x 轴的距离为3, A 点到 y 轴的距离恰为到 x 轴距离的 3倍. 若 A 点在第二象限,则A点坐标为 ()A.(-9 , 3)B.(-3, 1)C.(-3, 9)D.(-1, 3)10. 在平面直角坐标系中,线段BC∥轴,则 ()A. 点 B 与 C的横坐标相等B. 点 B 与 C的纵坐标相等C. 点 B 与 C的横坐标与纵坐标分别相等D. 点 B 与 C的横坐标、纵坐标都不相等11. 如图,在 5× 4 的方格纸中,每个小正方形边长为1,点 O,A,B 在方格纸的交点 ( 格点 )上,在第四象限内的格点上找点C,使△ ABC的面积为3,则这样的点C共有()A.2 个B.3 个C.4个D.5个12.如图,一个质点在第一象限及 x 轴、y 轴上运动,在第一秒钟,它从原点 (0,0) 运动到 (0,1) ,而后接着按图中箭头所示方向运动,即(0,0)→ (0,1)→ (1,1)→ (1,0),?且每秒挪动一个单位,那么第80 秒时质点所在地点的坐标是()A.(0 , 9)B.(9 , 0)C.(0,8)D.(8 , 0)二、填空题:13.若点 A在第二象限,且到 x 轴的距离为 3,到 y 轴的距离为 2,则点 A 的坐标为 __________.14.在平面直角坐标系中,点C(3 , 5) ,先向右平移了 5 个单位,再向下平移了 3 个单位到达 D 点,则 D 点的坐标是.15.若 A(a,b) 在第二、四象限的角均分线上,a 与 b 的关系是 _________.16.已知点 A(0, 1) , B(0, 2) ,点 C 在 x 轴上,且,则点 C的坐标.17.在平面直角坐标系中,对于平面内随意一点 (x ,y) ,若规定以下两种变换:① f(x,y)=(x+2,y).② g(x,y)=(- x, - y),比如依据以上变换有:f(1,1)=(3,1); g(f(1,1)) =g(3,1)=(-3, -1).假如有数a、 b, 使得f(g(a,b)) = (b,a),则g(f(a+b,a- b))=.18. 将自然数按以下规律摆列:表中数 2 在第二行,第一列,与有序数对(2,1) 对应;数 5 与 (1,3)对应;数14 与(3,4)对应;依据这一规律,数2014 对应的有序数对为.三、解答题:19. 如图,在单位正方形网格中,成立了平面直角坐标系xOy,试解答以下问题:(1)写出△ ABC三个极点的坐标;(2)画出△ ABC向右平移 6 个单位,再向下平移 2 个单位后的图形△A1B1C1;(3)求△ ABC的面积 .20.如图,方格纸中的每个小方格都是边长为1 个单位的正方形,在成立平面直角坐标系后,点 A, B, C均在格点上 .(1)请值接写出点 A, B,C 的坐标 .(2)若平移线段 AB,使 B 挪动到 C的地点,请在图中画出A 挪动后的地点 D,挨次连结 B,C,D,A,并求出四边形ABCD的面积 .21.如图,已知 A(-2 , 3) 、 B(4, 3) 、 C(-1 , -3)(1) 求点 C到 x 轴的距离;(2)求△ ABC的面积;(3)点 P 在 y 轴上,当△ ABP的面积为 6 时,请直接写出点 P 的坐标 .22. 如图,直角坐标系中,△ABC的顶点都在网格点上,此中, C 点坐标为 (1 ,2).(1)写出点 A、 B 的坐标: A(________ , ________) 、B(________ , ________)(2)将△ ABC先向左平移 2 个单位长度,再向上平移 1 个单位长度,获得△ A′ B′ C′,则 A′B′ C′的三个极点坐标分别是A′ (_______ , _______) 、 B′ (_______ , _______) 、 C′(________ , ________).(3) △ ABC的面积为.人教版七年级数学下册单元综合卷:第七章平面直角坐标系一、仔细填一填:(本大题共有8 小题,每题 3 分,共 24 分.请把结果直接填在题中的横线上.只需你理解观点,认真运算,踊跃思虑,相信你必定会填对的!)1.如图是小刚画的一张脸,他对妹妹说,假如我用 (0,2)表示左眼,用 (2,2) 表示右眼,那么嘴的地点能够表示成 __________.2.如图,△ ABC 向右平移 4 个单位后获得△A′B′C′,则 A′点的坐标是 __________ .3.如图,中国象棋中的“象”,在图中的坐标为( 1,0),?若“象”再走一步,试写出下一步它可能走到的地点的坐标 ________.4.点 P(- 3,- 5)到 x 距离 ______,到 y 距离 _______.5.如,正方形ABCD的4,点 A 的坐 (- 1,1),平行于X,点C的坐___.6.已知点( a+1,a-1)在 x 上, a 的是。
2015年新人教版七年级下册第7章《平面直角坐标系》综合水平测试题(一)及答案
第7章《平面直角坐标系》测试题命题人:夏一凡一、选择题(每题3分,共30分. )1.某同学的座位号为(4,2),那么该同学的位置是( )(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )(A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点M (1m +,3m +)在x 轴上,则点M 坐标为( ).(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2)5.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )(A )(3,2) (B )(3,2--) (C )(2,3-) (D )(2,3-) 6.如果点P (5,y )在第四象限,则y 的取值范围是( )(A )0y < (B )0y > (C )0y ≤ (D )0y ≥ 7.如图:正方形ABCD 中点A 和点C 的坐标分别为)3,2(-和)2,3(-,则点B 和点D 的坐标分别为( ).(A ))2,2(和)3,3( (B ))2,2(--和)3,3( (C ))2,2(--和)3,3(-- (D ))2,2(和)3,3(--8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3)9.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )(A )A 1(0,5-),B 1(3,8--) (B )A 1(7,3), B 1(0,5) (C )A 1(4,5-) B 1(-8,1) (D )A 1(4,3) B 1(1,0)10.在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若以A点为原点建立直角坐标系,则B 点坐标为( ). (A )(-2,-5) (B )(-2,5) (C )(2,-5) (D )(2,5) 二、细心填一填:(每题3分,共24分.)11.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 12. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限.13. 若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________(写出一个即可).14.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________. 15. 已知点P (x ,y )在第四象限,且|x |=3,|y |=5,则点P 的坐标是______.16. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.17.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标________. 18.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐标是 .三、认真答一答:19. 在平面直角坐标系内,已知点(1-2a ,a -2)在第三象限的角平分线上,求a 的值及点的坐标?.(6分)20.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.(8分)21. 某大校门在北侧,进校门向南走300米是旗杆,再向南走300米是教学楼, 从教学楼向东走600米,再向北走200米是图书馆,从教学楼向南走400米,再向北走100 米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.(8分)22.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.(7分)23.如图6-4,四边形ABCD 各个顶点的坐标分别为 (– 2,8),(– 11,6),(– 14,0),(0,0).(8分)(1)这个四边形的面积。
人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题含答案
人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题含答案一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)2. 若4,5==b a ,且点M (a ,b )在第三象限,则点M 的坐标是( ) A.(5,4) B.(-5,4) C.(-5,-4) D.(5,-4)3.在平面直角坐标系中,点A (2,5)与点B 关于y 轴对称,则点B 的坐标是( ). A .(-5,-2)B .(-2,-5)C .(-2,5)D .(2,-5)4.平面直角坐标系中,点P 先向左平移1个单位,再向上平移2个单位,所得的点为Q (-2,1),则P 的坐标为( )A .(-3,-1)B .(-3,3)C .(-1,-1)D .(-1,3) 5.点A (-4,3)和点B (-8,3),则A ,B 相距( )A .4个单位长度B .12个单位长度C .10个单位长度D .8个单位长度 6.已知点P 坐标为(2-a ,3a+6),且P 点到两坐标的距离相等,则点P 的坐标是( ) A .(3,3) B .(3,-3) C .(6,-6) D .(3,3)或(6,-6) 7.如图,已知正方形ABCD ,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 018次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(-2 016,2)B .(-2 016,-2)C .(-2 017,-2)D .(-2 017,2)8.已知线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)9.已知点A (1,0)B (0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( ) A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.(0,12)或(0,-8)10.如图,一只跳蚤在第一象限及x 轴、y 轴上跳动,第一秒钟,它从原点跳动到(0,1),然后按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第24 s 时跳蚤所在位置的坐标是( )A .(0,3)B .(4,0)C .(0,4 )D .(4,4)二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.在平面直角坐标系内,点P (-1,-2)在第 象限,点P 与横轴相距 个单位长度,与纵轴相距 个单位长度。
人教版七年级下册数学 第七章《 平面直角坐标系》 综合过关练习(含答案)
人教版七年级下册数学第七章《平面直角坐标系》综合过关练习一、单选题1.如图1是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋②的位置应记为()A.(C,5)B.(C,4) C.(4,C) D.(5,C)2.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)3.点P(5,-12)到x轴的距离为()A.5B.12C.-5D.-124.点P(2018,2019)在第()象限.A.一B.二C.三D.四5.若点P(a,b)在第二象限内,则a,b的取值范围是()A.a<0,b>0B.a>0,b>0C.a>0,b<0D.a<0,b<06.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)7.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A .A 点B .B 点C .C 点D .D 点8.已知线段MN=4,MN②y 轴,若点M 的坐标为(﹣1,2),则点N 的坐标为( ) A .(﹣1,6)B .(3,2)C .(﹣1,6)或(﹣1,﹣2)D .(3,2)或(﹣5,2)9.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018,0)B .(2017,1)C .(2019,1)D .(2019,2) 10.在平面直角坐标系中,对于点(),P x y ,我们把点()'1,1P y x -++叫做点P 伴随点已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4···A ,这样依次得到点123,,,A n A A A L ,,若点1A 的坐标为()2,4,点2019A 的坐标为( )A .()3,3-B .()2,2--C .()3,1-D .()2,4二、填空题11.若P(a﹣2,a+1)在x轴上,则a的值是_____.12.已知点M(a,b),且ab>0,a+b<0,则点M在第________象限.13.下列是遇险渔船上一些渔民的叙述,其中能使海警船迅速确定渔船位置的有____________(只填序号即可).②我们的船在黄海里面;②我们的船在青岛正东,韩国正西;②我们的船在日照正东,威海正南;②我们的船在钓鱼岛与温州之间;②我们的船在东京126°,北纬30°.14.如图所示是利用正方形网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立0,1,表示双塔西街站点的坐标是适当的平面直角坐标系,表示府西街站点的坐标为()()0,2-,则坐标原点为______站点.三、解答题15.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,16.如图,小蚂蚁在9×9的小方格上沿着网格线运动(每小格边长为1),一只蚂蚁在C 处找到食物后,要通知A 、B 、D 、E 处的其他小蚂蚁,我们把它的行动规定:向上或向右为正,向下或向左为负。
人教版初中七年级数学下册第七单元《平面直角坐标系》经典题(含答案解析)(1)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 3.已知P(a ,b )满足ab=0,则点P 在( ) A .坐标原点 B .X 轴上 C .Y 轴上 D .坐标轴上 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1) 5.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 6.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 7.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 8.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,10.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 11.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 13.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 14.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 15.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题16.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.17.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.18.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 19.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______20.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 21.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.22.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.23.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.24.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.25.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.26.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题27.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l)分别写出△ABC各个顶点的坐标.(2)请在图中画出△ABC关于y轴对称的图形△A'B'C'.(3)计算出△ABC的面积.28.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A(0,3);B(﹣2,4);C(3,﹣4);D(﹣3,﹣4).(1)点A到原点O的距离是,点B到x轴的距离是,点B到y轴的距离是;(2)连接CD,则线段CD与x轴的位置关系是.29.如图,在平面直角坐标系中,△ABC的顶点C的坐标为(1,3).(1)请直接写出点A、B的坐标.(2)若把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,画出△A′B′C′;(3)直接写出△A′B′C′各顶点的坐标;(4)求出△ABC的面积30.如图1,一只甲虫在55⨯的方格(每一格的边长均为1)上沿着网格线运动它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为()1,4A B →++;从C 到D 记为()1,2C D →+-(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A D →(_______,_______);C B →(_______,______).(2)若甲虫的行走路线为A B C D A →→→→,甲虫每秒钟行走2个单位长度,请计算甲虫行走的时间.(3)若这只甲虫去P 处的行走路线为()2,0A E →+,()2,1E F →++,()1,2F M →-+,()2,1M P →-+.请依次在图2上标出点E ,F ,M ,P 的位置.。
人教版数学七年级下册第7章《平面直角坐标系》综合测试题(含答案)
图 1 图2 人教版数学七年级下册第7章《平面直角坐标系》综合测试题一、选择题(每小题3分,共30分)1.钓鱼岛及其附属岛屿自古以来就是中国的神圣领土,有史为凭、有法为据. 下列说法能确定钓鱼岛位置的是( ).A .在东海东南部B .距离台湾岛约100海里C .北纬25°45′,东经123°28′D .在中国和日本之间2.早上8点钟时室外温度为2℃,我们记作(8,2),则晚上9点时室外温度为零下3℃,我们应该记作( ).A .(3,9)B .(-3,9)C .(9,-3)D .(9,3)3.在平面直角坐标系中,点P(-2,x 2+1)所在的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限4.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是( ).A .(2,4)B .(-5,5)C .(1,-3)D .(1,5)5.在平面直角坐标系中,已知点A (1,-3),M (1,2),N (-1,0),则射线AM 和射线MN 组成的角的度数为( ).A .一定大于90°B .一定小于90°C .一定等于90°D .无法确定6.坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离恰为到x 轴距离的3倍. 若A 点在第四象限,则A 点坐标为( ).A .(9,-3)B .(-3,1)C .(-3,9)D .(-1,3)7.在如图1所示的平面直角坐标系内,画在透明胶片上的四边形ABCD ,点A 的坐标是(0,2),现将这张胶片平移,使点A 落在点A ′(5,-1)处,则此平移可以是( ).A .先向右平移5个单位,再向下平移1个单位B .先向右平移5个单位,再向下平移3个单位C .先向右平移4个单位,再向下平移1个单位D .先向右平移4个单位,再向下平移3个单位8.小红将直角坐标系中的点A 的横坐标乘以2再加2,纵坐标加2再除以2,点A 恰好落在原点上,则点A 的坐标是( ).A .(-1,-4)B .(-1,-2)C .(1,2)D .(1,-2)9.在如图2所示的单位正方形网格中,三角形ABC 经过平移后得到三角形A 1B 1C 1,已知在AC 上一点P(2.4,2)平移后的对应点为P 1,则P 1点的坐标为( ).A .(-2.6,-2)B .(-1.6,-2)C .(-2.6,-1)D .(-1.6,-1)10.在平面直角坐标系中,孔明在做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3图 3 图5除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ).A .(66,34)B .(67,33)C .(100,33)D .(99,34)二、填空题(每小题3分,共24分)11.将点A (-2,-3)向右平移3个单位长度得到点B ,则点B 所处的象限是_________.12.一只雄鹰向正东飞行5千米,再向北飞行3千米,接着向西飞了5千米,此时这只雄鹰离开原地的距离为___________.13.在点(0,-2),(1,4),(0,0),(0,3),(2015,0)中,属于x 轴上的点有___________.14.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是________________.15.若点P(m ,5)在第一象限内两坐标轴夹角的平分线上,若点Q(8,n )在第四象限内两坐标轴夹角的平分线上,则3m -2 n 的值为____________.16.如图3,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是_____________.17.已知点A (a ,0)和点B (0,5),且直线AB 与坐标轴围成的三角形的面积等于10,那么a 的值为____________.18.如图4,在平面直角坐标系中,已知点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A →B →C →D →A …的规律紧紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是_____________.三、解答题(共66分)19.(8分)已知点A 的坐标是(3,0),AB=5.(1)当B 点在x 轴上时,求B 点的坐标; (2)当AB ∥y 轴时,求B 点的坐标.20.(8分)如图5,已知三角形ABC 在直角坐标系中,OB=2,OA=4,点C 的坐标为(3,3).(1)写出点A 、点B 的坐标.(2)求三角形ABC 的面积.21.(10分)如图6是某台阶的一部分,如果A 点的坐标为(0,0),B 点的坐标为(1,1).(1)请你根据所给条件建立直角坐标系,并写出C 、D 、E 、F 的坐标;(2)试说明B 、C 、D 、E 、F 的坐标与点A 的坐标相比较有什么变化?(3)如果台阶有10级,你能求出该台阶的高度吗?图422.(10分)已知点A、B在坐标系中的位置如图7所示.(1)若将线段AB向右平移4个单位长度,再向上平移3个单位长度得到线段DC(其中点A移到点D),试写出C、D的坐标;(2)求四边形ABCD的面积.图723.(10分)中国象棋棋盘中隐藏着直角坐标系,如图8是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走. 例如:图中“马”所在的位置可以直接走到B、A 等处.(1)如果图8中“马”位于(1,-2)上,试写出A、B、C、D四点的坐标.(2)若“马”的位置在点C,为了到达点D,请按“马”走的规则,在图中用虚线画出一种你认为合理的行走路线;图824.(10分)在如图9所示的平面直角坐标系中,描出下列各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,-2).(1)A点到原点O的距离是_________个单位长度.(2)将点C向x轴的负方向平移6个单位,它就与点_______重合.(3)连接CE,则直线CE与y轴有怎样的位置关系?(4)点F到x、y轴的距离分别是多少?图925.(10分)如图10,在正方形网格中,每个小正方形的边长为1个单位长度,格点三角形ABC (顶点是网格线的交点的三角形)的顶点A、C的坐标分别为(-4, 5)、(0, 3).(1)请在图10所示的网格内画出平面直角坐标系;(2)把三角形ABC先向右平移5个单位,再向下平移3个单位得到三角形A′B′C′,且点A、B、C的对应点分别为A′、B′、C′,请你在图中画出三角形A′B′C′,并写出点A′、B′、C′的坐标.(3)求三角形ABC的面积.图10参考答案:一、选择题1.C.点拨:确定点的位置至少需要两个数据.2.C .点拨:根据题意,时间为横坐标,温度为纵坐标,零下3℃为-3℃.3.B .点拨:由于x 2+1为正数,故(-,+)在第二象限.4.D .点拨:根据题意,点P′的横坐标为-2+3=1;点P′的纵坐标为1+4=5.5.B .点拨:可画出示意图验证.6.A .点拨:根据题意,点A 的纵坐标为-3,横坐标为9.7.B .点拨:根据点A 、A ′的坐标,可知点A 的横坐标加上了5,纵坐标减小了3.8.B .点拨:设点A(x ,y),根据题意,得2x +2=0,(y +2)÷2=0,解得x=-1,y=-2.9.D .点拨:由于A 点坐标为(2,4),平移后其对应点A 1坐标为(-2,1),故△ABC 向左平移4个单位,再向下平移3个单位,则点P 也按同样的方式移动.10.C .点拨:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,因为100÷3=33余1,所以走完第100步,为第34个循环组的第1步,所以棋子所处位置的横坐标为33×3+1=100,纵坐标为33×1=33.二、填空题11.第四象限. 点拨:点A (-2,-3)向右平移3个单位长度,得到点B (1,-3). 12.3千米. 点拨:在原地的正北3千米,13.(0,0) 和(2012,0). 点拨:x 轴上的点的纵坐标为0.14.-4或6. 点拨:因为点M 、N 的纵坐标相等,故MN ∥x 轴,所以|x -1|=5. 15.31. 点拨:5m =,8n =-.16.(3,3).点拨:根据题意,原来右眼B 的坐标为(0,3).17.4或-4.点拨:由三角形的面积得12|a |×5×=10,解得a=±4. 18.(-1,-2).点拨:根据题意得AB=2,BC=3,CD=2,DA=3,所以绕四边形ABCD一周的细线长度为2+3+2+3=10,又2015÷10=201余5,所以细线另一端在绕四边形第202圈的C 处.三、解答题19.(1)B 点在x 轴上时,B 点的坐标为(8,0)或(-2,0)(2)当AB ∥y 轴时,求B 点的坐标为(3,5)或(3,-5)20.(1)点A 的坐标为(0,4),点B 的坐标为(-2,0).(2)过点C 作CD ⊥x 轴,则CD=3.S 梯形AODC =12×(4+3)×3=212. S 三角形AOB =12×2×4=4,S 三角形BDC =12×(3+2)×3=152. S 三角形ABC = S 梯形AODC +S 三角形AOB -S 三角形BDC =212+4-152=7. 21.(1)C (2,2);D (3,3);E (4,4);F (5,5).(2)后一个点的横坐标和纵坐标都比前一个点的横坐标和纵坐标增加了1.(3)如果台阶有10级,那么该台阶的高度为10个单位长度.22.(1)C 点坐标(0,3),D 点坐标(1,6);(2)连结BC ,AD. S 四边形ABCD =S 三角形ABC +S 三角形ACD =12×3×3+12×3×3=9. 所以四边形ABCD 的面积为9. 23.(1)建立如答图1所示的坐标系,则A (3,-1),B (2,0),C (6,2),D (7,-1).(2)答案不惟一,如答图1所示.24.(1)3;(2)D;(3)CE∥y轴;(4)点F到x轴是2个单位长度,到y轴是5个单位长度. 25.(1)所画的平面直角坐标系如答图2所示.(2)所画的平移后的三角形如答图2所示.平移后对应点的坐标分别是A′(1,2),B′(4,-2),C′(5,0).(3)三角形ABC的面积为4×4-12×2×4-12×1×2-12×3×4=5.答图1答图2。
新人教数学七下第7章平面直角坐标系综合水平测试题1含答案
第七章平面直角坐标系水平测试题(一)一、(本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的•把所选项前的字母代号填在题后的括号内•相信你一定会选对!) 2,4),那么该同学的位置是( 1.某同学的座位号为( )(A )第2排第4列(B)第4排第2列(C)第2列第4排 (D )不好确定2•下列各点中,在第二象限的点是( )(A )( 2,3) ( B)( 2,- 3) ( C) (- 2,- 3) ( D) (- 2,3)x PPy的坐标为( 至U)轴的距离为3,则点3若轴上的点(A )( 3,0) ( B)( 0,3) ( C) (3,0)或(—3,0) ( D) ( 0,3)或(0,-3)x M31m Mm 坐标为(4.点(轴上,则点,).)在 (A) (0,- 4) (B) (4,0) (C) (- 2,0) ( D) ( 0,- 2)xx yy轴3个单位长度,则点C的坐标为(C在轴上方,)轴左侧,距离轴2个单位长度,距离5.点2,3 2, 3 3,23, 2) D) ( ( B) () () (((A) C)()Pyy的取值范围是(,则6•如果点)(5,)在第四象限y 0y 0y 0y 0 ( D )( CA())) (B( 2,3)(3, 2),则点B和点A和点C的坐标分别为D的坐标分别为(和 ).7.如图:正方形ABCD中点—BC-3)2 2,(2,2)(),)3(3(3,3 )和((A) B 和)2(2, 2, 2)()33, (( 3, 3) D)和和C ()(则第四个顶点的坐,1) ?) , ( 3, - 8.—个长方形在平面直角坐标系中三个顶点的坐标为(一1,- 1), (-1,2 )标为()(2,3 ( D)) (3,3) ) ( B) (3,2) ( C (A) (2,214, 1,4,则AB ,) B ()9.线段AB两端点坐标分别为 A (,现将它向左平移4个单位长度,得到线段11 )、B的坐标分别为(An73,, 3 5,0 8 ) 0, 5B ),) ((A) A ( B) (),BA (( mi4,,43 51,0 ( D)A (B () ( C) A () ,) B (- 81) 1111点为原点,若以A,点坐标为(25) 10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则 A.) 建立直角坐标系,则B点坐标为(),5D) (2 2) (,- 5) (( 2 ( 2 ( A) (-,- 5) B) (-,5) C 分.请把结果直接填在题中的横线分,共24 (本大题共有8小题,每题3二、细心填一填:上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!),小华坐),77列,其中小明的座位在第3排第列,简记为(38211.七年级()班教室里的座位共有7排__________ .2列,则小华的座位可记作5在第排第a b ab ba (则点P 12.若点(,)在第二象限Q, ____________ )在第象限1x y轴的距离是15,那么P点坐标可以是_____________ (写岀一个即可)13.若点P到.轴的距离是12, 到14.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(—4,3 ), (—2,3 ),则移动后猫眼的坐标为___________ .xx PPyy的坐标是,则点,| , _________ .)在第四象限,且||=5|=3 15.已知点(16.如图,中国象棋中的“象",在图中的坐标为(1,0), ? 若“象”再走一步,试写出下一步它可能走到的位置的坐标yA PPP63a 2 a的坐标是18. 已知点到两坐标轴的距离相等,的坐标(则点),,且点 ___________________ 三、认真答一答:(本大题共4小题,每小题10分,共40分.只要你认真思考,仔细运算, 一定会解答正确的!)19. 如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写岀各地的坐标.体育场市场宾馆文化宫火车站医院超市20. 适当建立直角坐标系,描岀点( 0 , 0) , ( 5, 4), ( 3, 0), ( 5, 1) , ( 5 , -1 ), ( 3 , 0), ( 4,-2 ), ( 0, 0),并用线段顺次连接各点。
人教版数学七年级下册 第7章《平面直角坐标系》章节综合测试(含答案)
人教版数学七年级下册第7章《平面直角坐标系》章节综合测试(含答案)一.选择题(共8小题,满分24分)1.在平面直角坐标系中,点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)3.在平面直角坐标系中,将点(﹣2,﹣3)向左平移2个单位长度得到的点的坐标是()A.(﹣2,﹣5)B.(﹣4,﹣3)C.(0,﹣3)D.(﹣2,1)4.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.25.在平面直角坐标系中,点P(3,﹣2)到y轴的距离为()A.3B.﹣3C.2D.﹣26.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.如图,A、B的坐标分别为(2,0)、(0,1).若将线段AB平移至A1B1,A1、B1的坐标分別(3,b)、(a,2),则a+b的值为()A.2B.3C.4D.58.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)二.填空题(共6小题,满分24分)9.点(2,﹣1)所在的象限是第象限.10.已知点P的坐标为(4,5),则点P到x轴的距离是.11.已知点P(m+2,2m﹣4)在x轴上,则m的值是.12.若线段AB=4,AB∥x轴,点A的坐标是(2,3),则点B的坐标为.13.已知A(0,﹣9),B(0,2),则AB=.14.在平面直角坐标系中,将线段AB平移到A′B′,若点A、B、A′的坐标(﹣2,0)、(0,3)、(2,2),则点B′的坐标是.三.解答题(共7小题,满分52分)15.(7分)△ABC在直角坐标系中如图所示,请写出点A、B、C的坐标.16.(7分)在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.17.(7分)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,﹣3);C(3,﹣5);D(﹣3,﹣5);E(3,5);F(5,7).①B点到x轴的距离是,到y轴的距离是.②将点C向x轴的负方向平移个单位,它就与点D重合.③连接CE,则直线CE与y轴是关系.18.(7分)在平面直角坐标系中画出以A(4,2),B(2,0),C(﹣3,0)为顶点的三角形.19.(8分)中国棋盘中蕴含着平面直角坐标系,如图所示是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形对角线走.例如:图中“马”所在位置可以直接走到点A、B处.(1)如果“相”位于点(4,2),“帅”位于点(0,0),则“马”所在点的坐标为,点D的坐标为.(2)若“马”的位置在C点,为了到达“D”点,请按“马”走的规则,写出一种你认为合理的行走路线,(在答题纸图中标出行走路线即可).20.(8分)已知点M(3a﹣2,a+6),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.21.(8分)国庆假期期间,笑笑所在的学习小组组织了到方特梦幻王国的游园活动,笑笑和乐乐对着景区示意图(如图所示)讨论景点位置:(图中小正方形边长代表100m)笑笑说:“西游传说坐标(300,300).”乐乐说:“华夏五千年坐标(﹣100,﹣400).”若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述其他地点的位置.参考答案一.选择题(共8小题)1.【解答】解:由题可得,点(2,﹣2)所在的象限是第四象限,故选:D.2.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.3.【解答】解:将点P(﹣2,﹣3)向左平移2个单位长度得到的点坐标为(﹣2﹣2,﹣3),即(﹣4,﹣3),故选:B.4.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.5.【解答】解:在平面直角坐标系中,点P(3,﹣2)到y轴的距离为3.故选:A.6.【解答】解:平行于x轴的直线上的任意两点的坐标之间的关系是纵坐标相等.故选:B.7.【解答】解:观察图形可知将线段向右平移一个单位,再向上平移一个单位得到线段A1B1,∴a=1,b=1,∴a+b=2,故选:A.8.【解答】解:∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=﹣2,∴3a=﹣6,∴点P的坐标为(﹣6,0).故选:C.二.填空题(共6小题)9.【解答】解:点(2,﹣1)所在的象限是第四象限.10.【解答】解:∵点P的坐标为(4,5),∴点P到x轴的距离是:5.故答案为:5.11.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得m=2.故答案为:2.12.【解答】解:∵线段AB=4,AB∥x轴,若点A的坐标为(2,3),∴点B在点A的左侧或者在点A的右侧.当点B在点A的左侧时,点B的横坐标为:2﹣4=﹣2,纵坐标为:3,故点B的坐标为(﹣2,3).当点B在点A的右侧时,点B的横坐标为:2+4=6,纵坐标为:3,故点B的坐标为(6,3).故答案为:(﹣2,3),(6,3).13.【解答】解:∵A(0,﹣9),B(0,2),∴AB=2﹣(﹣9)=11,故答案为:1114.【解答】解:∵点A(﹣2,0)向右平移4个单位,向上平移2个单位得到A′(2,2),∴点B(0,3)向右平移4个单位,向上平移2个单位得到B′(4,5),故答案为(4,5).三.解答题(共7小题)15.【解答】解:如图所示:A(2,2),B(﹣1,﹣1),C(﹣2,﹣2).16.【解答】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.17.【解答】解:①B点到x轴的距离是3,到y轴的距离是1,故答案为:3、1;②将点C向x轴的负方向平移6个单位,它就与点D重合.③连接CE,则直线CE与y轴是平行的关系,故答案为:平行.18.【解答】解:建立直角坐标系,描点如下:19.【解答】解:(1)由“相”位于点(4,2),“帅”位于点(0,0),∴“马”的坐标为(﹣3,0),D的坐标(3,1),故答案为(﹣3,0),(3,1);(2)如图所示:20.【解答】解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5)21.【解答】解:(1)如图所示:(2)太空飞梭(0,0),秦岭历险(0,400),魔幻城堡(400,﹣200),南门(0,﹣500),丛林飞龙(﹣200,﹣100).。
新人教版七年级下册数学第七章平面直角坐标系检测试题及答案
人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10 小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点 B 的坐标为()A. .(-2,2)B. .(-2,-3)C. .(-3,-2)D. (-2,-2)3.已知点 A(-3,0),则 A 点在()A. x 轴的正半轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点 M 到 x 轴的距离为3,到 y 轴的距离为4,则点 M 的坐标是()A. (3,-4)B.(-4,3)C. (4,-3)D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移 2 个单位长度,再向下平移 2 个单位长度所获得的点坐标为()A. (1,0)B. (1,2)C. (5,4)D. (5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.123° ~124° 34′C.福建的正方向D. 123° ~124° 34′ ,北 25° 40′~26° 8.已知点 M(a,1),N(3,1), 且 MN=2 , a 的(A.1 B. 5)C.1 或5D.不可以确立9.如所示是一个棋棋(局部)①的坐是 (-2,-1),白棋③的坐是A. (0,-2) B. (1,-2),把个棋棋搁置在一个平面直角坐系中,白棋(-1,-3),黑棋②的坐是()C. (2,-1)D. (1,2)10.如,在直角坐系中,已知点 A(-3,0)、B(0,4),△ OAB作旋,挨次获得△1、△2、△3、△4、⋯ ,△16的直角点的坐()19 1 9 A. (60,0)B. (72,0)C. 675,5D. 79 5,5二.填空(共 6 小)11.若 4 排3 列用有序数(4,3)表示,那么表示 2 排5 列的有序数.12.在平面直角坐系中,已知点A(2,3),点 B 与点A 对于x 称,点 B 坐是.13.若点P(m+5,m-2)在x 上,m=;若点P(m+5,m-2) 在y 上,m=.14A(-2,3)和B(2,1),那么炸机 C 的平面坐是.15.将点P(x,4)向右平移 3 个单位获得点(5,4),则P 点的坐标是.16.把自然数按如图的序次在直角坐标系中,每个点坐标就对应着一个自然数,比如点(0,0)对应的自然数是1,点 (1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n) 对应的自然数是三.解答题(共 6 小题)17.在平面直角坐标系中,点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,试求m+n 的值.18.已知点P(2m+4,m-1), 请分别依据以下条件,求出点P 的坐标.(1)点 P 在 x 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过点 A(2,-4)且与 y 轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如下图,但是她忘掉了在图中标出原点和x 轴、 y 轴,只知道游玩园 D 的坐标为 (2,-2),且一格表示一个单位长度.(1)在原图中成立直角坐标系,求出其余各景点的坐标;(2)在( 1)的基础上,记原点为 0,分别表示出线段 AO 和线段 DO 上随意一点的坐标.20.已知 A(1,0)、 B(4,1)、 C(2,4),△ABC经过平移获得△A′ B′ C′ ,若 A′的坐标为 (-5,-2).(1)求 B′、 C′的坐标;(2)求△ A′B′ C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB 变换成△ OA B,第二次将△ OA B 变换成1111△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0) .( 1 )察看每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则 A4的坐标为 ,B4的坐标为.(2)按以上规律将△ OAB 进行 n 次变换获得△ OA n B n,则 A n的坐标为 ,B n的坐标为 ;(3)△ OA n B n的面积为.22.( 1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1), 并将各点用线段按序连结起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)假如将原图形上各点的横坐标加2、纵坐标减 5,猜一猜,图形会发生如何的变化?(4)假如想让变化后的图形与原图形对于原点对称,原图形各点的坐标应当如何变化?答案:1-10 BDBCD DDCAA11.(2,5)12.(2,-3)13.-514.( -2, -1)15.(2,4)16.604n2 -2n+117.解:∵点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,∴2m-7=1,n-6=-3 ,解得 m=4, n=3,因此 ,m+n=4+3=7.18.解:( 1)∵点 P(2m+4,m-1) 在 x 轴上,∴m-1=0 ,解得 m=1,∴2m+4=2×1+4=6,m-1=0,因此,点P 的坐标为 (6,0);(2)∵点 P(2m+4,m-1)的纵坐标比横坐标大 3,∴m-1-(2m+4)=3 ,解得 m=-8,∴人教版七年级数学下册第七章平面直角坐标系培优稳固检测一.选择题(共10 小题)1.平面直角坐标系内有一点P(-2019,-2019),则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点 A(a,b)在第四象限,则点 B(0,a)在()A. x 轴的正平轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上3.已知点 P 的坐标为 (1,-2),则点 P 到 x 轴的距离是()A.1B. 2C. -1D.-24.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)5.已知点 P 位于第二象限,则点P 的坐标可能是()A. (-3,0)B. (0,3)C. (-3,2)D. (-3,-3)6.在直角坐标系中,点 M(-3,-4) 先右移 3 个单位,再下移 2 个单位,则点 M 的坐标变成()A. (-6,-6)B. (0,-6)C. (0,-2,)D.(-6,-2)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.东经 123° ~124° 34′C.福建的正东方向D.东经 123° ~124° 34′ ,北纬 25° 40′~26°8.如图,已知在△AOB 中 A(0,4),B(-2,0),点 M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为()A.4.5B. 5C.5.5D. 5.759.已知点M(a,1),N(3,1), 且MN=2 ,则a 的值为()A.1B. 5C.1 或5D.不可以确立10.在平面直角坐标系中,给出三点A,B,C,记此中随意两点的横坐标的差的最大值为a,任意两点的纵坐标差的最大值为h,定义“矩面积”S=ah,比如:给出A(1,2),B(-3,1),C(2,-2),则a=5, h=4, S=ah=20.若 D(1,2),E(-2,1). F(0,t)三点的“矩面积”为18,则 t=()A.-3 或 7B.-4 或 6C.-4 或 7D.-3 或 6二.填空(共 6 小)11.若影票上座位是“ 4 排 5号” 作 (4,5), (8,13)的座位是12.若 P(a-2,a+1)在 x 上, a 的是.13.若 4 排 3 列用有序数(4,3)表示,那么表示 2 排 5列的有序数.14.在平面直角坐系中,将点A(-1,3)向左平移 a 个位后,获得点A′ (-3,3), a 的是15.在平面直角坐系中,点M 在 x 的上方, y 的左面,且点 M 到 x 的距离 4,到y 的距离 7,点 M 的坐是.16.如,在平面直角坐系中,每个最小方格的均1,P2 ,P3,⋯1 个位度, P均在格点上,其序按中“→”方向摆列,如:P1(0, 0), P2 (0, 1), P3(1, 1), P4(1,- 1),P5(- 1,- 1), P6(- 1,2),⋯,依据个律,点P2019的坐三.解答(共 5 小)17.已知平面直角坐系中有一点M(2m-3,m+1) .(1)点 M 到 y 的距离 l , M 的坐?(2)点 N(5,-1)且 MN ∥x , M 的坐?18.六形六个点的坐A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所坐系中画出个六形;(2)写出各拥有的平行或垂直关系.(不原因.)19.如图,三架飞机 P、 Q、 R 保持编队飞翔, 30 秒后飞机 P 飞到P1的地点,飞机Q、R飞到了新地点 Q1、 R1.在直角坐标系中标出 Q1、 R1,并写出坐标.20.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如下图.但是她忘掉了在图中标出原点和x 轴、y 轴.知道马场的坐标为(-3,-3)、南门的坐标为 (0,0), 你能帮她成立平面直角坐标系并求出其余各景点的坐标?21.如图是由边长为 1 个单位长度的小正方形构成的网格,线段AB 的端点在格点上.(1)请成立适合的平面直角坐标系xOy,使得 A 点的坐标为(-3,-1),在此坐标系下,写出 B 点的坐标;(2)在( 1)的坐标系下将线段B A 向右平移 3 个单位,再向上平移 2 个单位得线段CD,使得 C 点与点 B 对应,点 D 与点 A 对应.写出点C, D 的坐标,并直接判断线段AB 与 CD 之间关系?答案:1-5CCBDC6-10BDCCC11.8排13号12.-113.(2,5)14.215.( -7, 4)16.(505, 505)17.解:( 1)∵点 M ( 2m-3, m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M ( 2m-3, m+1 ),点 N ( 5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点 M 的坐标为( -7, -1).18.解:( 1)如下图:(2)由图可得, AB ∥DE, CD ⊥ DE , BC∥EF, CD⊥ AB .19.解:由题意可知:P 的坐标( -1, 1), Q( -3, 1), R(-1, -1)经过 30 秒后 P1的坐标为( 4, 3),∴Q1的坐标( 2,3), R1的坐标为( 4, 1)20.人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东 40°B.某地江滨路C.光明电影院 6 排D.东经 116 °,北纬 42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为 y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若P(a-2,a+1)在x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点 Q 的坐标为 (ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16 层,记为:A16,按这类方法,小红家住 B 座 10层,可记为.16.如图,矩形 BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第是.1 个单位2012/ 秒匀速运动,物体次相遇地址的坐标三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点 A 位于点 (-4,4),点 B 位于点 (3,1),则“帅”所在点的坐标为;" 马”所在点的坐标为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.1m a,1, 此中a、b为常数.f运算22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =n b22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a=,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21. 解:( 1)由点 A 位于点( -4 , 4。
【精编】人教版七年级数学下册第7章_平面直角坐标系综合测试卷(含答案).doc
一、选择题(每题3分,共30分)1.若ab>0,则P (a ,b )在( )A .第一象限B .第一或第三象限C .第二或第四象限D .以上都不对 2.P 点横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A .(5,-3)或(-5,-3)B .(-3,5)或(-3,-5)C .(-3,5)D .(-3,-5)3.如图1所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短( )A .(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B .(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C .(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2) →(4,0)D .以上都不对4.若│a -b│·│a+b│=0,则点P (a ,b )在( ) A .第一,三象限内; B .第一,三象限角平分线上C .第一,三象限角平分线或第二,四象限角平分线上;D .第二,四象限角平分线上5.对任意实数x ,点P (x ,x 2-2x )一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.点A (-4,3)和点B (-8,3),则A ,B 相距( )A .4个单位长度B .12个单位长度C .10个单位长度D .8个单位长度 7.已知点P 坐标为(2-a ,3a+6),且P 点到两坐标的距离相等,则点P 的坐标是( ) A .(3,3) B .(3,-3) C .(6,-6) D .(3,3)或(6,-6) 8.如图2所示,将四边形ABCD 上一点(x 0,y 0),按下列平移规律变化(x 0,y 0)→(x 0-3,y 0+2),则新的四边形的顶点A′,B′,C′,D′坐标为( ) A .A′(3,3),B′(2,-1),C′(2,-1),D′(-2,2) B .A′(0,5),B′(-1,1),C′(-4,0),D′(-5,4) C .A′(1,4),B′(2,1),C′(-4,0),D′(4,-5) D .以上都不对图19.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平面四边形,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图将三角形ABC 的纵坐标乘以2,原三角形ABC 坐标分别为A (-2,0),B (2,0),C (0,2)得新三角形A′B′C′下列图像中正确的是( )A B C D二、填空题(每题3分,共30分)11.点P (-3,-2)在第_____象限.12.在同一平面直角坐标系中,过x 轴上坐标是(-3,0)作x 轴垂线,过y 轴坐标是(0,-3)作y 轴垂线,两垂线交点A ,则点A 的坐标是_____.13.将点P (-2,-1)向左平移2个单位得A′,A′的坐标是_____. 14.在如图3所示的直角坐标系中,A 点的坐标是_________,B 点的坐标是_________,C 点的坐标是__________,D 点的坐标是___________.15.点P (-3,-5)到x 轴距离为______,到y 轴距离为_______. 16.写出一个点的坐标,其积为-10,且在第二象限为______. 17.若点P (m -2,m+1)在x 轴上,P 到原点距离为______.18.如图3所示,将三角形ABC 向下平移3个单位,则点B 的坐标变为B′,•B′为______. 19.已知a 是整数,点A (2a+1,2+a )在第二象限,则a=_____.20.把点(-2,3)向上平移2个单位长度所到达的位置点的坐标为_____;向右平移2个单位长度所到达点的坐标为______.三、解答题(每题8分,共40分)21.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连结起来. (1)(1,0),(6,0),(6,1),(5,0),(6,-1); (2)(2,0),(5,-3),(4,0).22.如图所示.(1)写出三角形③的顶点坐标;图3(2)通过平移由③能推出④吗?为什么?(3)由对称性:由③可得①、②三角形,顶点坐标各是什么?23.四边形ABCD坐标为A(0,0),B(5,1),C(5,4),D(2,4).(1)请在直角坐标系中画出四边形ABCD;(2)求四边形ABCD的面积.24.如图是一个8×8的球桌,小明用A球撞击B球,到C处反弹,再撞击桌边D处,请选择适当坐标系,用坐标表示各点的位置.25.如图所示,在雷达探测区内,可以建立平面直角坐标系表示位置.某次行动中,当我方两架飞机在A(-1,2)与B(3,2)位置时,可疑飞机在(-1,6)位置,你能找到这个直角坐标系的横,纵坐标轴的位置吗?把它们表示出来并确定可疑飞机的所处方位?四、解答题(每题10分,共20分)26.如图在平面网格中每个小正方形边长为1;(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?27.在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(-4,3)在第几个正方形的边上?(-2n,2n)在第几个正方形边上(n为正整数).参考答案一、选择1.B 2.B 3.A 4.C 5.C 6.A7.D (点拨:2-a=3a+6或a-2=3a+6)8.B 9.C 10.C二、填空11.三 12.A (-3,-3) 13.P (-4,-1) 14.A (0,4);B (4,0);C (-1,0);D (2,2)15.5;3 16.(-2,5) 17.3(点拨:m=-1) 1 8.B′(4,-3) 19.-1 (点拨:2a+1<0,2+a>0) 20.(-2,5),(-4,3)三、解答题21.略22.(1)(-1,-1),(-4,-4),(-3,-5)(2)不能,下面两个点向右平移5个单位长度,上面一个点向右平移4个单位长度. (3)三角形②顶点坐标为(-1,1),(-4,4),(-3,5).(三角形②与三角形③关于x 轴对称);三角形①顶点坐标为(1,1),(4,4),(3,5)•(由③与①关于原点对称性可得①的顶点坐标). 23.(1)如图所示(2)延长CB 交于x 轴于E 点,梯子OECD 面积为12(OE+CD )·aCE=42×[(5-2)+5]=16.•三角形OBE 面积为12×5×1=2.5. 所以四边形ABCD 面积为16-2.5=13.5.24.选择B (0,0),A (-2,-1),C (4,2),D (-3,4).25.如图所示,AB 相距4个单位,构建坐标系.知可疑飞机在第二象限C 点.四、解答题26.(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD(2)将线段BD向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC.27.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个.(2)第n个正方形边上的整点个数为4n个,所以第20•个正方形的边上整点个数为4×20=80(个).(3)第7个正方形边上,第4n个正方形边上.(│-2n│+│2n│=4n).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 平面直角坐标系水平测试题 黎平县茅贡中学七年级 班,姓名 考号 总得分
一、(本大题共10小题,每题4分,共40分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(4,2),那么该同学的位置是( )
(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( )
(A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3)
3.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )
(A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3)
4.点M (1m +,3m +)在x 轴上,则点M 坐标为( ).
(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2) 5.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )
(A )(3,2) (B )(3,2--) (C )(2,3-) (D )(2,3-) 6.如果点P (5,y )在第四象限,则y 的取值范围是( ) (A )0y < (B )0y > (C )0y ≤ (D )0y ≥ 7.如图:正方形ABCD 中点A 和点C 的坐标分别为)3,2(-和)2,3(-
则点B 和点D 的坐标分别为( ).
(A ))2,2(和)3,3(
(B ))2,2(--和)3,3( (C ))2,2(--和)3,3(-- (D ))2,2(
和)3,3(--
8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)则
第四个顶点的坐标为( )
(A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3)
9.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到
线段A 1B 1,则A 1、B 1的坐标分别为( )
(A )A 1(0,5-),B 1(3,8--) (B )A 1(7,3), B 1(0,5)
(C )A 1(4,5-) B 1(-8,1) (D )A 1(4,3) B 1(1,0)
10.在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若
以A 点为原点建立直角坐标系,则B 点坐标为( ).
(A )(-2,-5) (B )(-2,5) (C )(2,-5) (D )(2,5) 二、细心填一填:(本大题共有8小题,每题4分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)
11.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为
(3,7),小华坐在第5排第2列,则小华的座位可记作 .
12. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第 象限. 13. 若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是 (写出一个即可).
14.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),
(-2,3),则移动后猫眼的坐标为 .
15. 已知点P (x ,y )在第四象限,且|x |=3,|y |=5,则点P 的坐标是 .
16. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出
下一步它可能走到的位置的坐标 .
第17题图
17.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说
出了C 在同一坐标系下的坐标 . 18.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐
是 .
三、认真答一答:(本大题共4小题,每小题12分,共48分. 只要你认真思考, 仔细运算, 一定会解答正确的!)
19. 如图,这是某市部分简图,请建立适当的 平面直角坐标系,分别写出各地的坐标.
20. 适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点。
⑴看图案像什么?
⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?
21.在平面直角坐标系中,点P (1,4),点A 在坐标轴上,且4=∆ABC S ,求A 点的坐标。
22. 已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.
四、动脑想一想:(本大题共有2小题,每小题15分,共30分. 只要你认真探索,仔细思考,你一定会获得成功的!)
23. 请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:
)4,4(-A ,)0,0(),3,3(),5,5(),3,3(),2,2(F E D C B ----
你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)
24.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .
(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形
(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形, 若存在这样一点,求出点P 的坐标,若不存在,试说明理由.
参考答案
1.D;
2.D;
3.C;
4.C;
5.C;
6.A;
7.B;
8.B;
9.C;
10.A;
11.(5,2);
12.三;
13.(15,12)或(15,-12)或(-15,12)或(-15,-12);
14.(-1,3),(1,3);
15.(3,-5);
16.(3,2),(3,-2),(-1,2),(-1,-2);
17.(-1,7);
18.(3,3)或(6,-6);
19.答案不唯一.如图:
火车站(0,0),宾馆(2,2),市场(4,3),超市(2,-3),医院(-2,-2),文化宫(-3,1),体育场(-4,3).
20.(1)“鱼”;(2)向左平移2个单位.
21.略;
22.解:如答图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,
则
C(0,3),D(3,3),E(3,0).
又因为O(0,0),A(1,3),B(3,1),
所以OC=3,AC=1,OE=3,BE=1.
AD=DC-AC=3-1=2,
BD=DE-BE=3-1=2.
则四边形OCDE的面积为3×3=9,
△ACO和△BEO的面积都为
1
2
×3×1=
3
2
,
△ABD的面积为
1
2
×2×2=2,
所以△ABO的面积为9-2×
3
2
-2=4.
23.这些点在同一直线上,在二四象限的角平分线上,举例略.
24.答案不唯一,略.。