OP07C
op07工作原理
op07工作原理
OP07是一种高性能微功耗运算放大器。
其工作原理主要包括四个方面:差分放大、负反馈、偏置和线性化。
差分放大:OP07利用两个输入端之间的差分放大来提高放大器的增益和抵消输入信号中的共模噪声。
这意味着OP07能够放大差模信号,而对相同的共模信号具有较低的增益,从而提高了差分信号与噪声的比例。
负反馈:OP07利用负反馈来稳定放大器的增益和性能。
输入信号经过放大后与输出信号进行比较,将误差信号反馈到放大器的输入端。
通过调整反馈网络中的元件,可以实现放大器的稳定工作,并减少非线性失真。
偏置:OP07具有内部偏置网络,通过它可以将输入信号偏置到适合放大器工作的工作点。
偏置电流可以调整放大器的线性范围和增益,从而使得OP07能够处理宽范围的输入信号。
线性化:OP07采用了一系列线性化技术来减小非线性失真和温度效应。
例如,采用了误差偏置电路、温度补偿电路和电压施加电路等,以提高放大器的线性度和稳定性。
通过以上工作原理,OP07能够提供高精确度、低失真和高稳定性的放大功能,广泛应用于精密测量、传感器信号处理、自动控制等领域。
op07放大正弦波电路
op07放大正弦波电路OP07是一种高精度、低噪声的运算放大器,广泛应用于各种电路中。
本文将重点介绍以OP07放大器为核心的正弦波放大电路。
正弦波放大电路是一种常见的电路,用于放大输入信号的正弦波部分。
它在许多领域中都有应用,比如音频放大、通信系统、测试仪器等。
在正弦波放大电路中,OP07作为运算放大器被广泛使用。
OP07具有高增益、低噪声、低失调电流等优点,使其成为放大器电路的理想选择。
下面我们将详细介绍OP07放大器在正弦波放大电路中的应用。
我们需要了解正弦波放大电路的基本原理。
正弦波放大电路通常由三个主要部分组成:输入级、放大级和输出级。
输入级用于接收输入信号,放大级用于放大信号,输出级用于输出放大后的信号。
在输入级中,我们可以使用OP07作为差分放大器。
差分放大器可以将输入信号进行放大,并将差分信号传递给放大级。
OP07的高增益特性可以确保输入信号被有效放大,同时低噪声特性可以减少噪声对信号的影响。
放大级是整个电路的核心部分,它由多个级联的放大器组成。
每个放大器都使用OP07作为运算放大器,以确保信号在每个级别都得到充分放大。
通过合理选择放大器的增益系数,可以实现对输入信号的精确放大。
输出级负责将放大后的信号输出到负载电阻上。
OP07作为输出级的推动器,可以提供足够的输出电流,以确保信号能够正常传输到负载电阻。
在实际设计中,我们还需要考虑一些细节问题。
例如,输入级需要使用合适的偏置电压,以确保输入信号能够正常工作。
此外,为了减少幅度失真,我们还可以使用负反馈电路进行校正。
总的来说,以OP07放大器为核心的正弦波放大电路具有高增益、低噪声、低失调电流等优点。
它能够有效地放大输入信号,并保持信号的准确性和稳定性。
因此,OP07放大器在正弦波放大电路中得到了广泛的应用。
除了正弦波放大电路,OP07还可以用于其他各种电路中,如滤波电路、仪器放大器、传感器接口等。
它的高性能和可靠性使其成为工程师们的首选。
OP07中文资料_数据手册_参数
绝对大额定值超过工作自由空气温度范围(除非另有说明) (1) MIN MAX单元 V CC + (2) 0 22电源电压 V V CC- (2) -22 0 差 分输入电压 (3) ±30 V V 我 输入电压范围(任一输入) (4) ±22 V 输出短路持续时间 (5)无限 T J操作虚拟结温度 150 C引线温 度距离壳体1.6毫米(1/16英寸),持续10秒 260 C (1)强调绝对大额定值以外列出的可能会导致设备永久性损坏.这些是压力评级只 有在这些或任何其他超出建议的操作条件下的条件下才能操作设备不暗示条件.暴露在绝对大额定条件下可能会影响器件的可靠性. (2) 除非另有说明,所有的电压值都是相对于V CC + 和V CC- 之间的中点 . (3)差分电压相对于IN处于IN + - . (4)输入电压的 大小决不能超过电源电压的大小或15 V,取其小者. (5)输出可能短路到地或任何一个电源. 7.2处理评级参数定义 MIN MAX单元 T STG存储温度范围 -65 150 C人体模型(HBM),根据ANSI / ESDA / JEDEC JS-001,全部 0 1000 (1)静电的 V (ESD) V卸货带电器 件型号(CDM),根据JEDEC规范JESD22- 0 1000 C101,所有引脚 (2) (1) JEDEC文件JEP??155指出,500V HBM允许采用标准 ESD控制过程进行安全制造. (2) JEDEC文件JEP??157指出,250V CDM允许使用标准ESD控制过程进行安全制造. 7.3推荐的操作条件 超过工作自由空气温度范围(除非另有说明) MIN MAX单元 V CC + 3 18电源电压 V CC- -3 -18 V V IC共模输入电压 V CC± =±15 V -13 13 T A.操作自由空气温度 0 70 C 7.4热量信息 温度计 (1) D P单元 RθJA结到环境热阻 97 85 °C / W (1)有关传统和新型散热指 标的更多信息 OP07Y精密运算放大器 SLOS099B - 1983年10月 - 修订于1996年8月五邮政信箱655303 ? 达拉斯,得克萨斯州75265 经营特色,V CC ±= ± 15 V,T A = 25°C参数测试 OP07C OP07D单元参数条件? MIN TYP MAX MIN TYP MAX单元 F = 10HZ 10.5 10.5 √ VN等效输入噪 声电压 F = 100HZ 10.2 10.3内华达州/ √HZ的 F = 1KHZ 9.8 9.8 VN(PP)峰峰值等效输入噪声电压 F = 0.1HZ至10HZ 0.38 0.38 μV F = 10HZ 0.35 0.35 √在等效输入噪声电流 F = 100HZ 0.15 0.15 PA / √HZ的 F = 1KHZ 0.13 0.13 IN(PP)峰峰值等效输入噪声电流 F = 0.1HZ 至10HZ 15 15 PA的 SR摆率 RL≥2KΩ 0.3 0.3 V /微秒 ?除非另有说明,所有特性均在开环条件下以零共模输入电压进行测量. 电气特 性,V CC ±= ± 15 V,T A = 25°C(除非另有说明)参数测试条件? OP07Y单元参数测试条件? MIN TYP MAX单元 VIO输入失调电 压 RS = 50Ω 60 150 μV输入失调电压的长期漂移见注6 0.5 μV/月偏移调整范围 RS = 20KΩ,见图1 ±4毫伏 IIO输入失调电流 0.8 6 NA 的 IIB输入偏置电流 ±2 ±12 NA的 VICR共模输入电压范围 ±13 ±14 V RL≤10KΩ ±12 ±13 VOM峰值输出电压 RL≤2KΩ ±11.5 ±12.8 V RL≤1KΩ ±12 AVD大信号L≤500KΩ 400 AVD大信号差分电压放大 VO = ±10 V, RL = 2KΩ 120 400 B1单位增益带宽 0.4 0.6兆赫 RI输入电阻 7 31中号 Ω CMRR共模输入电阻 VIC =±13 V, RS = 50Ω 94 110 D B KSVS电源电压抑制比( ΔVCC/ΔVIO) VCC ±=±3 V至±18 V, RS = 50Ω 7 32 μV/ V PD功
op07引脚图及其功能介绍
op07 引脚图及其功能介绍
Op07 芯片是一种低噪声,非斩波稳零的双极性(双电源供电)运算放大器集成电路。
由于OP07 管脚图OP07 具有非常低的输入失调电压(对于OP07A 最大为25μV),所以OP07 在很多应用场合不需要额外的调零措
施。
OP07 同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高
(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07 特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
op07 特点:
超低偏移:1501V 最大
低输入偏置电流:1. 8n&。
低失调电压漂移:0.5H7/C
超稳定,时间:2 H V/mont h 最大。
OP07C中文资料
OP07C中文资料一、Op07芯片是一种低噪声,非斩波稳零的单运算放大器集成电路。
由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
二、OP07特点:超低偏移: 150μV最大。
低输入偏置电流: 1.8nA 。
低失调电压漂移: 0.5μV/℃。
超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V三、OP07内部结构原理图四、OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+ABSOLUTE MAXIMUM RATINGS 最大额定值五、OP07典型应用电路图4 输入失调电压调零电路图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11高稳定性的热电偶放大器图12 精密绝对值电路op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
由于OP07具有非常低的输入失调电压(对于OP07A 最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
特点:超低偏移: 150μV最大。
低输入偏置电流: 1.8nA 。
低失调电压漂移: 0.5μV/℃。
超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。
OP07C中文资料
OP07C中文资料篇一:op07管脚、原理及其应用电路中文资料一、Op07芯片是一种低噪声,非斩波稳零的单运算放大器集成电路。
由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
二、OP07特点:超低偏移: 150μV最大。
低输入偏置电流:。
低失调电压漂移:μV/℃。
超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V三、OP07内部结构原理图四、OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+ABSOLUTE MAXIMUM RATINGS 最大额定值五、OP07典型应用电路图4 输入失调电压调零电路图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11高稳定性的热电偶放大器图12 精密绝对值电路篇二:OP07中文op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
特点:超低偏移: 150μV最大。
低输入偏置电流:。
低失调电压漂移:μV/℃。
超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。
op07工作原理
op07工作原理op07是一种经典的运算放大器,广泛应用于模拟电路中。
它具有高精度、低噪声等优点,被广泛用于信号处理、测试和测量等领域。
本文将深入探讨op07的工作原理,包括其内部组成、电路配置和相关特性等方面。
一、op07的基本结构和内部组成op07的基本结构由差动对输入、单端输出和内部电流源组成。
它通常采用双极性电源供电,输入端和输出端均具有高输入阻抗和低输出阻抗。
1. 差动对输入op07的差动对输入由两个输入引脚组成,分别为正输入引脚(non-inverting input)和负输入引脚(inverting input)。
它们之间的电压差将决定op07的输出结果。
2. 单端输出op07的单端输出引脚通常被连接到负反馈电阻,并通过这个电阻将输出信号反馈到负输入端。
这种负反馈电路可以提高op07的性能。
3. 内部电流源op07内部集成了多个电流源,这些电流源能够为输入差分级提供恒定的电流。
二、op07的电路配置op07可使用多种电路配置来实现不同的增益和功能特性。
其中,最基本的配置方式为反馈型非反转放大器。
1. 反馈型非反转放大器这种配置方式将输入信号加在非反转输入引脚上,并通过负反馈电阻将输出信号反馈到反转输入引脚上。
这种配置方式不仅能够提高增益和稳定性,还能抑制输出的偏置电压。
2. 带有输入保护电阻的配置为了保护op07免受过大的输入电压引起的损坏,通常会在输入引脚和差动对输入之间添加输入保护电阻。
这些电阻能够限制输入电流,并提供过压保护功能。
3. 可编程增益配置op07还可以通过选择不同的反馈元件来实现可编程增益功能。
采用可变电阻或开关来调整反馈电阻的数值,进而改变放大器的增益。
三、op07的特性和应用op07具有许多优点,使其成为模拟电路中应用广泛的运算放大器之一。
1. 高精度op07的输入偏置电流和输入偏置电压非常低,输出电阻也很小,从而保证了高精度的放大效果。
它还具有很好的共模抑制比和温漂补偿能力,能够在不同工作温度下保持较为稳定的性能。
op07cp芯片参数资料(免费)
PACKAGING INFORMATION Orderable DeviceStatus (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)OP-07DPSRACTIVE SO PS 82000Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM OP07CDACTIVE SOIC D 875Pb-Free (RoHS)CU NIPDAU Level-2-250C-1YEAR OP07CDRACTIVE SOIC D 82500Pb-Free (RoHS)CU NIPDAU Level-2-250C-1YEAR OP07CPACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU Level-NC-NC-NC OP07DDACTIVE SOIC D 875Pb-Free (RoHS)CU NIPDAU Level-2-250C-1YEAR OP07DDRACTIVE SOIC D 82500Pb-Free (RoHS)CU NIPDAU Level-2-250C-1YEAR OP07DPACTIVE PDIP P 850Pb-Free (RoHS)CU NIPDAU Level-NC-NC-NC (1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -May not be currently available -please check /productcontent for the latest availability information and additional product content details.None:Not yet available Lead (Pb-Free).Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Green (RoHS &no Sb/Br):TI defines "Green"to mean "Pb-Free"and in addition,uses package materials that do not contain halogens,including bromine (Br)or antimony (Sb)above 0.1%of total product weight.(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.PACKAGE OPTION ADDENDUM 18-Feb-2005Addendum-Page 1IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2005, Texas Instruments IncorporatedThis datasheet has been download from: Datasheets for electronics components.。
常用运放选型一览表
运放选型也不容易,很多参数理解的不是很透彻,型号种类那么多,得选性能好的,还不能太偏,方便购买,同时价格还要合适。
电子元件这东西基本上算是一分钱一分货了,主要还是选择适合的,否则再贵的元件在设计中也无法发挥性能。
转载一个选型表,比较全面的列出了常用的元件。
器件名称制造商简介μA741 TI 单路通用运放μA747 TI 双路通用运放AD515A ADI 低功耗FET输入运放AD605 ADI 低噪声,单电源,可变增益双运放AD644 ADI 高速,注入BiFE T双运放AD648 ADI 精密的,低功耗BiFET双运放AD704 ADI 输入微微安培电流双极性四运放AD705 ADI 输入微微安培电流双极性运放AD706 ADI 输入微微安培电流双极性双运放AD707 ADI 超低漂移运放AD708 ADI 超低偏移电压双运放AD711 ADI 精密,低成本,高速BiFE T运放AD712 ADI 精密,低成本,高速BiFE T双运放AD713 ADI 精密,低成本,高速BiFE T四运放AD741 ADI 低成本,高精度IC运放AD743 ADI 超低噪音BiFET运放AD744 ADI 高精度,高速BiFE T运放AD745 ADI 超低噪音,高速BiFE T运放AD746 ADI 超低噪音,高速BiFE T双运放AD795 ADI 低功耗,低噪音,精密的FET运放AD797 ADI 超低失真,超低噪音运放AD8022 ADI 高速低噪,电压反馈双运放AD8047 ADI 通用电压反馈运放AD8048 ADI 通用电压反馈运放AD810 ADI 带禁用的低功耗视频运放AD811 ADI 高性能视频运放AD812 ADI 低功耗电流反馈双运放AD813 ADI 单电源,低功耗视频三运放AD818 ADI 低成本,低功耗视频运放AD820 ADI 单电源,FET输入,满幅度低功耗运放AD822 ADI 单电源,FET输入,满幅度低功耗运放AD823 ADI 16MHz,满幅度,FET输入双运放AD824 ADI 单电源,满幅度低功耗,FET输入运放AD826 ADI 高速,低功耗双运放AD827 ADI 高速,低功耗双运放AD828 ADI 低功耗,视频双运放AD829 ADI 高速,低噪声视频运放AD830 ADI 高速,视频差分运放AD840 ADI 宽带快速运放AD841 ADI 宽带,固定单位增益,快速运放AD842 ADI 宽带,高输出电流,快速运放AD843 ADI 34MHz,CBFET快速运放AD844 ADI 60MHz,2000V/μs单片运放AD845 ADI 精密的16MHzCBFET运放AD846 ADI 精密的450V/μs电流反馈运放AD847 ADI 高速,低功耗单片运放AD848 ADI 高速,低功耗单片运放AD849 ADI 高速,低功耗单片运放AD8519 ADI 满幅度运放AD8529 ADI 满幅度运放AD8551 ADI 低漂移,单电源,满幅度输入输出运放AD8552 ADI 低漂移,单电源,满幅度输入输出双运放AD8554 ADI 低漂移,单电源,满幅度输入输出四运放AD8571 ADI 零漂移,单电源,满幅度输入/输出单运放AD8572 ADI 零漂移,单电源,满幅度输入/输出双运放AD8574 ADI 零漂移,单电源,满幅度输入/输出四运放AD8591 ADI 带关断的单电源满幅度输入输出运放AD8592 ADI 带关断的单电源满幅度输入输出运放AD8594 ADI 带关断的单电源满幅度输入输出运放AD8601 ADI 低偏移,单电源,满幅度输入/输出单运放AD8602 ADI 低偏移,单电源,满幅度输入/输出双运放AD8604 ADI 低偏移,单电源,满幅度输入/输出四运放AD9610 ADI 宽带运放AD9617 ADI 低失真,精密宽带运放AD9618 ADI 低失真,精密宽带运放AD9631 ADI 超低失真,宽带电压反馈运放AD9632 ADI 超低失真,宽带电压反馈运放C54DSKplus TI 低噪高速去补偿双路运放L165 ST 3A功率运放L272 ST 双通道功率运放L2720 ST 低压差双通道功率运放L2722 ST 低压差双通道功率运放L2724 ST 低压差双通道功率运放L2726 ST 低压差双通道功率运放L2750 ST 低压差双通道功率运放LF147 ST 宽带四J-FET运放LF151 ST 宽带单J-FET运放LF153 ST 宽带双J-FET运放LF155 ST 宽带J-FET单运放LF156 ST 宽带J-FET单运放LF157 ST 宽带J-FET单运放LF247 ST 宽带四J-FET运放LF251 ST 宽带单J-FET运放LF253 ST 宽带双J-FET运放LF255 ST 宽带J-FET单运放LF256 ST 宽带J-FET单运放LF257 ST 宽带J-FET单运放LF355 ST 宽带J-FET单运放LF356 ST 宽带J-FET单运放LF357 ST 宽带J-FET单运放LM101A TI 高性能运放LM124A(ST) ST 低功耗四运放LM146 ST 可编程四双极型运放LM158/A ST 低功耗双运放LM224A(st) ST 低功耗四运放LM246 ST 可编程四双极型运放LM258/A ST 低功耗双运放LM324A ST 低功耗四运放LM346 ST 可编程四双极型运放LM358/A ST 低功耗双运放LMV321 TI 低电压单运放LMV324 TI 低电压四运放LMV358 TI 低电压双运放LS204 ST 高性能双运放LS404 ST 高性能四运放LT1013 TI 双通道精密型运放LT1014 TI 四通道精密型运放MC1558 TI 双路通用运放MC33001 ST 通用单JFE T运放MC33002 ST 通用双JFE T运放MC33004 ST 通用四JFE T运放MC3303 TI 四路低功率运放MC33078 ST 低噪双运放MC33079 ST 低噪声四运放MC33171 ST 低功耗双极型单运放MC33172 ST 低功耗双极型双运放MC33174 ST 低功耗双极型四运放MC34001 ST 通用单JFE T运放MC34002 ST 通用双JFE T运放MC34004 ST 通用四JFE T运放MC3403 TI 四路低功率通用运放MC35001 ST 通用单JFE T运放MC35002 ST 通用双JFE T运放MC35004 ST 通用四JFE T运放MC3503 ST 低功耗双极型四运放MC35171 ST 低功耗双极型单运放MC35172 ST 低功耗双极型双运放MC35174 ST 低功耗双极型四运放MC4558 ST 宽带双极型双运放MCP601 Microchip 2.7V~5.5V单电源单运放MCP602 Microchip 2.7V~5.5V单电源双运放MCP603 Microchip 2.7V~5.5V单电源单运放MCP604 Microchip 2.7V~5.5V单电源四运放NE5532 TI 双路低噪高速音频运放NE5534 TI 低噪高速音频运放OP-04 ADI 高性能双运放OP-08 ADI 低输入电流运放OP-09 ADI 741型运放OP-11 ADI 741型运放OP-12 ADI 精密的低输入电流运放OP-14 ADI 高性能双运放OP-15 ADI 精密的JFE T运放OP-16 ADI 精密的JFE T运放OP-17 ADI 精密的JFE T运放OP-207 ADI 超低Vos双运放OP-215 ADI 高精度双运放OP-22 ADI 可编程低功耗运放OP-220 ADI 低功耗双运放OP-221 ADI 低功耗双运放OP-227 ADI 低噪低偏移双测量运放OP-260 ADI 高速,电流反馈双运放OP-27 ADI 低噪声精密运放OP-270 ADI 低噪音精密双运放OP-271 ADI 高速双运放op-32 ADI 高速可编程微功耗运放op-37 ADI 低噪声,精密高速运放op-400 ADI 低偏置,低功耗四运放op-42 ADI 高速,精密运放op-420 ADI 微功耗四运放op-421 ADI 低功耗四运放op-471 ADI 低噪声,高速四运放OP07 ADI 超低偏移电压运放OP07C TI 高精度,低失调,电压型运放OP07D TI 高精度,低失调,电压型运放OP07Y TI 高精度,低失调,电压型运放OP113 ADI 低噪声,低漂移,单电源运放OP162 ADI 15MHz满幅度运放OP176 ADI 音频运放OP177 ADI 超高精度运放OP181 ADI 超低功耗,满幅度输出运放OP183 ADI 5MHz单电源运放OP184 ADI 精密满幅度输入输出运放OP186 ADI 满幅度运放op191 ADI 微功耗单电源满幅度运放OP193 ADI 精密的微功率运放OP196 ADI 微功耗,满幅度输入输出运放OP200 ADI 超低偏移,低功耗运放OP213 ADI 低噪声,低漂移,单电源运放OP249 ADI 高速双运放OP250 ADI 单电源满幅度输入输出双运放OP262 ADI 15MHz满幅度运放OP27 TI 低噪声精密高速运放op275 ADI 音频双运放OP279 ADI 满幅度高输出电流运放OP281 ADI 超低功耗,满幅度输出运放op282 ADI 低功耗,高速双运放OP283 ADI 5MHz单电源运放OP284 ADI 精密满幅度输入输出运放op285 ADI 9MHz精密双运放op290 ADI 精密的微功耗双运放op291 ADI 微功耗单电源满幅度运放op292 ADI 双运放OP293 ADI 精密的微功率双运放op295 ADI 满幅度双运放OP296 ADI 微功耗,满幅度输入输出双运放op297 ADI 低偏置电流精密双运放OP37 TI 低噪声精密高速运放OP413 ADI 低噪声,低漂移,单电源运放OP450 ADI 单电源满幅度输入输出四运放OP462 ADI 15MHz满幅度运放op467 ADI 高速四运放op470 ADI 低噪声四运放OP481 ADI 超低功耗,满幅度输出运放op482 ADI 低功耗,高速四运放OP484 ADI 精密满幅度输入输出运放op490 ADI 低电压微功率四运放op491 ADI 微功耗单电源满幅度运放op492 ADI 四运放OP493 ADI 精密的微功率四运放op495 ADI 满幅度四运放OP496 ADI 微功耗,满幅度输入输出四运放op497 ADI 微微安培输入电流四运放op77 ADI 超低偏移电压运放op80 ADI 超低偏置电流运放OP90 ADI 精密的微功耗运放op97 ADI 低功耗,高精度运放PM1012 ADI 低功耗精密运放PM155A ADI 单片JFET输入运放PM156A ADI 单片JFET输入运放PM157A ADI 单片JFET输入运放RC4136 TI 四路通用运放RC4558 TI 双路通用运放RC4559 TI 双路高性能运放RM4136 TI 通用型四运放RV4136 TI 通用型四运放SE5534 TI 低噪运放SSM2135 ADI 单电源视频双运放SSM2164 ADI 低成本,电压控制四运放TDA9203A ST IIC总线控制RGB前置运放TDA9206 ST IIC总线控制宽带音频前置运放TEB1033 ST 精密双运放TEC1033 ST 精密双运放TEF1033 ST 精密双运放THS4001 TI 超高速低功耗运放TL022 TI 双组低功率通用型运放TL031 TI 增强型JFE T低功率精密运放TL032 TI 双组增强型J FET输入,低功耗,高精度运放TL034 TI 四组增强型J FET输入,低功耗,高精度运放TL051 TI 增强型JFE T输入,高精度运放TL052 TI 双组增强型J FET输入,高精度运放TL054 TI 四组增强型J FET输入,高精度运放TL061 TI 低功耗JFE T输入运放TL061A ST 低功耗JFE T单运放TL061B ST 低功耗JFE T单运放TL062 TI 双路低功耗J FET输入运放TL062A/B ST 低功耗JFE T双运放TL064 TI 四路低功耗J FET输入运放TL064A/B ST 低功耗JFE T四运放TL070 TI 低噪JFET输入运放TL071 TI 低噪声JFE T输入运放TL071A/B ST 低噪声JFE T单运放TL072 ST 低噪声JFE T双运放TL072A TI 双组低噪声J FET输入运放TL072A/B ST 低噪声JFE T双运放TL074 TI 四组低噪声J FET输入运放TL074A/B ST 低噪声JFE T四运放TL081 TI JFET输入运放TL081A/B ST 通用JFET单运放TL082 TI 双组JFET输入运放TL082A/B ST 通用JFET双运放TL084 TI 四组JFET输入运放TL084A/B ST 通用JFET四运放TL087 TI JFET输入单运放TL088 TI JFET输入单运放TL287 TI JFET输入双运放TL288 TI JFET输入双运放TL322 TI 双组低功率运放TL33071 TI 单路,高转换速率,单电源运放TL33072 TI 双路,高转换速率,单电源运放TL33074 TI 四路,高转换速率,单电源运放TL34071 TI 单路,高转换速率,单电源运放TL34072 TI 双路,高转换速率,单电源运放TL34074 TI 四路,高转换速率,单电源运放TL343 TI 低功耗单运放TL3472 TI 高转换速率,单电源双运放TL35071 TI 单路,高转换速率,单电源运放TL35072 TI 双路,高转换速率,单电源运放TL35074 TI 四路,高转换速率,单电源运放TLC070 TI 宽带,高输出驱动能力,单电源单运放TLC071 TI 宽带,高输出驱动能力,单电源单运放TLC072 TI 宽带,高输出驱动能力,单电源双运放TLC073 TI 宽带,高输出驱动能力,单电源双运放TLC074 TI 宽带,高输出驱动能力,单电源四运放TLC075 TI 宽带,高输出驱动能力,单电源四运放TLC080 TI 宽带,高输出驱动能力,单电源单运放TLC081 TI 宽带,高输出驱动能力,单电源单运放TLC082 TI 宽带,高输出驱动能力,单电源双运放TLC083 TI 宽带,高输出驱动能力,单电源双运放TLC084 TI 宽带,高输出驱动能力,单电源四运放TLC085 TI 宽带,高输出驱动能力,单电源四运放TLC1078 TI 双组微功率高精度低压运放TLC1079 TI 四组微功率高精度低压运放tlc2201 TI 低噪声,满电源幅度,精密型运放TLC2202 TI 双组,低噪声,高精度满量程运放TLC2252 TI 双路,满电源幅度,微功耗运放TLC2254 TI 四路,满电源幅度,微功耗运放TLC2262 TI 双路先进的C MOS,满电源幅度运放TLC2264 TI 四路先进的C MOS,满电源幅度运放TLC2272 TI 双路,低噪声,满电源幅度运放TLC2274 TI 四路,低噪声,满电源幅度运放TLC2322 TI 低压低功耗运放TLC2324 TI 低压低功耗运放TLC251 TI 可编程低功率运放TLC252 TI 双组,低电压运放TLC254 TI 四组,低电压运放TLC25L2 TI 双组,微功率低压运放TLC25L4 TI 四组,微功率低压运放TLC25M2 TI 双组,低功率低压运放TLC25M4 TI 四组,低功率低压运放TLC2652 TI 先进的LINCMOS精密斩波稳定运放TLC2654 TI 先进的LINCMOS低噪声斩波稳定运放TLC271 TI 低噪声运放TLC272 TI 双路单电源运放TLC274 TI 四路单电源运放TLC277 TI 双组精密单电源运放TLC279 TI 双组精密单电源运放TLC27L2 TI 双组,单电源微功率精密运放TLC27L4 TI 四组,单电源微功率精密运放TLC27L7 TI 双组,单电源微功率精密运放TLC27L9 TI 四组,单电源微功率精密运放TLC27M2 TI 双组,单电源低功率精密运放TLC27M4 TI 四组,单电源低功率精密运放TLC27M7 TI 双组,单电源低功率精密运放TLC27M9 TI 四组,单电源低功率精密运放TLC2801 TI 先进的LinCMOS低噪声精密运放TLC2810Z TI 双路低噪声,单电源运放TLC2872 TI 双组,低噪声,高温运放TLC4501 TI 先进LINEPIC,自校准精密运放TLC4502 TI 先进LINEPIC,双组自校准精密运放TLE2021 TI 单路,高速,精密型,低功耗,单电源运放TLE2022 TI 双路精密型,低功耗,单电源运放TLE2024 TI 四路精密型,低功耗,单电源运放TLE2027 TI 增强型低噪声高速精密运放TLE2037 TI 增强型低噪声高速精密去补偿运放TLE2061 TI JFET输入,高输出驱动,微功耗运放TLE2062 TI 双路JFET输入,高输出驱动,微功耗运放TLE2064 TI JFET输入,高输出驱动,微功耗运放TLE2071 TI 低噪声,高速,JFET输入运放TLE2072 TI 双路低噪声,高速,JFET输入运放TLE2074 TI 四路低噪声,高速,JFET输入运放TLE2081 TI 单路高速,JFET输入运放TLE2082 TI 双路高速,JFET输入运放TLE2084 TI 四路高速,JFET输入运放TLE2141 TI 增强型低噪声高速精密运放TLE2142 TI 双路低噪声,高速,精密型,单电源运放TLE2144 TI 四路低噪声,高速,精密型,单电源运放TLE2161 TI JFET输入,高输出驱动,低功耗去补偿运放TLE2227 TI 双路低噪声,高速,精密型运放TLE2237 TI 双路低噪声,高速,精密型去补偿运放TLE2301 TI 三态输出,宽带功率输出运放TLS21H62-3PW TI 5V,2通道低噪读写前置运放TLV2221 TI 单路满电源幅度,5脚封装,微功耗运放TLV2231 TI 单路满电源幅度,微功耗运放TLV2252 TI 双路满电源幅度,低压微功耗运放TLV2254 TI 四路满电源幅度,低压微功耗运放TLV2262 TI 双路满电源幅度,低电压,低功耗运放TLV2264 TI 四路满电源幅度,低电压,低功耗运放TLV2322 TI 双路低压微功耗运放TLV2324 TI 四路低压微功耗运放TLV2332 TI 双路低压低功耗运放TLV2334 TI 四路低压低功耗运放TLV2341 TI 电源电流可编程,低电压运放TLV2342 TI 双路LICMOS,低电压,高速运放TLV2344 TI 四路LICMOS,低电压,高速运放TLV2361 TI 单路高性能,可编程低电压运放TLV2362 TI 双路高性能,可编程低电压运放TLV2422 TI 先进的LINCMOS满量程输出,微功耗双路运放TLV2432 TI 双路宽输入电压,低功耗,中速,高输出驱动运放TLV2442 TI 双路宽输入电压,高速,高输出驱动运放TLV2450 TI 满幅度输入/输出单运放TLV2451 TI 满幅度输入/输出单运放TLV2452 TI 满幅度输入/输出双运放TLV2453 TI 满幅度输入/输出双运放TLV2454 TI 满幅度输入/输出四运放TLV2455 TI 满幅度输入/输出四运放TLV2460 TI 低功耗,满幅度输入/输出单运放TLV2461 TI 低功耗,满幅度输入/输出单运放TLV2462 TI 低功耗,满幅度输入/输出双运放TLV2463 TI 低功耗,满幅度输入/输出双运放TLV2464 TI 低功耗,满幅度输入/输出四运放TLV2465 TI 低功耗,满幅度输入/输出四运放TLV2470 TI 高输出驱动能力,满幅度输入/输出单运放TLV2471 TI 高输出驱动能力,满幅度输入/输出单运放TLV2472 TI 高输出驱动能力,满幅度输入/输出双运放TLV2473 TI 高输出驱动能力,满幅度输入/输出双运放TLV2474 TI 高输出驱动能力,满幅度输入/输出四运放TLV2475 TI 高输出驱动能力,满幅度输入/输出四运放TLV2711 TI 先进的LINCMOS满量程输出,微功耗单路运放TLV2721 TI 先进的LINCMOS满量程输出,极低功耗单路运放TLV2731 TI 先进的LINCMOS满量程输出,低功耗单路运放TLV2770 TI 2.7V高转换速率,满幅度输出带关断单运放TLV2771 TI 2.7V高转换速率,满幅度输出带关断单运放TLV2772 TI 2.7V高转换速率,满幅度输出带关断双运放TLV2773 TI 2.7V高转换速率,满幅度输出带关断双运放TLV2774 TI 2.7V高转换速率,满幅度输出带关断四运放TLV2775 TI 2.7V高转换速率,满幅度输出带关断四运放TS271 ST 可编程CMO S单运放TS272 ST 高速CMOS双运放TS274 ST 高速CMOS四运放TS27L2 ST 低功耗CMO S双运放TS27L4 ST 低功耗CMO S四运放TS27M2 ST 低功耗CMO S双运放TS27M4 ST 低功耗CMO S四运放TS321 ST 低功率单运放TS3V902 ST 3V满幅度C MOS双运放TS3V904 ST 满幅度四运放TS3V912 ST 3V满幅度C MOS双运放TS3V914 ST 满幅度四运放TS461 ST 单运放TS462 ST 双运放TS512 ST 高速精密双运放TS514 ST 高速精密四运放TS522 ST 精密低噪音双运放TS524 ST 精密低噪音四运放TS902 ST 满幅度CMO S双运放TS904 ST 满幅度四运放TS912 ST 满幅度CMO S双运放TS914 ST 满幅度四运放TS921 ST 满幅度高输出电流单运放TS922 ST 满幅度高输出电流双运放TS924 ST 满幅度高输出电流四运放TS925 ST 满幅度高输出电流四运放TS942 ST 满幅度输出双运放TS951 ST 低功耗满幅度单运放TS971 ST 满幅度低噪声单运放TSH10 ST 140MHz宽带低噪声单运放TSH11 ST 120MHz宽带MOS输入单运放TSH150 ST 宽带双极输入单运放TSH151 ST 宽带和MOS输入的单运放TSH22 ST 高性能双极双运放TSH24 ST 高性能双极四运放TSH31 ST 280MHz宽带MOS输入单运放TSH321 ST 宽带和MOS输入单运放TSH93 ST 高速低功耗三运放TSH94 ST 高速低耗四运放TSH95 ST 高速低功耗四运放TSM102 ST 双运放-双比较器和可调电压基准TSM221 ST 满幅度双运放和双比较器UA748 ST 精密单运放UA776 ST 可编程低功耗单运放X9430 Xicor可编程双运放。
OP07C资料
© 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
V/µS MHz
en
nV √ Hz pA √ Hz
in
Note 1 :
1. Long Term Input Offset Voltage Stability refers to the average trend line of Vio vs time over extended periods after the first 30 days of operation.
N DIP8 (Plastic Package)
DESCRIPTION The OP07C is a very high precision op amp with an offset voltage maximum of 150µV. Offering also low input current (1.8nA) and high gain (400V/mV), the OP07C is particularly suitable for instrumentation applications. PIN CONNECTIONS (top view) ORDER CODES
半导体传感器OP07CSZ中文规格书
ADuM1400/ADuM1401/ADuM1402Data Sheet Rev. L | Page 18 of 31 ParameterSymbol Min Typ Max Unit Test Conditions ADuM1400WTRWZ /ADuM1401WTRWZ /ADuM1402WTRWZMinimum Pulse Width 3PW 100 ns C L = 15 pF, CMOS signal levels Maximum Data Rate 410 Mbps C L = 15 pF, CMOS signal levels Propagation Delay 5t PHL , t PLH 20 30 40 ns C L = 15 pF, CMOS signal levels Pulse Width Distortion, |t PLH − t PHL |5PWD 3 ns C L = 15 pF, CMOS signal levels Change vs. Temperature5 ps/°C C L = 15 pF, CMOS signal levels Propagation Delay Skew 6t PSK 22 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Codirectional Channels 7t PSKCD 3 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Opposing-Directional Channels 7t PSKOD 6 ns C L = 15 pF, CMOS signal levels For All ModelsOutput Disable Propagation Delay(High/Low to High Impedance)t PHZ , t PLH 6 8 ns C L = 15 pF, CMOS signal levels Output Enable Propagation Delay (HighImpedance to High/Low)t PZH , t PZL 6 8 ns C L = 15 pF, CMOS signal levels Output Rise/Fall Time (10% to 90%)t R /t F 2.5 ns C L = 15 pF, CMOS signal levels Common-Mode Transient Immunity at Logic High Output 8|CM H | 25 35 kV/µs V Ix = V DD1/V DD2, V CM = 1000 V, transient magnitude = 800 V Common-Mode Transient Immunity at Logic Low Output 8|CM L | 25 35 kV/µs V Ix = 0 V, V CM = 1000 V, transient magnitude = 800 V Refresh Ratef r 1.1 Mbps Input Dynamic Supply Current per Channel 9I DDI (D) 0.10 mA/Mbps Output Dynamic Supply Current per Channel 9I DDO (D) 0.05 mA/Mbps 1All voltages are relative to their respective ground. 2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total V DD1 and V DD2 supply currents as a function of data rate for ADuM1400W /ADuM1401W /ADuM1402W channel configurations. 3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.5 t PHL propagation delay is measured from the 50% level of the falling edge of the V Ix signal to the 50% level of the falling edge of the V Ox signal. t PLH propagation delay is measured from the 50% level of the rising edge of the V Ix signal to the 50% level of the rising edge of the V Ox signal.6 t PSK is the magnitude of the worst-case difference in t PHL or t PLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.8 CM H is the maximum common-mode voltage slew rate that can be sustained while maintaining V O > 0.8 V DD2. CM L is the maximum common-mode voltage slew rate that can be sustained while maintaining V O < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.ADuM1400/ADuM1401/ADuM1402Data SheetRev. L | Page 20 of 31DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval. Table 11.DescriptionConditions Symbol Characteristic Unit Installation Classification per DIN VDE 0110For Rated Mains Voltage ≤ 150 V rmsI to IV For Rated Mains Voltage ≤ 300 V rmsI to III For Rated Mains Voltage ≤ 400 V rmsI to II Climatic Classification 40/105/21 Pollution Degree per DIN VDE 0110, Table 12 Maximum Working Insulation VoltageV IORM 560 V peak Input to Output Test Voltage, Method B1V IORM × 1.875 = V PR , 100% production test, t m = 1 sec, partial discharge < 5 pC V PR 1050 V peak Input to Output Test Voltage, Method AV IORM × 1.6 = V PR , t m = 60 sec, partial discharge < 5 pC V PR After Environmental Tests Subgroup 1896 V peak After Input and/or Safety Test Subgroup 2and Subgroup 3V IORM × 1.2 = V PR , t m = 60 sec, partial discharge < 5 pC 672 V peak Highest Allowable OvervoltageTransient overvoltage, t TR = 10 seconds V TR 4000 V peak Safety Limiting ValuesMaximum value allowed in the event of a failure (see Figure 4) Case TemperatureT S 150 °C Side 1 CurrentI S1 265 mA Side 2 CurrentI S2 335 mA Insulation Resistance at T SV IO = 500 V R S >109Ω CASE TEMPERATURE (°C)S A F E T Y -L I M I T I N G C U R R E N T (m A )003503002502001501005050100150200SIDE #1SIDE #203786-004Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884-10 RECOMMENDED OPERATING CONDITIONS Table 12.Parameter Rating Operating Temperature (T A )1 −40°C to +105°C Operating Temperature (T A )2 −40°C to +125°C Supply Voltages (V DD1, V DD2)1, 3 2.7 V to 5.5 V Supply Voltages (V DD1, V DD2)2, 3 3.0 V to 5.5 V Input Signal Rise and Fall Times 1.0 ms 1 Does not apply to ADuM1400W , ADuM1401W , and ADuM1402W automotive grade versions. 2 Applies to ADuM1400W , ADuM1401W , and ADuM1402W automotive grade versions. 3 All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.。
10种运算放大器
10种不同类型的运算放大器介绍一.OP07C运算放大器OP07C是一款低失调低漂移运算放大器。
生产厂家主要有德州仪器公司和AD公司。
这款运算放大器具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
目前价格为1.5元/个—2元/个。
特点:1)低噪音2)没有外部组件要求3)输出电压范围广. . . 0 to ±14 V Typ4)供电电压范围广. . . ±3 V to ±18 V5)超低偏移:150μV最大6)低输入偏置电流:1.8nA 。
7)超稳定,时间:2μV/month最大8)高电源电压范围:±3V至±18V相关参数介绍:电气特性:虚拟通道连接= ± 15V ,二.LT1812 具有关断功能的运算放大器LT1812是LINEAR公司生产推出的一款具有良好的DC特性的低功耗,高速率,高转换率的运算放大器。
它采用具有电流反馈特性的电压反馈式电路结构,因而具有更低的电源电流,输入偏移电压和输入偏置电流及更高的DC增益,LT1812自身的关断特性使得芯片的电源电流仅为50uA,从而大大降低了功耗。
主要运用于带宽放大器,缓冲器,有源滤波器,有线设备,数据采集系统及音频,射频等领域。
目前报价10元/个。
特点:1)具有100MHz 的增益带宽,且增益稳定。
2)转换速率高。
3)具有关断功能,停机模式中的电源电流为50μA4)30ns 稳定时间至0.1%,5V 阶跃相关参数:工作范围:-40ºC 至85ºCTA = 25°C, VS = ±5V, VCM = 2.5V 括号内为测量条件(与上表参数数值相同的省三.LM318 高速运算放大器LM318是一款高速单运放。
运放OP07 datasheet
Pin Configuration............................................................................. 1
OP07E Electrical Characteristics ............................................... 3
OP07C Electrical Characteristics ............................................... 4
GENERAL DESCRIPTION
The OP07 has very low input offset voltage (75 μV maximum for OP07E) that is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP07 also features low input bias current (±4 nA for the OP07E) and high open-loop gain (200 V/mV for the OP07E). The low offset and high open-loop gain make the OP07 particularly useful for high gain instrumentation applications.
10种运算放大器
各种不同类型的运算放大器介绍董婷076112班一.uA741M,uA741I,uA741C(单运放)高增益运算放大器用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。
这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。
目前价格1元/个。
uA741主要参数ABSOLUTE MAXIMUM RATINGS最大额定值ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified) 电气特性二.CA3140 高输入阻抗运算放大器CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。
操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。
主要运用于单电源放大器在汽车和便携式仪表,有源滤波器,比较器,采样保持放大器,长期定时器,光电仪表,探测器,TTL接口,入侵报警系统,函数发生器,音调控制,电源,便携式仪器。
工作范围为-55 ºC —125 ºC。
目前生产厂家主要是INTERSIL公司和HARRIS公司,报价为:2.7—3元/个。
引脚图三.OP07C运算放大器OP07C是一款低失调低漂移运算放大器。
生产厂家主要有德州仪器公司和AD公司。
这款运算放大器具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
op07工作原理
op07工作原理OP07是一种高精度运算放大器,被广泛应用于传感器信号调理、自动控制、仪表和数据采集等领域。
它的工作原理是基于电流反馈的运放电路。
下面我们将详细介绍OP07的工作原理。
在OP07的内部,主要包含一个差分放大器、一个输入分别器、一个输出缓冲器和一个偏置电流源。
差分放大器负责放大输入信号,并对输入信号进行差分处理。
输入分别器负责对输入信号进行比较,从而判断输出信号的极性。
输出缓冲器负责增强输出信号的驱动能力,使得输出信号能够驱动较大的负载。
偏置电流源则用于提供稳定的偏置电流,使得差分放大器能够正常工作。
在工作时,OP07的输入端根据输入信号的变化,产生相应的电流。
这些电流通过输入分别器进行比较,得到一个比较结果。
如果输入信号的极性与参考电压的极性相同,那么输出信号的极性将与输入信号保持一致;如果输入信号的极性与参考电压的极性相反,那么输出信号的极性将与输入信号相反。
差分放大器接收输入信号并进行差分放大,使得输出信号的幅度得到放大。
其放大倍数是由反馈电阻和电阻的比值决定的。
如果电阻的比值较大,那么输出信号的幅度将得到较大的放大;反之,如果电阻的比值较小,那么输出信号的幅度将得到较小的放大。
差分放大器中的电流反馈也起到了抑制偏置电流和温度变化对放大器性能影响的作用。
输出缓冲器接收差分放大器的输出信号,并增强其驱动能力,使得输出信号能够驱动更大的负载。
输出缓冲器的增益稳定,能够保持输出信号的稳定性和一致性。
此外,OP07的偏置电流源非常重要,它能够提供稳定的偏置电流。
在不同温度和工作条件下,偏置电流源能够保持输出信号的稳定性,使得OP07在各种工作环境下都能够正常工作。
总结起来,OP07的工作原理主要是通过差分放大器对输入信号进行差分放大,并通过输入分别器对输入信号进行比较。
在差分放大过程中,利用电流反馈的方式来抑制偏置电流和温度变化对放大器性能的影响。
最后,通过输出缓冲器对差分放大器的输出信号进行增强,使得输出信号能够驱动较大的负载。
op07cdr中文资料
op07cdr中⽂资料OUT+OFFSET N2IN?IN+OFFSET N1132861Features3DescriptionThese devices offer low offset and long-term stability ?Low Noiseby means of a low-noise,chopperless,?No External Components Requiredbipolar-input-transistor amplifier circuit.For most ?Replace Chopper Amplifiers at a Lower Cost applications,external components are not required for offset nulling and frequency compensation.The ? Wide Input-Voltage Range:0to ±14V (Typ)true differential input,with a wide input-voltage range ?Wide Supply-Voltage Range:±3V to ±18Vand outstanding common-mode rejection,provides maximum flexibility and performance in high-noise 2Applicationsenvironments and in noninverting applications.Low bias currents and extremely high input impedances ?Wireless Base Station Control Circuits are maintained over the entire temperature range. Optical Network Control Circuits InstrumentationDevice Information (1)Sensors and Controls PART NUMBER PACKAGE (PIN)BODY SIZEPrecision FiltersSO (8) 6.20mm ×5.30mm OP07xSOIC (8) 4.90mm ×3.91mm PDIP (8)9.81mm ×6.35mm(1)For all available packages,see the orderable addendum atthe end of the data sheet.4Simplified SchematicAn IMPORTANT NOTICE at the end of this data sheet addresses availability,warranty,changes,use in safety-critical applications,intellectual property matters and other important disclaimers.PRODUCTION DATA.找电⼦元器件上宇航军⼯OP07C,OP07DSLOS099G–OCTOBER1983–REVISED NOVEMBER2014Table of Contents9.2Functional Block Diagram (7)1Features (1)9.3Feature Description (7)2Applications (1)9.4Device Functional Modes (7)3Description (1)10Application and Implementation (8)4Simplified Schematic (1)10.1General Application (8)5Revision History (2)10.2Typical Application (8)6Pin Functions (3)11Power Supply Recommendations (10)7Specifications (4)12Layout (11)7.1Absolute Maximum Ratings (4)12.1Layout Guidelines (11)7.2Handling Ratings (4)12.2Layout Example (11)7.3Recommended Operating Conditions (4)13Device and Documentation Support (12)7.4Thermal Information (4)13.1Related Links (12)7.5Electrical Characteristics (5)13.2Trademarks (12)7.6Operating Characteristics (6)13.3Electrostatic Discharge Caution (12)8Typical Characteristics (6)13.4Glossary (12)9Detailed Description (7)14Mechanical,Packaging,and Orderable9.1Overview (7)Information (12)5Revision HistoryChanges from Revision F(January2014)to Revision G Page ?Added Applications,Device Information table,Pin Functions table,Handling Ratings table,Thermal Information table,Typical Characteristics,Feature Description section,Device Functional Modes,Application andImplementation section,Power Supply Recommendations section,Layout section,Device and DocumentationSupport section,and Mechanical,Packaging,and Orderable Information section (1)Changes from Revision E(May2004)to Revision F Page ?Deleted Ordering Information table (1)2Submit Documentation Feedback Copyright?1983–2014,Texas Instruments IncorporatedProduct Folder Links:OP07C OP07D12348765OFFSET N1IN?IN+V CC?OFFSET N2V CC+OUT NCD OR P PACKAGE(TOP VIEW)NC ?No internal connectionOP07C,OP07DSLOS099G –OCTOBER 1983–REVISED NOVEMBER 20146Pin FunctionsPin FunctionsPINTYPE DESCRIPTIONNAME NO.IN+3I Noninverting input IN–2I Inverting input NC5—Do not connectOFFSET N11I External input offset voltage adjustment OFFSET N28I External input offset voltage adjustment OUT 6O Output V CC +7—Positive supply V CC –4—Negative supplyCopyright ?1983–2014,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Links:OP07C OP07DOP07C,OP07DSLOS099G–OCTOBER1983–REVISED NOVEMBER201411Power Supply RecommendationsThe OP07is specified for operation from±3to±18V;many specifications apply from0°C to70°C.CAUTIONSupply voltages larger than±22V can permanently damage the device(see theAbsolute Maximum Ratings).Place0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies.For more detailed information on bypass capacitor placement,refer to the Layout Guidelines.10Submit Documentation Feedback Copyright?1983–2014,Texas Instruments IncorporatedProduct Folder Links:OP07C OP07D。
OP07 运算放大器 ADI
Ultralow Offset VoltageRev. FInformation furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A.Tel: 781.329.4700 Fax: 781.461.3113 ©2002-2010 Analog Devices, Inc. All rights reserved.FEATURESLow V OS : 75 μV maximumLow V OS drift: 1.3 μV/°C maximumUltrastable vs. time: 1.5 μV per month maximum Low noise: 0.6 μV p-p maximumWide input voltage range: ±14 V typical Wide supply voltage range: 3 V to 18 V 125°C temperature-tested diceAPPLICATIONSWireless base station control circuits Optical network control circuits Instrumentation Sensors and controls ThermocouplesResistor thermal detectors (RTDs) Strain bridgesShunt current measurements Precision filtersGENERAL DESCRIPTIONThe OP07 has very low input offset voltage (75 μV maximum for OP07E) that is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for externalnulling. The OP07 also features low input bias current (±4 nA for the OP07E) and high open-loop gain (200 V/mV for the OP07E). The low offset and high open-loop gain make the OP07particularly useful for high gain instrumentation applications. PIN CONFIGURATIONV OS TRIMV OS TRIM –IN V++IN OUTV–NCNC = NO CONNECT00316-001Figure 1.The wide input voltage range of ±13 V minimum combined with a high CMRR of 106 dB (OP07E) and high inputimpedance provide high accuracy in the noninverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains. Stability of offsets and gain with time or variations in temperature is excellent. The accuracy and stability of the OP07, even at high gain, combined with the freedom from external nulling have made the OP07 an industry standard for instrumentation applications.The OP07 is available in two standard performance grades. The OP07E is specified for operation over the 0°C to 70°C range, and the OP07C is specified over the −40°C to +85°C temperature range.The OP07 is available in epoxy 8-lead PDIP and 8-lead narrow SOIC packages. For CERDIP and TO-99 packages and standard microcircuit drawing (SMD) versions, see the OP77.1R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY FOR MINIMUM INPUT OFFSET VOLTAGE.00316-002Figure 2. Simplified SchematicRev. F | Page 2 of 16TABLE OF CONTENTSFeatures .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Pin Configuration ............................................................................. 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 OP07E Electrical Characteristics ............................................... 3 OP07C Electrical Characteristics .. (4)Absolute Maximum Ratings ............................................................6 Thermal Resistance .......................................................................6 ESD Caution...................................................................................6 Typical Performance Characteristics ..............................................7 Typical Applications ....................................................................... 11 Applications Information .......................................................... 12 Outline Dimensions ....................................................................... 13 Ordering Guide .. (14)REVISION HISTORY8/10—Rev. E. to Rev FChanges to Ordering Guide .......................................................... 14 7/09—Rev. D. to Rev EChanges to Figure 29 Caption ....................................................... 11 Changes to Ordering Guide .......................................................... 14 7/06—Rev. C. to Rev D Changes to Features .......................................................................... 1 Changes to General Description .................................................... 1 Changes to Specifications Section .................................................. 3 Changes to Table 4 ............................................................................ 6 Changes to Figure 6 and Figure 8 ................................................... 7 Changes to Figure 13 and Figure 14 ............................................... 8 Changes to Figure 20 ........................................................................ 9 Changes to Figure 21 to Figure 25 ................................................ 10 Changes to Figure 26 and Figure 30 ............................................. 11 Replaced Figure 28 ......................................................................... 11 Changes to Applications Information Section ............................ 12 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide . (14)8/03—Rev. B to Rev. CChanges to OP07E Electrical Specifications .................................. 2 Changes to OP07C Electrical Specifications ................................. 3 Edits to Ordering Guide ................................................................... 5 Edits to Figure 6 ................................................................................. 9 Updated Outline Dimensions ....................................................... 11 3/03—Rev. A to Rev. BUpdated Package Titles ...................................................... U niversal Updated Outline Dimensions ....................................................... 11 2/02—Rev. 0 to Rev. AEdits to Features................................................................................. 1 Edits to Ordering Guide ................................................................... 1 Edits to Pin Connection Drawings ................................................. 1 Edits to Absolute Maximum Ratings .............................................. 2 Deleted Electrical Characteristics .............................................. 2–3 Deleted OP07D Column from Electrical Characteristics ....... 4–5 Edits to TPCs ................................................................................ 7–9 Edits to High-Speed, Low V OS Composite Amplifier . (9)SPECIFICATIONSOP07E ELECTRICAL CHARACTERISTICSV S = ±15 V, unless otherwise noted.Rev. F | Page 3 of 16Rev. F | Page 4 of 161 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.2Long-term input offset voltage stability refers to the averaged trend time of V OS vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V OS during the first 30 operating days are typically 2.5 μV. Refer to the Typical Performance Characteristics section. Parameter is sample tested. 3Sample tested. 4Guaranteed by design. 5Guaranteed but not tested.OP07C ELECTRICAL CHARACTERISTICSV S = ±15 V , unless otherwise noted.Rev. F | Page 5 of 161 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.2Long-term input offset voltage stability refers to the averaged trend time of V OS vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V OS during the first 30 operating days are typically 2.5 μV. Refer to the Typical Performance Characteristics section. Parameter is sample tested. 3Sample tested. 4Guaranteed by design. 5Guaranteed but not tested.Rev. F | Page 6 of 16ABSOLUTE MAXIMUM RATINGS1For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.THERMAL RESISTANCEθJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.Rev. F | Page 7 of 16TYPICAL PERFORMANCE CHARACTERISTICS10000200400600800900100300500700–50–75100500–251257525O P E N -L O OP G A I N (V /m V )TEMPERATURE (°C)00316-003Figure 3. Open-Loop Gain vs. Temperature302520151050–20020406080100A B S O L U T E C H A N G E I N I N P U T O F F S ET V O L T A G E (µV )TIME (Seconds)00316-004Figure 4. Offset Voltage Change due to Thermal ShockOP07COP07E252015105012345A B S O L U T E C H A N G E I N I N P U T O F F S E T V O L T A G E (µV )TIME AFTER SUPPLY TURN-ON (Minutes)V S = ±15V T A = 25°C00316-005Figure 5. Warm-Up Drift 1.00.80.60.40.201001k10k100kMATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)M A X I M U M E R R O R R E F E R R E D T O I N P U T (mV )00316-006Figure 6. Maximum Error vs. Source Resistance1.21.00.80.60.40.201001k10k100kMATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)M A X I M U M E R R O R R E F E R R E D TO I N P U T (m V )00316-007Figure 7. Maximum Error vs. Source Resistance30–30–20–101020–30–20–103020100DIFFERENTIAL INPUT VALUE (V)N O N I N V E R T I N G I N P U TB I A SC U R R E N T (n A )00316-008Figure 8. Input Bias Current vs. Differential Input VoltageRev. F | Page 8 of 1643210TEMPERATURE (°C)I N P U T B I A S C U R R E N T(n A )–50–75100500–25125752500316-009Figure 9. Input Bias Current vs. Temperature2.52.01.51.00.50TEMPERATURE (°C)I N P U T O F F S E T C U R R EN T (n A )–50–100–75500–25100752500316-010Figure 10. Input Offset Current vs. TemperatureTIME (1s/DIV)VO L T A G E (200n V /D I V )00316-011Figure 11. Low Frequency Noise 1000100101FREQUENCY (Hz)I N P U T N O I S E V O L T A G E (n V / H z )101100010000316-012Figure 12. Total Input Noise Voltage vs. Frequency1010.1BANDWIDTH (Hz)R M S N O I S E (µV )1k 100100k10k00316-013Figure 13. Input Wideband Noise vs. Bandwidth,0.1 Hz to Frequency Indicated13012011010090807060FREQUENCY (Hz)CM R R (d B )101100k1k10k10000316-014Figure 14. CMRR vs. FrequencyRev. F | Page 9 of 161201101009080705060FREQUENCY (Hz)P S R R (d B )100.1110k 1k 10000316-015Figure 15. PSRR vs. Frequency1000800600400200POWER SUPPLY VOLTAGE (V)O P E N -L O O P G A I N (V /m V )±100±5±20±15T A = 25°C00316-016Figure 16. Open-Loop Gain vs. Power Supply Voltage120100806040200–20–40FREQUENCY (Hz)O P E N -L O O P G A IN (d B )0.11101001k 10k 100k 1M 10M 00316-017Figure 17. Open-Loop Frequency Response 10080604020–20FREQUENCY (Hz)C L O S ED -L O O P G A I N (d B )101001k10k 100k 1M 10M00316-018Figure 18. Closed-Loop Frequency Response for Various Gain Configurations2824201612840FREQUENCY (Hz)P E A K -T O -P E A K A M P L I T U DE (V )1k10k 100k1M00316-019Figure 19. Maximum Output Swing vs. Frequency20151050LOAD RESISTANCE TO GROUND (Ω)M A X I M U M O U T P U T (V)1001k10k00316-020Figure 20. Maximum Output Voltage vs. Load ResistanceRev. F | Page 10 of 161000100101TOTAL SUPPLY VOLTAGE, V+ TO V– (V)P O W E R C O N S U MP T I O N (m W )010203040506000316-021Figure 21. Power Consumption vs. Power Supply3530252015TIME FROM OUTPUT BEING SHORTED (Minutes)O U T P U T S H O R T -C I R C U I T C U R R E N T (m A )0432100316-022Figure 22. Output Short-Circuit Current vs. Time85.0042.5063.7521.250TEMPERATURE (°C)A B S O L U T E V A L U E O F O F F S E T V O L T AG E (µV )–751251007550250–25–5000316-023Figure 23. Untrimmed Offset Voltage vs. Temperature30.015.022.57.50TEMPERATURE (°C)A B S O L U T E V A L U E O F O F F S E T V O L T A G E (µV)–100–751007550250–25–5000316-024Figure 24. Trimmed Offset Voltage vs. Temperature16–16–12–8–404812TIME (Months)T O T A L D R I F T W I T H T I M E (µV )012111098765432100316-025Figure 25. Offset Voltage Drift vs. TimeRev. F | Page 11 of 16TYPICAL APPLICATIONSE OE INE O = –E IN –I B RFRFR100316-026Figure 26. Typical Offset Voltage Test CircuitE OE3E 2E 1R410k Ω00316-027Figure 27. Typical Low Frequency Noise Circuit OUTV+00316-028Figure 28. Optional Offset Nulling CircuitE OR5R4R3E IN ±10V00316-029Figure 29. Absolute Value CircuitE OE INO IN B RF R1NOTES1. PINOUT SHOWN FOR P PACKAGE00316-030Figure 30. High Speed, Low V OS Composite AmplifierE OE 3E 2E 1R410k ΩNOTES1. PINOUT SHOWN FOR P PACKAGE00316-031Figure 31. Adjustment-Free Precision Summing AmplifierRev. F | Page 12 of 16NOTES1. PINOUT SHOWN FOR P PACKAGEE OREFERENCE JUNCTIONSENDING JUNCTION00316-032Figure 32. High Stability Thermocouple AmplifierE OR510k ΩR410k ΩR310k ΩE IN ±10VNOTES1. PINOUT SHOWN FOR P PACKAGE00316-033Figure 33. Precision Absolute-Value CircuitAPPLICATIONS INFORMATIONThe OP07 provides stable operation with load capacitance of up to 500 pF and ±10 V swings; larger capacitances should be decoupled with a 50 Ω decoupling resistor.Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade driftperformance. Therefore, best operation is obtained when both input contacts are maintained at the same temperature, preferably close to the package temperature.Rev. F | Page 13 of 16OUTLINE DIMENSIONSCONTROLLING DIMENSIONS ARE IN MILLIMETERS;INCH DIMENSIONS (IN PARENTHESES)ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DES IGN.COMPLIANT TO JEDEC STANDARDS MS-012-AA012407-A0.17(0.0067)0.40(0.0157)0.25(0.0098)0.10(0.0040)COPLANARITY0.10Figure 34. 8-Lead Standard Small Outline Package [SOIC_N]Narrow Body S-Suffix(R-8)Dimensions shown in millimeters and (inches)COMPLIANT TO JEDEC STANDARDS MS-001CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES)ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.070606-A0.070 (1.78)0.060 (1.52)0.045 (1.14)BSCMAX0.325 (8.26)0.310 (7.87)0.300 (7.62)0.015 (0.38)GAUGE PLANEFigure 35. 8-Lead Plastic Dual-in-Line Package [PDIP]P-Suffix (N-8)Dimensions shown in inches and (millimeters)1 Z = RoHS Compliant Part.Rev. F | Page 14 of 16NOTESRev. F | Page 15 of 16NOTES©2002-2010 Analog Devices, Inc. All rights reserved. Trademarks andD00316-0-8/10(F)Rev. F | Page 16 of 16。
运放op07参数
运放op07参数引言运放(Operational Amplifier)是一种重要的电子元件,用于放大、滤波、积分、微分等各种信号处理。
OP07是一款经典的运放芯片,具有高精度、低噪声和低失调电流等优点,在工业、仪器仪表、通信等领域得到广泛应用。
本文将详细介绍OP07的参数及其意义,以帮助读者更好地了解和应用该芯片。
1. 增益OP07的增益是指输入信号与输出信号之间的比例关系。
它由两个参数决定:开环增益(Aol)和关闭环路增益(Acl)。
开环增益是指在没有反馈的情况下,运放输出端对输入端变化的响应程度;关闭环路增益是指在有反馈的情况下,运放输出端对输入端变化的响应程度。
2. 输入失调电流输入失调电流是指在运放输入端之间流动的微弱电流差异。
OP07具有极低的输入失调电流(通常为几十纳安级),这使得它能够处理微弱信号,并提供高精度的放大功能。
3. 输入失调电压输入失调电压是指在运放输入端之间存在的微小电压差。
OP07具有极低的输入失调电压(通常为几微伏级),这使得它能够提供高精度的信号放大和处理。
4. 噪声参数噪声是在信号处理中不可避免的干扰因素,它会降低系统的信噪比。
OP07具有低噪声特性,其噪声参数主要包括输入噪声电压和输出噪声电压。
输入噪声电压是指运放输入端引入的噪声;输出噪声电压是指运放输出端引入的噪声。
5. 输入阻抗和输出阻抗输入阻抗是指运放对外部信号源提供的负载能力,也可以看作是运放对外部信号源的影响程度。
OP07具有高输入阻抗,这使得它能够接收来自传感器等低功率信号源,并提供稳定的放大功能。
输出阻抗是指运放输出端对外部负载提供的内部阻力,也可以看作是运放对外部负载影响程度。
6. 温漂温漂是指某一物理量随温度变化而引起的变化。
OP07具有低温漂特性,这意味着它的参数在不同温度下的变化较小,能够提供稳定的性能。
7. 功耗功耗是指运放芯片在工作过程中所消耗的电力。
OP07具有低功耗特性,这使得它适用于对电池寿命要求较高的应用场景。
10种运算放大器
董婷 076112班一.uA741M,uA741I,uA741C(单运放)高增益运算放大器用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。
这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。
目前价格1元/个。
uA741主要参数ABSOLUTE MAXIMUM RATINGS最大额定值ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified) 电气特性虚拟通道连接= ± 15V , Tamb = 25 ℃(除非另有说明)二.CA3140 高输入阻抗运算放大器CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS 高电压的运算放大器在一片集成芯片上,该CA3140A 和CA3140 BiMOS 运算放大器功能保护MOSFET 的栅极(PMOS 上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。
操作电源电压从4V 至36V (无论单或双电源),它结合了压电PMOS 晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。
主要运用于单电源放大器在汽车和便携式仪表,有源滤波器,比较器,采样保持放大器,长期定时器,光电仪表,探测器,TTL 接口,入侵报警系统,函数发生器,音调控制,电源,便携式仪器。
工作范围为-55 ºC —125 ºC 。
目前生产厂家主要是INTERSIL 公司和HARRIS 公司,报价为:—3元/个。
引脚图三.OP07C运算放大器OP07C是一款低失调低漂移运算放大器。
生产厂家主要有德州仪器公司和AD 公司。
这款运算放大器具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
超低失调电压运算放大器OP07AOP07
超低失调电压运算放大器OP07A/OP07产品特性●低失调电压:最大25μV / 75μV●低失调电压漂移:最大0.6μV/℃/ 1.3μV/℃●低输入偏置电流:1nA(典型值)●高电压增益:134dB(典型值)●低噪声:最大0.6μV p-p●宽输入电压范围:±14V(典型值)●宽电源电压范围:±3V~±18V●抗电离总剂量:100k rad(Si)(剂量率:0.1rad(Si)/s)产品概述通过晶圆级在线调整,OP07表现出极低的输入失调电压(对于OP07A 常温失调电压最大为25μV)。
极低的失调电压使得电路应用时无需任何外部调零。
OP07同时也有低输入偏置电流(对于OP07A为±2nA)、高开环增益(对于OP07A典型值为134dB)的特点。
低失调和高开环增益使得OP07十分适用于高增益仪器仪表应用。
最小为±13V的宽输入电压范围结合了高共模抑制比和高输入阻抗,这为同相电路结构提供了很高的精确性。
甚至在高增益的闭环电路中仍然可以保持极佳的线性度和极其精确的增益。
失调和增益的稳定性随着时间和温度的变化表现良好。
甚至在高增益的条件下,OP07的稳定性和准确性以及外部调零使得OP07在仪器应用方面成为工业标准。
OP07采用两种封装形式,陶瓷双列直插8线外壳和金属圆8线外壳,均适用于−55℃到+125℃温度范围。
引脚描述(1)金属圆8线(2)陶瓷双列8线图1.OP07引出端排列(俯视图)电原理图图2.简化电路图电参数表≤+125℃。
表1. OP07A/OP07电特性,除非特别说明,Vs=±15V,-55℃≤T续表1. OP07A/OP07电特性,除非特别说明,Vs=±15V,-55℃≤T A≤+125℃。
绝对最大额定值表2. 绝对最大额定值注1:电源电压低于±18V时,绝对最大输入电压等于电源电压。
注2:最大差模输入电压不能超过电源电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Min. 0.020 0.045 0.014 0.008 0.313
Inches Typ. 0.131
Max.
1.65 0.55 0.304 10.92 9.75 2.54 7.62 7.62 6.6 5.08 3.81 1.52
0.065 0.022 0.012 0.430 0.384 0.100 0.300 0.300 0260 0.200 0.150 0.060
V/µS MHz
en
nV √ Hz pA √ Hz
in
Note 1 :
1. Long Term Input Offset Voltage Stability refers to the average trend line of Vio vs time over extended periods after the first 30 days of operation.
Part Number OP07C Temperature Range -40 C, +105 C
o o
Package N •
Offset Null 1 Inverting Input Non-inverting Input V CC
1 2 3 4
8 7 6 5
Offset Null 2 VCC Output N.C.
3.18
0.125
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without noti ce. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
0.4 0.5 0.8 15 1.8 15 60 33 120 ±13.5
SVR
Avd
Vopp
0°C ≤ Tamb ≤ +70°C SR GBP ICC
Slew Rate (R L = 2kΩ, CL = 100pF) Gain Bandwidth Product (R L = 2kΩ, CL = 100pF, f = 100kHz) Supply Current - (no load) 0°C ≤ Tamb ≤ +70°C VCC = ± 3V Equivalent Input Noise Voltage f = 10Hz f = 100Hz f = 1kHz Equivalent Input Noise Current f = 10Hz f = 100Hz f = 1kHz
4/4
DIP8.TBL
PM-DIP8.EPS
3/4
OP07C
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP
Dimensions A a1 B b b1 D E e e3 e4 F i L Z
Min. 0.51 1.15 0.356 0.204 7.95
Millimeters Typ. 3.32
Max.
N DIP8 (Plastic Package)
DESCRIPTION The OP07C is a very high precision op amp with an offset voltage maximum of 150µV. Offering also low input current (1.8nA) and high gain (400V/mV), the OP07C is particularly suitable for instrumentation applications. PIN CONNECTIONS (top view) ORDER CODES
October 1997
1/4
OP07C
SCHEMATIC DIAGRAM
VCC R2A Offset Null R1A N2 N4 R1B T15 T9 D8 T5 R3 T1 T3 T6 D9 T4 D7 D6 D1 Inverting input R4 D2 D4 D3 T2 D5 R5 T13 T11 T14 C3 C2 D11 T12 T17 T16 R10 T7 T8 R9 Output T10 T18 R2B C1 R7
Non-inverting input
D10 VCC
R6
R8
INPUT OFFSET VOLTAGE NULLING CIRCUIT
Offset Null 1 Offset Null 2
20kΩ
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vid Vi Toper Tstg Supply Voltage Differential Input Voltage Input Voltage Operating Temperature Storage Temperature Parameter Value ±22 ±30 ±22 -40 to +105 -65 to +150 Unit V V V
o o
C CΒιβλιοθήκη 2/4OP07CELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified)
Symbol Vio Input Offset Voltage 0°C ≤ Tamb ≤ +70°C Long Term Input Offset Voltage Stability - (note 1) DVio Iio DIio Iib DIib Ro Rid R ic Vicm CMR Input Offset Voltage Drift Input Offset Current 0°C ≤ Tamb ≤ +70°C Input Offset Current Drift Input Bias Current 0°C ≤ Tamb ≤ +70°C Input Bias Current Drift Open Loop Output Resistance Differential Input Resistance Common Mode Input Resistance Input Common Mode Voltage Range 0°C ≤ Tamb ≤ +70°C Common Mode Rejection Ratio (Vi = Vicm min) 0°C ≤ Tamb ≤ +70°C Supply Voltage Rejection Ratio (VCC = ± 3 to ±18V) 0°C ≤ Tamb ≤ +70°C Large Signal Voltage Gain VCC = ± 15, RL = 2kΩ, VO = ±10V, 0°C ≤ Tamb ≤ +105°C VCC = ± 3V, R L = 500Ω, VO = ± 0.5V Output Voltage Swing R L = 10kΩ R L = 2kΩ R L = 1kΩ R L = 2kΩ ±13 ±13 100 97 90 86 120 100 100 ±12 ±11.5 ±11 Parameter Min. Typ. 60 Max. 150 250 2 1.8 6 8 50 7 9 50 Unit µV µV/Mo µV/°C nA pA/°C nA pA/°C Ω MΩ GΩ V dB 120 dB 104 V/mV 400 400 ±13 ±12.8 ±12 0.17 0.5 2.7 0.67 11 10.5 10 0.3 0.2 0.1 5 6 1.3 20 13.5 11.5 0.9 0.3 0.2 mA V
OP07C
VERY LOW OFFSET SINGLE BIPOLAR OPERATIONAL AMPLIFIERS
. . . . .
EXTREMELY LOW OFFSET : 150µV MAX LOW INPUT BIAS CURRENT : 1.8nA LOW Vio DRIFT : 0.5µV/oC ULTRA STABLE WITH TIME : 2µV/month max. WIDE SUPPLY VOLTAGE RANGE : ± 3V to ± 22V
ORDER CODE :
© 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.