2017-2018学年人教版初二下册数学期末测试卷及答案

合集下载

2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案

2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案

2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案2017-2018学年八年级数学下学期期末教学质量检测试卷一、选择题(1-5每题2分,6-15每题3分,共40分)1.以下各组数能构成直角三角形的是()A。

4,5,6B。

1,1,2C。

6,8,11D。

5,12,232.下列二次根式是最简二次根式的是()A。

$\sqrt{1/2}$B。

4C。

2D。

83.下列函数中,y是x的正比例函数的是()A。

y=x/3B。

y=2x-1C。

y=2x²D。

y=-2x+14.一鞋店试销一款女鞋,销量情况如右表:这个型号 22.5 23 23.5 24 24.5数量/双 5 10 15 8 3鞋店的经理最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A。

平均数B。

众数C。

中位数D。

方差5.如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。

已知AB=4,BC=5,EF=3.那么四边形EFCD的周长是()A。

14B。

12C。

16D。

106.顺次连结对角线相等的四边形各边中点所得的四边形必是()A。

菱形B。

矩形C。

正方形D。

无法确定7.下列根式中,与3是同类二次根式的是()A。

$\sqrt{46}$B。

$\sqrt{18}$C。

$\sqrt{3/2}$D。

$\sqrt{12}$8.如图,爷爷从家(点O)出发,沿着扇形AOB上OA→弧AB→BO的路径匀速散步。

设爷爷与家(点O)的距离为s,散步的时间为t,则下列图形中能大致刻画s与t之间函数关系的图象是()A。

B。

C。

D。

9.如图,在四边形ABCD中,AB=12cm,BC=3cm,CD=4cm,∠C=90°,当AD为多少时,∠ABD=90°()A。

13B。

63C。

12D。

6210.如果$(x-2)^2=2-x$,那么()A。

x<2B。

x≥2C。

x>2D。

x≤211.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A。

2017-2018学年人教版八年级下册期末考试数学试题及答案

2017-2018学年人教版八年级下册期末考试数学试题及答案

2017-2018学年八年级下学期期末考试数学试题一、 选择题:(共8个小题,每小题2分,共16分)1.在我国古代的房屋建筑中,窗棂是重要的组成部分,具有高度的艺术价值. 下列窗棂的图案中,是中心...对称图形但不是轴对称图形的.............是2.如图,为测量池塘边上两点A ,B 之间的距离,可以在池塘的 一侧选取一点O ,连接OA ,OB ,并分别取它们的中点D ,E , 连接DE ,现测出AO =36米,BO =30米,DE =20米, 那么A ,B 间的距离是A .30米B .40米C .60米D .72米 3.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙 丙 丁 平均数(环) 8.9 9.1 8.9 9.1 方差3.33.83.83.3根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择 A .丁 B .丙 C .乙D .甲 4.一个不透明的盒子中装有3个红球,2个黄球和1个白球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是红球的概率为A .16B .13 C. 12 D .235.用配方法解方程223x x -=时,原方程应变形为A. ()212x += B. ()212x -=C. ()214x +=D. ()214x -=6.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .B .1- C.2D .2- 7. 若正比例函数y kx =的图象经过点(,9)A k ,且经过第一、三象限,则k 的值是 A. -9B. -3C. 3D. -3或3 8. 甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们A .B .C .D .乙甲-120104321OstFEDCBA α前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.①乙比甲晚出发1小时;②甲比乙晚到B 地3小时;③甲的速度是5千米/时;④乙的速度是10千米/小时;根据图 象信息,下列说法正确的是A .①B .③C .①②D .①③二、 填空题 (共5个小题,每题2分,共10分)9. 关于x 的一元二次方程230x x k -+=有一个根为1,则k 的值等于______.10. 如图,六边形ABCDEF 是正六边形,那么a Ð的度数是______.11. 已知:菱形的两条对角线长分别为6和8,那么它的边长是 .12. 某学习小组的同学做摸球实验时,在一个暗箱里放了多个只有颜色不同的小球,将小 球搅匀后任意摸出一个,记下颜色并放回暗箱,再次将球搅匀后任意摸出一个,不 断重复.下表是实验过程中记录的数据: 摸球的次数m 300 400 500 800 1000 摸到白球的次数n 186 242 296 483 599 摸到白球的频率m n0.6200.6050.5920.6040.599请估计从暗箱中任意摸出一个球是白球的概率是 . 13.在平面直角坐标系xOy 中,直线12y x =与双曲线22y x =的图象如图所示, 小明说:“满足12y y <的x 的取值范围 是1x <-.”你同意他的观点吗?答: .理由是 .三、解答题 (共74分)14.解方程:(1)2450x x +-=. (2)23210x x +-=. 15.已知:如图,矩形ABCD ,点E 是BC 上一点,连接AE ,AF 平分∠EAD 交BC 于F .求证:AE =EF16.已知关于x 的一元二次方程2420x x k -+-=有实数根, (1)求k 的取值范围;(2)若k 为负整数,且方程两个根均为整数,求出它的根.y xy 2=2xy 1=2x–1–2–3–41234–1–2–3–41234O 第10题图题图F E DCB A17.已知:如图,在平行四边形ABCD 中,延长CB 至E ,延长AD 至F ,使得BE =DF ,连接EF 与对角线AC 交于点O . 求证:OE =OF .18.2017年6月17日北京国际自行车大会召开,来自世界各地的4000多名骑游爱好者齐聚夏都延庆.各种自行车赛事也带动了延庆的骑游产业.据调查,延庆区某骑游公司每月的租赁自行车数的增长率相同,今年四月份的骑游人数约为9000人,六月份的骑游人数约为16000人,求该骑游公司租赁自行车数的月平均增长率(精确到0.01).19.设函数1y x=与21y x =+的图象的交点坐标为(,)a b ,求12ab-的值.20.如图,在△ABC 中,∠ACB =90°,点D 是AB 的中点,过点D 作DE ⊥AC 于点E , 延长DE 到点F ,使得EF =DE ,连接AF ,CF . (1)根据题意,补全图形; (2)求证:四边形ADCF 是菱形;(3)若AB =8,∠BAC =30°,求菱形ADCF 的面积.21.尺规作图已知:如图,∠MAB =90°及线段AB . 求作:正方形ABCD .要求:1.保留作图痕迹,不写做法,作出一个满足条件的正方形即可; 2.写出你作图的依据.22.从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显 示,参与共享经济活动超6 亿人,比上一年增加约1亿人.(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是 ; A .对某学校的全体同学进行问卷调查BC ADMBA OFEDCBAB.对某小区的住户进行问卷调查C.在全市里的不同区县,选取部分市民进行问卷调查(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.根据以上信息解答下列问题:①统计表中的a= ;b= ;②补全频数分布直方图;③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有多少人?23.在平面直角坐标系xOy中,直线(0)y kx b k=+¹与双曲线8yx=的一个交点为(2,)P m,与x轴、y轴分别交于点A,B.(1)求m的值;(2)若2AOP AOBS SD D=,求k的值.24.2020年冬奥会将在延庆召开,延庆区某中学响应区团委的号召,组织学生参加“我是奥运小志愿者”活动,志愿者可以到“八达岭长城”、“世葡园”、“龙庆峡”、“百里画廊”四个景区之一参加活动.晓明对“八达岭长城”和“百里画廊”最感兴趣,他将四个景区编号为A、B、C、D,并写在四张卡片上(除编号和内容不同之外,其余完全相同),他将卡片背面朝上,洗匀放好,从中随机抽取两张,请用列表或是画树状图的方法,求抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率. (说明:这四张卡片分别用它的编号A、B、C、D表示)年龄段(岁) 频数 频率12≤x<16 2 0.0216≤x<20 3 0.0320≤x<24 15 a24≤x<28 25 0.2528≤x<32 b 0.3032≤x<36 25 0.25骑共享单车的人数统计表骑共享单车的人数统计表频数(人)216123530252015105频数分布直方图频数分布直方图HGOyx1234-1-3-2-132125.已知矩形的面积为1,设该矩形的长为x ,周长为y ,小彬借鉴以前研究函数的经验,对函数y 随自变量x 的变化进行了探究;以下是小彬的探究过程: (1) 结合问题情境分析:①y 与x 的函数表达式为 ;②自变量x 的取值范围是 . (2)下表是y 与x 的几组对应值.x (41)31211 2 3 4… y…17220354m203172…①写出m 的值; ②画出函数图象;③观察图象,写出该函数两条不同类型的性质.26.已知:正方形ABCD ,E 为平面内任意一点,连接DE ,将线段DE 绕点D 顺时针旋转90°得到DG ,连接EC ,AG . (1)当点E 在正方形ABCD 内部时,①根依题意,在图1中补全图形; ②判断AG 与CE 的数量关系与位置关系 并写出证明思路..... (2)当点B ,D ,G 在一条直线时,若AD =4,DG =22,求CE 的长. (可在备用图中画图)27.对于点P (x ,y ),规定x +y =a ,那么就把a 叫点P 的亲和数.例如:若P (2,3),则2+3=5,那么5叫P 的亲和数.(1)在平面直角坐标系中,已知,点A (-2,6)①B (1,3),C (3,2),D (2,2),与点A 的亲和数相等的点 ;AB C DEDCB A图1 备用图备用图②若点E 在直线6y x =+上,且与点A 的亲和数相同,则点E 的坐标是 ;(2)如图点P 是矩形GHMN 边上的任意点,且点H (2,3),N (-2,-3),点Q 是直线y x b =-+上的任意点,若存在两点P 、Q 的亲和数相同,那么求b 的取值范围?初 二 数 学 答 案一、选择题:(共8个小题,每小题2分,共16分)DBAC DACD二、填空题 (共5个小题,每空2分,共10分)9.2. 10.60° 11.5. 12.0.599. 13.不同意,理由略 三、解答题14.(1)2450x x +-=(5)(1)0x x +-=……3分 ∴125,1x x =-=……4分 (2)方法1: 方法2:23210x x +-=23210x x +-= 3,2,1a b c ===- (31)(1)0x x -+=3分 242b b ac x a -±-= ∴121,13x x ==- 4分 ∴241223x -±+=´3分 ∴121,13x x ==-4分 15.证明:∵矩形ABCD ∴AD ∥BC ,∴∠DAF =∠AFB ………1分 ∵AF 平分∠EAD∴∠DAF =∠EAF ………2分 ∴∠AFB =∠EAF ………3分FEDCB A∴AE=EF ………4分 16.解:(1)∵关于x 的一元二次方程2420x x k -+-=有实数根∴0D ³∵24164(2)840b ac k k D =-=--=+³∴2k ³- ……………2分 (2)∵2k ³-且k 为负整数∴2,1k k =-=- ……………3分 当2k =-时,原方程化为2440x x -+=,则方程的解为122x x ==……4分当1k =-时,原方程化为2430x x -+=,则方程的解为123,1x x ==……5分17.证明:连接AE ,DF∵ABCD∴AD ∥BC ,AD=BC ……2分 ∵BE =DF ∴CE =AF ……3分 ∴四边形AECF 为平行四边形……4分 ∴OE =OF ……5分18.设该骑游公司租赁自行车数的月平均增长率是x ,…………………1分依题意,得:()29000116000x +=,………………………3分解得: 413x +=±∴120.33,0.67x x ==-(舍).……………………………4分答:该骑游公司租赁自行车数的月平均增长率是0.33 .……………5分19.∵函数1y x =与21y x =+的图象的交点为(,)a b∴1,21ab b a ==+ ……2分∴122111b a a b ab ++=== ……4分 21.(1)补全图形-----------------1分 (2)证明:∵Rt △ABC 中,CD 是AB 边上的中线, ∴CD=AD , ∵DE ⊥AC ,OFEDCB AF E DCBA∴AE=EC , ∵DE=EF∴四边形ADCF 为平行四边形 ……2分 ∵AD=CD∴平行四边形ADCF 为菱形 ……3分 (3)在Rt △ADE 中∵AD =4,∠AED=90°,∠CAD=30°, ∴DE =12AD =2, ∴由勾股定理得,3AE =. ……4分 ∴ADCF=423=83S´菱形……5分22.答案略(1)画图------------2分(2)依据------------4分23. 共5分,每空1分(1)C(2)①a =0.15;b=30;②补全图形;③700 23.(1)(2,)P m 在双曲线8y x=的图象上∴m =4 --------1分 (2)如图,分两种情况 ①当与y 轴正半轴相交时∵AOP AOB S =2S D D∴11222x BO P =BO OA∴O B =2 ∴B (0,2)由题意得,(0)y kx b k =+¹经过点B (0,2),P (2,4)∴解得1k =-----------3分②当与y 轴负半轴相交时∵AOPAOBS =2SD D∴11222y AO P =BO OA∴OB =2 ∴B (0,-2)由题意得,(0)y kx b k =+¹经过点B (0,-2),P (2,4) ∴解得3k =综上所述:1k =,3k = -----------5分24.A (八达岭)B (市葡园)C (龙庆峡)D (百里画廊)A (八达岭)AB AC AD B (市葡园) BA BC BD C (龙庆峡) CACB CD D (百里画廊) DADBDC∴抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率21126P ==-----4分 25. (1)①y 与x 的函数表达式为22y x x =+;-----------1分 ②自变量x 的取值范围是x >0. -----------2分 (2)①m =4; -----------3分②函数图象如图所示; -----------4分 ③答案略. -----------6分26. (1)当点E 在正方形ABCD 内部时,①根依题意,补全图形如图: -----------1分 ②AG =CE ,AG ⊥CE . -----------3分 证明思路如下:①由正方形ABCD,可得A D=CD,∠ADC=90°,②由DE绕着点D顺时针旋转90°得DG,可得∠GDE=∠ADC=90°,GD=DE,进而可得,∠GDA=∠EDC③利用角边角可证△AGD≌△CED,可得AG=CE.----------4分证明思路如下:①延长CE分别交AG、AD于点F、H,②由①中结论△AGD≌△CED,可得∠GAD=∠ECD,③由∠AHF=∠CHD,利用三角形内角和定理可得∠AFH=∠HDC=90°④利用垂直定义可证得AG⊥CE.- --------5分(2)解:当点G在线段BD的延长线上时,如图3所示.过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADB=∠GDM=45°.∵GM⊥AD,DG=∴MD=MG=1在Rt△AMG中,由勾股定理,得AG=∴CE=AG=. ----------6分当点G在线段BD上时,如图4所示.过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADG=45°∵GM⊥AD,DG=∴MD=MG=1在Rt△AMG中,由勾股定理,得AG=∴CE=AG= --------7分故CE的长为或27.(1)①与点A的亲和数相等的点 B , D ; --------2分HGOyx1234-1-3-2-1321②点E的坐标是 (-1,5); --------4分 (2)b的取值范围是55b-££ --------7分。

2017-2018学年人教版数学八年级第二学期期末考试试题及答案

2017-2018学年人教版数学八年级第二学期期末考试试题及答案

2017-2018学年八年级(下)期末考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1 •若式子土2有意义,则x的取值范围为()x—3A. x >2B . x工3 C. x>2 或x工3 D . x>2 且X M 32•下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A . a=亡2 ,b= J3 ,c= /5 B. a=1.5,b=2,c=3C. a=6,b=8,c=10 D . a=3,b=4,c=53. 下列计算错误的是()A. 3+2 2 =5 2 B . . - 2=、、2 C.、、2 X、3 =/〕D . J” ■ = , 24. 设n为正整数,且n v — v n+1,则n的值为()A. 5B. 6C. 7D. 85. 若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A . 2,2B . 4迁C . 4D . 86 .如图,在平行四边形ABCD中,/ B=80°,AE平分/ BAD交BC于点E,CF// AE 交AD 于点F,则/ 1=()A . 40°B . 50°C . 60°D . 80°7. 小刚与小华本学期都参加5次数学考试(总分都为120分),数学老师想判断这两个同学的数学成绩谁更稳定,在做统计分析时,老师需要比较这两个人5次数学成绩的()A.方差B .平均数C .众数D .中位数8. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A .当AB=BC时,平行四边形ABCD是菱形B. 当AC丄BD时,平行四边形ABCD是菱形C. 当AC=BD时,平行四边形ABCD是正方形D. 当/ ABC=90时,平行四边形ABCD是矩形9. 关于一次函数y= - 2x+3,下列结论正确的是()A .图象过点(1,- 1)B .图象经过一、二、三象限C. y随x的增大而增大D .当x>;时,y v 010. 如图,菱形ABCD中,AB=2,/ B=120°,点M是AD的中点,点P由点A出发,沿LB-CF 作匀速运动,到达点D停止,则△ APM的面积y与点P 经过的路程x 之间的函数关系的图象大致是()二、填空题(共6小题,每小题4分,满分24分)11. ______________________ 比较大小:-2並-3 (填V”或“ =或>”12. 将正比例函数y=- 2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_______ .13. _____ 在平面直角坐标系中,A (- 4,3),点O为坐标原点,则线段OA的长为_________ .14. 如图所示,DE ABC的中位线,点F在DE 上,且/ AFB=90°,若AB=5,15. 如图,在△ ABC 中,/ ACB=90 , AC=6 , AB=10 , AB 的垂直平分线DE则CE的长等于16. 如图,在平面直角坐标系中有一个边长为1的正方形OABC,边OA, OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB i C i,再以对角线OB i为边作第三个正方形OB1B2C2,…,照此规律作下去,则点B6的坐标三、解答题(共3小题,满分18分)17. (6 分)计算:心:畀匸(一 -1)- 30- | - - 2| .1 218. (6分)先化简,再求值:(1-丄),其中a W3 - 1.a a -119. (6分)如图,在平行四边形ABCD中,已知AD > AB .(1)实践与操作:作/ BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.四、简答题20. ( 7 分)已知:x=2+ 一 , y=2- 一 .(1)求代数式:x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?21. (7分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10 分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.22. ( 7分)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5, 0),直线y=2x - 4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x - 4>kx+5的解集;(3)求厶ADC的面积.五、简答题23. (9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费•小英家1月份用水20吨,交水费49元;2月份用水22吨,交水费56元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?24. (9分)已知如图1,P为正方形ABCD的边BC上任意一点,BE丄AP于点E,在AP的延长线上取点F,使EF=AE,连接BF,Z CBF的平分线交AF 于点G.(1)求证:BF=BC ;(2)求证:△ BEG是等腰直角三角形;(3)如图2,若正方形ABCD的边长为4,连接CG,当P点为BC的中点时,求CG的长.图1 图225. (9分)如图,矩形OABC在平面直角坐标系内(_0为坐标原点),点A 在x轴上,点C在y轴上,点B的坐标为(-4,- 4 •「),点E是BC的中点, 现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使/ CEF=6C° .(1)求证:△ EFC^A GFO;(2)求点D的坐标;(3)若点P (x, y)是线段EG上的一点,设△ PAF的面积为s,求s与x的函数关系式并写出x的取值范围.备用图、选择题(每小题3分,共30分)题号12345678910答案D B A C C B A C D B、填空题(每小题4分,共24分)11.> 12 .y=—2x+5 . 13.5.714. 2 . 15. 4 . 16.( 8, -8)三、解答题(每小题6分,共18分)17.解:原式 =.4・・.3 ■ 3-分3-1 ■〔3-2____________ 」4 3.................. .............. 6分18. 解:原式2 (2)条形的统计图补充如图: 4分a -1 a ------- x ---------------------------a (a 1)(a -1) a "a 1 当 a 二、.3 _1 时 原式二上3-1.3+1-13-、、3319. ..................................................................................... 解:(1)如图AE 就是所要求的角平分线。

2017-2018八年级数学下试题及答案

2017-2018八年级数学下试题及答案

八年级数学试题 第 1 页 (共 7 页)2017-2018学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.式子3-x 在实数范围内有意义,则x 的取值范围是( ) A .3≥xB .3>xC .3≤xD .3≠x 2.下列根式中,不能与3合并的是( )A .34B .34 C .32D .12 3. 甲、乙、丙、丁四名同学在三次诊段考试中数学成绩的方差分别为2=1.2S 甲,39.02=乙S ,18.02=丙S ,2=3.5S 丁,则这四名同学发挥最稳定的是( ) A .甲 B .乙 C .丙 D .丁4. 若正比例函数kx y =的图像经过第二、四象限,则k 的值可以是( ) A .2B .2-C .2±D .20-或5.下列各组数不能作为直角三角形三边长的是( )A .3,4, 5B .3,4,5C .5,12,13D .1,2, 3 6.不能判定一个四边形是平行四边形的条件是( ) A .两组对边分别平行B .一组对边平行,另一组对边相等C .一组对边平行且相等D .两组对边分别相等 7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O , ∠ACB =60°,则∠AOB 的大小为( ) A .30°B .60°C .120°D .150°8.已知菱形的周长为cm 20,两对角线的长度之比是4:3,那么两对角线的长分别为( ) A.cm cm 4,3 B.cm cm 8,6 C.cm cm 16,12 D.cm cm 32,24 9.关于一次函数22+-=x y ,下列结论正确的是( )A .函数图象不经过第一象限B .图象与x 轴的交点是)2,0(OAD CB)7(题图八年级数学试题 第 2 页 (共 7 页)C .y 随x 的增大而增大D .图象过点)4,1(- 10. 如图,直线)0(≠=k kx y 和直线)0(≠+=m n mx y 相交于 点)3,2(A ,则不等式n mx kx +≤的解集为( ) A .3x ≥B .3x ≤C .2x ≥D .2x ≤11.如图,用菱形纸片按规律依次拼成下列图案.由图知,第1个图案中有5个菱形纸片;第2个图案中有9个菱形纸片;第3个图形中有13个菱形纸片.按此规律,第6个图案中有()个菱形纸片.A .21B .23C .25D .2912. 若关于x 的一次函数3)1(--=x k y ,y 随x 的增大而减小,且关于x 的不等式组⎩⎨⎧<+≥+0752k x x 无解,则符合条件的所有整数k 的值之和是( ) A. 2- B. 1- C. 0 D. 1二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.计算:=-2)3( .14.将直线2+-=x y 向下平移3个单位长度后所得直线的解析式是 .15.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占%30,期末卷面成绩占%70,小明的两项成绩(百分制)依次是90分,80分,则小明这学期的数学成绩是 _________分.16.一次函数42+-=x y 的图象与两坐标轴所围成的三角形面积是 . 17. 如图所示,DE 为ABC ∆的中位线,点F 在DE 上,且 90=∠AFB , 若8=AB ,14=BC ,则EF 的长为 .18. 如图, 在正方形ABCD 中,对角线AC 的长为cm 16,P 是BC 上 任意一点,AC PE ⊥,BD PF ⊥,则PF PE +的值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.(17题图)nmx y +=xk y =)3,2(A )10(题图CD)18(题图八年级数学试题 第 3 页 (共 7 页)19.计算: 6223427⨯-+20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额 进行统计调查,并绘制了统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是 ______元/人;众数是_____元;中位数是_______元; (2)据统计该校的1800人中,每周零花钱为15元的学生 约有多少人?四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21. 如图,在ABCD 中,点E 、F 是对角线AC 上的两点,且DF BE //,求证:四边形BEDF 是平行四边形.22.如图,直线l 与x 轴正半轴交于点A ,与y 轴负半轴交于点B ,其中A 点坐标是)0,3(,且 13=AB .(1)求直线l 的解析式;(2)求O 到直线l 的距离.23.我区为推行节约用水,决定从2018年起1月起实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按基本优惠价收费;每月超过12吨时,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费90元;2月份用水20吨,交水费6.73元. (1)求每吨水的基本优惠价和市场调节价分别是多少元?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式.24.阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”ABCD 中,若135=∠B ,则A ∠=__________;)20(题图)21(题图D八年级数学试题 第 4 页 (共 7 页)(2)如图,折叠平行四边形纸片DEBF ,使顶点E ,F 分别落在边BE ,BF 上的点A ,C 处,折痕分别为DG ,DH .求证:四边形ABCD 是“和谐四边形”.25. 如图1,在矩形ABCD 中,过矩形ABCD 对角线AC 的中点O 作AC EF ⊥分别交AB 、DC 于E 、F 点. (1)求证:CFAE =; (2)如图2,若G 为AE 的中点,且 30=∠AOG ,求证:OGDC 3=.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26. 如图,在平面直角坐标系中,一次函数()0y m x n m =+≠的图象与x 轴交于点)0,3(-A ,与y 轴交于点B ,且与正比例函数x y 2=的图象交于点)6,3(C . (1)求一次函数y m x n=+的解析式; (2)点P 在x 轴上,当PCPB +最小时,求出点P 的坐标; (3)若点E 是直线AC 上一点,点F 是平面内一点,以O 、C 、E 、F 四点为顶点的四边形是矩形,请直接写出点F(25题图))24(题图八年级数学试题 第 5 页 (共 7 页)2017-2018学年度第二学期期末检测七年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.假 14. 169 15. 0≥a 16 . 2∠ 17. )25,23(- 18. 5-三、解答题:(本大题共2个小题,每小题8分,共16分) 19.解:原式()()13223-+--+=………………………………………………4分13223-+--=……………………………………………………6分 23-=.………………………………………………………………8分20.解:原方程组化为6912642x y x y ⎧+=⎪⎨+=⎪⎩①②,由①-②得:510y =,……………………4分所以,2y =,代入方程321x y +=得3221x +⨯=, 解得1x =-, 故原方程组的解为12x y =-⎧⎨=⎩.………………………………8分四、解答题:(本大题共5个小题,每小题10分,共50分)21. 解:由4)2(3-≥-x x 得22≥x ,∴1≥x , ………………3分 由1312->+x x 得3312->+x x ,∴4<x ,………………6分 故原不等式组的解为41<≤x ,在数轴上表示为:……………8分八年级数学试题 第 6 页 (共 7 页)22. 解:(1)如图三角形ABC 为所求, ………(3分) (2)如图三角形,'''C B A 为所求………(6分))2,5(',)3,0('--C B ………(8分)(3) 三角形'''C B A 的面积是: 614212421=⨯⨯+⨯⨯……………(10分)23.(1)300%2060=÷(人).…………3分(2)%44 , %3…………7分(3)条形统计图补充正确.…………10分24.证明: E ∠=∠2 (已知)∴ AD ∥ BC( 内错角相等,两直线平行 ) ∴∠=∠3 DAC ( 两直线平行,内错角相等 ) ∵43∠=∠(已知)∴∠=∠4 DAC ( 等量代换 ) ∵21∠=∠(已知)∴CAF CAF ∠+∠=∠+∠21 即∠=∠BAF DAC∴∠=∠4 BAF (等量代换)∴ AB ∥ CD (同位角相等,两直线平行) (每空1分)25. 解:(1)设蔬菜有x 吨,水果有y 吨,根据题意得:⎩⎨⎧=-=+1735y x y x …………………………………………………(2分)解得:⎩⎨⎧==926y x ……………(4分)答:蔬菜有26吨,水果有9吨……………(5分)(2)设租用A 种货车a 辆,则租用B 种货车(8-a )辆,根据题意得:ABC'A 'B 'C八年级数学试题 第 7 页 (共 7 页)⎩⎨⎧≥-+≥-+9)8(226)8(24a a a a ……………………(7分)解得:75≤≤a …………………………(8分) ∵a 取整数 ∴a =5,6,7当a =5时,租车费用为:2000×5+1300×(8-5)=13900(元) 当a =6时,租车费用为:2000×6+1300×(8-6)=14600(元) 当a =7时,租车费用为:2000×7+1300×(8-7)=15300(元)∴租用A 种货车5辆,B 种货车3辆,可使运费最少,最少为13900元………(10分) 五、解答题:(本大题共1个小题,共12分)26.解:(1)A (-2,0) B (3,0)……………(4分) (2)∠PQD+∠OPQ+∠POB=360°…………………(5分) 证明:过点P 作PE ∥AB 由平移的性质可得AB ∥CD ∴AB∥PE ∥CD∴∠PQD+∠EPQ=180°,∠OPE+∠POB=180° ∴∠PQD+∠EPQ+∠OPE+∠POB=360°即∠PQD+∠OPQ+∠POB=360°……………(8分)(3)存在符合条件的M 点,坐标为(-7,0),(3,0)(0,-3),(0,7) (答对一点得1分)…………………………………………………(12分)2图。

2017-2018年第二学期八年级数学期末试卷(参考答案)

2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

【最新】2017-2018学年人教版八年级(下册)期末数学考试卷及答案

【最新】2017-2018学年人教版八年级(下册)期末数学考试卷及答案

一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()。

2017-2018人教版八年级数学下册期末试卷及答案(精选)

2017-2018人教版八年级数学下册期末试卷及答案(精选)

期末测试(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是( ) A.12 B.23C.0.3D.7 2.▱ABCD 中,∠A =40°,则∠C =( )A .40°B .50°C .130°D .140° 3.下列计算错误的是( )A .3+22=5 2 B.8÷2= 2C.2×3= 6D.8-2= 24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定 5.下列各组数不能作为直角三角形三边长的是( )A.3,4, 5 B .3,4,5 C .0.3,0.4,0.5 D .30,40,50 6.函数y =x -2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 7.矩形、菱形、正方形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分对角8.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .中位数是6C .平均数是6D .方差是49.(孝感中考)如图,直线y =-x +m 与y =nx +4n(n ≠0)的交点的横坐标为-2,则关于x 的不等式-x +m>nx +4n>0的整数解为( )A .-1B .-5C .-4D .-310.(牡丹江中考)如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( ) A .1 B .2 C .3D .4二、填空题(每小题4分,共24分)11.二次根式x -2有意义,则x 的取值范围是____________.12.将正比例函数y =-2x 的图象向上平移3个单位,则平移后所得图象的解析式是__________. 13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.14.若已知方程组⎩⎪⎨⎪⎧2x +y =b ,x -y =a 的解是⎩⎪⎨⎪⎧x =-1,y =3.则直线y =-2x +b 与直线y =x -a 的交点坐标是__________.15.如图,在△MBN 中,已知BM =6,BN =7,MN =10,点A ,C ,D 分别是MB ,NB ,MN 的中点,则四边形ABCD 的周长是.16.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分∠BAD 交BC 于点E ,若∠CAE =15°,则∠BOE 的度数为____________.三、解答题(共66分)17.(8分)计算:3(2-3)-24-|6-3|. 18.(8分)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边上的点F 处,折痕为AE.若BC =10 cm ,AB =8 cm ,求EF 的长.19.(8分)已知,一次函数y =kx +3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(8分)如图,点D ,C 在BF 上,AC ∥DE ,∠A =∠E ,BD =CF. (1)求证:AB =EF ;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.22.(12分)(潜江中考)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x 棵,到两家林场购买所需费用分别为y 甲(元),y 乙(元).(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为____________元,若都在乙林场购买所需费用为____________元;(2)分别求出y 甲,y 乙与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?23.(12分)以四边形ABCD 的边AB ,AD 为边分别向外侧作等边△ABF 和等边△ADE ,连接EB ,FD ,交点为G.(1)当四边形ABCD 为正方形时(如图1),EB 和FD 的数量关系是EB =FD ;(2)当四边形ABCD 为矩形时(如图2),EB 和FD 具有怎样的数量关系?请加以证明;(3)四边形ABCD 由正方形到矩形到一般平行四边形的变化过程中,∠EGD 是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD 的度数.参考答案1.D 2.A 3.A 4.A) 5.A 6.B 7.B 8.D 9.D 10.C 提示:①③④正确,②错误.11.x ≥2 12.y =-2x +3 13.2 14.(-1,3) 15.13 16.75° 17.原式=6-3-26-(3-6)=-6.18.由条件知AF =AD =BC =10 cm ,在Rt △ABF 中,BF =AF 2-AB 2=102-82=6(cm),∴FC =BC -BF =10-6=4(cm).设EF =x cm ,则DE =EF =x ,CE =8-x ,在Rt △CEF 中,EF 2=CE 2+FC 2,即x 2=(8-x)2+42.解得x =5,即EF =5 cm.19.(1)由题意,得k +3=4,解得k =1,∴该一次函数的解析式是y =x +3.(2)由(1)知,一次函数的解析式是y =x +3.当x =-1时,y =2,即点B(-1,5)不在该一次函数图象上;当x =0时,y =3,即点C(0,3)在该一次函数图象上;当x =2时,y =5,即点D(2,1)不在该一次函数图象上.20.(1)证明:∵AC ∥DE ,∴∠ACD =∠EDF.∵BD =CF ,∴BD +DC =CF +DC ,即BC =DF.又∵∠A =∠E ,∴△ABC ≌△EFD(AAS).∴AB =EF.(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知△ABC ≌△EFD ,∴∠B =∠F.∴AB ∥EF.又∵AB =EF ,∴四边形ABEF 为平行四边形. 21.(1)84 80 80 104(2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为25×100%=40%,小李的优秀率为45×100%=80%.(3)因为小李的成绩较小王稳定,且优秀率比小王的高,因此选小李参加比赛比较合适. 22.(1)5 900 6 000(2)y 甲=⎩⎪⎨⎪⎧4x (0≤x ≤1 000且x 为整数),3.8x +200(x>1 000且x 为整数);y 乙=⎩⎪⎨⎪⎧4x (0≤x ≤2 000且x 为整数),3.6x +800(x>2 000且x 为整数). (3)①当0≤x ≤1 000时,两家林场单价一样,因此到两林场购买所需要费用都一样;②当1 000<x ≤2000时,甲林场有优惠而乙林场无优惠,∴当1 000<x ≤2 000时,到甲林场购买合算;③当x >2 000时,y 甲=3.8x +200,y 乙=3.6x +800,y 甲-y 乙=3.8x +200-(3.6x +800)=0.2x -600.(ⅰ)当y 甲=y 乙时,0.2x -600=0,解得x =3 000.∴当x =3 000时,到两林场购买所需要费用都一样;(ⅱ)当y 甲<y 乙时,0.2x -600<0,解得x <3 000.∴当2 000<x <3 000时,到甲林场购买合算;(ⅲ)当y 甲>y 乙时,0.2x -600>0,解得x >3 000.∴当x >3 000时,到乙林场购买合算.综上所述,当0≤x ≤1 000或x =3 000时,到两林场购买所需要费用都一样;当1 000<x <3 000时,到甲林场购买合算;当x >3 000时,到乙林场购买合算. 23.(2)EB =FD.证明:∵△AFB 为等边三角形,∴AF =AB ,∠FAB =60°.∵△ADE 为等边三角形,∴AD =AE ,∠EAD =60°.∴∠FAB +∠BAD =∠EAD +∠BAD ,即∠FAD =∠BAE.∴△FAD ≌△BAE.∴EB =FD. (3)∠EGD 不发生变化.∵△ADE 为等边三角形,∴∠AED =∠EDA =60°.∵△ABF ,△AED 均为等边三角形,∴AB =AF ,∠FAB =60°,AE =AD ,∠EAD =60°.∴∠FAD =∠BAE.∴△FAD ≌△BAE.∴∠AEB =∠ADF.设∠AEB 为x °,则∠ADF 也为x °,于是有∠BED 为(60-x)°,∠EDF 为(60+x)°,∴∠EGD =180°-∠BED -∠EDF =180°-(60-x)°-(60+x)°=60°.。

2017-2018学年人教版八年级下册数学期末测试题及答案

2017-2018学年人教版八年级下册数学期末测试题及答案

2017―― 2018学年度第二学期期末质量监控试卷初二数学、选择题(本题共 30分,每小题3分)下面各题均有四个选项,其中只有一个 是符合题意的• 1.在平面直角坐标系中,点 M (_2,3)在A •第一象限B •第二象限C .第三象限D •第四象限2.下列图形即是轴对称图形又是中心对称图形的是3•若一个多边形的内角和为 540 °,则这个多边形的边数为A • 4B. 5C. 6D.74. 如图,边长为1的方格纸中有一四边形 ABCD (A , B , C , D 四点均为格点),则该四边形的面积为 A . 4B . 6C . 12D . 2425. 用配方法解方程 x -4x-7=0时,应变形为8 .象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极 为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車” 的点的坐标分别为(4, 3), (— 2, 1),则表示棋子“炮”的点的坐标为 A . (1, 3)B . (3, 2)C . (0, 3)D . (— 3, 3)9.已知:如图,折叠矩形 ABCD 使点B 落在对角线段CE 的长度是A. 3B. 4C.5D.6 10 .为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调2 A . X-2 11 2 B . X 2 11 2 2 C . x-4 23 D . x4 236.某市乘出租车需付车费 y (元)与行车里程 x (千米)之间函数关系的图象如图所示,那 么该市乘出租车超过 3千米后,每千米的费用是 A . 1.5 元 B . 2 元 C . 2.12 元 D . 2.4 元7.如图,在 ABCD 中, AB=4, BC=7,Z ABC 的平分线交 AD 于点E ,贝U DE 的长为S 頂千剰AC 上的点F 处, 若查小组在各地铁站随机调查了该市 1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示•下列说法正确的是 ①每人乘坐地铁的月均花费最集中的区域在60—80元范围内; ② 每人乘坐地铁的月均花费的平均数范围是 40— 60元范围内;③ 每人乘坐地铁的月均花费的中位数在 100 —120元范围内;④乘坐地铁的月均花费达到 100元以上的人可以享受折扣.A. ①④ B ③④ C ①③ D ①② 、填空题(本题共 18分,每小题3分)211. 一元二次方程 x —2x = 0的解为 ______________ 12.请写出一个过一三象限且与 _____________________ y 轴交与点(0,1)的直线表达式13. 如图,在矩形 ABCD 中,对角线 AC 与BD 交于点O,E 为CD 的中点, 连接OE 若AB=5, BC=12则四边形 BCEO 勺周长为 ______________ 。

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。

2018人教版八年级数学下册期末考试试卷及答案

2018人教版八年级数学下册期末考试试卷及答案

2018人教版八年级数学下册期末考试试卷及答案2017-2018学年度第二学期期末质量监控试卷初二数学一、选择题(本题共30分,每小题3分)1.在平面直角坐标系中,点M(-2,3)在A.第一象限B.第二象限C.第三象限D.第四象限2.下列图形即是轴对称图形又是中心对称图形的是A。

B。

C。

D.3.若一个多边形的内角和为540°,则这个多边形的边数为A.4B.5C.6D.74.如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为A.4B.6C.12D.245.用配方法解方程x-4x-7=0时,应变形为A。

(x-2)=11 B。

(x+2)=11 C。

(x-4)=23 D。

(x+4)=236.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是A.1.5元B.2元C.2.12元D.2.4元7.如图,在ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则DE的长为A.5B.4C.3D.28.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏。

如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为A.(1,3)B.(3,2)C.(0,3)D.(-3,3)9.已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是A.3B.4C.5D.610.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠。

某市针对乘坐地铁的人群进行了调查。

调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示。

下列说法正确的是①每人乘坐地铁的月均花费最集中的区域在60-80元范围内;②每人乘坐地铁的月均花费的平均数范围是4-60元范围内;③每人乘坐地铁的月均花费的中位数在100-120元范围内;④乘坐地铁的月均花费达到100元以上的人可以享受折扣。

2017-2018学年八年级数学下期末试卷附答案和解释

2017-2018学年八年级数学下期末试卷附答案和解释

2017-2018学年八年级数学下期末试卷附答案和解释一、选择题(本大题共6小题,共18.0分)1.下列函数中,一次函数是()A. B. C. D.2.下列判断中,错误的是()A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是()A. B. C. D.4.下列事件中,必然事件是()A. “奉贤人都爱吃鼎丰腐乳”B. “2018年上海中考,小明数学考试成绩是满分150分”C. “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D. “在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线互相平分D. 梯形的对角线互相垂直二、填空题(本大题共12小题,共24.0分)6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______11.化简:()-()=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S 四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题(本大题共8小题,共64.0分)18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量______;(2)填空:++=______;(3)求作:+(保留作图痕迹,不要求写作法).22.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.23.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM 的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;故选:A.利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x(x-1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,故选:D.利用各自方程的定义判断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,∴△=4+4m≥0,解得:m≥-1.故选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m 的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】±2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.移项,系数化成1,再开方即可.本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边≠右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k<0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.本题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:()-()=--+=(+)-(+)=-=.故答案为:.由去括号的法则可得:()-()=--+,然后由加法的交换律与结合律可得:(+)-(+),继而求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.12.【答案】100(1+x)2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形(答案不唯一)【解析】解:矩形(答案不唯一).根据轴对称图形与中心对称图形的概念,写一个则可.掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,∵AC=8,S四边形ABCD=16,∴BD=16×2÷8=4.故答案为:4.根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,∴S△ADE=S△EOD=×22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x(2)把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】,【解析】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++=故答案为.(3)如图,作平行四边形OBEC,连接AE,即为所求;(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC,连接AE,即为所求;本题考查平面向量、作图-复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:=70+,解得:x=4或x=-5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是平行四边形,∵CD=CE,∴四边形ADCE是菱形.【解析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再根据CD=CE可得四边形是菱形;本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【解析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.25.【答案】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD 是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH===4,∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM==,∵S△ADM=•AD•MH=•DM•AE,∴5×3=y•∴y=.②如图3中,当AB=AE时,y=3,此时5×3=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH⊥AD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2017-2018学年下学期人教版初二数学下册期末测试题及答案.doc

2017-2018学年下学期人教版初二数学下册期末测试题及答案.doc

八年级期末数学模拟考试试题一、选择题(每小题3分,共30分)1、在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =2、下列计算正确的是 ( )A .623x x x =B .()248139x x --= C.111362a a a --= D.()021x +=3、下列说法中错误的是 ( ) A .两条对角线互相平分的四边形是平行四边形; B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( )A .平均数B .中位数C .众数D .方差5、点P (3,2)关于x 轴的对称点'P 的坐标是 ( ) A .(3,-2) B .(-3,2) C .(-3,-2) D .(3,2)6、下列运算中正确的是 ( )A .1y x x y +=B .2233x y x y +=+C .221x y x y x y +=--D . 22x y x y x y +=++7、如图,已知P 、Q 是△ABC 的BC 边上的两点,且BP=PQ=QC=AP=AQ,则∠BAC 的大小为 ( )A .120°B .110°C .100°D .90°8、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为 ( )A. 6B. 4C. 3D. 29、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图像大致是CQ P B AE CBD Ay xoyxoyxoy xo( )A .B .C .D .10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( ) A.梯形的下底是上底的两倍 B.梯形最大角是120° C.梯形的腰与上底相等 D.梯形的底角是60° 二、填空题(每小题3分,共30分)11、若分式x2-4x2-x-2的值为零,则x 的值是 .12、已知1纳米=1109 米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为米.13、如图,已知OA=OB ,点C 在OA 上,点D 在OB 上,OC=OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.14、如图,ACB DFE BC EF ==∠∠,,要使ABC DEF △≌△,则需要补充一个条件,这个条件可以是 .15、已知y 与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y= 。

新人教版2017-2018学年八年级下册期末综合检测数学试卷(解析版)

新人教版2017-2018学年八年级下册期末综合检测数学试卷(解析版)

期末综合检测一、选择题(每小题3分,共30分)1. 下列各式成立的是( )A. =2B. =-5C. =xD. =±6【答案】A【解析】分析:根据算术平方根的定义判断即可.详解:A.,正确;B.,错误;C.,错误;D.,错误.故选A.点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.2. 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是( )A. y=x+5B. y=x+10C. y=-x+5D. y=-x+10【答案】C........... .............解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.3. 如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A,B,C,D,则它们之间的关系为( )A. A+B=C+DB. A+C=B+DC. A+D=B+CD. 以上都不对【答案】A【解析】分析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.详解:如图,∵a2+b2=e2,c2+d2=e2,∴a2+b2=c2+d2,∴A+B=C+D.故选A.点睛:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4. 某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A. 这10名同学体育成绩的中位数为38分B. 这10名同学体育成绩的平均数为38分C. 这10名同学体育成绩的众数为39分D. 这10名同学体育成绩的方差为2【答案】C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.5. 如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )A. B. 2 C. 2 D. 4【答案】C【解析】因为平四边形ABCD,所以AD∥BC,所以∠ACB=∠CAD=45°,又因为∠ABC=∠CAD=45°,所以∠ACB=∠ABC=45°,所以△ABC是等腰直角三角形,AB=AC=2,根据勾股定理的BC=2,故选C.6. 如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】解:∵点A(2,m),∴点A关于x轴的对称点B(2,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,m=1,故选:B.视频7. 如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF= ( )A. 3B. 4C. 5D. 6【答案】A【解析】∵直角三角形ABC中,∠C=90°,AB=10,AC=8,∴.∵点E、F分别为AC、AB的中点,∴EF是△ABC的中位线,∴.故选A .8. 如图,在矩形ABCD 中,AB=1,BC=2,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是 ( )A. (A )B. (B )C. (C )D. (D ) 【答案】C【解析】试题解析:由题意知,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,则 当0<x≤2,s=x ,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选C .考点:动点问题的函数图象.9. 如图,正方形OABC 中,点B(4,4),点E ,F 分别在边BC ,BA 上,OE=,若∠EOF=45°,则OF的解析式为 ( )A. y=xB. y=xC. y=xD. y=x【答案】B【解析】分析:作辅助线,构建全等三角形,证明△OCE ≌△OAD 和△EOF ≌△DOF ,得EF =FD ,设AF =x ,在直角△EFB中利用勾股定理列方程求出x=,根据正方形的边长写出点F的坐标,并求直线OF的解析式.详解:延长BF至D,使AD=CE,连接OD.∵四边形OABC是正方形,∴OC=OA,∠OCB=∠OAD,∴△OCE≌△OAD,∴OE=OD,∠COE=∠AOD.∵∠EOF=45°,∴∠COE+∠FOA=90°﹣45°=45°,∴∠AOD+∠FOA=45°,∴∠EOF=∠FOD.故选B.点睛:本题是利用待定系数法求一次函数的解析式,考查了正方形的性质及全等三角形的性质与判定,作辅助线构建全等三角形是本题的关键,利用全等三角形的对应边相等设一未知数,找等量关系列方程,求出点F的坐标,才能运用待定系数法求直线OF的解析式.10. 如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )A. 55°B. 65°C. 75°D. 85°【答案】C【解析】分析:本题考查的是菱形的性质,线段的垂直平分线的性质.解析:在菱形ABCD中,∠BAD=70°,∴∠B=110°,∠CAB=35°,∵AB的垂直平分线交对角线AC,∴AF=BF,DF=BF,∴∠FBA=∠CAB=35°,∴∠FBC=∠CDF=75°.故选C点睛:本题的关键是运用菱形的对角线的性质得出角相等,利用菱形的性质得出三角形全等,利用垂直平分线的性质,得出线段相等.二、填空题(每小题3分,共24分)11. 计算:( -3)÷=______________.【答案】-5【解析】分析:先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.详解:原式=(4﹣9)÷=÷=-5.故答案为:-5.点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为________cm.【答案】168【解析】试题分析:设男生的平均身高为x,根据题意有:(20×163+30x)÷50 =166,解可得x=168(cm).故答案为:168.考点:加权平均数.13. 已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.【答案】【解析】试题分析:把点(3,5)代入直线y=ax+b可得3a+b=5,即b-5=-3a,再代入即可求值.考点:一次函数图象上点的坐标的特征.14. 如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则△ABC的面积为__________.【答案】+1【解析】分析:根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,求出BC的长,即可求出△ABC的面积.详解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=.在Rt△ADC中,DC===1,∴BC=+1,∴△ABC的面积=AC•BC=+1.故答案为:+1.点睛:本题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时涉及三角形外角的性质,二者结合,是一道好题.15. 为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,给出下列结论:①方差是8;②众数是-1;③平均数是-1.其中正确的序号是__________.【答案】②③【解析】分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;故答案为:②③.点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.16. 如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连接A'C,则线段A'C长度的最小值是__________.【答案】2-2【解析】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.视频17. 如图,Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过区域面积为__________.【答案】16【解析】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4,∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5,∴CC′=5﹣1=4,∴S▱BCC′B′=4×4=16 (cm2).即线段BC扫过的面积为16cm2.故答案为:16.18. 如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【答案】2或【解析】分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.解:∵E是BC的中点,∴BE=CE=BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t﹣8=6﹣t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8﹣3t=6﹣t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题(共66分)19. (1)计算:÷+×-.(2)已知x=2-,求代数式(7+4)x2+(2+)x+的值.【答案】(1)4-;(2)2+【解析】分析:(1)根据二次根式的混合运算法则计算,然后化简即可;(2)直接代入,按照运算顺序,利用完全平方公式和平方差公式计算,进一步合并得出答案即可.详解:(1)原式==;(2)当x=2﹣时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+.点睛:本题考查了二次根式的混合运算,注意利用计算公式计算,先化简,再进一步合并即可.20. 已知直线l1:y=-x+3和直线l2:y=2x,l1与x轴交点为A.求:(1)l1与l2的交点坐标.(2)经过点A且平行于l2的直线的解析式.【答案】(1)l1与l2的交点为(1,2);(2)所求直线的解析式为y=2x-6.【解析】分析:(1)根据两直线相交时,自变量和函数值均相等列出方程求得x和y的值即可求得交点坐标;(2)首先根据平行确定k的值,然后代入点A求得b值.详解:(1)由题意得:﹣x+3=2x,∴x=1,当x=1时,y=2,∴l1与l2的交点坐标为(1,2);(2)y=﹣x+3与x轴交点A的坐标为(3,0),设所求的直线的解析式为y=2x+b,当x=3时,y=0,∴6+b=0,∴b=﹣6,所求直线的解析式为y=2x﹣6.点睛:本题考查了两条直线平行或相交的问题,解题的关键是了解两直线平行比例系数相等.21. 某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是____________元,众数是____________元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)中位数是3400,众数是3000;(2)用中位数或众数来描述更为恰当.理由见解析.【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数22. 如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.【答案】△ABD为直角三角形.理由见解析.【解析】分析:先在△ABC中,根据勾股定理求出的值,再在△ABD中根据勾股定理的逆定理,判断出AD⊥AB,即可得到△ABD为直角三角形.本题解析:△ABD为直角三角形理由如下:∵∠C=90°,AC=3,BC=4,. ∴∵52+122=132,23. 如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.【答案】(1)AC=4;(2)∠AOB=60°;(3)菱形OBEC的面积是2.【解析】解(1)在矩形ABCD中,∠ABC=90°,∴Rt△ABC中, ∠ACB=30°,∴AC=2AB=4.(2)在矩形ABCD中,∴AO=OA=2,又∵AB=2,∴△AOB是等边三角形,∴∠AOB=60°.(3)由勾股定理,得BC=,.,所以菱形OBEC的面积是2.24. 某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.【答案】(1)客车总数为6;(2)租4辆甲种客车,2辆乙种客车费用少.【解析】分析:(1)由师生总数为240人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为240人以及租车总费用不超过2300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y 元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.详解:(1)∵(234+6)÷45=5(辆)…15(人),∴保证240名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤2.∵x为整数,∴x=1,或x=2.设租车的总费用为y元,则y=280x+400×(6﹣x)=﹣120x+2400.∵﹣120<0,∴当x=2时,y取最小值,最小值为2160元.故租甲种客车4辆、乙种客车2辆时,所需费用最低,最低费用为2160元.点睛:本题考查了一次函数的应用、解一元一次不等式组以及一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(2)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.25. 某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x间的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想让8千个证书的印制费用不大于乙厂,在不降低制版费的前提下,每个证书最少降低多少元?【答案】(1)制版费1千元,y甲=x+1,证书单价0.5元;(2)当印制8千个证书时,选择乙厂,节省费用500元;(3)甲厂每个证书印刷费用最少降低0.0625元.【解析】(1)由图得制版费是1000元,通过坐标(0,1)(2,2)求出函数解析式,印刷单价=(印刷费用-制版费)2000;(2)求出y乙第二段的解析式,把x=8分别代入两解析式求值即可(3)由(2)得,8000500即为每个证书最少降低多少元26. 如图,边长为5的正方形OABC的顶点O在坐标原点处,点A,C分别在x轴、y轴的正半轴上,点E 是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP.(2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1)证明见解析;(2)存在点M的坐标为(0,2).【解析】分析:(1)在OC上截取OK=OE.连接EK,求出∠KCE=∠CEA,根据ASA推出△CKE≌△EAP,根据全等三角形的性质得出即可;(2)过点B作BM∥PE交y轴于点M,根据ASA推出△BCM≌△COE,根据全等三角形的性质得出BM=CE,求出BM=EP.根据平行四边形的判定得出四边形BMEP是平行四边形,即可求出答案.详解:(1)在OC上截取OK=OE.连接EK,如图1.∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°.∵AP为正方形OCBA的外角平分线,∴∠BAP=45°,∴∠EKC=∠P AE=135°,∴CK=EA.∵EC⊥EP,∴∠CEF=∠COE=90°,∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA.在△CKE和△EAP中,∵,∴△CKE≌△EAP,∴EC=EP;(2)y轴上存在点M,使得四边形BMEP是平行四边形.如图,过点B作BM∥PE交y轴于点M,连接BP,EM,如图2,则∠CQB=∠CEP=90°,所以∠OCE=∠CBQ.在△BCM和△COE中,∵,∴△BCM≌△COE,∴BM=CE.∵CE=EP,∴BM=EP.∵BM∥EP,∴四边形BMEP是平行四边形.∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.故点M的坐标为(0,2).点睛:本题考查了正方形的性质,全等三角形的性质和判定,平行四边形的性质和判定的应用,能灵活运用知识点进行推理是解答此题的关键,综合性比较强,难度偏大.。

2017-2018学年八年级数学下学期期末试卷(新人教版)word版含解析

2017-2018学年八年级数学下学期期末试卷(新人教版)word版含解析

2017-2018学年八年级数学下学期期末试卷一、选择题(共6小题,每小题3分,满分18分)1.下列计算正确的是()A.3﹣=3 B. +=C.×=D. =﹣152.直角三角形的一条直角边长为cm,斜边长为cm,则此三角形的面积为()A.2 B.2 C.2 D.4p的值为())C.2200元、2200元D.2200元、2300元5.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.26.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3二、填空题(共8小题,每小题3分,满分24分)7.函数y=的自变量x的取值范围是.8.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x 的值为.9.一个直角三角形的两边长分别为3cm和5cm,则此三角形的第三边长为cm2.10.一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,那么m的取值范围是.11.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了米.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为.13.点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+b上,则y1,y2,y3的大小关系是.14.直线y=﹣0.75x+3分别与x轴、y轴交于点A、B,点P是x轴上一点且在点A的左侧,若△PAB是等腰三角形,则点P的坐标为.三、(共4小题,满分24分)15.化简:﹣a2+3a﹣.16.一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),求此函数的解析式.17.直线y=x+5和直线y=2x+7﹣k的交点在第二象限,求k的取值范围.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处,求重叠部分△AFC的面积.四、(共4小题,共32分)19.如图,直线l1与l2相交于点P,l1的解析式为y=2x+3,点P的横坐标为﹣1,且l2交y轴于点A(0,﹣1).(1)求直线l2的函数解析式;(2)求这两条直线与y轴围成的图形的面积.20.在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长.21.在正方形ABCD中,O是对角线的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,(1)求EF的长;(2)四边形OEBF的面积.22.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD 上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.五、23.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩折线图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?六、(共12分)24.某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?2017-2018学年八年级数学下学期期末试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.下列计算正确的是()A.3﹣=3 B. +=C.×=D. =﹣15【考点】二次根式的混合运算.【分析】根据二次根式的化简求值,合并同类二次根式以及二次根式的乘法进行计算即可.【解答】解:A、3﹣=2,故错误;B、+不能合并,故错误;C、×=,故正确;D、=﹣15,故错误;故选C.2.直角三角形的一条直角边长为cm,斜边长为cm,则此三角形的面积为()A.2 B.2 C.2 D.4【考点】勾股定理.【分析】先根据一个直角三角形的一条直角边长和斜边长,利用勾股定理计算出另一直角边长,根据三角形面积公式即可求出此三角形面积.【解答】解:∵直角三角形的一条直角边长为cm,斜边长为cm,∴由勾股定理得另一直角边长为=2,则S△=××2=2.故此三角形的面积为2.故选A.p的值为()【考点】一次函数图象上点的坐标特征.【分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣2,y=3;x=1时,y=0代入即可得出k、b的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故选A.)C.2200元、2200元D.2200元、2300元【考点】众数;中位数.【分析】根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是÷2=2400;故选A.5.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.2【考点】菱形的性质;勾股定理.【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.6.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3【考点】一次函数与一元一次不等式.【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.二、填空题(共8小题,每小题3分,满分24分)7.函数y=的自变量x的取值范围是x≤3且x≠﹣2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2.8.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x 的值为73.【考点】算术平均数.【分析】根据平均数的性质,可将8个数相加进而表示出平均数,即可求出x的值.【解答】解:依题意得:(80+82+79+69+74+78+x+81)÷8=77,解得:x=73.故答案为:73.9.一个直角三角形的两边长分别为3cm和5cm,则此三角形的第三边长为4或cm2.【考点】勾股定理.【分析】分5cm是直角边和斜边两种情况讨论求解.【解答】解:5cm是直角边时,第三边==cm,5cm是斜边时,第三边==4cm,所以,第三边长为或4.故答案为或4.10.一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,那么m的取值范围是m<﹣1.【考点】一次函数图象与系数的关系.【分析】由一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,则m+1<0,并且﹣4m+3≥0,解两个不等式即可得到m的取值范围.【解答】解:∵一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,∴m+1<0,并且﹣4m+3≥0,由m+1<0,得m<﹣1;由﹣4m+3≥0,得m≤﹣.所以m的取值范围是m<﹣1.故答案为:m<﹣1.11.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了0.5米.【考点】勾股定理的应用.【分析】由题意知,AB=DE=2.5米,CB=1.5米,BD=0.5米,则在直角△ABC中,根据AB,BC可以求AC,在直角△CDE中,根据CD,DE可以求CE,则AE=AC﹣CE即为题目要求的距离.【解答】解:在直角△ABC中,已知AB=2.5米,BC=1.5米,∴AC==2米,在直角△CDE中,已知CD=CB+BD=2米,DE=AB=2.5米,∴CE==1.5米,∴AE=2米﹣1.5米=0.5米.故答案为:0.5.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为4﹣2.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故答案为:4﹣2.13.点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+b上,则y1,y2,y3的大小关系是y1>y2>y3.【考点】一次函数图象上点的坐标特征.【分析】利用一次函数的增减性判断即可.【解答】解:在直线y=﹣3x+b中,∵k=﹣3<0,∴y随x的增大而减小,∵﹣2<﹣1<1,∴y1>y2>y3,故答案为:y1>y2>y3.14.直线y=﹣0.75x+3分别与x轴、y轴交于点A、B,点P是x轴上一点且在点A的左侧,若△PAB是等腰三角形,则点P的坐标为(﹣4,0)或(﹣1,0)或(,0).【考点】一次函数图象上点的坐标特征;等腰三角形的性质.【分析】可先求得A、B两点坐标,再设出P点坐标为(x,0),从而可分别表示出AB、PA、PB,再分PA=AB、PA=PB和AB=PB三种情况分别求x即可.【解答】解:在y=﹣0.75x+3中,令y=0可得x=4,令x=0可得y=3,∴A(4,0),B(0,3),∴AB==5,设P点坐标为(x,0),由题意可知x<4,则PA=4﹣x,PB=,∵△PAB是等腰三角形,∴有PA=AB、PA=PB和AB=PB三种情况,①当PA=AB时,即4﹣x=5,解得x=﹣1,此时P点坐标为(﹣1,0);②当PB=AB时,即=5,解得x=4(舍去)或x=﹣4,此时P点坐标为(﹣4,0);③当PA=PB时,4﹣x=,解得x=,此时P点坐标为(,0);综上可知P点坐标为:(﹣4,0)或(﹣1,0)或(,0),故答案为:(﹣4,0)或(﹣1,0)或(,0).三、(共4小题,满分24分)15.化简:﹣a2+3a﹣.【考点】二次根式的加减法.【分析】根据二次根式的计算解答即可.【解答】解:﹣a2+3a﹣==﹣7.16.一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),求此函数的解析式.【考点】两条直线相交或平行问题.【分析】先根据两直线平行,可以求得系数k的值,再根据直线经过已知的点,可以求得常数项b的值.【解答】解:∵一次函数y=kx+b与y=2x+1平行,∴k=2,又∵一次函数y=2x+b图象经过点(﹣3,4),∴4=﹣6+b,解得b=10,∴一次函数的解析式为:y=2x+10.17.直线y=x+5和直线y=2x+7﹣k的交点在第二象限,求k的取值范围.【考点】两条直线相交或平行问题.【分析】首先求出直线y=x+5和直线y=2x+7﹣k的交点坐标,然后根据第二象限内点的坐标特征,列出关于k的不等式组,从而得出k的取值范围.【解答】解:解方程组,得,即交点坐标为(k﹣2,k+3)∵交点在第二象限,∴,解得:﹣3<k<2.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处,求重叠部分△AFC的面积.【考点】翻折变换(折叠问题);矩形的性质.【分析】矩形翻折后易知AF=FC,利用直角三角形BFC,用勾股定理求出CF长,也就是AF长,S△AFC=AF•BC.【解答】解:设AF=x,依题意可知,矩形沿对角线AC对折后有:∠D′=∠B=90°,∠AFD′=∠CFB,BC=AD′∴△AD′F≌△CBF∴CF=AF=x∴BF=8﹣x在Rt△BCF中有BC2+BF2=FC2即42+(8﹣x)2=x2解得x=5.∴S△AFC=AF•BC=×5×4=10.四、(共4小题,共32分)19.如图,直线l1与l2相交于点P,l1的解析式为y=2x+3,点P的横坐标为﹣1,且l2交y轴于点A(0,﹣1).(1)求直线l2的函数解析式;(2)求这两条直线与y轴围成的图形的面积.【考点】两条直线相交或平行问题.【分析】(1)根据l1的解析式求出P点的坐标,再设出l2的解析式,利用待定系数法就可以求出l2的解析式.(2)设l1交y轴于点B,求出B点坐标,得到AB的长,再利用P点的横坐标就可以求出△PAB的面积.【解答】解:(1)设点P坐标为(﹣1,y),代入y=2x+3,得y=1,则点P(﹣1,1).设直线l2的函数表达式为y=kx+b,把P(﹣1,1)、A(0,﹣1)分别代入y=kx+b,得1=﹣k+b,﹣1=b,解得k=﹣2,b=﹣1.所以直线l2的函数表达式为y=﹣2x﹣1;(2)设l1交y轴于点B,如图.∵l1的解析式为y=2x+3,∴x=0时,y=3,∴B(0,3),∵A(0,﹣1),∴AB=4,∵P(﹣1,1),S△PAB=×4×1=2.20.在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长.【考点】勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9.在Rt△ACD中,CD===5∴BC=9﹣5=4∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.21.在正方形ABCD中,O是对角线的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,(1)求EF的长;(2)四边形OEBF的面积.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)可以先求出△AEO≌△BFO,得出AE=BF,则BE=CF,根据勾股定理求出EF即可;(2)求出AB的长,求出OA×OB,求出△ABO的面积,即可得出四边形OEBF的面积.【解答】解:(1)∵四边形ABCD是正方形∴OA=OB,∠EAO=∠FBO=45°又∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°∴∠AOE=∠BOF,在△AEO和△BFO中,,∴△AEO≌△BFO(ASA),∴AE=BF=4,∴BE=CF=3,在Rt△EBF中,由勾股定理得:EF===5;(2)∵AE=4,BE=3,∴AB=3+4=7∴OA×OB=∴S四边形OEBF=S△AOB=×OA×OB=.22.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD 上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【考点】矩形的性质;含30度角的直角三角形;平行四边形的判定;菱形的性质;翻折变换(折叠问题).【分析】(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可.(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,由折叠的性质可得:∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形;解法二:证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)解:∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.五、23.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?【考点】折线统计图;统计表;算术平均数;中位数;方差.【分析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望甲胜出,规则改为9环与10环的总数大的胜出,因为甲9环与10环的总数为4环.【解答】解:(1)根据折线统计图得:乙的射击成绩为:2,4,6,8,7,7,8,9,9,10,则平均数为=7(环),中位数为7.5(环),方差为 [(2﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(9﹣7)2+(9﹣7)2+(10﹣7)2]=5.4;甲的射击成绩为9,6,7,6,2,7,7,?,8,9,平均数为7(环),则甲第八环成绩为70﹣(9+6+7+6+2+7+7+8+9)=9(环),所以甲的10次成绩为:9,6,7,6,2,7,7,9,8,9.中位数为7(环),方差为 [(9﹣7)2+(6﹣7)2+(7﹣7)2+(6﹣7)2+(2﹣7)2+(7﹣7)2+(7﹣7)2+(9﹣7)2+(8﹣7)2+(9﹣7)2]=4.补全表格如下:(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出;(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲乙的平均成绩相同,乙只有第5次射击比第四次射击少命中1环,且命中1次10环,而甲第2次比第1次、第4次比第3次,第5次比第4次命中环数都低,且命中10环的次数为0次,即随着比赛的进行,有可能乙的射击成绩越来越好.六、(共12分)24.某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x);(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式y=300x+12000的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【解答】解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得y=x+(30﹣x)=300x+12000(0≤x≤30);(2)依题意,有,解得10≤x≤12.∵x为整数,∴x=10,11,12.即商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台;(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大,即当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.。

2017-2018学年人教版初二数学第二学期期末测试卷及答案

2017-2018学年人教版初二数学第二学期期末测试卷及答案

2017-2018学年度八年级数学第二学期期末测试卷考 生 须 知1. 本试卷共6页,共三道大题,26道小题。

满分100分。

考试时间90分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在平面直角坐标系xOy 中,点P (2,-3)关于原点O 对称的点的坐标是 A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 2.如果一个多边形的每个内角都是120°,那么这个多边形是A .五边形B .六边形C .七边形D .八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是① ② ③ ④A .①②B .②③C .②④D .②③④ 4.方程()x x x =-1的解是A .x = 0B .x = 2C .x 1 = 0,x 2 = 1D .x 1 = 0,x 2 = 25.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x 与方差2S :甲 乙 丙 丁 x (秒)30 30 28 28 2S1.211.051.211.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择A .甲B .乙C .丙D .丁 6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB 的度数是 A .40°B .55°C .60°D .70°7.用配方法解方程2210x x --=,原方程应变形为A .2(1)2x -=B .2(1)2x += C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2 A .A →B →C →A B .A →B →C →D C .A →D →O →AD .A →O →B →C二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1)错误!未找到引用源。

2017-2018学年人教版数学初二第二学期期末测试题(含答案)

2017-2018学年人教版数学初二第二学期期末测试题(含答案)

2017-2018学年八年级数学第二学期期末测试卷(分数:100分 时间:90分钟)学校 班级 姓名 成绩 一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个....是正确的. 1.下列各式中,运算正确的是A.2=- B= C4= D.2=2.如图,在△ABC 中,3AB =,6BC =,4AC =,点D ,E 分别是边AB ,CB 的中点,那么DE 的长为A .1.5B .2C .3D .43.要得到函数23y x =+的图象,只需将函数2y x =的图象A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位4.在Rt △ABC 中, D 为斜边AB 的中点,且3BC =,4AC =,则线段CD 的长是 A .2 B .3 C .52D . 55.已知一次函数(1)y k x =-. 若y 随x 的增大而增大,则k 的取值范围是A .1k <B .1k >C .0k <D .0k >6.如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4AD =,那么AC 的长是A .5B .6 C. D.ABCDEDCBA7.如图,在点,,,M N P Q 中,一次函数2(0)y kx k =+<的图象不可能经过的点是A .MB .NC .PD .Q8.如图是某一天北京与上海的气温T (单位:C ︒)随时间t (单位:时)变化的图象.根据图中信息,下列说法错误..的是 A .12时北京与上海的气温相同B .从8时到11时,北京比上海的气温高C .从4时到14时,北京、上海两地的气温逐渐升高D .这一天中上海气温达到4C ︒的时间大约在上午10时9.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是A .13B .20C .25D .3410.已知两个一次函数1y ,2y 的图象相互平行,它们的部分自变量与相应的函数值如下表:则m 的值是A .13- B .3-C .12D .5二、填空题:(本题共18分,每小题3分) 11在实数范围内有意义,那么x 的取值范围是 .122(1)0y +=,那么x y 的值是 .13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为 .14. 如图,,,,E F M N 分别是边长为4的正方形ABCD 四条边上的点,且AE BF CM DN ===. 那么四边形EFMN 的面积的最小值是 .15.第24届冬季奥林匹克运动会,将于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目40次的训练测试,每次测试成绩分别为5分,4分,3分,2分,1分五档. 甲乙两位同学在这个项目的测试成绩统计结果如图所示.甲乙两位同学中单板滑雪成绩更稳定的是.NMFEDCBA16.已知一次函数y kx b =+的图象过点(1,0)-和点(0,2). 若()0x kx b +<,则x 的取值范围是 .三、解答题:(本题共22分,第17—19题每小题4分,第20—21题每小题5分) 1718.如图,在ABCD Y 中,点E ,F 分别在边AD ,BC 上,AE CF =,求证:BE DF =.19.已知1x =,求22x x -的值.20.在平面直角坐标系xOy 中,已知点(0,3)A 、点(3,0)B ,一次函数2y x =的图象与直线AB 交于点M .(1)求直线AB 的函数解析式及M 点的坐标; (2)若点N 是x 轴上一点,且△MNB 的面积为6,求点N 的坐标.21.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,且2BC AF =.(1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形ADFE 的周长.FED CBA ABCDEF四、解答题:(本题共14分,第22题8分,第23题6分)22.阅读下列材料:2016年人均阅读16本书!2017年4月23日“世界读书日”之前,国际网络电商亚马逊发布了“亚马逊中国2017全民阅读报告”.报告显示,大部分读者已养成一定的阅读习惯,阅读总量在10本以上的占56%,而去年阅读总量在10本以上的占48%.京东图书也发布了2016年度图书阅读报告.根据京东图书文娱业务部数据统计,2016年销售纸书人均16册,总量叠在一起相当于15000个帝国大厦的高.(1)在亚马逊这项调查中,以每年有效问卷1.4万份来计,2017年阅读量十本以上的人数比去年增加了人;(2)小雨作为学校的图书管理员,根据初二年级每位同学本学期的借书记录,对各个班借阅的情况作出了统计,并绘制统计图表如下:初二年级图书借阅分类统计扇形图初二年级各班图书借阅情况统计表①全年级140名同学中有科技社团成员40名,他们人均阅读科普类书籍1.5本,年级其他同学人均阅读科普类书籍1.08本,请你计算全年级人均阅读科普类书籍的数量,再通过计算补全统计表;②在①的条件下,若要推荐初二某个班级为本学期阅读先进集体,你会推荐哪个班,请写出你的理由.23.在四边形中,一条边上的两个角称为邻角. 一条边上的邻角相等,且这条边的对边上的邻角也相等,这样的四边形叫做IT 形. 请你根据研究平行四边形及特殊四边形的方法,写出IT 形的性质,把你的发现都写出来.五、解答题:(本题共16分,第24题8分,第25题8分)24.如图,四边形ABCD 是正方形,E 是CD 垂直平分线上的点,点E 关于BD 的对称点是'E ,直线DE 与直线'BE 交于点F .(1)若点E 是CD 边的中点,连接AF ,则FAD ∠=︒;(2)小明从老师那里了解到,只要点E 不在正方形的中心,则直线AF 与AD 所夹锐角不变.他尝试改变点E 的位置,计算相应角度,验证老师的说法.①如图,将点E 选在正方形内,且△EAB 为等边三角形,求出直线AF 与AD 所夹锐角的度数;②请你继续研究这个问题,可以延续小明的想法,也可用其它方法.BFB我选择小明的想法;(填“用”或“不用”)并简述求直线AF与AD所夹锐角度数的思路.25.对于正数x,用符号[]x表示x的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b在第一象限内,以A为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于y轴的边长为a,垂直于x轴的边长为[]1b+,那么,把这个矩形覆盖的区域叫做点A的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.A BC D图1 图2 根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点7(2,)2的矩形域,该矩形域的面积是;(2)点77(2,),(,)(0)22P Q a a>的矩形域重叠部分面积为1,求a的值;(3)已知点(,)(0)B m n m>在直线1y x=+上,且点B的矩形域的面积S满足45S<<,那么m的取值范围是.(直接写出结果)数学答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.2x ≥- 12.1 13. 14.8 15.3;3;乙同学 16.10x -<<说明:第15题每空1分,共3分.三、解答题(本题共22分,第17—19题每小题4分,第20—21题每小题5分) 17.解:原式=------------------------------3分=------------------------------4分18.证明:∵四边形ABCD 是平行四边形, ∴AD BC∥,AD BC=.------------------------------1分 ∵AE CF =,∴DE BF =. ------------------------------2分 ∴四边形EBFD 是平行四边形.------------------------------3分∴BE DF =. ------------------------------4分 证法二:∵四边形ABCD 是平行四边形,∴AB DC =,A C ∠=∠. ------------------------------1分 ∵AE CF =. ------------------------------2分 ∴BAE DCF ≅V V . ------------------------------3分 ∴BE DF =. ------------------------------4分19.解法一:∵1x =,∴1x -=∴2222211(1)1x x x x x -=-+-=-- ------------------------------2分21=-ABCDEFA BCDEF4=. ------------------------------4分解法二:∵1x =,∴22(2)12)x x x x -=-=- ------------------------------2分21=-4=. ------------------------------4分注:结论错,有对根式计算正确的部分给1分。

2017-2018学年八年级数学下期末试卷有答案和解释

2017-2018学年八年级数学下期末试卷有答案和解释

2017-2018学年八年级数学下期末试卷有答案和解释一、选择题(本大题共6小题,共18.0分)1.函数y=(k-2)x+3是一次函数,则k的取值范围是()A. B. C. D.2.函数y=2x-1的图象经过()A. 一、二、三象限B. 二、三、四象限C. 一、三、四象限D. 一、二、四象限3.下列方程中,有实数根的方程是()A. B. C. D.4.已知向量、满足||=||,则()A. B. C. D. 以上都有可能5.事件“关于y的方程a2y+y=1有实数解”是()A. 必然事件B. 随机事件C. 不可能事件D. 以上都不对6.下列命题中,假命题是()A. 两组对角分别相等的四边形是平行四边形B. 有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形C. 有一组邻边相等且互相垂直的平行四边形是正方形D. 一组邻边互相垂直,两组对边分别平行的四边形是矩形二、填空题(本大题共12小题,共36.0分)7.已知函数f(x)=+1,则f()=______.8.已知一次函数y=1-x,则函数值y随自变量x的增大而______.9.方程x4-16=0的根是______.10.如图,一次函数y=kx+b(k≠0)的图象经过点(2,0),则关于x 的不等式kx+b>0的解集是______.11.用换元法解方程+=,若设y=,则原方程可以化为关于y的整式方程是______.12.木盒中装有1个黑球和2个白球,这些球除颜色外其他都相同.从木盒里先摸出一个球,放回去后摇匀,再摸出1个球,则摸到1个黑球1白球的概率是______.13.已知一个凸多边形的内角和等于720°,则这个凸多边形的边数为______.14.若梯形的一条底边长8cm,中位线长10cm,则它的另一条底边长是______cm.15.如图,折线ABC表示从甲地向乙地打电话所需的电话费y(元)关于通话时间t(分钟)的函数图象,则通话7分钟需要支付电话费______元.16.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是______.17.我们把对角线与一条底边相等的等腰梯形叫做“完美等腰梯形”,若一个“完美等腰梯形”的对角线长为10,且该梯形的一个内角为75°,则这个梯形的高等于______.18.如图,在边长为6的正方形ABCD中,点M、N分别是边AD、BC的中点,Q是边CD上的一点.联结MN、BQ,将△BCQ沿着直线BQ翻折,若点C恰好与线段MN上的点P重合,则PQ的长等于______.三、解答题(本大题共7小题,共46.0分)19.解方程:3-=x.20.解方程组:21.如图,点E、F在平行四边形ABCD的对角线BD上,BE=DF,设,,.(1)填空:图中与互为相反向量的向量是______;(2)填空:-=______.(3)求作:+(不写作法,保留作图痕迹,写出结果)22.小明在普通商场中用96元购买了一种商品,后来他在网上发现完全相同的这一商品在网上购买比普通商场中每件少2元,他用90元在网上再次购买这一商品,比上次在普通商场中多买了3件.问小明在网上购买的这一商品每件几元?23.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AD与BE 交于点O,点F、G分别是BO、AO的中点,联结DE、EG、GF、FD.(1)求证:FG∥DE;(2)若AC=BC,求证:四边形EDFG是矩形.24.在平面直角坐标系中,过点(4,6)的直线y=kx+3与y轴相交于点A,将直线向下平移个单位,所得到的直线l与y轴相交于点B.(1)求直线l的表达式;(2)点C位于第一象限且在直线l上,点D在直线y=kx+3,如果以点A、B、C、D为顶点的四边形是菱形,求点C的坐标.25.已知在等腰梯形ABCD中,AD∥BC,AD=AB=CD=6厘米,∠B=60°,点P在边AD上以每秒2厘米的速度从D出发,向点A运动;点Q在边AB上以每秒1厘米的速度从点B出发,向点A运动.已知P、Q两点同时出发,当其中一个点到达终点时,另外一个点也随之停止运动,设两个点的运动时间为t秒,联结PC、QD.(1)如图1,若四边形BQDC的面积为S平方厘米,求S关于t的函数解析式并写出函数定义域;(2)若PC与QE相交于点E,且∠PEQ=60°,求t的值.答案和解析1.【答案】D【解析】解:由题意得:k-2≠0,解得:k≠2,故选:D.根据一次函数定义可得k-2≠0,再解不等式即可.此题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.【答案】C【解析】解:∵2>0,∴一次函数y=-x+2的图象一定经过第一、三象限;又∵-1<0,∴一次函数y=2x-1的图象与y轴交于负半轴,∴一次函数y=2x-1的图象经过第一、三、四象限;故选:C.根据一次函数y=kx+b(k≠0)中的k、b判定该函数图象所经过的象限.本题考查了一次函数的性质.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y 的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y 的值随x的值增大而减小.3.【答案】A【解析】解:A、x3+3=0,x=,有实数根,正确;B、平方不能为负数,无实数根,错误;C、分式方程中分母不能为零,无实数根,错误;D、算术平方根不能是负数,无实数根,错误;故选:A.根据立方根、平方根、二次根式和分式的意义判断即可.本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义.4.【答案】D【解析】解:若向量、满足||=||,可得:=,或=-,或∥,故选:D.利用单位向量的定义和性质直接判断即可.此题考查平面向量问题,解题时要认真审题,注意单位向量、零向量、共线向量的定义和的性质的合理运用.5.【答案】A【解析】解:∵△=1-4a2(-1)=4a2+1>0,原方程一定有实数解.∴方程a2y+y=1有实数解是必然事件.故选:A.根据根的判别式△=b2-4ac的值的符号就可以判断下列方程有无实数解.再判断属于哪类事件即可.本题主要考查了随机事件的意义与一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.【答案】B【解析】解:A、两组对角分别相等的四边形是平行四边形,是真命题;B、有一条对角线与一组邻边构成等腰三角形的平行四边形不一定是菱形,是假命题;C、有一组邻边相等且互相垂直的平行四边形是正方形,是真命题;D、一组邻边互相垂直,两组对边分别平行的四边形是矩形是真命题;故选:B.根据平行四边形的判定、菱形的判定、正方形的判定及矩形的判定判断即可.此题主要考查了真命题的定义,解题时分别利用了平行四边形的判定、菱形的判定、正方形的判定及矩形的判定等知识解决问题.7.【答案】3【解析】解:f(x)=+1,则f()=×+1=2+1=3,故答案为:3.根据自变量与函数值的对应关系,可得答案.本题考查了函数值,利用自变量与函数值的对应关系是解题关键.8.【答案】减小【解析】解:∵k=-1<0,∴函数值y随自变量x的增大而减小,故答案为:减小根据一次函数y=kx+b的性质解得即可.本题考查了一次函数的性质;在一次函数y=kx+b中,k>0,y随x 的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.9.【答案】±2【解析】解:∵x4-16=0,∴(x2+4)(x+2)(x-2)=0,∴x=±2,∴方程x4-16=0的根是±2,故答案为±2.方程的左边因式分解可得(x2+4)(x+2)(x-2)=0,由此即可解决问题.本题考查高次方程的解,解题的关键是学会应用因式分解法解方程,把高次方程转化为一次方程,属于中考常考题型.10.【答案】x<2【解析】解:由图象可得:当x<2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x<2,故答案为:x<2观察函数图象得到即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.11.【答案】6y2-15y+2=0【解析】解:用换元法解方程+=,若设y=,则原方程可以化为关于y的整式方程是6y2-15y+2=0,故答案为:6y2-15y+2=0.方程变形后,根据设出的y变形即可.此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.12.【答案】【解析】解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,其中摸到1个黑球1白球的有4种结果,∴摸到1个黑球1白球的概率为,故答案为:.列表将所有等可能的结果列举出来,利用概率公式求解即可.考查用列树状图的方法解决概率问题;得到两次摸到1个黑球1白球的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.13.【答案】6【解析】解:设这个多边形的边数为n,则(n-2)×180°=720°,解得:n=6,故答案为:6.设这个多边形的边数为n,根据题意得出(n-2)×180°=720°,求出即可.本题考查了多边形的内角和定理,能根据题意得出关于n的方程是解此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°.14.【答案】12【解析】解:设另一条底边为x,则8+x=2×10,解得x=12.即另一条底边的长为12.故答案为:12只需根据梯形的中位线等于梯形两底和的一半进行计算即可.本题考查了梯形的中位线定理,解题的关键是熟记梯形的中位线定理并灵活的应用.15.【答案】6.4【解析】解:当通话时间在3分钟以内费用为2.4元,超出之后每分钟元则通话7分钟费用为:2.4+(7-3)=6.4元故答案为:6.4根据图象分段讨论计费方案本题为一次函数实际应用问题,考查一次函数图象的实际意义.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.首先证明△AOB是等边三角形,则可以求得AC的长,然后利用勾股定理求得BC的长本题考查了矩形的性质,等边三角形的性质和判定的应用,注意:矩形的对角线相等且互相平分.17.【答案】5【解析】解:如图,AB=CD,AD∥BC,BD=BC=10,∠C=75°.作DH⊥BC于H.∵BD=BC,∴∠BDC=∠C=75°,∴∠DBC=180°-75°-75°=30°,∴DH=BD=5.故答案为5作DH⊥BC于H.由BD=BC,推出∠BDC=∠C=75°,推出∠DBC=180°-75°-75°=30°,利用直角三角形30°的性质即可解决问题;本题考查等腰梯形的性质、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.【答案】2【解析】解:∵∠CBQ=∠PBQ=∠PBC,BC=PB=2BN=3,∠BPQ=∠C=90°,∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=6×=2.故答案为:2.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=2.本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】解:移项得平方得2x-3=9-6x+x2x2-8x+12=0(x-2)(x-6)=0x1=2,x2=6经检验x2=6为增根,舍去;x1=2为原方程的解.原方程的解为x=2.【解析】根据平方,可得整式方程,根据解整式方程,可得答案.本题考查了无理方程,利用平方转化成整式方程是解无理方程的关键,注意要检验方程的根.20.【答案】解:由(2)得x=y+1(3)把(1)、(3)联立得解得.【解析】把(2)变形后代入解答即可.此题考查高次方程的解法,关键是把(2)变形后代入解答.21.【答案】和【解析】解:(1)∵BE=DF,∴BF=ED,∴图中与互为相反向量的向量是和.故答案为和.(2)∵=+=+(-)=-,故答案为(3)如图,即为所求作的向量.(1)根据相等平面向量的定义即可判断;(2)理由三角形法则即可判断;(3)理由三角形法则即可解决问题;本题考查作图-复制作图,平行四边形的性质,平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:设小明在网上购买的这一商品每件x元.(1分),(4分)x2+4x-60=0,(2分)x1=-10,x2=6.(1分)经检验它们都是原方程的根,但x=-10不符合题意.(1分)答:小明在网上购买的这一商品每件6元.(1分)【解析】设小明在网上购买的这一商品每件x元,小明在普通商场中用96元购买了一种商品,后来他在网上发现完全相同的这一商品在网上购买比普通商场中每件少2元,他用90元在网上再次购买这一商品,比上次在普通商场中多买了3件根据此可列方程求解.本题考查分式方程的应用,设出价格,根据件数做为等量关系列方程求解.23.【答案】解:(1)∵AD、BE分别是边BC、AC上的中线,∴DE是△ABC的中位线,∴DE∥AB且DE=AB.∵点F、G分别是BO、AO的中点,∴FG是△OAB的中位线,∴FG∥AB且FG=AB.∴GF∥DE.(2)由(1)GF∥DE,GF=DE∴四边形EDFG是平行四边形.∵AD、BE是BC、AC上的中线,∴CD=BC,CE=AC.又∵AC=BC,∴CD=CE.在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CAB=∠CBA.∵AC=BC,∴∠CAB=∠CBA,∴∠DAB=∠EBA,∴OB=OA.∵点F、G分别是OB、AO的中点,∴OF=OB,OG=OA,∴OF=OG,∴EF=DG,∴四边形EDFG是矩形.【解析】(1)依据三角形的中位线定理可得到DE∥AB且DE=AB、FG∥AB且FG=AB,从而可证明FG∥DE;(2)首先证明四边形EDFG是平行四边形,然后再证明EF=DG,最后,依据矩形的判定定理进行证明即可.本题主要考查的是矩形的判定、三角形的中位线定理,熟练掌握三角形的中位线定理是解题的关键.24.【答案】解:(1)将点(4,6)代入直线y=kx+3,可得k=,∴y=x+3,将直线向下平移个单位,得到直线l的表达式:y=x+;(2)由题可得A(0,3),B(0,),设C(t,t+),当AB∥CD时,AB2=BC2,即t2+=,解得t1=2,t2=-2,又∵t>0,∴C(2,2);当AB,CD为菱形的对角线时,AC2=BC2,∴t2+=t2+,解得t=,∴C(,).综上所述,点C的坐标为(2,2)或(,).【解析】(1)将点(4,6)代入直线y=kx+3,可得y=x+3,将直线向下平移个单位,即可得到直线l的表达式:y=x+;(2)设C(t,t+),分两种情况进行讨论:当AB∥CD时,AB2=BC2;当AB,CD为菱形的对角线时,AC2=BC2,解方程即可得到点C的坐标.本题主要考查了菱形的判定以及一次函数图象与几何变换,解题时注意:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.【答案】(1)过点A作AH⊥BC,垂足为H,过点D作DF⊥AB,垂足为F,在Rt△ABH中,∠B=60°,AB=6,可得:AH=3、DF=3,S四边形BQDC=S梯形ABCD-SADQ=27-(8-t)=18(0<t≤3);答:求S关于t的函数解析式为S=18(0<t≤3);(2)当且∠PEQ=60°时,可证△CDP≌△ADQ(AAS),∴PD=AQ,即:6-t=2t,t=2.答:t的值为2.【解析】(1)由S四边形BQDC=S梯形ABCD-SADQ即可求出表达式;(2)当且∠PEQ=60°时,可证△CDP≌△ADQ,∴PD=AQ,即可求解.本题考查的是二次函数的应用,(1)中S四边形BQDC=S梯形ABCD-SADQ 这种面积拆分的办法是此类题目常用的方法.。

2017-2018学年新课标最新人教版八年级数学下学期期末考试试题(含解析)-精品试卷

2017-2018学年新课标最新人教版八年级数学下学期期末考试试题(含解析)-精品试卷

人教版2017-2018学年八年级数学下学期期末试题一、选择题(1-10题,每题3分,11-16题,每题2分,共42分)1.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6D.÷=32.下列各组数是三角形的三边,能组成直角三角形的一组数是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=53.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C4.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数 B.中位数C.方差 D.以上都不对5.直线y=2x﹣4与y轴的交点坐标是()A.(4,0) B.(0,4) C.(﹣4,0)D.(0,﹣4)6.下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个7.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.49.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.10.2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:A.1.70m,1.65m B.1.70m,1.70m C.1.65m,1.60m D.3,411.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.412.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cm B.5cm C.5.5cm D.1cm13.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>514.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.15.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A.②③④B.②④ C.①③④D.②③16.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.6二、填空题(每题3分,共12分)17.若=3﹣x,则x的取值范围是.18.顺次连接对角线相等的四边形的各边中点,所形成的四边形是.19.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.20.如图,在菱形ABCD中,边长为1,∠A=60°,顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去…,则四边形A2016B2016C2016D2016的面积是.三、解答题21.化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.22.如图所示是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题:(1)田径队共有多少人?(2)该队队员年龄的众数和中位数分别是多少?(3)该队队员的平均年龄是多少?23.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.24.如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.25.如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?26.如图所示:在△ABC中,分别以AB、AC、BC为边,在BC的同侧作等边△ABD、等边△ACE、等边△BCF.(1)求证:四边形DAEF是平行四边形;(2)探究下列问题:(只填条件,不需证明)①当∠BAC满足条件时,四边形DAEF是矩形;②当∠BAC满足条件时,以D、A、E、F为顶点的四边形不存在;③当△ABC满足条件时,四边形DAEF是正方形.参考答案与试题解析一、选择题(1-10题,每题3分,11-16题,每题2分,共42分) 1.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6D.÷=3【考点】二次根式的乘除法;二次根式的加减法.【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.,无法计算,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D. =,此选项正确,故选D.【点评】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.2.下列各组数是三角形的三边,能组成直角三角形的一组数是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+22≠32,故不是直角三角形,故此选项错误;B、22+32≠42,故不是直角三角形,故此选项错误;C、22+42≠52,故不是直角三角形,故此选项错误;D、32+42=52,故是直角三角形,故此选项正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.4.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数 B.中位数C.方差 D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.【点评】本题考查方差的意义以及对其他统计量的意义的理解.它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.5.直线y=2x﹣4与y轴的交点坐标是()A.(4,0) B.(0,4) C.(﹣4,0)D.(0,﹣4)【考点】一次函数图象上点的坐标特征.【分析】令x=0,求出y的值,即可求出与y轴的交点坐标.【解答】解:当x=0时,y=﹣4,则函数与y轴的交点为(0,﹣4).故选D.【点评】本题考查了一次函数图象上点的坐标特征,要知道,y轴上的点的横坐标为0.6.下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个【考点】命题与定理;平行四边形的判定.【分析】分别利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形,进而得出即可.【解答】解:①对角线互相平分的四边形是平行四边形,正确,符合题意;②两组对角分别相等的四边形是平行四边形,正确,符合题意;③一组对边平行,另一组对边相等的四边形是平行四边形,说法错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.故选:B.【点评】此题主要考查了命题与定理,正确把握相关定理是解题关键.7.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】根据一次函数y=﹣x+1中k=﹣<0,b=1>0,判断出函数图象经过的象限,即可判断出一次函数y=﹣x+1的图象不经过的象限是哪个.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选:C.【点评】此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.8.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.4【考点】中位数;算术平均数.【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7﹣4﹣4﹣5﹣6﹣6﹣7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选C.【点评】本题考查的是中位数,熟知中位数的定义是解答此题的关键.9.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.10.2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:A.1.70m,1.65m B.1.70m,1.70m C.1.65m,1.60m D.3,4【考点】众数;中位数.【分析】首先根据这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,判断出这些运动员跳高成绩的中位数即可;然后找出这组数据中出现次数最多的数,则它就是这些运动员跳高成绩的众数,据此解答即可.【解答】解:∵15÷2=7…1,第8名的成绩处于中间位置,∴男子跳高的15名运动员的成绩处于中间位置的数是1.65m,∴这些运动员跳高成绩的中位数是1.65m;∵男子跳高的15名运动员的成绩出现次数最多的是1.60m,∴这些运动员跳高成绩的众数是1.60m;综上,可得这些运动员跳高成绩的中位数是1.65m,众数是1.60m.故选:C.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.4【考点】平行四边形的性质.【分析】根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM 的长.【解答】解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.【点评】本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.12.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cm B.5cm C.5.5cm D.1cm【考点】翻折变换(折叠问题).【分析】根据勾股定理计算出最长折痕即可作出判断.【解答】解:易知最长折痕为矩形对角线的长,根据勾股定理对角线长为: =≈7.8,故折痕长不可能为8cm.故选:A.【点评】考查了折叠问题,勾股定理,根据勾股定理计算后即可做出选择,难度不大.13.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>5【考点】一次函数与一元一次不等式.【专题】压轴题.【分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【解答】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故选:C.【点评】本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【考点】一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.15.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A.②③④B.②④ C.①③④D.②③【考点】全等三角形的判定与性质;正方形的判定.【分析】根据角平分线性质求出DE=DF,证△AED≌△AFD,推出AE=AF,再逐个判断即可.【解答】解:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴四边形AEDF是正方形,∴③正确;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;故选A.【点评】本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能求出Rt△AED≌Rt △AFD是解此题的关键.16.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.6【考点】菱形的性质;矩形的性质.【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.【点评】本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.二、填空题(每题3分,共12分)17.若=3﹣x,则x的取值范围是x≤3 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出3﹣x≥0,求出即可.【解答】解:∵ =3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.【点评】本题考查了二次根式的性质的应用,注意:当a≥0时, =a,当a<0时, =﹣a.18.顺次连接对角线相等的四边形的各边中点,所形成的四边形是菱形.【考点】中点四边形.【分析】根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形解答即可.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=D,EF=HG=AC,∵AC=BD∴EF=FG=HG=EH,∴四边形EFGH是菱形.故答案为:菱形.【点评】此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.19.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x ≥2 时,y≤0.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】利用待定系数法把点A(0,﹣1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可.【解答】解:∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0),∴,解得:这个一次函数的表达式为y=﹣x+1.解不等式﹣x+1≤0,解得x≥2.故答案为x≥2.【点评】本题考查了待定系数法求一次函数解析式,解不等式,把点的坐标代入函数解析式求出解析式是解题的关键.20.如图,在菱形ABCD中,边长为1,∠A=60°,顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去…,则四边形A2016B2016C2016D2016的面积是.【考点】菱形的性质.【专题】规律型.【分析】首先利用已知数据求出菱形ABCD的面积,易得四边形A2B2C2D2的面积等于矩形A1B1C1D1的面积的,同理可得四边形A3B3C3D3的面积等于四边形A2B2C2D2的面积,那么等于矩形A1B1C1D1的面积的()2,同理可得四边形A2016B2016C2016D2016的面积.【解答】解:如图,连接AC、BD.则AC⊥BD.∵菱形ABCD中,边长为1,∠A=60°,∴S菱形ABCD=AC•BD=1×1×sin60°=∵顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1,易证四边形A1B1C1D1是矩形,S矩形A1B1C1D1=C•BD=AC•BD=S菱形ABCD.同理,S四边形A2B2C2D2=S矩形A1B1C1D1=S菱形ABCD,S矩形A3B3C3D3=()3S菱形ABCD.四边形A2016B2016C2016D2016的面积是=S菱形ABCD=,故答案为:.【点评】本题考查了菱形以及中点四边形的性质.找到中点四边形的面积与原四边形的面积之间的关系是解决本题的关键.三、解答题21.化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先利用二次根式的乘法法则运算,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=﹣2﹣3=3﹣6﹣3=﹣6;(2)原式=2﹣3+4=4﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.如图所示是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题:(1)田径队共有多少人?(2)该队队员年龄的众数和中位数分别是多少?(3)该队队员的平均年龄是多少?【考点】条形统计图;算术平均数;中位数;众数.【专题】图表型.【分析】(1)观察图形,15岁1人,16岁2人,17岁4人,18岁3人,相加即可得出田径队总人数;(2)中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(3)平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:(1)由图中信息可知,田径队的人数是:1+2+3+4=10(人);(2)该田径队队员年龄由高至低排列是:18,18,18,17,17,17,17,16,16,15,∴数据17出现次数最多,该队队员年龄的众数是17,中位数是(17+17)÷2=17;(3)该队队员的平均年龄是:(15+16×2+17×4+18×3)÷10=16.9(岁).【点评】本题考查的是条形统计图、平均数、众数、中位数的综合运用.熟记平均数、众数、中位数的概念,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.【考点】勾股定理.【分析】因为CD⊥AB,所以△ACD和△BCD都是直角三角形,都利用勾股定理表示CD的长,得到方程即可求解.【解答】解:根据题意CD2=AC2﹣AD2=32﹣(2BD)2=9﹣4BD2,CD2=BC2﹣BD2=22﹣BD2=4﹣BD2,∴9﹣4BD2=4﹣BD2,解得BD2=,∴BD=.【点评】两次运用勾股定理表示三角形的公共边CD是解题的突破口.24.如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.【考点】平行四边形的判定;全等三角形的判定.【专题】证明题.【分析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD是平行四边形,可证OF=OE,OA=OC,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.【解答】证明:∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,∵AB∥CD,∴∠DFO=∠BEO,∠FDO=∠EBO,∴在△FDO和△EBO中,∴△FDO≌△EBO(AAS),∴OF=OE,∴四边形AECF是平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.25.如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?【考点】一次函数的应用.【分析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.【解答】解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20.【点评】本题考查了一次函数的应用,待定系数法求函数解析式,比较简单,准确识图并获取信息是解题的关键.26.如图所示:在△ABC中,分别以AB、AC、BC为边,在BC的同侧作等边△ABD、等边△ACE、等边△BCF.(1)求证:四边形DAEF是平行四边形;(2)探究下列问题:(只填条件,不需证明)①当∠BAC满足∠BAC=150°条件时,四边形DAEF是矩形;②当∠BAC满足∠BAC=60°条件时,以D、A、E、F为顶点的四边形不存在;③当△ABC满足∠BAC=150°且AB=AC 条件时,四边形DAEF是正方形.【考点】正方形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定;矩形的判定.【分析】(1)由等边三角形的性质得出AC=CE=AE,AB=AD=BD,BC=CF=BF,∠BCF=∠ACE=60°,求出∠BCA=∠FCE,证△BCA≌△FCE,得出EF=BA=AD,同理DF=AC=AE,即可得出结论;(2)①求出∠DAE的度数,根据矩形的判定得出即可;②证出D、A、E三点共线,即可得出结论;③由①得出四边形DAEF是矩形;再由AB=AC≠BC得出四边形DAEF是菱形,即可得出结论.【解答】(1)证明:∵△ABD、△BCE、△ACE是等边三角形,∴AC=CE=AE,AB=AD=BD,BC=CF=BF,∠BCF=∠ACE=60°,∴∠BCA=∠FCE=60°﹣∠ACF,在△BCA和△FCE中,,∴△BCA≌△FCE(SAS),∴EF=BA=AD,同理:DF=AC=AE,∴四边形DAEF是平行四边形;(2)解:①当∠A=150°时,四边形DAEF是矩形,理由如下:∵△ABD、△ACE是等边三角形,∴∠DAB=∠EAC=60°,∴∠DAE=360°﹣60°﹣60°﹣150°=90°,∵四边形DAEF是平行四边形,∴四边形DAEF是矩形,故答案为:=150°;②当∠BAC=60°时,以D、A、E、F为顶点的四边形不存在;理由如下:∵∠BAC=60°,∠BAD=∠CAE=60°,∴点D、A、E共线,∴以D、A、E、F为顶点的四边形不存在;故答案为:∠BAC=60°;③当△ABC满足∠BAC=150°,且AB=AC≠BC时,四边形DAEF是正方形,理由如下:由①得:当∠BAC=150°时,四边形DAEF是矩形;当AB=AC时,由(1)得:EF=AB=AD,DF=AC=AE,∵AB=AC,∴AD=AE,∵四边形DAEF是平行四边形,∴四边形DAEF是菱形,∴四边形DAEF是正方形.故答案为:∠BAC=150°,AB=AC.【点评】本题考查了等边三角形的性质、全等三角形的性质和判定、平行四边形的判定、菱形的判定、矩形的判定以及正方形的判定;解此题的关键是求出EF=BA=AD,DF=AC=AE,主要考查了学生的推理能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是( ) A .B .C .D .10.下列计算正确的是( ) A .2 B .C .D .=﹣311.如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD 是AB 边上的中线,则CD 的长是( )A .20B .10C .5D .12.一次函数y=kx +b 的图象如图所示,则k 、b 的符号( )A .k <0,b >0B .k >0,b >0C .k <0,b <0D .k >0,b <0 13.下列命题中,为真命题的是( ) A .有一组邻边相等的四边形是菱形 B .有一个角是直角的平行四边形是矩形 C .有一组对边平行的四边形是平行四边形 D .对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表: 月用水量(吨)3458户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3二、选择题(每小题3分,共24分)题号 9 10 11 12 13 14 15 16 答案DCCABCBD三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+ ∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分解方程组得:⎪⎩⎪⎨⎧==3045b k …………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形, OD=21BD,OC=21AC,BD=AC ∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8, (3)分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k解得:k=4,b=12 …………………………4分 ∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分 ∵PE ⊥BC ,PF ⊥CQ ,BC ⊥DC∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分∴∠EPF=90°∴∠BPF+∠BPE=90°,∵∠BPF+∠QPF=90°,∴∠BPE=∠QPF , ………………………7分在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPE QPF PF PE QFP BEP ∴△PEB ≌△PFQ (ASA ) ………………………9分 ∴PB=PQ . ………………………10分 (其它做法参照给分)。

相关文档
最新文档