专题三 数列
高中总复习二轮数学精品课件 专题三 数列 素养提升微专题(四) 数列解答题中的奇、偶项问题
2 -1
n 为奇数时,Tn=2·
+ -n=n + .
2
2
2
当
(1+)·
2 3
n 为偶数时,Tn=2·
+
=n
+
.
2
2
2
-1
+
,为奇数,
2
3
2
+ ,为偶数.
2
2
综上所述,Tn=
-6,为奇数,
2.(2023·新高考Ⅱ,18)已知{an}为等差数列,bn=
记 Sn,Tn 分别为
2
=
2
+
-1
(14+4+2)
2
2
3 2 +5-10
=
.
2
当 n>5
3 2 +5-10
2 -3-10
2
时,Tn-Sn=
-(n +4n)= 2
2
所以Tn>Sn.
=
(-5)(+2)
>0,
2
当n为偶数时,Tn=a1-6+2a2+a3-6+2a4+a5-6+2a6+…+an-1-6+2an
n
1
+ 2 =(-1)n·
3n+(-1)n·
2n.
当 n 为奇数时,Tn=(-3+32-33+34-…-3n)+2(-1+2-3+4-…-n)
-3[1-(-3) ]
-1- +1
= 1-(-3) +2 2 · 2
2023年高考数学二轮复习第一部分专题攻略专题三数列第一讲等差数列与等比数列
专题三 数列第一讲 等差数列与等比数列——小题备考常考常用结论 1.等差数列(1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n =n (a 1+a n )2=na 1+n (n−1)2d ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m)d ;③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1−q n )1−q=a 1−a n q 1−q;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ;②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算保分题1.[2022·河北石家庄二模]等差数列{a n }的前n 项和记为S n ,若a 2+a 2 021=6,则S 2 022=( )A .3 033B .4 044C .6 066D .8 0882.[2022·辽宁沈阳三模]在等比数列{a n }中,a 2,a 8为方程x 2-4x +π=0的两根,则a 3a 5a 7的值为( )A .π√πB .-π√πC .±π√πD .π33.[2022·全国乙卷]已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6D .3提分题例1 (1)[2022·江苏盐城三模]已知数列{a n},{b n}均为等差数列,且a1=25,b1=75,a2+b2=120,则a37+b37的值为()A.760 B.820C.780 D.860(2)[2022·广东佛山三模]已知公比为q的等比数列{a n}的前n项和S n=c+2·q n,n∈N*,且S3=14,则a4=()A.48B.32 C.16D.8听课笔记:技法领悟1.等差、等比数列基本运算的关注点(1)基本量:在等差或等比数列中,首项a1和公差d(公比q)是两个基本元素;(2)解题思路:①设基本量a1和d(q);②列、解方程(组);把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,减少计算量.2.等差、等比数列性质问题的求解策略(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m+n=p+q,则a m+a n =a p+a q”这一性质与求和公式S n=n(a1+a n)2的综合应用.巩固训练11.[2022·河北邯郸二模]在我国古代著作《九章算术》中,有这样一个问题:“今有五人分五钱,令上二人与下三人等,问各得几何?”意思是有五个人分五钱,且得钱最多的两个人的钱数之和与另外三个人的钱数之和相等,问每个人分别分得多少钱?若已知这五人分得的钱数从多到少成等差数列,则这个等差数列的公差d=()A.-16B.-15C.-14D.-132.[2022·山东淄博一模]已知等比数列{a n },其前n 项和为S n .若a 2=4,S 3=14,则a 3=________.微专题2 等差数列与等比数列的综合保分题1.[2022·辽宁沈阳一模]已知等差数列{a n }的公差为2,且a 2,a 3,a 5成等比数列,则{a n }的前n 项和S n =( )A .n(n -2)B .n(n -1)C .n(n +1)D .n(n +2) 2.各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1=( ) A .5√2-5 B .5√2+5 C .5√2 D .53.已知正项等比数列{a n }的前n 项和为S n ,若S 3=4,S 9=19,则S 6,S 9的等差中项为________.提分题例2 (1)[2022·山东日照三模]在公差不为0的等差数列{a n }中,a 1,a 2,a k 1,a k 2,a k 3成公比为3的等比数列,则k 3=( )A .14B .34C .41D .86(2)[2022·山东潍坊三模](多选)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,则下列结论正确的是( )A .数列{Snn }为等差数列B .对任意正整数n ,b +n 2b n+22 ≥2b n +12 C .数列{S 2n +2-S 2n }一定是等差数列 D .数列{T 2n +2-T 2n }一定是等比数列 听课笔记:技法领悟等差、等比数列综合问题的求解策略对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.巩固训练21.已知等比数列{a n }的前n 项和为S n ,且a 2,2a 5,3a 8成等差数列,则S6S 3=( )A .1或43B .1或13C .2或43D .13或432.[2022·湖北荆州三模](多选)等差数列{a n }的前项n 和为S n ,数列{b n }为等比数列,则下列说法正确的选项有 ( )A .数列{2a n }一定是等比数列B .数列{b a n }一定是等比数列C .数列{Snn }一定是等差数列D .数列{b n +b n +1}一定是等比数列微专题3 数列的递推保分题1.[2022·广东汕头三模]已知数列{a n }中,a 1=-14,当n>1时,a n =1-1a n−1,则a 2 022=( )A .-14 B .45 C .5 D .-45 2.数列{a n }中,若a 1=2,a n +1=2a n a n +2,则a 7=( )A .18 B .17 C .27 D .143.[2022·山东泰安三模]已知数列{a n }满足:对任意的m ,n ∈N *,都有a m a n =a m +n ,且a 2=3,则a 20=( )A .320B .315C .310D .35提分题 例3 (1)[2022·湖南雅礼中学二模](多选)著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n 个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n 个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n ,则( )A .a 2=3B .a 3=8C .a n +1=2a n +nD .a n =2n -1(2)设{a n }是首项为1的正项数列,且(n +1)a n+12-na n 2+a n +1a n =0(n =1,2,3,…),则它的通项公式是a 100=( )A .100B .1100C .101D .1101听课笔记:技法领悟1.通过验证或者推理得出数列的周期性后求解.2.根据已知递推关系式,变形后构造出等差数列或等比数列,再根据等差数列或等比数列的知识求解.3.三种简单的递推数列:a n +1-a n =f(n),a n+1a n=f(n),a n +1=pa n +q(p ≠0,1,q ≠0),第一个使用累加的方法,第二个使用累乘的方法,第三个可以使用待定系数法化为等比数列(设a n +1+λ=p(a n +λ),展开比较系数得出λ).巩固训练3 1.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层(即第一层)有1个球,第二层有3个球,第三层有6个球,…,设“三角垛”从第一层到第n层的各层的球数构成一个数列{a n},则() A.a5-a4=4 B.a100=5 000C.2a n+1=a n+a n+2D.a n+1-a n=n+12.[2022·福建漳州二模]已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,记b n=a n+a n+1+a n+2且b n+1-b n=2,则S31=()A.171 B.278 C.351 D.395第一讲等差数列与等比数列微专题1等差数列与等比数列的基本量计算保分题=1 011×6 1.解析:由等差数列{a n}知,a2+a2 021=a1+a2 022=6,所以S2 022=2 022(a1+a2 022)2=6 066.答案:C2.解析:在等比数列{a n}中,因为a2,a8为方程x2-4x+π=0的两根,所以a2a8=π=a52,所以a5=±√π,所以a3a5a7=a53=±π√π.故选C.答案:C3.解析:设等比数列{a n }的公比为q.由题意知,{a 2q+a 2+a 2q =168,a 2−a 2q 3=42.两式相除,得1+q+q 2q (1−q 3)=4,解得q =12.代入a 2-a 2q 3=42,得a 2=48,所以a 6=a 2q 4=3.故选D .答案:D提分题[例1] 解析:(1)∵数列{a n },{b n }均为等差数列,设公差分别为d 1,d 2 (a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, 则数列{a n +b n }也为等差数列, a 1+b 1=100,a 2+b 2=120,数列{a n +b n }的首项为100,公差为20, ∴a 37+b 37=100+20×36=820,故选B .(2)因为公比为q 的等比数列{a n }的前n 项和S n =c +2·q n ①, 当n =1时a 1=S 1=c +2·q , 当n ≥2时S n -1=c +2·q n -1 ②, ①-②得a n =2·q n -2·q n -1=(2q -2)·q n -1,所以2q -2=c +2q ,则c =-2,又S 3=14,所以S 3=-2+2·q 3=14,解得q =2, 所以a n =2n ,则a 4=24=16. 答案:(1)B (2)C [巩固训练1]1.解析:若分得的钱从多到少分别为a 1,a 2,a 3,a 4,a 5, 所以{a 1+a 2=a 3+a 4+a 5a 1+a 2+a 3+a 4+a 5=5,所以{a 1=−8d5a 1+10d =5,可得{a 1=43d =−16.答案:A2.解析:设等比数列的公比为q ,因为a 2=4,S 3=14,所以a 1+a 3=10,即a2q +a 2q =10,所以2q2-5q+2=0,解得q=2或q=12,所以当q=2时,a3=8;当q=12时,a3=2所以,a3=2或a3=8.答案:2或8微专题2等差数列与等比数列的综合保分题1.解析:设等差数列{a n}公差d=2,由a2,a3,a5成等比数列得,a32=a2·a5,即(a1+2d)2=(a1+d)(a1+4d),解得a1=0,∴S n=n×0+n(n−1)2×2=n(n-1).答案:B2.解析:设等比数列{a n}的公比为q,(q>0),a1≠0,故由题意可得:{a1(1+q+q2+q3)=154a3=4a1+a5,{a1(1+q+q2+q3)=154q2=4+q4,解得q2=2,q=√2,a1=5√2-5.答案:A3.解析:设S6=x,因为{a n}为等比数列,所以S3,S6-S3,S9-S6成等比数列.因为S3=4,S9=19,所以4(19-x)=(x-4)2,解得x=10或x=-6(舍去).所以S6,S9的等差中项为292.答案:292提分题[例2]解析:(1)因为a1,a2,a k1,a k2,a k3成公比为3的等比数列,可得a2=3a1,所以a k3=a1·34=81a1,又因为数列{a n}为等差数列,所以公差d=a2-a1=2a1,所以a k 3=a 1+(k 3-1)d =a 1+2(k 3-1)a 1=(2k 3-1)a 1, 所以(2k 3-1)a 1=81a 1,解得k 3=41. 故选C .(2)设等差数列{a n }的公差为d ,则S n =na 1+n (n−1)2d ,所以,S n n =a 1+(n−1)d 2.对于A 选项,S n+1n+1−S n n=a 1+nd 2-a 1-(n−1)d 2=d 2,所以,{S n n}为等差数列,A 对;对于B 选项,对任意的n ∈N *,b n ≠0,由等比中项的性质可得b n+12=b n b n +2,由基本不等式可得b n 2 +b n +22≥2b n b n +2=2b n+12,B 对;对于C 选项,令c n =S 2n +2-S 2n =a 2n +2+a 2n +1, 所以,c n +1-c n =(a 2n +4+a 2n +3)-(a 2n +2+a 2n +1)=4d , 故数列{S 2n +2-S 2n }一定是等差数列,C 对; 对于D 选项,设等比数列{b n }的公比为q ,当q =-1时,T 2n +2-T 2n =b 2n +2+b 2n +1=b 2n +1(q +1)=0, 此时,数列{T 2n +2-T 2n }不是等比数列,D 错. 答案:(1)C (2)ABC [巩固训练2]1.解析:设等比数列公比为q ,由a 2,2a 5,3a 8成等差数列可得,2×2a 1·q 4=a 1·q +3a 1·q 7,化简得3q 6-4q 3+1=0,解得q 3=13或q 3=1,当q 3=1时,S6S 3=2;当q 3=13时,S 6S 3=a 1(1−q 6)1−q a 1(1−q 3)1−q=1+q 3=43.答案:C2.解析:若{a n }公差为d ,{b n }公比为q , A :由2a n+12a n=2a n+1−a n =2d 为定值,故{2a n }为等比数列,正确; B :由b a n+1b a n=b a n +d b a n=b a n q d b a n=q d 为定值,故{b a n }为等比数列,正确;C :由Sn+1n+1−S nn=a 1+a n+12−a 1+a n 2=a n+12−a n2=d 2为定值,故{Snn}为等差数列,正确; D :当q =-1时b n +b n +1=0,显然不是等比数列,错误. 答案:ABC微专题3 数列的递推保分题1.解析:由题意得:a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14,则数列{a n }的周期为3,则a 2 022=a 674×3=a 3=45.答案:B2.解析:因为a n +1=2a n a n +2,所以1a n+1=12+1a n,即1a n+1−1a n=12,又1a 1=12,则{1a n}是以12为首项,12为公差的等差数列,即1a n=12+12(n -1)=n2,则a n =2n ,所以a 7=27. 答案:C3.解析:因为对任意的m ,n ∈N *,都有a m a n =a m +n , 所以a 1a 1=a 2,a 1a n =a 1+n , 又a 2=3,所以a 1=±√3,所以a n+1a n=a 1,所以数列{a n }是首项为a 1,公比为a 1的等比数列, 所以a n =a 1·(a 1)n -1=(a 1)n , 所以a 20=(a 1)20=310. 答案:C提分题[例3] 解析:(1)将圆盘从小到大编为1,2,3,…号圆盘,则将第n +1号圆盘移动到3号柱时,需先将第1~n 号圆盘移动到2号柱,需a n 次操作;将第n +1号圆盘移动到3号柱需1次操作;再将1~n 号圆需移动到3号柱需a n 次操作,故a n +1=2a n +1,a n +1+1=2(a n +1),又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n ,即a n =2n -1,∴a 2=3,a 3=7.(2)∵(n +1)a n+12−na n 2+a n +1a n =0,∴(n +1)a n+12+anan +1-na n 2=0,[(n +1)a n +1-na n ](a n +1+a n )=0,又∵a n >0,∴a n +1=n n+1·a n ,即a n+1a n =n n+1, ∴a 2a 1·a 3a 2·…·a n a n−1=12·23·…·n−1n ,即a n a 1=1n , 又∵a 1=1,∴a n =1n ,∴a 100=1100.答案:(1)AD (2)B[巩固训练3]1.解析:由相邻层球的个数差,归纳可知a n +1-a n =n +1,a 1=1, 对a n +1-a n =n +1累加得a n =n (n+1)2. 所以,a 5-a 4=5,a 100=100(100+1)2=5 050,2a n +1≠a n +a n +2,所以ABC 错误,故选D.答案:D2.解析:由b n +1-b n =2,b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2, ∴a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351.故选C.答案:C。
2024届高考数学一轮总复习专题三数列的综合问题课件
(2)设等比数列{bn}的公比为q. 因为b2b4=a5, 所以b1q·b1q3=9. 又因为b1=1,所以q2=3. 所以b2n-1=b1q2n-2=3n-1. 则 b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=3n-2 1.
题型二 数列与不等式的综合问题 数列与不等式知识相结合的考查方式主要有三种:一是判断 数列问题中的一些不等关系;二是以数列为载体,考查不等式的 恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这 些问题时,如果是证明题要灵活选择不等式的证明方法,如比较 法、综合法、分析法等.如果是解不等式问题,要使用不等式的各 种不同解法,如数轴法、因式分解法等.
当 n=3 时,b3=0;当 n=4 时,b4=25-2 3; 当 n=5 时,b5=26-4 3=2×2×25-2 32<b4, 当 n≥4 时,bn=2na-n 6=22nn+1--63=22(nn+1--33),bn+1=22(×n-2n3+1)-+32,
∴bn-bn+1=22(nn+1--33)-22(×n-2n3+1)-+32=(2n(+21n--38))(×2×2n2+n1++1-63)>0, 即 bn>bn+1.
【题后反思】对等差、等比数列的综合问题,应重点分析等 差、等比数列项之间的关系.数列的求和主要是等差、等比数列的 求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消 法求数列的和,然后利用 b1=1,d>0 证明不等式成立.另外本题 在探求{an}与{cn}的通项公式时,考查累加、累乘两种基本方法.
专题三 数列的综合问题
数列是历年高考的热点,根据近几年高考试题统计,全国卷 中的数列与三角函数基本上交替考查,难度不大.考查多从等差数 列、等比数列这两个特殊的数列入手,考查内容主要集中在两个 方面:一是以选择题和填空题的形式考查等差、等比数列的运算 和性质,题目多为常规试题;二是等差、等比数列的通项与求和 问题,有时结合函数、方程、不等式等进行综合考查,涉及内容 较为全面,试题题型规范、方法可循.
专题3 数列专题压轴小题(原卷版)
专题3 数列专题压轴小题一、单选题1.(2022·全国·模拟预测(理))数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法错误的是( ) A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦2.(2022·浙江·杭州高级中学模拟预测)已知数列{}n a 中,11a =,若()*112,N n n n na a n n n a --=≥∈+,则下列结论中错误的是( ) A .41225a =B .11112n n a a +-≤ C .ln(1)1n a n ⋅+<D .21112n n a a -≤ 3.(2022·浙江·高三开学考试)已知数列{}n a 满足递推关系1e 1e nn a an a +-=,且10a >,若存在等比数列{}n b 满足1+≤≤n n n b a b ,则{}n b 公比q 为( )A .12B .1eC .13D .1π4.(2022·浙江·模拟预测)已知数列{}n a 满足()()112,1ln n n a a a b b n *+=-=+-∈N .若{}n a 有无穷多个项,则( ) A .0b ≥B .1b ≥-C .1b ≥D .2b ≥-5.(2022·全国·高三专题练习)已知等差数列{}n a (公差不为零)和等差数列{}n b 的前n 项和分别为n S ,n T ,如果关于x 的实系数方程22021202120210x S x T -+=有实数解,那么以下2021个方程()201,2,3,,2021i i x a x b i -+==⋅⋅⋅中,无实数解的方程最多有( )A .1008个B .1009个C .1010个D .1011个6.(2022·全国·高三专题练习)己知数列{}n a 满足:12a =,)()1123n n a a n *+=∈N .记数列{}n a 的前n 项和为n S ,则( ) A .101214S << B .101416S << C .101618S <<D .101820S <<7.(2022·浙江·慈溪中学模拟预测)已知数列{}n a 满足:112a =-,且()1ln 1sin +=+-n n n a a a ,则下列关于数列{}n a 的叙述正确的是( ) A .1n n a a +>B .1124-≤<-n aC .212nn n a a a +>-+D .2124n n a -≤-8.(2022·浙江省江山中学高三期中)已知数列{}n a 满足13a =,121n n na a a +=+-,记数列{}2n a -的前n项和为n S ,设集合12624535,,,5251712M ⎧⎫=⎨⎬⎩⎭,{nN M Sλλ=∈>对*n ∈N 恒成立},则集合N 的元素个数是( ) A .1B .2C .3D .49.(2022·浙江省嘉善中学高三阶段练习)已知数列{}n a 满足11a =,()*14,2n n a a n N n -⎫=+∈≥,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则( ) A .20227833S << B .2022723S <<C .2022523S << D .2022513S <<10.(2022·全国·高三专题练习)已知数列{}{}{}n n n a b c 、、满足()*111112233411111112334n n n n n n n n n n n b a b c c a a c c n S n T n b b b b a a a n+++====-=⋅∈=+++≥=+++≥---N ,,,(),(),则下列有可能成立的是( )A .若{}n a 为等比数列,则220222022a b > B .若{}n c 为递增的等差数列,则20222022S T <C .若{}n a 为等比数列,则220222022a b < D .若{}n c 为递增的等差数列,则20222022S T >11.(2022·浙江·模拟预测)已知各项均为正数的数列{}n a 满足11a =,()1*111n n n n n a a n N a +++=-∈,则数列{}n a ( )A .无最小项,无最大项B .无最小项,有最大项C .有最小项,无最大项D .有最小项,有最大项12.(2022·浙江浙江·二模)已知{}n a 为非常数数列且0n a ≠,1a μ=,()()*1sin 2,,n n n a a a n λμλ+=++∈∈R N ,下列命题正确的是( )A .对任意的λ,μ,数列{}n a 为单调递增数列B .对任意的正数ε,存在λ,μ,()*00n n ∈N ,当0n n >时,1n a ε-<C .存在λ,μ,使得数列{}n a 的周期为2D .存在λ,μ,使得2122n n n a a a +++->13.(2022·浙江温州·二模)对于数列{}n x ,若存在正数M ,使得对一切正整数n ,恒有n x M ≤,则称数列{}n x 有界;若这样的正数M 不存在,则称数列{}n x 无界,已知数列{}n a 满足:11a =,()()1ln 10n n a a λλ+=+>,记数列{}n a 的前n 项和为n S ,数列{}2na 的前n 项和为nT ,则下列结论正确的是( ) A .当1λ=时,数列{}n S 有界 B .当1λ=时,数列{}n T 有界 C .当2λ=时,数列{}n S 有界D .当2λ=时,数列{}n T 有界14.(2022·北京市育英学校高三开学考试)[]x 为不超过x 的最大整数,设n a 为函数()[]f x x x ⎡⎤=⎣⎦,[)0,x n ∈的值域中所有元素的个数.若数列12n a n ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,则2022S =( )A .10121013B .12C .20214040D .1011101215.(2022·浙江浙江·高三阶段练习)已知数列{}n a 满足11a =,且12n n T a a a =,若*12,1n nn n a T T n N a ++∈=,则( ) A .5011,1211a ⎛⎫∈⎪⎝⎭B .5011,1110a ⎛⎫∈⎪⎝⎭C .1011,87a ⎛⎫∈ ⎪⎝⎭D .1011,65a ⎛⎫∈ ⎪⎝⎭16.(2022·浙江·高三专题练习)已知数列{}n a 满足()*111,1ln 2n n a a a n N +==+∈,记n T 表示数列{}n a 的前n 项乘积.则( ) A .911,3026T ⎛⎫∈⎪⎝⎭ B .911,2622T ⎛⎫∈⎪⎝⎭ C .911,2218T ⎛⎫∈⎪⎝⎭ D .911,1814T ⎛⎫∈⎪⎝⎭ 17.(2022·浙江·湖州中学高三阶段练习)已知各项均为正数的数列{}n a 满足11a =,()11e cos n a n n a a n +*+=-∈Ν,其前n 项和为n S ,则下列关于数列{}n a 的叙述错误的是( ) A .()1n n a a n *+>∈Ν B .()211n n n a a a n *++<+∈ΝC.)n a n *∈ΝD.)n S n *<∈Ν18.(2022·浙江·镇海中学高三期末)已知无穷项实数列{}n a 满足: 1a t =, 且 14111n n n a a a +=--, 则( )A .存在1t >, 使得20111a a =B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a =19.(2022·浙江杭州·高三期末)若数列{}n a 满足1n n a a +<,则下列说法错误的是( ) A .存在数列{}n a 使得对任意正整数p ,q 都满足p pq q a a a =+ B .存在数列{}n a 使得对任意正整数p ,q 都满足pq q p a pa qa =+ C .存在数列{}n a 使得对任意正整数p ,q 都满足p q q p a pa qa +=+ D .存在数列{}n a 使得对任意正整数p ,q 部满足p q p q a a a +=20.(2022·全国·高三专题练习)已知{}n a 是各项均为正整数的数列,且13a =,78a =,对*k N ∀∈,11k k a a +=+与1212k k a a ++=有且仅有一个成立,则127a a a ++⋅⋅⋅+的最小值为( ) A .18 B .20C .21D .2221.(2022·浙江·海亮高级中学模拟预测)已知数列{},n a n N *∈,212,n n n a a a m m R +=-+∈,下列说法正确的是( )A .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 是递增数列;B .对任意的95(,)42m ∈,存在1[1,2]a ∈,使数列{}n a 不单调;C .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 具有周期性;D .对任意的(0,1)m ∈,当1[1,2]a ∈时,存在3n a >.22.(2022·全国·高三专题练习)已知{}n a 是等差数列,()sin n n b a =,存在正整数()8t t ≤,使得n t n b b +=,*n N ∈.若集合{}*,n S x x b n N==∈中只含有4个元素,则t 的可能取值有( )个A .2B .3C .4D .523.(2022·上海民办南模中学高三阶段练习)已知数列{}n a 满足:当0n a ≠时,2112+-=n n na a a ;当0n a =时,10n a +=;对于任意实数1a ,则集合{}0,1,2,3,nn an ≤=的元素个数为( )A .0个B .有限个C .无数个D .不能确定,与1a 的取值有关24.(2022·全国·高三专题练习)已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a aa ++⋅⋅⋅+=,则下列成立的是( ) A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅<D .以上均有可能25.(2022·全国·高三专题练习)已知各项都为正数的数列{}n a 满足1(2)a a a =>,1*11()n a n n ne a ka n N a +-++=-+∈,给出下列三个结论:①若1k =,则数列{}n a 仅有有限项;①若2k =,则数列{}n a 单调递增;①若2k =,则对任意的0M >,陼存在*0n N ∈,使得020n n M a >成立.则上述结论中正确的为( ) A .①① B .①① C .①① D .①①①二、多选题26.(2022·全国·清华附中朝阳学校模拟预测)数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法正确的是( )A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦27.(2022·福建省福州第一中学高三开学考试)已知数列{}n a 满足101a <<,()()11ln 2N*n n n a a a n ++=-∈,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论正确的是( ) A .()12n n n S +>B .202212022a >C .01n a <<D .若113a =,则1132n n a -≥⋅28.(2022·江苏·高三开学考试) 已知n S 是数列{}n a 的前n 项和,21n n S S n +=-+,则( )A . 121(2)n n a a n n ++=-≥B . 22n n a a +-=C . 当10a =时,501225S =D . 当数列{}n a 单调递增时,1a 的取值范围是11,44⎛⎫- ⎪⎝⎭29.(2022·湖北武汉·高三开学考试)已知数列{}n a 满足:11a =,(()11322n n a a n -=≥,下列说法正确的是( )A .N n *∀∈,12,,n n n a a a ++成等差数列B .()1132n n n a a a n +-=-≥C .()11*23N n n n a n --≤≤∈D .*N n ∀∈,12,,n n n a a a ++一定不成等比数列30.(2022·浙江绍兴·模拟预测)已知正项数列{}n a ,对任意的正整数m 、n 都有222m n m n a a a +≤+,则下列结论可能成立的是( ) A .n mmn a a a m n+= B .m n m n na ma a ++= C .2m n mn a a a ++=D .2m n m n a a a +⋅=31.(2022·全国·模拟预测)已知数列{}n a 满足328a =,()()1122nn n a n a n --⎡⎤=+≥⎢⎥⎣⎦,*n ∈N ,数列{}n b 的前n 项和为n S ,且()()222212221log log n n n n n b a a a a +-+=⋅-⋅,则下列说法正确的是( ) A .4221a a = B .1216a a ⋅=C .数列212n n a a -⎧⎫⎨⎬⎩⎭为单调递增的等差数列D .满足不等式50n S ->的正整数n 的最小值为6332.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a=,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=33.(2022·全国·长郡中学模拟预测)已知数列{}n a 的前n 项和为n S ,且1n n S a +=对于*n N ∀∈恒成立,若定义(1)n n S S =,()()(1)12nk k ni i S S k -==≥∑,则以下说法正确的是( )A .{}n a 是等差数列B .()232122nn n n S -+=-C .()()()121A 1!k k k n k nn S S k +++--=+D .存在n 使得()202120222022!nn S =34.(2022·全国·高三专题练习)我们常用的数是十进制数,如32101079110010710910⨯⨯+⨯⨯=++,表示十进制的数要用10个数码.0,1,2,3,4,5,6,7,8,9;而电子计算机用的数是二进制数,只需两个数码0和1,如四位二进制的数()3212110112120212⨯⨯⨯++⨯=+,等于十进制的数13.把m 位n 进制中的最大数记为(),M m n ,其中m ,*,2n n ∈≥N ,(),M m n 为十进制的数,则下列结论中正确的是( )A .()5,231M =B .()()4,22,4M M =C .()()2,11,2M n n M n n ++<++D .()()2,11,2M n n M n n ++>++35.(2022·全国·高三专题练习)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+B .2211n nn a a a +-≤+ C .若2n ≥,则131141ni i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤-∑36.(2022·海南·嘉积中学高三阶段练习)“0,1数列”在通信技术中有着重要应用,它是指各项的值都等于0或1的数列.设A 是一个有限“0,1数列”,()f A 表示把A 中每个0都变为1,0,每个1都变为0,1,所得到的新的“0,1数列”,例如()0,1,1,0A,则()()1,0,0,1,0,1,1,0f A =.设1A 是一个有限“0,1数列”,定义()1k k A f A +=,1k =、2、3、⋅⋅⋅.则下列说法正确的是( )A .若()31,0,0,1,1,0,0,1A =,则()10,0A =B .对任意有限“0,1数列”1A ,则()2,n A n n ≥∈N 中0和1的个数总相等C .1n A +中的0,0数对的个数总与n A 中的0,1数对的个数相等D .若()10,0A =,则2021A中0,0数对的个数为10101413-() 37.(2022·全国·高三专题练习(理))设数列{}n a 满足10a =,3128,N n na ca c n *+=+-∈其中c 为实数,数列{}2n a 的前n 项和是n S ,下列说法不正确的是( ) A .当1c >时,{}n a 一定是递减数列 B .当0c <时,不存在c 使{}n a 是周期数列 C .当10,4c ⎡⎤∈⎢⎥⎣⎦时,[]0,2n a ∈D .当17c =时,52n S n >- 三、填空题38.(2022·全国·高三专题练习)对于数列{}n a ,若1,n n a a +是关于x 的方程2103n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.39.(2022·全国·高三专题练习(文))已知函数()2()log 41xf x x =+-,数列{}n a 是公差为2的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和n S =__________.40.(2022·全国·高三专题练习)数列{}n a 满足:2110n n n a a a a c +==-++,.若数列{}n a 单调递减,则c的取值范围是________;若数列{}n a 单调递增,则c 的取值范围是__________.41.(2022·全国·高三专题练习(理))黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数1111()123s s s sn n n ξ∞-===+++⋅⋅⋅∑,我们经常从无穷级数的部分和1111123s s s s n +++⋅⋅⋅+入手.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则122021111S S S ⎡⎤++⋅⋅⋅=⎢⎥⎣⎦______.(其中[]x 表示不超过x 的最大整数) 42.(2022·上海·华东师范大学附属东昌中学高三阶段练习)已知函数2()(2),2x f x f x x ≤<=-≥⎪⎩,若对于正数(*)n k n N ∈,直线n y k x =与函数()f x 的图像恰好有21n 个不同的交点,则22212n k k k ++⋯+=___________.43.(2022·全国·高三专题练习)设①A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________.44.(2022·上海·高三专题练习)若数列{}n a 满足()**120,n n n n k a a a a n N k N +++++++=∈∈,则称数列{}n a 为“k 阶相消数列”.已知“2阶相消数列”{}n b 的通项公式为2cos n b n ω=,记12n n T b b b =,12021n ≤≤,*n N ∈,则当n =___________时,n T 取得最小值45.(2022·上海·高三专题练习)若数列{}n a 满足()*4411414242434141032n n n n n n n n a a a a a a a n N a a +-----=-=-===∈,,,且对任意*n N ∈都有n a m <,则m 的最小值为________.46.(2022·全国·高三开学考试(理))用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,(9)9g =,10的因数有1,2,5,10,(10)5g =,那么2015(1)(2)(3)(21)g g g g ++++-=__________.47.(2022·江苏苏州·模拟预测)设函数()21f x x =,()()222f x x x =-,()31sin 23f x x π=,取2019i it =,0,1,2,,2019i =,()()()()()()102120192018k k k k k k k S f t f t f t f t f t f t +-++=--,1,2,3k =,则1S ,2S ,3S 的大小关系为________.(用“<”连接)四、双空题48.(2022·浙江·模拟预测)已知数列{}n a 对任意的n *∈N ,都有n a *∈N ,且131,,2n n n n n a a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数.①当18a =时,2022a =_________.①若存在m *∈N ,当n m >且n a 为奇数时,n a 恒为常数P ,则P =_________.49.(2022·全国·高三专题练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程若第1个图中的三角形的周长为1,则第n 个图形的周长为___________;若第1个图中的三角形的面积为1,则第n 个图形的面积为___________.50.(2022·全国·高三专题练习)对于正整数n ,设n x 是关于x 的方程:()222253log 1nn n nx x x ++++=的实根,记12nnax⎡⎤=⎢⎥⎣⎦,其中[]x表示不超过x的最大整数,则1a=______;若πsin2n nnb a=⋅,nS为{}n b的前n项和,则2022S=______.。
高考数学:专题三 第一讲 等差数列与等比数列课件
题型与方法
例 1
第一讲
已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}
的前 n 项和 Sn.
本 讲 栏 目 开 关
解 设{an}的首项为 a1,公差为 d, a +2da +6d=-16, 1 1 则 a1+3d+a1+5d=0,
a2+8da +12d2=-16, 1 1 即 a1=-4d, a =-8 a =8, 1 1 解得 或 d=2 d=-2,
第一讲
本 讲 栏 目 开 关
c1 而当 n=1 时, =a2,∴c1=3. b1 3,n=1, ∴cn= - 2×3n 1,n≥2.
∴c1+c2+…+c2 011=3+2×31+2×32+…+2×32 010 6-6×32 010 =3+ =3-3+32 011=32 011. 1-3
即 2a1+d=a1+2d, 1 又 a1=2,
1 所以 d=2,
故 a2=a1+d=1.
答案 1
题型与方法
第一讲
本 讲 栏 目 开 关
题型一 题型概述
等差数列的有关问题 等差数列是一个重要的数列类型, 高考命题主要考
查等差数列的概念、 基本量的运算及由概念推导出的一些重 要性质,灵活运用这些性质解题,可达到避繁就简的目的.
则 c5=2c3-c1=2×21-7=35.
答案 35
考点与考题
第一讲
1 5.(2012· 北京)已知{an}为等差数列, n 为其前 n 项和.若 a1= , S 2 S2=a3,则 a2=________.
本 讲 栏 目 开 关
解析
设{an}的公差为 d,
由 S2=a3 知,a1+a2=a3,
故 a7=0.
专题三数列精品课件
目录
专题 2
数列与函数的交汇
函数与数列的交汇是数列问题中一类常见的有函数背景的 综合题,解决这类问题的基本思路是从函数角度思考问题, 有效地利用函数的性质来解答.
例3
1 已知函数 f(x)=a 的图像过点(1, ),且点(n-1, 2
x
an * x 2)(n∈N )在函数 f(x)=a 的图像上. n (1)求数列{an}的通项公式; 1 (2)令 bn=an+ 1- an,若数列{bn}的前 n 项和为 Sn,求证: 2 Sn<5.
目录
专题探究
专题 1 数列的基本运算 数列的基本运算是新课标考查中最常见的题型, 主要考查两 种数列的求和公式及通项公式,试题难度较小. 高考福建卷)在等差数列{an}和等比数列{bn} 例1 (2012· 中,a1=b1=1,b4=8,{an}的前 10 项和 S10=55. (1)求 an 和 bn; (2)现分别从{an}和{bn}的前 3 项中各随机抽取一项,写出相 应的基本事件,并求这两项的值相等的概率.
目录
【解】 (1)设{an}的公差为 d,{bn}的公比为 q.依题意得 S10 10×9 =10+ d=55,b4=q3=8, 2 解得 d=1,q=2, - 所以 an=n,bn=2n 1. (2)分别从{an}和{bn}的前 3 项中各随机抽取一项,得到的基 本事件有 9 个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1), (3,2),(3,4).符合题意的基本事件有 2 个:(1,1),(2,2).故 2 所求的概率 P= . 9
(2012· 高考湖南卷)某公司一下属企业从事某种高
科技产品的生产, 该企业第一年年初有资金 2 000 万元, 将其 投入生产,到当年年底资金增长了 50%.预计以后每年资金年 增长率与第一年的相同.公司要求企业从第一年开始,每年 年底上缴资金 d 万元, 并将剩余资金全部投入下一年生产. 设 第 n 年年底企业上缴资金后的剩余资金为 an 万元. (1)用 d 表示 a1,a2,并写出 an+ 1 与 an 的关系式; (2)若公司希望经过 m(m≥3)年使企业的剩余资金为 4 000 万 元,试确定企业每年上缴资金 d 的值(用 m 表示).
高三复习专题3——数列练习
专题3——数列数列通项公式的求法一、定义法 —— 直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.二、公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解。
特征:已知数列的前n 项和n S 与n a的关系例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。
三、由递推式求数列通项法 类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例3. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例4. 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
类型3 特征:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 对策:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 特征:递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
对策:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+qst pt s ,再应用前面类型3的方法求解。
专题3 第3讲 数列求和及其综合应用
第3讲数列求和及其综合应用[考情分析]数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上.考点一数列求和r核心提炼、1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:1 _1 1 , 1 _^=if_U__UYn(n+∖) n Λ+Γn(n+k) n+k)' n1-∖丸—1 n+∖)' 4??2—1 2∖2n —1 2∕ι÷l∕2.如果数列{小}是等差数列,{d}是等比数列,那么求数列{4・儿}的前〃项和S〃时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出ff的表达式时应特别注意将两式“错项对齐”,以便准确写出“Sn—qSj的表“SJ和a qSn达式.考向1分组转化法求和例1已知在等比数列{斯}中,m=2,且两,的内一2成等差数列.⑴求数列{斯}的通项公式;⑵若数列{小}满足儿=J+21og2斯- 1,求数列{d}的前n项和解(1)设等比数列{〃“}的公比为4,由Q], 〃2,。
3 —2成等差数列,得2。
2 =。
1+。
3-2,即4夕=2 + 2/-2,解得夕=2(4=0舍去),则m=α∣尸=2〃,n∈ N*.(2)⅛Λ=~+21og2Λrt— l=^+21og22n- l=^∏+2n-↑,则数列{九}的前〃项和考向2裂项相消法求和例2 (2020•莆田市第一联盟体学年联考)设数列{斯}的前〃项和为S”,且&=久一2〃,{d }为正项等比数列,且〃∣=α∣+3, 63=604+2. ⑴求数列{斯}和{d }的通项公式;⑵设c 〃=——j~~;—,求{c 〃}的前〃项和T n .4"+l∙∣0g2%+l解 (1)由工=/一2〃,得当〃 =1 时,0=S] = —1, 当九22 时,S n -ι=(n -l)2-2(n- l)=n 2-4n+3f所以当时,a∏=S n —S n -\=2n —3, a\ — — 1也满足此式.所以斯=2〃一3, Q @N*. 又加=。
数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列
专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。
年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。
错误!B。
错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。
答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。
专题3:数列
专题三:数列【一、基础知识归类:】1.定义: (1)等差数列:*),2(2(11n 1n N n n a a a d d a a a n n n n ∈≥+=⇔=-⇔-++为常数)}{Bn An s b kn a n n +=⇔+=⇔2;(2)等比数列:N)n 2,(n )0(}1n 1-n 2n 1n n ∈≥⋅=⇔≠=⇔++a a a q q a a a n{2.等差、等比数列性质等差数列 等比数列通项公式 d n a a n )1(1-+= 11-=n n q a a前n 项和 d n n na a a n S n n 2)1(2)(11-+=+=qqa a qq a S q na S q n nn n --=--=≠==11)1(1.2;1.1111时,时,性质 ① a n =a m + (n -m )d , ① a n =a m q n-m ;② m +n =p +q 时,a m +a n =a p +a q ② m +n =p +q 时,a m a n =a p a q③ ,,,232k k k k kS S S S S --成AP ③ ,,,232k k k k k S S S S S --成GP④ ,,,2m k m k k a a a ++成AP ,md d =' ④ ,,,2m k m k k a a a ++成GP ,m q q =' 3.某些递推数列可转化为等差、等比数列解决,其转化途径有:1.凑配、消项变换——如将递推公式(q 、d 为常数,q ≠0,1).通过凑配变成;或消常数转化为2.倒数变换—如将递推公式(c 、d 为非零常数)取倒数得3.对数变换—如将递推公式取对数得4.换元变换—如将递推公式(q 、d 为非零常数,q ≠1,d ≠1)变换成,令,则转化为的形式.【二、专题练习:】一、选择题(本大题共12小题,每小题5分,总分60分)1.(2010届惠州三调)等差数列}{n a 的前n 项和为2811,30n S a a a ++=若,那么13S 值的是( ) A .130B .65C .70D .以上都不对2.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++3.公差不为零的等差数列}{n a 中,02211273=+-a a a ,数列}{n b 是等比数列,且==8677,b b a b 则( ) (A )2 (B )4 (C )8 (D )164.(2010广州六校联考)等差数列}{n a 中,若12011,a a 为方程210160x x -+=的两根,则210062010a a a ++等于( )A .10B .15C .20D .405.已知数列{a n }的前n 项和为S n ,且有a 1=3,4S n =6a n -a n -1+4S n -1(n ≥2),则a n =( )A .3×2n -1B .3×21-nC .3×2nD .3×2-n6.将正偶数集合{}......6,4,2从小到大按第n 组有n 2个偶数进行分组, {}4,2, {}12,10,8,6, {}24,22,20,18,16,14 第一组 第二组 第三组 则2010位于第( )组..A 30 .B 31 .C 32 .D 337.已知等差数列{}n a 的公差为正数,且1273-=a a ,464-=+a a ,则20S 为( ).A 180.B 180- .C 90.D 90-8. 执行如图的程序框图,若9p =,则输出的S =( )(A )910 (B )718(C )89(D )259.(广东省华附、中山附中2011届高三11月月考理)已知等差数列{}n a 的前n 项和为n S ,且2510,55S S ==,则过点(,)n P n a 和2(2,)n Q n a ++(*∈N n )的直线的斜率是( )A .4B .3C .2D .110.已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )(A )158或5 (B )3116或5 (C )3116 (D )15811.在等比数列1020144117,5,6,}{a a a a a a a n 则中=+=⋅等于 ( ) A .32 B .23 C .3223或D .2332--或12.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是 ( )A .a 11B .a 10C .a 9D .a 8二、填空题(本大题共4小题,每小题4分,总分16分)13.设244)(+=x xx f ,那么=+++)1110()112()111(f f f .14.【2010·北京东城一模】已知数列{}n a 的通项公式3log ()1n na n n =∈+*N ,设其前n 项和为n S ,则使4n S <-成立的最小自然数n 等于 . 15.(2010湖北质检)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列.已知数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________. 16.顺次连结面积为1的正三角形的三边中点构成一个黑色三角形,在余下的白色三角形上重复上面的操作.第(1)个图中黑色三角形面积总和为14,第(2)个图中黑色三角形面积总和为716,第(3)个图中黑色三角形面积总和为3764,依此类推,则第()n n N *∈个图中黑色三角形面积总和为 .三、解答题(本大题共6小题,总分74分)17.已知数列{a n }是首项a 1=1的等比数列,且a n >0,{b n }是首项为l 的等差数列,又a 5+b 3=21,a 3+b 5=13. (1)求数列{a n }和{b n }的通项公式; (2)求数列}2{nna b 的前n 项和S n .18.已知等差数列}{n a 满足.8,252==a a (1)求数列}{n a 的通项公式;(2)设各项均为正数的等比数列}{n b 的前n 项和为.,7,.333n n T T a b T 求若==19.已知函数t m x f x +=2)(的图象经过点)3,2(),1,1(B A 及),(n S n C ,n S 为数列{}n a 的前n 项和. (Ⅰ)求n a 及n S ;(Ⅱ)若数列{}n c 满足,6n na c n n -=求数列{}n c 的前项和n T .20.设数列12,,,,n a a a 中的每一项都不为0.证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=.21.(福建省厦门双十中学2011届高三12月月考题))已知函数)),1[(1ln )(+∞∈+-=x x x x f ,数列{}n a 满足)(,*11N n e a a e a nn ∈==+. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)求)()()(21n a f a f a f +++ ; (Ⅲ)求证:).(321*2)1(N n e n n n ∈≤⋅⋅⋅⋅-22.已知数列{}n a 的前n 项和n S 满足:(1)1n n aS a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}n a 的通项公式; (Ⅱ)设021nnS b a =+,若数列{}n b 为等比数列,求a 的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设11111n n n c a a +=++-,数列{}n c 的前n 项和为T n ,求证:123n T n >-.参考答案一、选择题1. 答案:A .13013,107137===a S a2. 【解析】选A.1111ln(1),ln()ln(1)ln n n n n n a a a a n n n n+++=++∴-==+-112322111()()()()[ln ln(1)][ln(1)ln(2)](ln 3ln 2)(ln 2ln1)ln 2n n n n n a a a a a a a a a a n n n n a n ---∴=-+-++-+-+=--+---++-+-+=+3. 【解析】选D.222371131177727777687222()40,0, 4.16.a a a a a a a ab a b a b b b -+=+-=-==≠∴==∴==4. 【解析】选B.1201121006201022010100610,()10515.a a a a a a a a +=∴++=++=+=5. 【解析】选B 因为4(S n -S n -1)=4a n =6a n -a n -1,∴a n a n -1=12(n ≥2),∴a n =a 1⎝⎛⎭⎫12n -1=3×21-n. 6. 【解析】选C.因为第n 组有2n 个正偶数,故前n 组共有2+4+6+…+2n=2n n +个正偶数。
专题三 第2讲数列的求和问题
(2)设bn=an+Sn,若数列{bn}为等比数列,求a的值;
解 由bn=an+Sn得,b1=2a, b2=2a2+a, b3=2a3+a2+a. ∵数列{bn}为等比数列, ∴b22=b1b3,即(2a2+a)2=2a(2a3+a2+a), 解得 a=12.
(3)在满足条件(2)的情形下,cn=an+1ana+n1+1+1.若数列cn的前 n 项和为 Tn,且对任意 n∈N*满足 Tn<λ2+23λ,求实数 λ 的取值范围.
热点三 裂项相消法求和
裂项相消法是指把数列和式中的各项分别裂开后,某些项可以相互抵消从而求和的 方法,主要适用于ana1n+1或ana1n+2(其中{an}为等差数列)等形式的数列求和.
例3 已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(n∈N*)(a为常数,a≠0,a≠1). (1)求{an}的通项公式;
解析 设等差数列{an}的公差为d,则
a3=a1+2d=3, 由S4=4a1+4×2 3d=10,
得ad1==11. ,
∴Sn=n×1+nn2-1×1=nn2+1,
S1n=nn2+1=21n-n+1 1.
n
∴
k=1
S1k=S11+S12+S13+…+S1n
=21-12+12-13+13-14+…+1n-n+1 1=21-n+1 1=n2+n1.
2.(2017·天津,文,18)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2 的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通项公式;
解 设等差数列{an}的公差为d,等比数列{bn}的公比为q.
由已知b2+b3=12,得b1(q+q2)=12.
专题三 第一讲 等差数列、等比数列
一、选择题1.已知数列{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列,则公比q 的值为( )A .1或-12B .1C .-12D .-2解析:由数列{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列,得2a 1q 2=a 1+a 1q .∵a 1≠0,∴2q 2-q -1=0,解得q =1或-12. 答案:A2.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )A .5 2B .7C .6D .4 2解析:(a 1a 2a 3)×(a 7a 8a 9)=a 65=50,a 4a 5a 6=a 35=5 2.答案:A3.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D .2解析:∵a 2+a 4+a 6+a 8+a 10=30,a 1+a 3+a 5+a 7+a 9=15,∴两式相减,可得(a 2-a 1)+(a 4-a 3)+…+(a 10-a 9)=5d =15,故d =3.答案:C4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析:设等差数列{a n }的公差为d ,∵a 4+a 6=-6,∴a 5=-3.∴d =a 5-a 15-1=2.∴a 6=-1<0,a 7=1>0, 故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6.答案:A二、填空题5.已知等比数列{a n }的各项均为正数,若a 1=3,前三项的和为21,则a 4+a 5+a 6=________.解析:由已知a 4+a 5+a 6=a 1q 3+a 1q 4+a 1q 5=(a 1+a 1q +a 1q 2)q 3=(a 1+a 2+a 3)·q 3,即a 4+a 5+a 6=21q 3.由前三项的和为21,且a 1=3解得q =2,故a 4+a 5+a 6=21q 3=21×8=168.答案:1686.(2011·天津高考)已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________.解析:设{a n }的首项,公差分别是a 1,d ,则⎩⎪⎨⎪⎧ a 1+2d =16,20a 1+20×(20-1)2×d =20,解得a 1=20,d =-2, ∴S 10=10×20+10×92×(-2)=110. 答案:1107.数列{a n }是递减的等差数列,且a 3+a 9=50,a 5·a 7=616,则数列{a n }的前n 项和S n 的最大值为________.解析:设公差为d ,则⎩⎪⎨⎪⎧ a 3+a 9=50,a 5·a 7=616,d <0,可得⎩⎪⎨⎪⎧a 6=25,d =-3,∴a 1=40.∴a n =40-3(n -1)=43-3n . 令a n <0,则n >1413,∴{a n }从第15项开始每项小于0, ∴S n 的最大值为S 14=14×40+14×132×(-3)=287. 答案:287三、解答题8.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3.解得d =-2从而,a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n .所以S n =n [1+(3-2n )]2=2n -n 2. 进而由S k =-35可得2k -k 2=-35, 即k 2-2k -35=0.解得k =7或k =-5. 又k ∈N *,故k =7为所求结果.9.(2011·银川模拟)已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值. 解:(1)设等差数列{a n }的公差为d ,则有 ⎩⎪⎨⎪⎧ 2a 1+4d =14,7a 1+21d =70,解得⎩⎪⎨⎪⎧a 1=1,d =3. 所以a n =3n -2.(2)因为S n =n 2[1+(3n -2)]=3n 2-n 2, 所以b n =3n 2-n +48n =3n +48n-1≥23n ·48n-1=23, 当且仅当3n =48n ,即n =4时取等号, 故数列{b n }的最小项是第4项,该项的值为23.10.设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数.(1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. 解:(1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1. 由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p 3. 所以{a n }是首项为p 3,公比为43的等比数列. (2)因为a 1=1,则a n =⎝⎛⎭⎫43n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =⎝⎛⎭⎫43n -1,当n ≥2时,由累加得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝⎛⎭⎫43n -11-43=3⎝⎛⎭⎫43n -1-1, 当n =1时,上式也成立.。
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。
专题三 第2讲 数列求和及其综合应用
2 考点二 数列的综合问题
PART TWO
核心提炼
数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破 的关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前 n项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩 进行不等式的证明.
(2)(2021·长春模拟)已知等比数列{an}满足:a1+a2=20,a2+a3=80.数
列{bn}满足bn=log2an,其前n项和为Sn,若 6
Sn+bn11≤λ恒成立,则λ的最小
值为__2_3__.
解析 设等比数列{an}的公比为 q,由题意可得aa11+q+a1aq1=q2=208,0, 解得a1=4,q=4, 故{an}的通项公式为an=4n,n∈N*. bn=log2an=log24n=2n, Sn=2n+12n(n-1)·2=n2+n,
例4 (1)(2021·淄博模拟)已知在等比数列{an}中,首项a1=2,公比q>1,
a2,a3是函数f(x)=13 x3-6x2+32x的两个极值点,则数列{an}的前9项和 是__1_0_2_2__.
解析 由 f(x)=13x3-6x2+32x,得 f′(x)=x2-12x+32, 又因为 a2,a3 是函数 f(x)=13x3-6x2+32x 的两个极值点, 所以a2,a3是函数f′(x)=x2-12x+32的两个零点, 故aa22+ ·a3a=3=321,2,
专题三 数 列
考情分析
KAO QING FEN XI
1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法. 2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不
专题三 第1讲 等差数列、等比数列
核心提炼
等差数列、等比数列的基本公式(n∈N*) (1)等差数列的通项公式:an=a1+(n-1)d. (2)等比数列的通项公式:an=a1qn-1. (3)等差数列的求和公式: Sn=na1+ 2 an=na1+nn- 2 1d.
(4)等比数列的求和公式: Sn=a111--qqn=a11--aqnq,q≠1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2.(2022·济宁模拟)在等比数列{an}中,a1+a3=1,a6+a8=-32,则aa105+ +aa172
等于
A.-8
B.16
C.32
√D.-32
设等比数列{an}的公比为q, 则a6+a8=(a1+a3)q5=1×q5=-32,所以q5=-32, 故aa105+ +aa172=aa5+5+aa77q5=q5=-32.
∴S14=14a12+a14=14a42+a11>0, S15=15a12+a15=15×2 2a8<0,
∴当Sn>0时,n的最大值为14,D正确.
考点三
等差数列、等比数列的判断
核心提炼
定义法 通项法 中项法
等差数列 an+1-an=d an=a1+(n-1)d 2an=an-1+an+1(n≥2)
是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的
石板数依次为a1,a2,a3,…,a9,设数列{an}为等差数列,它的前n项
1=6
√B.{an}的公差为9
C.a6=3a3
√D.S9=405
设{an}的公差为d.由a4+a6=90, 得a5=45,又a2=18, 联立方程组aa11++d4=d=184,5, 解得ad1==99,, 故 A 错误,B 正确;
专题3 数列专题压轴小题(原卷版)
专题3数列专题压轴小题一、单选题 1.(2021·湖北·高三期中)2021年7月24日,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,这个政策就是我们所说的“双减”政策,“双减”政策极大缓解了教育的“内卷”现象,而“内卷”作为高强度的竞争使人精疲力竭.数学中的螺旋线可以形象的展示“内卷”这个词,螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD 的边长为4,取正方形ABCD 各边的四等分点E ,F ,G ,H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的四等分点M ,N ,P ,Q ,作第3个正方形MNPQ ,依此方法一直继续下去,就可以得到阴影部分的图案.设正方形ABCD 边长为1a ,后续各正方形边长依次为2a ,3a ,…,n a ,…;如图(2)阴影部分,设直角三角形AEH 面积为1b ,后续各直角三角形面积依次为2b ,3b ,…,n b ,….下列说法错误..的是( )A .从正方形ABCD 开始,连续3个正方形的面积之和为1294B.14n n a -=⨯⎝⎭C .使得不等式12n b >成立的n 的最大值为4 D .数列{}n b 的前n 项和4n S <2.(2021·云南·峨山彝族自治县第一中学高三月考(理))已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a a a ++⋅⋅⋅+=,则下列成立的是( )A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅<D .以上均有可能3.(2021·浙江·高三月考)已知各项都为正数的数列{}n a 满足1(2)a a a =>,1*11()n a n n nea ka n N a +-++=-+∈,给出下列三个结论:①若1k =,则数列{}n a 仅有有限项;②若2k =,则数列{}n a 单调递增;③若2k =,则对任意的0M >,陼存在*0n N ∈,使得020n n M a >成立.则上述结论中正确的为( ) A .①② B .②③ C .①③ D .①②③4.(2021·上海市大同中学三模)已知数列{}n a 满足120a a ≠,若2121nn n na a a a +++=+,则“数列{}n a 为无穷数列”是“数列{}n a 单调”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2021·浙江·模拟预测)已知正项数列{}n a 中,11a =,21112n n n a a a ++-=,若存在实数t ,使得()221,n n t a a -∈对任意的*N n ∈恒成立,则t =( ) AB.3C.2D6.(2021·江苏·海安高级中学高三期中)已知数列{}n a 的前n 项和122n n n S a +=-,若不等式223(4)n n n a λ--<-,对n N +∀∈恒成立,则整数λ的最大值为( )A .2B .3C .4D .57.(2021·安徽合肥·一模(文))将方程2sin cos x x x =的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A.B.C.D.8.(2021·江苏苏州·高三期中)设数列{}()m a m *∈N ,若存在公比为q 的等比数列{}()1m b m *+∈N ,使得1k k k b a b +<<,其中1,2,,k m =,则称数列{}1m b +为数列{}m a 的“等比分割数列”,则下列说法错误的是( )A .数列{}5b ;2,4,8,16,32是数列{}4a :3,7,12,24的一个“等比分割数列”B .若数列{}n a 存在“等比分割数列”{}1n b +,则有11k k n a a a a -<<<<<和111k k n n b b b b b -+<<<<<<成立,其中2,k n k *≤≤∈NC .数列{}3a :3-,1-,2存在“等比分割数列”{}4bD .数列{}10a 的通项公式为2(1,2,,10)nn a n ==,若数列{}10a 的“等比分割数列”{}11b 的首项为1,则公比1092,2q ⎛⎫∈ ⎪⎝⎭9.(2021·新疆·莎车县第一中学高三期中)已知数列{a n }满足3a 1=1,n 2a n +1﹣a n 2=n 2a n (n ∈N *),则下列选项正确的是( ) A .{a n }是递减数列B .{a n }是递增数列,且存在n ∈N *使得a n >1C .1132n a +> D .202120214043a <10.(2021·安徽·淮南第一中学高三月考(理))已知数列{}n a 满足14a =,*1144(2,N )n n n a a n n a ---=≥∈,若124(6)na n nb na -=⋅-,且存在*N n ∈,使得2460n b m m +-≥成立,则实数m的取值范围是( )A.⎣⎦B.1⎡⎣C .10,6⎡⎤⎢⎥⎣⎦D .11,32⎡⎤-⎢⎥⎣⎦11.(2021·浙江金华·高三月考)已知数列{}n a 的各项均不为零,1a a =,它的前n 项和为n S .且n a1n a +(*N n ∈)成等比数列,记1231111n nT S S S S =+++⋅⋅⋅+,则( ) A .当1a =时,202240442023T < B .当1a =时,202240442023T > C .当3a =时,202210111012T >D .当3a =时,202210111012T <12.(2021·河北石家庄·高三月考)已知数列{}n a 满足225a =,对任意的n ∈+N 有1(1)280n n n a na +--+=,设数列{}n b 满足12n n n n b a a a ++=⋅⋅,n ∈+N ,则当{}n b 的前n 项和n T 取到最大值时n 的值为( ) A .9B .10C .11D .1213.(2021·辽宁实验中学高三期中)数列{}n a 中,11a =,*1*15,3,3n n n n a a n a +-⎧+∉⎪⎪=⎨⎪∈⎪⎩N N ,使2021n a ≤对任意的n k≤(*k ∈N )恒成立的最大k 值为( ) A .1209B .1211C .1213D .121514.(2021·黑龙江·高三期中(理))设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则选项不正确的是( ) A .数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项B .2445d -<<- C .50a > D .0n S >时,n 的最大值为515.(2021·浙江·模拟预测)已知数列{}n a 满足2*112,4,N n n a a n a a n -+==∈,给出以下结论,正确的个数是( )①1n a >;②1n n a a +>;③存在无穷多个*N k ∈,使322k k a -=;④121111na a a +++< A .4B .3C .2D .116.(2021·浙江·模拟预测)已知数列{}n a 满足111,ln 2(*)2nn n a a a a n N +==-+∈,记数列{}n a 的前n 项和为n S ,则正确的是( ) A .存在0*n N ∈,使得02n a > B .存在0*n N ∈,使得001n n a a +> C .存在0*n N ∈,使得00+1+4n n a a > D .存在0*n N ∈,使得012n S >17.(2021·浙江·模拟预测)已知数列{}n a 满足13a =,246a =,2n a +=(π≈3.14)则此数列项数最多为( ) A .2019项 B .2020项 C .2021项D .2022项18.(2021·北京房山·高三开学考试)已知集合*{|21,}A x x k k N ==- ∈,*{|27,}B x x k k N ==+ ∈,从集合A 中取出m 个不同元素,其和记为S :从集合B 中取出n 个不同元素,其和记为T . 若562S T +≤,则m n +的最大值为( ) A .17B .26C .30D .3419.(2021·浙江·乐清市知临中学高三月考)设数列{}n a 满足112a =,2*1(N )2021nn n a a a n +=+∈,记12(1)(1)(1)n n T a a a =---,则使0n T <成立的最小正整数n 是( )A .2020B .2021C .2022D .202320.(2021·甘肃·嘉峪关市第一中学模拟预测(理))若数列{}n a 满足:A ∃,B R ∈,0AB ≠,使得对于*n N ∀∈,都有21n n n a Aa Ba ++=+,则称{}n a 具有“三项相关性”下列说法正确的有( ) ①若数列{}n a 是等差数列,则{}n a 具有“三项相关性” ②若数列{}n a 是等比数列,则{}n a 具有“三项相关性” ③若数列{}n a 是周期数列,则{}n a 具有“三项相关性”④若数列{}n a 具有正项“三项相关性”,且正数A ,B 满足1A B +=,12a a B +=,数列{}n b 的通项公式为n n b B =,{}n a 与{}n b 的前n 项和分别为n S ,n T ,则对*n N ∀∈,n n S T <恒成立.A .③④B .①②④C .①②③④D .①②21.(2021·上海·格致中学高三月考)正数数列{}n a 的前n 项和为n S ,()112n n n S a n N a +⎛⎫=+∈ ⎪⎝⎭,则下列选项中正确的是( ) A.2021a ≥B.2021a ≤-C .202120221a a ⋅>D .202020211a a ⋅<22.(2021·浙江·高三月考)已知数列{}n a 满足113a =,()2*12N nn n a a a n n+=+∈,则下列选项正确的是( )A .20212020a a <B .2021202114043a << C .2021202104043a << D .20211a >二、多选题23.(2021·广东·模拟预测)已知数列{}n a 中,()111131,3n n n n n n a a a a a n a a *+++->=∈-N ,且12121110a a a a +++=,设2221222212111,n n n nS a a a T a a a =+++=+++,则下列结论正确的是( ) A .12a =B .数列{}n a 单调递增C .()2591232nn n S T n +=-- D .若()12nn S T +为偶数,则正整数n 的最小值为8 24.(2021·重庆南开中学高三月考)已知数列{}n a 满足11a =,()1n a n *+=∈⎢⎥⎢⎥⎣⎦N ,其中[]x 表示不超过实数[]x 的最大整数,则下列说法正确的是( ) A .存在n *∈N ,使得132n n a -≤B .12n a ⎧⎫-⎨⎬⎩⎭是等比数列C .2020a 的个位数是5D .2021a 的个位数是125.(2021·江苏·金陵中学高三开学考试)已知数列{}n a 满足:111 ,1n n n a a a a +=+=,设(n )l n n b a n N *=∈,数列{}n b 的前n 项和为n S ,则下列选项正确的是ln 20. 693 ,ln3(9)1.09≈≈( ) A .数列{}21n a -单调递增,数列{}2n a 单调递减 B .+1ln 3n n b b +≤C .2020693S >D .212n n b b ->26.(2021·湖北武汉·高三期中)已知数列{}n a 满足10a =,()11n nn aa a e e n ++*=+∈N ,前n 项和为n S ,则下列选项中正确的是( )(参考数据:ln 20.693≈,ln3 1.099≈) A .1ln 2n n a a ++≥B .2020666S <C .()3lnln 222n a n ≤≤≥ D .{}21n a -是单调递增数列,{}2n a 是单调递减数列27.(2021·湖北·高三月考)将数列{}21n -中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号4个数,第四个括号8个数,第五个括号16个数,…,进行排列:(1),(3,5),(7,9,11,13).(15,17,19,21,23,25,27,29),…,则以下结论中正确的是( ) A .第10个括号内的第一个数为1023 B .2021在第11个括号内C .前10个括号内一共有1023个数D .第10个括号内的数字之和()19202,2S ∈28.(2021·湖北黄石·高三开学考试)在平面直角坐标系中,O 是坐标原点,,n n M N 是圆222:O x y n +=上两个不同的动点,n P 是n n M N 的中点,且满足()220n n n OM ON OP n *⋅+=∈N .设,n n M N 到直线20l y n n +++=的距离之和的最大值为n a ,则下列说法中正确的是( ) A .向量n OM 与向量n ON 所成角为120︒ B .n OP n = C .22n a n n =+D .若2n n a b n =+,则数列12{}(21)(21)n nn b b b +--的前n 项和为11121n +-- 29.(2021·湖北武汉·高三开学考试)数列{}n a 依次为:1,13,13,13,15,15,15,15,15,17,17,17,17,17,17,17,19,19,…,其中第一项为11,接下来三项均为13,再接下来五项均为15,依此类推.记{}n a 的前n 项和为n S ,则( ) A .100119a =B .存在正整数k ,使得k a >C .n SD .数列n S n ⎧⎫⎨⎬⎩⎭是递减数列30.(2021·福建省福州第一中学模拟预测)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列.现将斐波那契数列记为{}n a ,121a a ==,()123n n n a a a n --=+≥,边长为斐波那契数n a 的正方形所对应扇形面积记为()*n b n ∈N ,则( )A .()2233n n n a a a n -+=+≥B .123201920211a a a a a +++⋅⋅⋅+=+C .()2020201920182021π4b b a a -=⋅ D .123202*********π4b b b b a a +++⋅⋅⋅+=⋅ 31.(2021·江苏·模拟预测)已知数列{}n a 满足11a =,()1lg 1091n an a +=++,其前n 项和为n S ,则下列结论中正确的有( ) A .{}n a 是递增数列 B .{}10n a +是等比数列 C .122n n n a a a ++>+D .(3)2n n n S +<32.(2021·全国·高三专题练习(文))已知数列{}n a 满足:1n a n =,n S 是数列{}n a 的前n 项和,()ln 1n n na b a +=,下列命题正确的是( ) A .11ln n n n a a n ++⎛⎫<< ⎪⎝⎭B .数列{}n b 是递增数列C .202120201ln 2021S S ->>D .ln 2ln 3n b ≤<33.(2021·江苏泰州·模拟预测)已知()()()232012(21)212121nn n x x x x aa x a x a x ++++=++++下列说法正确的是( )A .设1n b a =,则数列{}n b 的前n 项的和为2224n n S n +=--B .2a 22228233n n ++=--C .1n a -=222n n n +-(*n N ∈)D .()*11n n a n N a -⎧⎫-∈⎨⎬⎩⎭为等比数列34.(2021·全国·模拟预测)斐波那契数列,又称黄金分割数列,它在很多方面与大自然神奇地契合,小到地球上的动植物,如向日葵、松果、海螺的成长过程,大到海浪、飓风、宇宙星系演变,都遵循着这个规律,人们亲切地称斐波那契数列为自然界的“数学之美”,在数学上斐波那契数列{}n a 一般以递推的方式被定义:121a a ==,21++=+n n n a a a ,则( ) A .1055a =B .2211n n n a a a ++-=C.1n n a +⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是等比数列 D .设1n n na b a +=,则112n n n n b b b b +++-<-三、双空题 35.(2021·山东济宁·高三期中)十九世纪法国数学家卢卡斯提出数列{}n L :2,1,3,4,7,…,称之为卢卡斯数列,且满足12L =,21L =,()112n n n L L L n +-=+≥,则12L =________;记n S 为数列{}n L 的前n 项和,若2023L t =,则2021S =__________.36.(2021·江苏如皋·高三月考)已知数列{}n a 对任意的*n N ∈,都有n a N *∈,且131,,2n n n n na a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数,①当18a =时,2021a =___________.②若存在*m N ∈,当n m >且n a 为奇数时,n a 恒为常数P ,则P =___________.37.(2021·广东·高三月考)将正三角形(1)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(2);将图(2)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(3);如此类推,将图(n )的每条边三等分,并以中间的那一条线段为底边向外作三角形,然后去掉底边,得到图()1n +.上述作图过程不断的进行下去,得到的曲线就是美丽的雪花曲线.若图(1)中正三角形的边长为1,则图(n )的周长为__________,图(n )的面积为___________.38.(2021·北京二中高三月考)定义在(0,)+∞上的函数()f x 满足:①当[1,3)x ∈时,1,12,()3,23,x x f x x x -≤≤⎧=⎨-<<⎩②(3)3()f x f x =. (i )(6)f = _____;(ii )若函数()()F x f x a =-的零点从小到大依次记为12,,,,n x x x ,则当(1,3)a ∈时,12212n n x x x x -++++=_______.39.(2021·福建·三明一中模拟预测)黎曼猜想由数学家波恩哈德∙黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数1111()123s s s sn n n ξ∞-===+++∑,我们经常从无穷级数的部分和1111123s s ssn ++++入手.已知正项数列{}n a 的前n 项和为n S ﹐且满足11()2n n na S a +=,则n S =__________,12100111S S S ⎡⎤++=⎢⎥⎣⎦__________.(其中[]x 表示不超过x 的最大整数) 40.(2021·山东日照·高三月考)牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法,具体步骤如下:设r 是函数()y f x =的一个零点,任意选取0x 作为r 的初始近似值,过点()()00,x f x 作曲线()y f x =的切线1l ,设1l 与x 轴交点的横坐标为1x ,并称1x 为r 的1次近似值;过点()()11,x f x 作曲线()y f x =的切线2l ,设2l 与x 轴交点的横坐标为2x ,称2x 为r 的2次近似值,过点()()(),nnx f x n *∈N 作曲线()y f x =的切线1n l+,记1n l +与x 轴交点的横坐标为1n x +,并称1n x +为r 的1n +次近似值,设()()3220f x x x x =+-≥的零点为r ,取00x =,则r 的2次近似值为______:设()333222n n n n x x a n x *+=∈+N ,数列{}n a 的前n 项积为n T .若任意的n *∈N ,n T λ<恒成立,则整数λ的最小值为______.41.(2021·浙江浙江·模拟预测)已知等差数列{}n a 的公差大于32,且满足311πsin 2a a ⎛⎫⋅= ⎪⎝⎭,322ππ1cos 0233a a ⎛⎫⎛⎫⋅++-= ⎪ ⎪⎝⎭⎝⎭,则数列{}n a 的公差d =___________,前n 项和n S =___________.42.(2021·山西太原·一模(理))已知数列{}n a 满足1232a a ==,()*223n n n a a n +=+⨯∈N ,且()*1n n n b a a n +=+∈N .则数列{}n b 的通项公式为________.若()()*24(1)341n n n b c n n +=∈-N ,则数列{}n c 的前n 项和为________.43.(2021·浙江温州·二模)有一种病毒在人群中传播,使人群成为三种类型:没感染病毒但可能会感染病毒的S 型;感染病毒尚未康复的I 型;感染病毒后康复的R 型(所有康复者都对病毒免疫).根据统计数据:每隔一周,S 型人群中有95%仍为S 型,5%成为I 型;I 型人群中有65%仍为I 型,35%成为R 型;R 型人群都仍为R 型.若人口数为A 的人群在病毒爆发前全部是S 型,记病毒爆发n 周后的S 型人数为,n S I 型人数为n I ,则n S =_________;n I =__________.(用A 和n 表示,其中*n ∈N )四、填空题 44.(2021·上海·模拟预测)设整数数列1a ,2a ,…,10a 满足1013a a =,2852a a a +=,且{}11,2i i i a a a +∈++,1,2,,9i =⋅⋅⋅,则这样的数列的个数为___________.45.(2021·福建省福州格致中学高三月考)已知()f x 是定义在R 上的奇函数,当0x >时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩有下列结论:①函数()f x 在()6,5--上单调递增;②函数()f x 的图象与直线y x =有且仅有2个不同的交点;③若关于x 的方程2[()](1)()0()f x a f x a a -++=∈R 恰有4个不相等的实数根,则这4个实数根之和为8;④记函数()f x 在[]()*21,2k k k -∈N 上的最大值为k a ,则数列{}n a 的前7项和为12764. 其中所有正确结论的编号是___________.46.(2021·全国·高三月考(理))已知首项为1的数列{}n a 的前n 项和为n S ,若2121n n n n n S S S S S λλ++++=+,且数列1a ,2a ,…,(3)k a k >成各项均不相等的等差数列,则k 的最大值为__________.47.(2021·上海市吴淞中学高三期中)已知数列{}n a 满足:121,()a a x x N *==∈,21n n n a a a ++=-,若前2010项中恰好含有666项为0,则x 的值为___________.48.(2021·上海市晋元高级中学高三期中)如果数列{}n a 满足:120211,2017a a ==,且对于任意*n N ∈,存在实数a 使得1n n a a +、是方程()22210x a x a a -+++=的两个根,则100a 的所有可能值构成的集合是____________.49.(2021·黑龙江·佳木斯一中高三月考(文))已知数列{}n a :2223333333441123123456712,,,,,,,,,,,,2222222222222的前n 项和为n S ,则120S =___________.50.(2021·全国·高三专题练习)将杨辉三角中的每一个数rn C 都换成分数1(1)r nn C +,就得到一个如图所示的分数三角形,称为莱布尼茨三角形,从莱布尼茨三角形可以看出:11111(1)(1)r r rn n n n C n C nC +-+=++,令2211111113123060(1)n n na nC n C -=+++++++,n S 是{}n a 的前n 项和,则n S =______.51.(2021·湖南师大附中高三月考)已知函数|1||1|e sin(1)()e x x xf x ----=,若()22(2019)(2018)(2021)20201f f f a b -+-+⋅⋅⋅+=++,a ,b ∈R .则|a b -+的最大值为___________.52.(2021·全国·高三专题练习)已知数列{}n a 的通项公式为12(1)3n n n a ⎡⎤=--⎣⎦,1n n n b a a +=,设n S 是数列{}n a 的前n 项和,若0n n b S λ->对任意*n ∈N 都成立,则实数λ的取值范围是__________.53.(2021·全国·高三月考)已知等差数列{}n a ,对任意n N +∈都有01211231C C C C 2n n n n n n n a a a a n ++++++=⋅成立,则数列121n n a a ++⎧⎫⎨⎬⎩⎭的前n 项和n T =__________. 54.(2021·河北·正定中学高三开学考试)意大利数学家斐波那契(1175年1250-年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,⋯,该数列从第三项起,每一项都等于前两项之和,即21(*)n n n a a a n N ++=+∈,故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为]n n n a =-.设n是不等式(1]211n n n ->+的正整数解,则n 的最小值为______.55.(2021·辽宁·高三月考)对于任意实数序列()()123123,,,,,,,,,,,n n A a a a a B b b b b =⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅,定义()112233*,,,,,n n A B a b a b a b a b =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅已知数列{}{},n n a b 满足33,n n n a b a n +==,若*A B 中前n 项的和112233n n n S a b a b a b a b m =⋅+⋅+⋅+⋅⋅⋅+⋅<恒成立,则整数m 的最小值为______. 56.(2021·山东济南·高三月考)数列{}n a 共12项,且11a =,42a =,关于x 的函数()()322113n n n x f a x a x x =-+-+,n ∈+N ,若()1111n x a n +=≤≤是函数的极值点,且曲线的()4y f x =在点()()12412,a f a 处的切线的斜率为3,则满足条件的数列{}n a 的个数为__________.57.(2021·云南师大附中高三月考(理))数列{}n a 中,12a =,()*,p q p q a a a p q +=∈N ,记m b 为{}n a 中在区间(]0,m ()*m ∈N 中的项的个数,则数列{}m b 的前150项和150S =________.。
大学数学(高数微积分)专题三第讲数列求和及数列的综合应用(课堂讲义)
本 到当年年底资金增长了 50%,预计以后每年资金年增长率
讲 栏
与第一年的相同.公司要求企业从第一年开始,每年年底上
目 开
缴资金 d 万元,并将剩余资金全部投入下一年生产.设第 n
关 年年底企业上缴资金后的剩余资金为 an 万元.
n为偶数,
综上所述,Sn=3n-n-2 1ln 3-ln 2-1, n为奇数.
9
热点分类突破
在处理一般数列求和时,一定要注意使用转化思
想.把一般的数列求和转化为等差数列或等比数列进行求和,
本 在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数
讲
栏 列,清晰正确地求解.在利用分组求和法求和时,由于数列的
(2)解 当 n≥2 时,2Sn=nan+1-13n3-n2-23n,
2Sn-1=(n-1)an-13(n-1)3-(n-1)2-23(n-1), 19
热点分类突破
两式相减得 2an=nan+1-(n-1)an-13(3n2-3n+1)-(2n-1) -23,
整理得(n+1)an=nan+1-n(n+1),
目
开 关
各项是正负交替的,所以一般需要对项数 n 进行讨论,最后
再验证是否可以合并为一个公式.
10
热点分类突破
(2013·湖南)设Sn为数列{an}的前n项和,Sn=(-1)nan -21n,n∈N*,则:
(1)a3=________;
(2)S1+S2+…+S100=________.
本
讲 栏
解析
本 解 (1)由已知,得当 n≥1 时,
讲
栏 目
an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1
开
专题三 第二讲 数列的综合应用
解析: 两点坐标代入f(x)得 解析:将A、B两点坐标代入 得 、 两点坐标代入 1 1 =ab2 a= = 2 ,解得 8 , 1=ab3 b=2 = = 1 1 - ∴f(x)= ·2x,∴f(n)= ·2n=2n 3, = = 8 8 ∴an=log2f(n)=n-3. = - , - ≤ , ≤ 令an≤0,即n-3≤0,n≤3. 项小于或等于零, ∴数列前3项小于或等于零,故S3或S2最小. 数列前 项小于或等于零 最小. S3=a1+a2+a3=- +(-1)+0=- =-2+ - + =- =-3.
+
nban-1 an-1+n-1 -
[解] 解
nban-1 (1)∵a1=b>0,an= ∵ > , , an-1+n-1 -
- n 1 1 n-1 ∴ a = b+ b· , an-1 n n 1 1 令cn=a ,则cn=b+bcn-1, n 1 1 ①当b=1时,cn=1+cn-1,且c1=a =b=1 = 时 +
解答题
数列的实际 数列的实际应用问题一般是等差数列或等比 解答题为 应用 数列通项、求和问题,题目难度一般较大 数列通项、求和问题,题目难度一般较大. 主
[联知识 串点成面 联知识 串点成面] 数列求和的方法技巧: 数列求和的方法技巧: (1)转化法: 转化法: 转化法 有些数列,既不是等差数列,也不是等比数列, 有些数列,既不是等差数列,也不是等比数列,若将数 列通项拆开或变形,可转化为几个等差、 列通项拆开或变形,可转化为几个等差、等比数列或常 见的数列,即先分别求和,然后再合并. 见的数列,即先分别求和,然后再合并.
(2)Tn=1×2+4×5+42×8+…+4n-1(3n-1),① × + × + + - ,
-
高考数学专题三数列 微专题21 等差数列、等比数列
设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0, 因为 S14=7(a10+3),则 14a1+14×2 13d=7(a1+9d+3),可得 a1+4d= 3,即 a5=3,
因为b5=b=16,则b1q4=(b1q)4=16,可得q=2,b1=1, 因为cn=an+bn, 所以T9=c1+c2+…+c9=(a1+a2+…+a9)+(b1+b2+…+b9) =a1+2 a9×9+b111--qq9=a5×9+11--229 =3×9+11--229=538.
①
由 a1+S11=67,得 12a1+11×2 10d=67,即 12a1+55d=67.
②
由①②解得a1=1,d=1,所以an=n, 于是a3a10=3×10=30,而a30=30,故a3a10是{an}中的第30项.
1 2 3 4 5 6 7 8 9 10
2.(2023·武汉模拟)已知等比数列{an}满足a6=2,且a7,a5,a9成等差数列,
(2)(2023·新高考全国Ⅰ)设等差数列{an}的公差为 d,且 d>1.令 bn=n2a+n n, 记 Sn,Tn 分别为数列{an},{bn}的前 n 项和. ①若 3a2=3a1+a3,S3+T3=21,求{an}的通项公式;
∵3a2=3a1+a3, ∴3d=a1+2d,解得a1=d, ∴S3=3a2=3(a1+d)=6d,
1 2 3 4 5 6 7 8 9 10
3.记 Sn 为等比数列{an}的前 n 项和.若 a5-a3=12,a6-a4=24,则Sann等于
A.2n-1
√B.2-21-n
C.2-2n-1
D.21-n-1
1 2 3 4 5 6 7 8 9 10
方法一 设等比数列{an}的公比为q, 则 q=aa65--aa43=2142=2. 由a5-a3=a1q4-a1q2=12a1=12,得a1=1. 所以 an=a1qn-1=2n-1,Sn=a111--qqn=2n-1, 所以Sann=22n-n-11=2-21-n.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.(09年山东20题)等比数列{an}的前n项和为Sn,对于任意的n,∈N*点(n,Sn)均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上.
(1)求r的值 (2)当b=2时,记bn=2(log2an+1), n,∈N*证明:对任意的n,∈N*,不等式 EMBED Equation.3 * EMBED Equation.3 …… EMBED Equation.3 > EMBE数列,an,Sn,中五个量知三求二,公式的选择、数列性质的熟练应用能很大程度上减少运算量。
等差数列{an},则①an=am+(n-m)d,(m、n n∈N*
②若m+n=p+q,则am+an=ap+aq.(m、n、p、q∈N*)
③Sn,S2n-Sn,S3n-S2n仍成等差数列,公差为n2d.
(1)求证:an=( EMBED Equation.3 )n, n EMBED Equation.3 *
(2)求证:an EMBED Equation.3 1+ EMBED Equation.3
(3)求证: EMBED Equation.3 <k2-k(注: EMBED Equation.3 =a1+a2+…an)
变式练习2 已知数列{an}的前n项和 EMBED Equation.3 Sn=-an-( EMBED Equation.3 )n-1+2(n为正整数)。
令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
令cn= EMBED Equation.3 …+cn,试比较Tn与 EMBED Equation.3 的大小,并予以证明。
求点Pn的坐标;
设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴垂直于x轴,第n条抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记过点Dn,且与抛物线Cn相切的直线的斜率为k,求证: EMBED Equation.3 …+ EMBED Equation.3
四、数列中的应用问题
专题三 数列
主备人:补习学校数学组 执笔人:张新华 张德华 审核人:刘吉超李方增
[考情分析]
1.数列在历年高考中都占有较较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右,客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目。
1.等比数列的定义
数列{an}满足 EMBED Equation.3 =q(其中an≠0,q是不为零的常数,(n∈N*) EMBED Equation.3 {an}为等比数列。
2.等比数列的通项公式
等比数列的首项为a1,公比为q,an=a1qn-1=amqn-m(n,m∈N*).
4.求和先研究数列的通项,根据通项选择方法,化归为基本数列求和。
①若cn=an·bn,{an}等差{bn}等比,则用错位相减法。
②若cn= an+bn,则用分组求和,其中分组的方法比较灵活。
③裂项相减法适用于通项形如an= EMBED Equation.3 等
④倒序相加法。
EMBED Equation.3
(2)求数列{an}的前n项和Sn.
二、数列与函数、方程、不等式的综合问题
例2.已知函数f(x)= EMBED Equation.3 ,
若数列{an},{bn}满足a1= EMBED Equation.3 求数列{bn} 通项公式;(2)记Sn=b1+b2+…+bn,若 EMBED Equation.3 m恒成立,求m的最小值
A.-2009 B.-3010 C.-3014 D.3028
二、填空题
6.函数y= EMBED Equation.3 图象上至少存在不同的三点到原点的距离构成等比数例,则公比的取值范围是
3.等比中项
若x,G,y成等比数列,则G2=xy,其中G为x.y的等比中项。
4.等比数列的前n项和
设等比数列的首项为a1,公比为q,则
EMBED Equation.3 EMBED Equation.3 EMBED Equation.3
推导等比数列前n项和公式的方法是错位相减法。
一、等差数列
1.等差数列的定义
数列|{an}满足an+1—an=d(其中n∈N*,d为常数) EMBED Equation.3 {an}是等差数列。
2.等差数列的通项公式
若等差数列的首项为a1,公差为d,an=a1+(n-1)d=am+(n-m)d(n,m∈N*).
3.等差中项
例4某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储金就变为a1(1+r)n-1,第二年所交纳的储备金就变为
A.2 B. EMBED Equation.3 C. EMBED Equation.3 D.3
4.09广东 已知比数列{an}满足an>0且a5·a2n-5=22n(n≥3)则当n≥3时,log2a1+log2a3+log2a5+…+ log2a2n-1=
(3)令Cn=anlgan,问是否存在a,使得{Cn}中每一项恒小于它后面的项,若存在,求出a的范围,若不存在,说明理由。
变式练习
(2009年高考全国卷)在数列{an}中,a1=,an+1=(1+ EMBED Equation.3
(1)设bn= EMBED Equation.3
1.09全国14题,设差数列{an}前n项和为Sn若S9=72,则a2+a4+a9=
2.07江西,已知数列{an}对任意Pq∈N*,有GP+Gq=Gp+q,若a1= EMBED Equation.3 则a36=
3.09辽宁 已知等比数列{an}的前n项和为Sn,若 EMBED Equation.3 =3则 EMBED Equation.3 =
一. 数列内部的综合问题
例1已知f(x)=10g x(a>0且a≠1)设f(a1)、f(a2)、…、f(an) (n EMBED Equation.3 )是首项为 4,公差为2的等差数例。
(1)设a为常数,求证(an)成等比数例;
(2)若bn=anf(an) {bn}的前n项和是Sn,当a= EMBED Equation.3 时,求Sn;
⑶在数列的学习中加强能力训练
数列问题对能力要求较高,特别是对运算能力、归纳猜想能力、转化能力、逻辑推理能力的要求更为突出,一般来说,考题中选择、填空题解法灵活多变,而解答题更是能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视,因此,在平时要加强对能力的培养。
考点精要
3.设f1(x)= EMBED Equation.3 ( )
A. EMBED Equation.3 B. EMBED Equation.3
C. EMBED Equation.3 D. EMBED Equation.3
4.椭圆 EMBED Equation.3 P1,P2,…Pn,椭圆的右焦点为F,且数列{|PnF|}是公差大于 EMBED Equation.3 ( )
A.2007 B.2008 C.2009 D.2010
5.定义:若数列{an}对任意 正整数n, 都有|an+1|+an|=d(d为常数),则称{an}为“绝对和数列”,d 叫做“绝对公和”,已知“绝对和数列”{an}中,a1=2, 绝对公和为3,则其前2009项的和S2009的最小值为( )
变式练习3
在直角坐标平面上,点列P1(x1,y1),P2(x2,y2),…,pn(xn,yn),…对每个正整数n,点Pn都在函数y=3x+ EMBED Equation.3 的图象上,且Pn的横坐标构成以- EMBED Equation.3 为首项,-1为公差的等差数列{xn}.
C.直线y= bx-a上 D.直线 y=ax-b上
2.已知an= EMBED Equation.3 (n EMBED Equation.3 ),则在数列{ an}的前50项中,最大项与最小项分别是( )
A.a1,a50 B.a50,a1
C.a21,a20 D.a20,a21
若x,A,y成等差数列,则A= EMBED Equation.3 其中A为 x,y的等差中项。
4.等差数列的前n项和公式若等差数列首项为a1,公差为d,则其前n项和
Sn= EMBED Equation.3 =na1+ EMBED Equation.3 .
二、等比数列
④S2n-1=(2n-1)·an·
2.已知an,Sn的等量关系,根据目标,把该关系统一到通项或和上,求通项或研究Sn的性质。
3.派生数列如an+1= EMBED Equation.3 ·an+b,an+1= EMBED Equation.3 an+f(n), EMBED Equation.3 =f(n)等,可通过待定系数法、累差法、累商法等,化归为等差(比)数列求通项。