2019年秋平顶山市鲁山县度九年级数学上册期末试卷有答案【精选】.docx

合集下载

2019-2020学年河南省平顶山市九年级上期末数学测试卷(含答案)

2019-2020学年河南省平顶山市九年级上期末数学测试卷(含答案)

河南省平顶山市九年级(上)期末测试数学试卷一、选择题(本题共9个小题,每小题3分,共27分)1.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥2.用配方法解一元二次方程x2﹣6x﹣1=0时,方程可变形为()A.(x﹣3)2=10 B.(x﹣6)2=37 C.(x﹣3)2=4 D.(x﹣3)2=13.如果点(﹣2,3)在反比例函数y=(k≠0的常数)的图象上,那么对于反比例函数y=下列说法正确的是()A.在每一象限内,y随x的增大而增大B.在每一象限内,y随x的增大而减小C.y恒为正值D.y恒为负值4.如图,在△ABC中,点D、E分别在AB、AC边上,且AD=2,AE=4,BD=10,CE=2,则DE:BC等于()A.1:2 B.1:3 C.2:3 D.1:55.鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成4组进行活动,则小明和小华被分在一组的概率是()A.B.C.D.6.如图,△ABC中,点E、F分别为AB、AC中点,△AEF面积为2,则四边形EBCF面积为()A.4 B.6 C.8 D.107.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x,则下面所列方程正确的是()A.90(1+x)2=144 B.90(1﹣x)2=144C.90(1+2x)=144 D.90(1+x)+90(1+x)2=144﹣908.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形9.反比例函数y=与一次函数y=﹣kx﹣k在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(每小题3分,共21分)10.一元二次方程y2=2y的解为.11.若=,则= .12.如图,△ABC和△ADE中, ==,∠BAD=20°,则∠BCD= 度.13.已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则BC= .14.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则长方形纸条的宽度是cm.15.在平面直角坐标系中,已知点E(﹣6,3)、F(﹣2,﹣2),以原点O为位似中心,按比例尺3:1把△EFO缩小,则点E对应点E′的坐标为.16.如图,在矩形ABCD中,点E、F分别在边CD和BC上,且CD=4DE=4a,将矩形沿直线EF 折叠,使点C恰好落在AD边上点P处,则FP= .三、解答题(本大题共7小题,70分)17.某个几何体的三视图如图所示,根据图中有关数据,求这个几何体的各个侧面积之和.18.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.19.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.20.某学校举行英语演讲赛,九(1)班有甲、乙、丙、丁四位同学报名,张老师要从中选出两位同学参加比赛.(1)若已确定甲参加,再从其他三位同学中随机选取一位,求恰好选中乙的概率;(2)若从四位同学中任意选取两位参加比赛,请用树状图或表格方法,求恰好选中丙和丁的概率.21.如图,在平面直角坐标中,点O 是坐标原点,一次函数y 1=﹣x+4与反比例函数y 2=(x >0)的图象交于A (1,m )、B (n ,1)两点. (1)求k 、m 、n 的值.(2)根据图象写出当y 1>y 2时,x 的取值范围.(3)若一次函数图象与x 轴、y 轴分别交于点N 、M ,则求出△AON 的面积.22.在平顶山鹰城广场升级改造过程中,需要将如图矩形花坛改造成菱形花坛,且改造后菱形花坛面积是原矩形面积的一半,根据图中数据,求菱形花坛的边长.23.如图1,点M 放在正方形ABCD 的对角线AC (不与点A 重合)上滑动,连结DM ,做MN ⊥DM 交直线AB 于N .(1)求证:DM=MN ;(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且DC=2AD ,求MD :MN ; (3)在(2)中,若CD=nAD ,当M 滑动到CA 的延长线上时(如图3),请你直接写出MD :MN 的比值.河南省平顶山市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共9个小题,每小题3分,共27分)1.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及侧视图都是矩形,可排除D,故选C.2.用配方法解一元二次方程x2﹣6x﹣1=0时,方程可变形为()A.(x﹣3)2=10 B.(x﹣6)2=37 C.(x﹣3)2=4 D.(x﹣3)2=1【考点】解一元二次方程﹣配方法.【分析】两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2﹣6x=1,∴x2﹣6x+9=1+9,即(x﹣3)2=10,故选:A.3.如果点(﹣2,3)在反比例函数y=(k≠0的常数)的图象上,那么对于反比例函数y=下列说法正确的是()A.在每一象限内,y随x的增大而增大B.在每一象限内,y随x的增大而减小C.y恒为正值D.y恒为负值【考点】反比例函数的性质.【分析】根据点(﹣2,3)在反比例函数y=(k≠0的常数)的图象上,可以求得k的值,从而可以得到反比例函数的解析式,然后根据反比例函数的性质,即可判断哪个选项是正确的.【解答】解:∵点(﹣2,3)在反比例函数y=(k≠0的常数)的图象上,∴3=,得k=﹣6,∴y=,∴在每个象限内,y随x得增大而增大,故选项A正确,选项B错误,在第二象限内,y恒为正值,在第四象限内,y恒为负值,故选项C、D错误,故选A.4.如图,在△ABC中,点D、E分别在AB、AC边上,且AD=2,AE=4,BD=10,CE=2,则DE:BC等于()A.1:2 B.1:3 C.2:3 D.1:5【考点】相似三角形的判定与性质.【分析】先根据两组对应边的比相等且夹角对应相等的两个三角形相似,得出△ADE∽△ACB,DE:BC=AD:AC=1:3.【解答】解:∵AD=2,AE=4,BD=10,CE=2,∴==, ==,∴=,又∵∠A=∠A,∴△ADE∽△ACB,∴DE:BC=AD:AC=1:3.故选:B.5.鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成4组进行活动,则小明和小华被分在一组的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】利用画树状图法列出所有等可能结果,然后根据概率公式进行计算即可求解.【解答】解:设四个小组分别记作A、B、C、D,画树状图如图:由树状图可知,共有16种等可能结果,其中小明、小华被分到同一个小组的结果由4种,∴小明和小华同学被分在一组的概率是=,故选:D.6.如图,△ABC中,点E、F分别为AB、AC中点,△AEF面积为2,则四边形EBCF面积为()A.4 B.6 C.8 D.10【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据三角形的中位线得出EF∥BC,推出△AEF∽△ABC,得出比例式,求出△ABC的面积,即可得出答案.【解答】解:∵E、F分别是AB,AC的中点,∴EF∥BC,EF=BC,∴△AEF∽△ABC,相似比为,∴△AEF的面积:△ABC的面积=1:4,∵△AEF的面积为2,∴△ABC的面积=4×2=8,∴四边形EBCF的面积=8﹣2=6,故选B.7.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x,则下面所列方程正确的是()A.90(1+x)2=144 B.90(1﹣x)2=144C.90(1+2x)=144 D.90(1+x)+90(1+x)2=144﹣90【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),由此可以求出第二个月和第三个月的营业额,而第一季度的总营业额已经知道,所以可以列出一个方程.【解答】解:设平均每月营业额的增长率为x,则第二个月的营业额为:90×(1+x),第三个月的营业额为:90×(1+x)2,则由题意列方程为:90(1+x)+90(1+x)2=144﹣90.故选D.8.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形【考点】菱形的判定;矩形的判定;正方形的判定.【分析】根据平行四边形、菱形的判定与性质分别判断得出即可.【解答】解:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误;故选C.9.反比例函数y=与一次函数y=﹣kx﹣k在同一直角坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数图象与系数的关系.【分析】当k>0时,可得出反比例函数y=的图象在第一、三象限,一次函数y=﹣kx﹣k的图象经过第二、三、四象限;当k<0时,可得出反比例函数y=的图象在第二、四象限,一次函数y=﹣kx﹣k的图象经过第一、二、三象限.再对照四个选项即可得出结论.【解答】解:当k>0时,∵k>0,﹣k<0,∴反比例函数y=的图象在第一、三象限,一次函数y=﹣kx﹣k的图象经过第二、三、四象限;当k<0时,∵k<0,﹣k>0,∴反比例函数y=的图象在第二、四象限,一次函数y=﹣kx﹣k的图象经过第一、二、三象限.故选C.二、填空题(每小题3分,共21分)10.一元二次方程y2=2y的解为y1=0,y2=2 .【考点】解一元二次方程﹣因式分解法.【分析】利用因式分解法解方程.【解答】解:y2﹣2y=0,y(y﹣2)=0,y=0或y﹣2=0,所以y1=0,y2=2.故答案为y1=0,y2=2.11.若=,则= .【考点】代数式求值.【分析】对已知式子分析可知,原式可根据比例合比性质可直接得出比例式的值.【解答】解:根据=得3a=5b,则=.故答案为:.12.如图,△ABC和△ADE中, ==,∠BAD=20°,则∠BCD= 20 度.【考点】相似三角形的判定与性质.【分析】先证明△ABC∽△ADE,得出∠B=∠D,再由对顶角相等和三角形内角和定理得出∠BCD=∠BAD=20°即可.【解答】解:∵△ABC和△ADE中, ==,∴△ABC∽△ADE,∴∠B=∠D,∵∠AFB=∠CFD,∴∠BCD=∠BAD=20°;故答案为:20.13.已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则BC= 3﹣.【考点】黄金分割.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:∵点C是线段AB的黄金分割点,且AC>BC,∴AC=AB=﹣1,BC=AB﹣AC=3﹣.故本题答案为:3﹣.14.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则长方形纸条的宽度是 2 cm.【考点】菱形的判定与性质.【分析】证出该四边形是一个菱形,再由直角三角形的性质即可得出答案.【解答】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,分别作CD,BC边上的高为AE,AF,如图所示:∵两纸条相同,∴纸条宽度AE=AF.∵平行四边形的面积为AE×CD=BC×AF,∴CD=BC.∴平行四边形ABCD为菱形,∴AB=AD=4cm,∵∠ABC=30°,∴AE=AB=2cm;故答案为:2.15.在平面直角坐标系中,已知点E(﹣6,3)、F(﹣2,﹣2),以原点O为位似中心,按比例尺3:1把△EFO缩小,则点E对应点E′的坐标为(﹣2,1)或(2,﹣1).【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质计算即可.【解答】解:∵点E的坐标为(﹣6,3),以原点O为位似中心,按比例尺3:1把△EFO缩小,∴点E对应点E′的坐标为(﹣6×,3×)或(﹣6×(﹣),3×(﹣)),即(﹣2,1)或(2,﹣1).故答案为:(﹣2,1)或(2,﹣1).16.如图,在矩形ABCD中,点E、F分别在边CD和BC上,且CD=4DE=4a,将矩形沿直线EF折叠,使点C恰好落在AD边上点P处,则FP= 3 a .【考点】翻折变换(折叠问题);矩形的性质.【分析】作PM⊥BC于M,则MP=DC=4a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=3a=3DE,∠EPF=∠C=90°,得出∠DPE=∠FPM,在Rt△MPF中,由三角函数求出FP即可.【解答】解:作PM⊥BC于M,如图所示:则MP=DC=4a,∵四边形ABCD是矩形,∴∠C=∠D=∠MPD=90°.∵DC=4DE=4a,∴CE=3a,DE=a,由折叠的性质得:PE=CE=3a=3DE,∠EPF=∠C=90°,∴∠EPF=∠MPD∴∠DPE=∠FPM,DP===2a,在Rt△MPF中,∵cos∠MPF=,∴FP=====3a;故答案为:3a.三、解答题(本大题共7小题,70分)17.某个几何体的三视图如图所示,根据图中有关数据,求这个几何体的各个侧面积之和.【考点】由三视图判断几何体.【分析】首先根据三视图判断几何体的形状,然后根据尺寸和侧面积计算方法求得答案即可.【解答】解:由三视图可知,这个几何体是三棱柱;∵底面是直角三角形,一直角边长是4,斜边长是6,∴另一直角边长是=2,∴三棱柱的侧面积之和为:(4+6+2)×10=100+20.18.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.【考点】根与系数的关系;根的判别式.【分析】(1)根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论;(2)将x=﹣1代入原方程求出a的值,设方程的另一个根为m,将a代入原方程结合根与系数的关系即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)∵关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,∴,解得:a≥1且a≠5.∴a的取值范围为a≥1且a≠5.(2)∵方程一个根为﹣1,∴(a﹣5)×(﹣1)2﹣4×(﹣1)﹣1=a﹣2=0,解得:a=2.当a=2时,原方程为3x2+4x+1=0,设方程的另一个根为m,由根与系数的关系得:﹣m=,解得:m=﹣.∴方程的另一个根为﹣.19.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.【考点】相似三角形的判定.【分析】(1)△ABC∽△ADE,△ABD∽△ACE;(2)∠BAD=∠CAE,在此等式两边各加∠DAC,可证∠BAC=∠DAE,再结合已知中的∠ABC=∠ADE,可证△ABC∽△ADE;利用△ABC∽△ADE,可得AB:AD=AC:AE,再结合∠BAD=∠CAE,也可证△BAD∽△CAE.【解答】解:(1)△ABC∽△ADE,△ABD∽△ACE(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.又∵∠ABC=∠ADE,∴△ABC∽△ADE.②证△ABD ∽△ACE , ∵△ABC ∽△ADE ,∴.又∵∠BAD=∠CAE , ∴△ABD ∽△ACE .20.某学校举行英语演讲赛,九(1)班有甲、乙、丙、丁四位同学报名,张老师要从中选出两位同学参加比赛.(1)若已确定甲参加,再从其他三位同学中随机选取一位,求恰好选中乙的概率;(2)若从四位同学中任意选取两位参加比赛,请用树状图或表格方法,求恰好选中丙和丁的概率.【考点】列表法与树状图法.【分析】(1)由题意得出从其余3名同学中选取1名共有3种等可能结果,其中选中乙同学的只要1种结果,根据概率公式可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中丙、丁两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)已确定甲同学参加比赛,再从其余3名同学中选取1名,共有3种等可能结果,其中选中乙同学的只要1种结果,∴恰好选中乙同学的概率为;(2)画树状图为:共有12种等可能结果,其中选取2名同学恰好是丙和丁的结果数为2,∴P (选中丙和丁)==.21.如图,在平面直角坐标中,点O 是坐标原点,一次函数y 1=﹣x+4与反比例函数y 2=(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A(1,m)、B(n,1)两点的坐标代入一次函数的解析式即可求出m、n的值,再把B的坐标代入反比例函数的解析式即可求出k的值;(2)根据函数的图象和A、B的坐标即可得出答案;(3)先根据一次函数的解析式求出N的坐标,再利用三角形面积公式即可求出△AON的面积.【解答】解:(1)把A(1,m)、B(n,1)两点的坐标代入y1=﹣x+4,得m=﹣1+4=3,﹣n+4=1,n=3,则A(1,3)、B(3,1).把B(3,1)代入y2=,得k=3×1=3;(2)∵A(1,3)、B(3,1),∴由函数图象可知,y1>y2时,x的取值范围是1<x<3;(3)∵一次函数y1=﹣x+4的图象与x轴交于点N,∴N(4,0),ON=4,∵A(1,3),∴△AON的面积=×4×3=6.22.在平顶山鹰城广场升级改造过程中,需要将如图矩形花坛改造成菱形花坛,且改造后菱形花坛面积是原矩形面积的一半,根据图中数据,求菱形花坛的边长.【考点】一元二次方程的应用;菱形的性质.【分析】设菱形边长为x 米,连结AC 、BD ,交于O ,根据菱形花坛面积是原矩形面积的一半,列出方程求解即可求解.【解答】解:设菱形边长为x 米,连结AC 、BD ,交于O , ∵∠BCD=60°, ∴∠BCO=30°,在Rt △BCO 中,BO=x ,OC=x ,则AC=x ,∴菱形ABCD 面积为x 2,∵在Rt △EFG 中,∠EGF=30°,EF=8米∴FG=8,∴矩形面积为64,∵菱形花坛面积是原矩形面积的一半,∴x 2=×64,解得:x 1=8,x 2=﹣8(舍去). 答:菱形花坛的边长8米.23.如图1,点M 放在正方形ABCD 的对角线AC (不与点A 重合)上滑动,连结DM ,做MN ⊥DM 交直线AB 于N .(1)求证:DM=MN ;(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且DC=2AD,求MD:MN;(3)在(2)中,若CD=nAD,当M滑动到CA的延长线上时(如图3),请你直接写出MD:MN 的比值.【考点】相似形综合题;全等三角形的判定与性质;矩形的性质;正方形的性质;相似三角形的判定与性质.【分析】(1)过M作MQ⊥AB于Q,MP⊥AD于P,则∠PMQ=90°,∠MQN=∠MPD=90°,根据ASA 即可判定△MDP≌△MNQ,进而根据全等三角形的性质得出DM=MN;(2)过M作MS⊥AB于S,MW⊥AD于W,则∠WMS=90°,根据∠DMW=∠NMS,∠MSN=∠MWD=90°,判定△MDW∽MNS,得出MD:MN=MW:MS=MW:WA,再根据△AWM∽△ADC,DC=2AD,即可得出MD:MN=MW:WA=CD:DA=2;(3)过M作MX⊥AB于X,MR⊥AD于R,则易得△NMX∽△DMR,得出MD:MN=MR:MX=AX:MX,再由AD∥MX,CD∥AX,易得△AMX∽△CAD,得出AX:MX=CD:AD,最后根据CD=nAD,即可得出MD:MN=CD:AD=n.【解答】解:(1)证明:过M作MQ⊥AB于Q,MP⊥AD于P,则∠PMQ=90°,∠MQN=∠MPD=90°,∵∠DMN=90°,∴∠DMP=∠NMQ,∵ABCD是正方形,∴AC平分∠DAB,∴PM=MQ,在△MDP和△MNQ中,,∴△MDP≌△MNQ(ASA),∴DM=MN;(2)过M作MS⊥AB于S,MW⊥AD于W,则∠WMS=90°,∵MN⊥DM,∴∠DMW=∠NMS,又∵∠MSN=∠MWD=90°,∴△MDW∽MNS,∴MD:MN=MW:MS=MW:WA,∵MW∥CD,∴∠AMW=∠ACD,∠AWM=∠ADC,∴△AWM∽△ADC,又∵DC=2AD,∴MD:MN=MW:WA=CD:DA=2;(3)MD:MN=n,理由:过M作MX⊥AB于X,MR⊥AD于R,则易得△NMX∽△DMR,∴MD:MN=MR:MX=AX:MX,由AD∥MX,CD∥AX,易得△AMX∽△CAD,∴AX:MX=CD:AD,又∵CD=nAD,∴MD:MN=CD:AD=n.2017年3月1日。

平顶山市九年级上册期末精选试卷检测题

平顶山市九年级上册期末精选试卷检测题

平顶山市九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.2.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0. 【解析】 【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】 若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.3.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】 【分析】(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案. 【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0, (x +3)(x ﹣4)=0, x +3=0或x ﹣4=0, ∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,, ∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦, 把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9, 解得:a =﹣4,a =2(舍去), 所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.4.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%5a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2523a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.5.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭ 解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a为腰长及底边长两种情况考虑是解题的关键.二、初三数学二次函数易错题压轴题(难)6.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.7.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当123625SS时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y =﹣34 x 2+94 x +3,直线AB 解析式为y =﹣34x +3;(2)P (2,32);(3)4103 【解析】 【分析】(1)由题意令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式;(2)根据题意由△PNM ∽△ANE ,推出65PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B 的最小值. 【详解】解:(1)∵抛物线y =mx 2﹣3mx+n (m≠0)与x 轴交于点C (﹣1,0)与y 轴交于点B (0,3),则有330n m m n ⎧⎨⎩++==,解得433m n ⎧⎪⎨⎪-⎩==, ∴抛物线239344y x x =-++, 令y =0,得到239344x x -++=0, 解得:x =4或﹣1, ∴A (4,0),B (0,3), 设直线AB 解析式为y =kx+b ,则340b k b +⎧⎨⎩==,解得334k b ⎧-⎪⎨⎪⎩==,∴直线AB 解析式为y =34-x+3. (2)如图1中,设P (m ,239344m m -++),则E (m ,0),∵PM ⊥AB ,PE ⊥OA , ∴∠PMN =∠AEN , ∵∠PNM =∠ANE , ∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,123625S S =, ∴65PN AN =, ∵NE ∥OB ,∴AN AEAB OA=, ∴AN =54545454(4﹣m ),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m mm -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OBOM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时),最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.8.在平面直角坐标系中,抛物线22(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .(1)求抛物线的解析式;(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的面积是AMC 面积的14时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529-);(3)105或2 【解析】【分析】(1)根据点A 和点C 的坐标,利用待定系数法求解;(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解.【详解】解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩, ∴抛物线的解析式为22y x x =-++;(2)存在,理由是:在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,在22y x x =-++中,令y=0,解得:x=2或-1,∴点B 坐标为(-1,0),∴点E 坐标为(1,0),可知:点B 和点E 关于y 轴对称,∴∠BDO=∠EDO ,即∠BDE=2∠BDO ,∵D (0,2),∴=,在△BDE 中,有12×BE ×OD=12×BD ×EF ,即2×EF ,解得:,∴,∴tan ∠BDE=EF DF =55÷=43, 若∠PBC=2∠BDO ,则∠PBC=∠BDE ,∵BE=2,则BD 2+DE 2>BE 2,∴∠BDE 为锐角,当点P 在第三象限时,∠PBC 为钝角,不符合;当点P 在x 轴上方时,∵∠PBC=∠BDE ,设点P 坐标为(c ,22c c -++),过点P 作x 轴的垂线,垂足为G ,则BG=c+1,PG=22c c -++,∴tan ∠PBC=PG BG =221c c c -+++=43, 解得:c=23, ∴22c c -++=209, ∴点P 的坐标为(23,209);当点P 在第四象限时, 同理可得:PG=22c c --,BG=c+1,tan ∠PBC=PG BG =221c c c --+=43, 解得:c=103, ∴22c c -++=529-, ∴点P 的坐标为(103,529-), 综上:点P 的坐标为(23,209)或(103,529-);(3)设EF 与AD 交于点N ,∵A (-2,-4),D (0,2),设直线AD 表达式为y=mx+n ,则422m n n -=-+⎧⎨=⎩,解得:32m n =⎧⎨=⎩, ∴直线AD 表达式为y=3x+2,设点M 的坐标为(s ,3s+2),∵A (-2,-4),C (2,0),设直线AC 表达式为y=m 1x+n 1,则11114202m n m n -=-+⎧⎨=+⎩,解得:1112m n =⎧⎨=-⎩, ∴直线AC 表达式为y=x-2,令x=0,则y=-2,∴点E 坐标为(0,-2),可得:点E 是线段AC 中点,∴△AME 和△CME 的面积相等,由于折叠,∴△CME ≌△FME ,即S △CME =S △FME ,由题意可得:当点F 在直线AC 上方时,∴S △MNE =14S △AMC =12S △AME =12S △FME , 即S △MNE = S △ANE = S △MNF ,∴MN=AN ,FN=NE ,∴四边形FMEA 为平行四边形,∴CM=FM=AE=12AC=221442⨯+=22, ∵M (s ,3s+2), ∴()()2223222s s -++=,解得:s=45-或0(舍), ∴M (45-,25-), ∴AM=22422455⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭=6105,当点F 在直线AC 下方时,如图,同理可得:四边形AFEM 为平行四边形,由于折叠可得:CE=EF,∴AM=EF=CE=22,综上:AM的长度为6105或22.【点睛】本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.9.如图,在平面直角坐标系x O y中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A (-3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.【答案】(1)y=-x2-2x+3;(2)点(-32,154),△PDE的周长最大;(3)点M(-2,3)或(-2,3【解析】(1)将A 、B 、C 三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB 是等腰直角三角形,故只需使得PD 越大,则△PDE 的周长越大.联立直线AB 与抛物线的解析式可得交点P 坐标;(3)作点A 关于直线x=-2的对称点D ,利用∠MAC = 2∠MCA 可推导得MD=CD ,进而求得ME 的长度,从而得出M 坐标【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (-3,0),B (0,3),C (1,0),∴93030a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x 2-2x+3;(2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°,∵PF ⊥x 轴,∴∠AEF=90°-45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 , ∴3∴点M (-23)或(-2,3【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析10.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由: PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2;PC 2=x 2+(x 2﹣2x ﹣3+3)2;MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2,解得:x =0或2(舍去0),故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或3±2(舍去0和3+2),故x =3﹣2,则x 2﹣2x ﹣3=2﹣42,故点P (3﹣2,2﹣42).综上,点P 的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.三、初三数学 旋转易错题压轴题(难)11.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠,∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线 ∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.12.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 147305+,91305+),F 1(305-21-8,33305-4+),G 2(47-3058,91-305-8),F 2(305218,33-305-4) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131305t -4+=,231-305t -4=,分两类讨论,分别求出G 、F 坐标。

河南省平顶山市九年级上学期期末数学试卷

河南省平顶山市九年级上学期期末数学试卷

河南省平顶山市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知反比例函数的图象上两点A(x1 , y1),B(x2 , y2),当x1<0<x2时,有y1<y2 ,则m的取值范围是()A . m>0B . m>C . m<0D . m<2. (2分) (2019八上·盐城期末) 下列事件中是不可能事件的是()A . 任意画一个四边形,它的内角和是360°B . 若,则C . 一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”D . 掷一枚质地均匀的硬币,落地时正面朝上3. (2分)(2017·广东模拟) 函数y=x2-2x+3的图象的顶点坐标是()A . (1,-4)B . (-1,2)C . (1,2)D . (0,3)4. (2分)如图,已知△ABC中,AB= AC,∠ABC=70°,点I是△ABC的内心,则∠BIC的度数为()A . 40°B . 70°C . 110°D . 140°5. (2分)如图,在64方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A . 点MB . 格点NC . 格点PD . 格点Q6. (2分)(2017·邵阳模拟) 在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A . 3B . 2C . 1D . 07. (2分)如图,在△ABC中,∠C=90°,AC>BC,若以AC为底面圆半径、BC为高的圆锥的侧面积为S1 ,以BC为底面圆半径、AC为高的圆锥的侧面积为S2 ,则()A . S1 =S2B . S1>S2C . S1<S2D . S1 ,S2的大小大小不能确定8. (2分)有一人患了红眼病,经过两轮传染后共有144人患了红眼病,那每轮传染中平均一个人传染的人数为()人.A . 10B . 11C . 12D . 139. (2分)(2017·娄底模拟) 关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为()A . ﹣1B . 0C . 1D . ﹣1或110. (2分)(2017·锦州) 如图,矩形OABC中,A(1,0),C(0,2),双曲线y= (0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF ,则k值为()A .B . 1C .D .二、填空题 (共6题;共7分)11. (1分) (2016九上·宜春期中) 在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是________.12. (1分) (2017九上·凉州期末) 反比例函数的图像在第二、四象限,则n的取值范围为________.13. (1分)(2018·建邺模拟) 如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=________°.14. (1分)(2016·兴化模拟) 如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为________.15. (2分) (2018九上·绍兴期中) 在平面直角坐标系,对于点P(x,y)和Q(x,y′),给出如下定义:若y= 则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).点(﹣5,﹣2)的“可控变点”坐标为________;若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,实数a的取值范围为________.16. (1分)与已知点A的距离为3cm的点所组成的平面图形是________三、解答题 (共8题;共89分)17. (10分)解方程:(1) x2﹣4x+3=0 (用配方法);(2) x (x﹣4)=2﹣8x.(公式法).18. (10分) (2019九上·黄埔期末) 如图1,已知△ABC三个顶点的坐标分别是A(﹣3,1),B(﹣1,﹣1),C(﹣2,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;(2)画出△ABC绕点B逆时针旋转90°所得到的△A2B2C2.19. (10分)(2017·潮南模拟) 如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF.20. (10分)(2017·顺义模拟) 已知关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.21. (7分) (2017八下·江都期中) 在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数10020030050080010003000摸到白球的次数651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当很大时,摸到白球的频率将会接近________.(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=________.(3)试估算盒子里黑、白两种颜色的球各有多少只?22. (15分) (2017九上·丹江口期中) 如图,在直角坐标系中,直线y=x-3交x轴于点B,交y轴于点C,抛物线经过点A(-1,0),B,C三点,点F在y轴负半轴上,OF=OA.(1)求抛物线的解析式;(2)在第一象限的抛物线上存在一点P,满足S△ABC=S△PBC,请求出点P的坐标;(3)点D是直线BC的下方的抛物线上的一个动点,过D点作DE∥y轴,交直线BC于点E,①当四边形CDEF 为平行四边形时,求D点的坐标;②是否存在点D,使CE与DF互相垂直平分?若存在,请求出点D的坐标;若不存在,请说明理由.23. (12分)(2017·安丘模拟) 将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,如图①所示,∠BAB′=θ, = = =n,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°, ]得到△AB′C′,则S△AB'C:S△ABC=________;直线BC与直线B′C′所夹的锐角为________度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、C′在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.24. (15分) (2017·潍城模拟) 如图,在直角坐标系中,以点A(1,0)为圆心,以2为半径的圆与x轴交于B,C两点,与y轴交于D,E两点.(1)直接写出B,C,D点的坐标;(2)若B、C、D三点在抛物线y=ax2+bx+c上,求出这个抛物线的解析式及它的顶点坐标.(3)若圆A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30°,试判断直线MN是否经过B、C、D三点所在抛物线的顶点?说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共89分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

河南省平顶山市2019届九年级上学期期末考试数学试题(图片版)

河南省平顶山市2019届九年级上学期期末考试数学试题(图片版)

2018-2019学年第一学期期末调研考试参考答案九年级一、 选择题(每小题3分,共30分)1.D2. A3. B4. A5. D6. B7. B8. C9. C 10.A 二、填空题(每小题3分,共15分)11. 01=x ,32=x 12. π3 13.61 14. y=-4x 15. 1:4三、解答题(共8个小题,共75分))16.(10分)解(1)原方程可化为:x 2+4x -1=0--------------1分这里a =1,b =4,c =-1∵b ²-4ac=4²-4×1×(-1)=20>0--------------2分∴x =-4± 202×1 =-2± 5 --------------4分即x 1=-2+ 5 ; x 2=-2- 5 --------------5分 (2)原方程可变形为:(x +2)2-3(x +2)=0------------1分 (x +2)(x +2-3)=0------------3分 x +2=0或x -1=0x 1=-2 x 2=1-------------5分17.(1)∵1=a , ()32+-=k b , ()12+=k c --------------1分 ∴()[]()121432422+⨯⨯-+-=-=∆k k ac b=()2212144+=++k k k --------------2分 ∵21-≠k()0122>+=∆k∴原方程有两个不相等的实数根.------------4分(2)把x=-2代入原方程,得(-2)2-(2k +3)×(-2)+2(k +1)=0----------6分 解得,k=-2--------------8分 18.(8分)解(1)根据题意得--------------3分(或树状图正确)因为有9种等可能的结果,其中数字为一正数,一负数的情况有4种,所以数字为一正数,一负数的概率为94--------------5分 (2)32-----------------8分 19.(9分)连接DC,设:路灯AB 高为x 米,BO 的长度为y 米由中心投影可知 △ABE ∽△DOE∴OEBE DOAB = -----------2分∵△AB F ∽△COF-4 2 4 -4 -4,-4 -4,2 -4,4 2 2,-4 2,2 2,4 4 4,-4 4,2 4,4∴OFBF CO AB = ------------4分∴⎪⎪⎩⎪⎪⎨⎧+=+=333.2115.1yx y x 解得⎪⎪⎩⎪⎪⎨⎧==11122269y x -------------8分 答:路灯AB 的高度为2269米。

2019年平顶山市初三数学上期末模拟试题(及答案)

2019年平顶山市初三数学上期末模拟试题(及答案)

2019年平顶山市初三数学上期末模拟试题(及答案)一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R2.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .13x 2=,25x 2= D .1x 4=-,2x 0=3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .44.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=25 5.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++D .()2313y x =-+-6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( ) A .()3001x 450+= B .()30012x 450+= C .2300(1x)450+= D .2450(1x)300-=7.一元二次方程x 2+x ﹣14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定8.下列诗句所描述的事件中,是不可能事件的是( ) A .黄河入海流 B .锄禾日当午 C .大漠孤烟直 D .手可摘星辰9.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④ 10.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( ) A .(x ﹣1)2=6 B .(x+1)2=6 C .(x+2)2=9 D .(x ﹣2)2=9 11.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)12.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°二、填空题13.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.14.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.15.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.16.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.18.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.19.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.20.已知扇形的面积为12πcm 2,半径为12cm ,则该扇形的圆心角是_______.三、解答题21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形. (2)平移△ABC ,使点A 的对应点A2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2的图形. (3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.23.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.24.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 25.解方程:2(x-3)2=x2-9.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.A解析:A【解析】【分析】二次函数y=ax2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a(x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a(x-2)2+1=0为:方程-(x-2)2+1=0,解得:x1=0,x2=4,故选:A.【点睛】本题考查了二次函数与x轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.3.B解析:B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.5.A解析:A【解析】【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.6.C解析:C 【解析】 【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解. 【详解】快递量平均每年增长率为x , 依题意,得:2300(1x)450+=, 故选C . 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.A解析:A 【解析】 【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根. 【详解】∵△=12﹣4×1×(﹣14)=2>0, ∴方程x 2+x ﹣14=0有两个不相等的实数根. 故选:A . 【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8.D解析:D 【解析】 【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A 、是必然事件,故选项错误;B 、是随机事件,故选项错误;C 、是随机事件,故选项错误;D 、是不可能事件,故选项正确. 故选D . 【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1, 即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.10.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.11.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.12.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE在直角三角形ADE中根据勾股定理求得AE长即可得【详解】∵四边形ABCD是矩形∴∠D=90°BC=AD=3∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG解析:2【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴222,AD DE∴2,故答案为2.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.(0﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2计算即可求得抛物线与y轴的交点坐标【详解】解:将x=0代入y=(x﹣1)2﹣2得y=﹣1所以抛物线与y轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y 轴上点的横坐标为0求出交点的纵坐标是解题的关键.15.-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y >0时x 的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y >0时,x 的取值范围是﹣3<x <1.故答案为﹣3<x <1.考点:二次函数的图象.16.4【解析】【分析】由a+b2=2得出b2=2-a 代入a2+5b2得出a2+5b2=a2+5(2-a )=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b2解析:4【解析】【分析】由a+b 2=2得出b 2=2-a ,代入a 2+5b 2得出a 2+5b 2=a 2+5(2-a )=a 2-5a+10,再利用配方法化成a 2+5b 2=(a-2515)24+,即可求出其最小值. 【详解】∵a+b 2=2,∴b 2=2-a ,a≤2,∴a 2+5b 2=a 2+5(2-a )=a 2-5a+10=(a-2515)24+, 当a=2时,a 2+b 2可取得最小值为4.故答案是:4.【点睛】考查了二次函数的最值,解题关键是根据题意得出a 2+5b 2=(a-2515)24+. 17.(2)【解析】由题意得:即点P 的坐标解析:(2,2).【解析】由题意得:441a a =⇒= 2y x ⇒=2222OD x x =⇒=⇒= ,即点P 的坐标()2,2. 18.(22)或(2-1)【解析】∵抛物线y=x2-4x 对称轴为直线x=-∴设点A 坐标为(2m )如图所示作AP⊥y 轴于点P 作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°解析:(2,2)或(2,-1)【解析】∵抛物线y=x 2-4x 对称轴为直线x=-422-= ∴设点A 坐标为(2,m ),如图所示,作AP ⊥y 轴于点P ,作O′Q ⊥直线x=2,∴∠APO=∠AQO ′=90°,∴∠QAO ′+∠AO ′Q=90°,∵∠QAO ′+∠OAQ=90°,∴∠AO ′Q=∠OAQ ,又∠OAQ=∠AOP ,∴∠AO ′Q=∠AOP ,在△AOP 和△AO′Q 中,APO AQO AOP AO QAO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO ′Q (AAS ),∴AP=AQ=2,PO=QO′=m ,则点O ′坐标为(2+m ,m-2),代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ),解得:m=-1或m=2,∴点A 坐标为(2,-1)或(2,2),故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O′的坐标是解题的关键.19.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.20.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30°解析:30°【解析】设圆心角为n°,由题意得:212360nπ⨯=12π,解得:n=30,故答案为30°.三、解答题21.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A 1B 1C 即为所求;(2)如图所示:△A 2B 2C 2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.22.(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析【解析】【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩, ∴y =﹣2x +200 (40≤x ≤80);(2)W =(x ﹣40)(﹣2x +200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.23.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.10%;3327.5万元.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.试题解析:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.25.x1=3,x2=9.【解析】试题分析:方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.试题解析:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.考点:解一元二次方程-因式分解法.。

九年级上册平顶山数学期末试卷综合测试卷(word含答案)

九年级上册平顶山数学期末试卷综合测试卷(word含答案)

九年级上册平顶山数学期末试卷综合测试卷(word 含答案)一、选择题1.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①② B .②③C .①③D .①②③2.若x=2y ,则xy的值为( ) A .2B .1C .12D .133.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .124.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤5.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°6.在六张卡片上分别写有13,π,1.5,5,02六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .567.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5πB .10πC .20πD .40π8.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .2 B .1 C .2 D .29.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限10.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +11.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm 12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A .-2B .2C .-3D .3二、填空题13.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm . 14.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.15.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.16.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.17.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;18.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________19.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.20.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).21.数据1、2、3、2、4的众数是______.22.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______. 23.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.24.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.三、解答题25.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题: (1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?26.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.27.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒. (1)当t = 时,两点停止运动; (2)设△BPQ 的面积面积为S (平方单位) ①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?28.如图,已知直线l 切⊙O 于点A ,B 为⊙O 上一点,过点B 作BC ⊥l ,垂足为点C ,连接AB 、OB .(1)求证:∠ABC =∠ABO ;(2)若AB 10,AC =1,求⊙O 的半径.29.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P 为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3. (1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE , ①求 E 坐标; ②若 tan ∠BPM=25,求抛物线的解析式.30.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度; (2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?31.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若O 的半径为5,6BC =,求线段AC 的长.32.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情. (1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax2+bx+c≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax2+bx+c=-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.2.A解析:A【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可.3.B解析:B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生的结果有1种,则所求概率1.4 P=故选B.点睛:求概率可以用列表法或者画树状图的方法.4.A解析:A 【解析】 【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤. 【详解】∵抛物线开口向下, ∴a <0,∵对称轴为直线1x = ∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方, ∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等, 故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确; 如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误;∵当x=-1时,y=a-b+c=3a+c >0, 当x=0时,y=c <-1 ∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.5.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.6.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有 共2个,∴卡片上的数为无理数的概率是21 =63.故选B.【点睛】本题考查了无理数的定义及概率的计算.7.B解析:B【解析】【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.8.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.9.B解析:B【解析】【分析】【详解】解:将点(m ,3m )代入反比例函数k y x=得, k=m•3m=3m 2>0;故函数在第一、三象限,故选B . 10.D解析:D【解析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 12.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m ,则1•m=2,解得m=2.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.要求熟练运用此公式解题. 二、填空题13.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 14.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.15.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.16.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.17.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),∵a=10,开口向上,∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC =GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:22m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.19..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38. 【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.20.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.21.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数. 22.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.23.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.24.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.三、解答题25.(1)50;(2)8.26,8;(3)400【解析】【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为6471081591110108.2650分;4+10+15=29<26,所以中位数为8+8=82分;(3)根据题意得2000名居民中得分为10分的约有102000=40050名, ∴社区工作人员需准备400份一等奖奖品. 【点睛】本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据. 26.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、2553,35630、5. 【解析】 【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解; (2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解. 【详解】解:(1)①如图,PQ 是直径,E 在圆上, ∴∠PEQ=90°, ∴PE ⊥AQ, ∵AE=EQ, ∴PA=PQ, ∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP , ∵∠QPB=2∠AQP .\②解:如图,∵BE=BQ=3, ∴∠BEQ=∠BQE, ∵∠BEQ=∠BPQ, ∵∠PBQ=∠QBA, ∴△PBQ ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 2x (舍去),225 2x,∴ON=25 5,∴O 半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.27.(1)7;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+24,当6<t≤7时,S=t2﹣10t+24,②t=3时,△PBQ的面积最大,最大值为9【解析】【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.28.(1)详见解析;(2)⊙O.【分析】(1)连接OA ,求出OA ∥BC ,根据平行线的性质和等腰三角形的性质得出∠OBA =∠OAB ,∠OBA =∠ABC ,即可得出答案;(2)根据矩形的性质求出OD =AC =1,根据勾股定理求出BC ,根据垂径定理求出BD ,再根据勾股定理求出OB 即可. 【详解】(1)证明:连接OA ,∵OB =OA , ∴∠OBA =∠OAB , ∵AC 切⊙O 于A , ∴OA ⊥AC , ∵BC ⊥AC , ∴OA ∥BC , ∴∠OBA =∠ABC , ∴∠ABC =∠ABO ;(2)解:过O 作OD ⊥BC 于D ,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC , ∴∠ODC =∠DCA =∠OAC =90°, ∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3,∵OD ⊥BC ,OD 过O , ∴BD =DC =12BC =132⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB ()22131 1.52+=,即⊙O 的半径是132. 【点睛】此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.29.(1)A (-1,0),C (3,0);(2)① E (-13,0);②原函数解析式为:2515522y x x =-++.【解析】 【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P 作PE ⊥x 轴于点E,所以设A (-m ,0),C (3m ,0),结合对称轴即可求出结果;(2) ①过点P 作PM ⊥x 轴于点M ,连接PE ,DE ,先证明△ABO△EPM 得到AO EM OB PM =,找出OE=ac -,再根据A (-1,0)代入解析式得:3a+c=0,c=-3a ,即可求出OE 的长,则坐标即可找到;②设PM 交BD 于点N ;根据点P (1,c-a ),BN ‖AC ,PM ⊥x 轴表示出PN=-a ,再由tan ∠BPM=25PN BN =求出a ,结合(1)知道c ,即可知道函数解析式. 【详解】(1)∵二次函数为:22y ax ax c =-+(a<0),∴对称轴为2122b a x a a-=-=-=, 过点P 作PM ⊥x 轴于点M , 则M (1,0),M 为AC 中点, 又OA :OC=1:3,设A (-m ,0),C (3m ,0),∴231m m-+=, 解得:m=1,∴A (-1,0),C (3,0),(2)①做图如下:∵PE ∥AB , ∴∠BAO=∠PEM , 又∠AOB=∠EMP , ∴△ABO △EPM ,∴AO EMOB PM= , 由(1)知:A (-1,0),C (3,0),M (1,0),B (0,c ),P (1,c-a ),∴11OE c c a+=-, ∴OE=ac-,将A (-1,0)代入解析式得:3a+c=0, ∴c=-3a , ∴133a a OE c a =-== , ∴E (-13,0); ②设PM 交BD 于点N ; ∵22y ax ax c =-+(a<0), ∴x=1时,y=c-a ,即点P (1,c-a ), ∵BN ‖AC ,PM ⊥x 轴 ∴NM= BO=c ,BN=OM=1,∴PN=-a , ∵tan ∠BPM=25, ∴tan ∠BPM=25BN PN =, ∴PN=52, 即a=-52, 由(1)知c=-3a , ∴c=152; ∴原函数解析式为:2515522y x x =-++. 【点睛】此题考查了抛物线与x 轴的交点;二次函数的性质,待定系数法求二次函数解析式. 30.(1)50,72;(2)作图见解析;(3)90. 【解析】 【分析】(1)用A 类学生的人数除以A 类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C 类学生数和C 类与D 类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C 类的的学生所占得百分比即可得答案. 【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A 类所对的圆心角是:360°×20%=72°, (2)C 类学生数为:50﹣10﹣22﹣3=15, C 类占抽取样本的百分比为:15÷50×100%=30%, D 类占抽取样本的百分比为:3÷50×100%=6%, 补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C 类的有90名. 【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 31.(1)见解析;(2)1207AC = 【解析】 【分析】(1)如图连结OC ,先证得4390∠+∠=︒,即可得到OC AC ∴⊥,即可得到AC 是O的切线;(2)由(1)知:过O 作OE BC ⊥于E ,先证明OBE DBA ∆∆∽得到34AB BE AD OE ==,设3,4AB x AD x AC ===,在Rt OAC ∆中,222OC AC OA +=,即:2225(4)(53)x x +=+解出方程即可求得答案.【详解】 证明:(1)如图,连结OC ,则OB OC =, ∴23∠∠=, ∵12∠=∠, ∴13∠=∠,∵AC AD =,∴4D ∠=∠,而OA l ⊥, ∴190D ∠+∠=︒, 即有4390∠+∠=︒, ∴OC AC ⊥,故AC 是O 的切线;(2)由(1)知:过O 作OE BC ⊥于E ,∵OB OC =, ∴23∠∠=,。

平顶山市九年级上学期数学期末考试试卷

平顶山市九年级上学期数学期末考试试卷

平顶山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共27分)1. (2分)(2019·东营) 下列图形中,是轴对称图形的是()A .B .C .D .2. (2分)下列说法正确的是()A . 掷一枚硬币,正面一定朝上B . 某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C . 旅客上飞机前的安检应采用抽样调查D . 方差越大,数据的波动越大3. (5分) (2019九上·万州期末) 如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()A .B .C .D .4. (2分)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A . y=x2﹣1B . y=x2+1C . y=(x﹣1)2D . y=(x+1)25. (2分) (2019九上·万州期末) 如图,在⊙O中,弦AC∥半径OB,∠BOC=48°,则∠OAB的度数为()A . 24°B . 30°C . 50°D . 60°6. (2分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A . 8B . 20C . 8或20D . 107. (2分) (2019九上·万州期末) 如图,观察二次函数的图象,下列结论:① ,② ,③ ,④ .其中正确的是()A . ①②B . ①④C . ②③D . ③④8. (2分)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A .B .C .D .9. (2分) (2019九上·万州期末) 如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图像大致是()A .B .C .D .10. (2分) (2019九上·万州期末) 如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第六个叠放的图形中,小正方体木块总数应是()A . 25B . 66C . 91D . 12011. (2分) (2019九上·万州期末) 如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3 ;其中正确的结论是()A . ①②③B . ①③④C . ②③④D . ①②12. (2分)华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x元,根据题意列方程得()A . (40﹣x)(20+2x)=1200B . (40﹣x)(20+x)=1200C . (50﹣x)(20+2x)=1200D . (90﹣x)(20+2x)=1200二、填空题 (共6题;共6分)13. (1分) (2019八下·长春期中) 李明读七年级,他家离学校的距离为2000米,如果他上学步行的速度为米/分,从家里到学校的时间为分钟,则与之间的函数关系式为__.14. (1分)将半径为4cm的半圆围成一个圆锥,在圆锥里有一个内接圆柱(如图),当圆柱的侧面面积最大时,圆柱的底面半径是________ cm.15. (1分) (2019九上·万州期末) 用符号※定义一种新运算:a※b=(a﹣b)×a,则方程x※2=0的解是________.16. (1分) (2019九上·万州期末) 若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则代数式2015﹣2a+2b的值为________.17. (1分) (2019九上·万州期末) 从﹣1,0,1,2,3这五个数中,随机抽取一个数记为m,则使关于x的不等式组有解,并且使函数y=(m﹣1)x2+2mx+m+2与x轴有交点的概率为________.18. (1分) (2019九上·万州期末) 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为12,则BE的长为________.三、解答题 (共8题;共85分)19. (10分)阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解。

2019-2020年河南省平顶山市九年级(上)期末数学试卷(解析版)

2019-2020年河南省平顶山市九年级(上)期末数学试卷(解析版)

2019-2020学年河南省平顶山市九年级(上)期末数学试卷一.选择题(共10小题)1.用配方法解方程x2+6x﹣4=0,下列变形正确的是()A.(x+3)2=5B.(x+3)2=13C.(x﹣3)2=﹣13D.(x+3)2=﹣5 2.如图是某零件的模型,则它的左视图为()A.B.C.D.3.已知矩形ABCD,下列结论错误的是()A.AB=DC B.AC=BD C.AC⊥BD D.∠A+∠C=180°4.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是()A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 5.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1966.如图,太阳在A时测得某树(垂直于地面)的影长ED=2米,B时又测得该树的影长CD=8米,若两次日照的光线PE⊥PC交于点P,则树的高度为PD为()A.3米B.4米C.4.2米D.4.8米7.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1B.1C.D.8.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为()A.(4,﹣2)B.(6,﹣2)C.(8,﹣2)D.(10,﹣2)9.已知k1<0<k2则函数y=k1x和y=的图象在同一平面直角坐标系中大致位置是()A.B.C.D.10.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③C.①②④D.②③④二.填空题(共5小题)11.若a、b、c、d满足==,则=.12.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.14.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为.15.如图,四边形ABCD是边长为4的正方形,若AF=3,E为AB上一个动点,把△AEF 沿着EF折叠,得到△PEF,若△BPE为直角三角形,则BP的长度为.三.解答题(共8小题)16.解方程(1)x2﹣4x+2=0(2)(x﹣3)2=2x﹣617.2020年元且,某商场为促销举办抽奖活动.规则如下:在一个不透明的纸盒里,装有2个红球和2个黑球,这些球除颜色外都相同.顾客每次摸出1个球,若摸到红球,则获得一份奖品;若摸到黑球,则没有奖品.(1)如果张大妈只有一次摸球机会,那么张大妈获得奖品的概率是.(2)如果张大妈有两次摸球机会(摸出后不放回),请用“树状图”或“列表”的方法,求张大妈获得两份奖品的概率.18.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.19.如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.20.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?21.如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.22.如图,在△ABC中,∠C=90°,AC=6cm,BC=8m,点P从点A出发沿边AC向点C 以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.(1)如果点P,Q同时出发,经过几秒钟时△PCQ的面积为8cm2?(2)如果点P,Q同时出发,经过几秒钟时以P、C、Q为顶点的三角形与△ABC相似?23.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D 不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.参考答案与试题解析一.选择题(共10小题)1.用配方法解方程x2+6x﹣4=0,下列变形正确的是()A.(x+3)2=5B.(x+3)2=13C.(x﹣3)2=﹣13D.(x+3)2=﹣5【分析】将常数项移到等式的右边,再两边配上一次项系数的一半可得.【解答】解:∵x2+6x=4,∴x2+6x+9=4+9,即(x+3)2=13,故选:B.2.如图是某零件的模型,则它的左视图为()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.3.已知矩形ABCD,下列结论错误的是()A.AB=DC B.AC=BD C.AC⊥BD D.∠A+∠C=180°【分析】由矩形的性质得出AB=DC,AC=BD,∠A=∠B=∠C=∠D=90°,则∠A+∠C=180°,只有AB=BC时,AC⊥BD,即可得出结果.【解答】解:∵四边形ABCD是矩形,∴AB=DC,AC=BD,∠A=∠B=∠C=∠D=90°,∴∠A+∠C=180°,只有AB=BC时,AC⊥BD,∴A、B、D不符合题意,只有C符合题意,故选:C.4.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是()A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.关于x的一元二次方程kx2﹣2x+1=0有实数根,则△=b2﹣4ac≥0.【解答】解:∵a=k,b=﹣2,c=1,∴△=b2﹣4ac=(﹣2)2﹣4×k×1=4﹣4k≥0,k≤1,∵k是二次项系数不能为0,k≠0,即k≤1且k≠0.故选:D.5.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.6.如图,太阳在A时测得某树(垂直于地面)的影长ED=2米,B时又测得该树的影长CD=8米,若两次日照的光线PE⊥PC交于点P,则树的高度为PD为()A.3米B.4米C.4.2米D.4.8米【分析】根据题意求出△PDE和△FDP相似,根据相似三角形对应边成比例可得=,然后代入数据进行计算即可得解.【解答】解:如图,∵两次日照的光线互相垂直,∴∠E+∠C=90°,∠E+∠EPD=90°,∴∠EPD=∠C,又∵∠PDE=∠FDP=90°,∴△PDE∽△FDP,∴=,由题意得,DE=2,DC=8,∴=,解得PD=4,即这颗树的高度为4米.故选:B.7.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1B.1C.D.【分析】利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BC﹣BF即可求得答案.【解答】解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选:B.8.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为()A.(4,﹣2)B.(6,﹣2)C.(8,﹣2)D.(10,﹣2)【分析】作BG⊥x轴于点G,DH⊥x轴于点H,根据位似图形的概念得到△ABC∽△EDC,根据相似是三角形的性质计算即可.【解答】解:作BG⊥x轴于点G,DH⊥x轴于点H,则BG∥DH,∵△ABC和△EDC是以点C为位似中心的位似图形,∴△ABC∽△EDC,∵△ABC和△EDC的周长之比为1:2,∴=,由题意得,CG=3,BG=1,∵BG∥DH,∴△BCG∽△DCH,∴===,即==,解得,CH=6,DH=2,∴OH=CH﹣OC=4,则点D的坐标为为(4,﹣2),故选:A.9.已知k1<0<k2则函数y=k1x和y=的图象在同一平面直角坐标系中大致位置是()A.B.C.D.【分析】根据反比例函数y=(k≠0),当k>0时,图象分布在第一、三象限和一次函数图象与系数的关系进行判断.【解答】解:∵k1<0<k2,∴函数y=k1x的经过第二、四象限,反比例和y=的图象分布在第一、三象限.故选:B.10.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③C.①②④D.②③④【分析】根据已知及相似三角形的判定方法对各个结论进行分析从而得到最后答案.【解答】解:∵∠BDE=45°,DE⊥BC∴DB=BE,BE=DE∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵▱ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正确的有①②③故选:B.二.填空题(共5小题)11.若a、b、c、d满足==,则=.【分析】根据等比性质求解即可.【解答】解:∵==,∴==.故答案为:.12.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是12.【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【解答】解:∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=12个.故答案为:12.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是﹣6.【分析】根据根与系数的关系:x1+x2=﹣,x1•x2=,此题选择两根和即可求得.【解答】解:∵2是关于x的一元二次方程x2+4x﹣p=0的一个根,∴2+x1=﹣4,∴x1=﹣6,∴该方程的另一个根是﹣6.14.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为32.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k 的值.【解答】解:∵C(3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为3+5=8,故B的坐标为:(8,4),将点B的坐标代入y=得,4=,解得:k=32.故答案为:32.15.如图,四边形ABCD是边长为4的正方形,若AF=3,E为AB上一个动点,把△AEF 沿着EF折叠,得到△PEF,若△BPE为直角三角形,则BP的长度为2或..【分析】根据题意可得分两种情况讨论:①当∠BPE=90°时,点B、P、F三点共线,②当∠PEB=90°时,证明四边形AEPF是正方形,进而可求得BP的长.【解答】解:根据E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,分两种情况讨论:①当∠BPE=90°时,如图1,点B、P、F三点共线,根据翻折可知:∵AF=PF=3,AB=4,∴BF=5,∴BP=BF﹣PF=5﹣3=2;②当∠PEB=90°时,如图2,根据翻折可知:∠FPE=∠A=90°,∠AEP=90°,AF=FP=3,∴四边形AEPF是正方形,∴EP=3,BE=AB﹣AE=4﹣3=1,∴BP===.综上所述:BP的长为:2或.故答案为:2或.三.解答题(共8小题)16.解方程(1)x2﹣4x+2=0(2)(x﹣3)2=2x﹣6【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,解得x﹣2=,则x=2;(2)∵(x﹣3)2﹣2(x﹣3)=0,∴(x﹣3)(x﹣5)=0,则x﹣3=0或x﹣5=0,解得x=3或x=5.17.2020年元且,某商场为促销举办抽奖活动.规则如下:在一个不透明的纸盒里,装有2个红球和2个黑球,这些球除颜色外都相同.顾客每次摸出1个球,若摸到红球,则获得一份奖品;若摸到黑球,则没有奖品.(1)如果张大妈只有一次摸球机会,那么张大妈获得奖品的概率是.(2)如果张大妈有两次摸球机会(摸出后不放回),请用“树状图”或“列表”的方法,求张大妈获得两份奖品的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的球是红球的结果数,然后根据概率公式求解.【解答】解:(1)从布袋中任意摸出1个球,摸出是红球的概率==;故答案为:;(2)画树状图为:共有12种等可能的结果数,其中两次摸到红球的结果数为2,所以张大妈获得两份奖品的概率==.18.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.【分析】先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,证出四边形ABCD是平行四边形,再由AD=AB,即可得出结论.【解答】证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC平分∠BAD.∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.19.如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一时刻物高与影长的比一定得到AG 的长度,加上GB的长度即为电线杆AB的高度.【解答】解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴=,∴AG===2,∴AB=AG+GB=2+2=4(米),答:电线杆子的高为4米.20.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据想获得4000元的利润,列出方程求解即可.【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150(0<x≤90);(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).答:该批发商若想获得4000元的利润,应将售价定为70元.21.如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.【分析】(1)根据反比例函数与一次函数的交点问题得到方程组,然后解方程组即可得到A、B两点的坐标;(2)先利用x轴上点的坐标特征确定D点坐标,再利用关于y轴对称的点的坐标特征得到C点坐标,然后利用S△ABC=S△ACD+S△BCD进行计算.【解答】解:(1)根据题意得,解方程组得或,所以A点坐标为(﹣1,3),B点坐标为(3,﹣1);(2)把y=0代入y=﹣x+2得﹣x+2=0,解得x=2,所以D点坐标为(2,0),因为C、D两点关于y轴对称,所以C点坐标为(﹣2,0),所以S△ABC=S△ACD+S△BCD=×(2+2)×3+×(2+2)×1=8.22.如图,在△ABC中,∠C=90°,AC=6cm,BC=8m,点P从点A出发沿边AC向点C 以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.(1)如果点P,Q同时出发,经过几秒钟时△PCQ的面积为8cm2?(2)如果点P,Q同时出发,经过几秒钟时以P、C、Q为顶点的三角形与△ABC相似?【分析】(1)设P、Q同时出发,x秒钟后,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,依据△PCQ的面积为8,由此等量关系列出方程求出符合题意的值.(2)分两种情况讨论,依据相似三角形对应边成比例列方程求解即可.【解答】解:(1)设xs后,可使△PCQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理得x2﹣6x+8=0,解得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设t秒后以P、C、Q为顶点的三角形与△ABC相似,则PC=6﹣t,QC=2t.当△PCQ∽△ACB时,=,即=,解得:t=.当△PCQ∽△BCA时,=,即=,解得:t=.综上所述,当t=或t=时,以P、C、Q为顶点的三角形与△ABC相似.23.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D 不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系CF+CD =BC.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,再根据直角三角形斜边上中线的性质即可得到OC的长.【解答】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF﹣CD=BC;(3)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵正方形ADEF的边长4且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴Rt△CDF中,OC=DF=×=.。

学年河南平顶山市九年级(上)数学期末试卷

学年河南平顶山市九年级(上)数学期末试卷

2019学年河南平顶山市九年级(上)数学期末试卷一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个选项,其中只有一个符合要求,将符合要求的代号字母,用2B 铅笔在答题卡的对应标号涂黑. 1.(3分)在阳光的照射下,一块三角板的投影不会是 A .线段 B .与原三角形全等的三角形 C .变形的三角形D .点2.(3分)若ABC DEF ∆∆∽,相似比为3:2,则对应高的比为 A .3:2B .3:5C .9:4D .4:93.(3分)若菱形的两条对角线分别长8、6,则菱形的面积为 A .48B .24C .14D .124.(3分)一元二次方程2660x x --=配方后化为 A .2(3)15x -=B .2(3)3x -=C .2(3)15x +=D .2(3)3x +=5.(3分)下列命题中,真命题是 A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形 C .对角线互相平分的四边形是平行四边形 D .对角线互相垂直平分的四边形是正方形6.(3分)在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是 A .10个B .15个C .20个D .25个7.(3分)如图,在ABC ∆中,D 、E 分别为AB 、AC 边上的点,//DE BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是A .AD AEAB EC=B .AG AEGF BD=C .BD CEAD AE=D .AG ACAF EC=8.(3分)若点1(A x ,1)y ,2(B x ,2)y 在反比例函数3y x=的图象上,120x x <<,则1y 、2y 的大小关系为 A .120y y >>B .210y y >>C .120y y >>D .210y y >>9.(3分)将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8000元,则售价应定为 A .60元B .80元C .60元或80元D .70元10.(3分)反比例函数ky x=在第一象限的图象如图,则k 的值有可能是 A .4 B .2C .53D .1二、填空题(本大题5个小题,每小题3分,共15分) 11.(3分)方程23x x =的根是 .12.(3分)某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为。

九年级上册平顶山数学期末试卷综合测试卷(word含答案)

九年级上册平顶山数学期末试卷综合测试卷(word含答案)

九年级上册平顶山数学期末试卷综合测试卷(word 含答案)一、选择题1.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( )A .B .2C .D .2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.下列是一元二次方程的是( )A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 4.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .3 5.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-2 6.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 7.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( )A .23B .1.15C .11.5D .12.5 8.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DE AB BC= D .AD AE AC AB = 9.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>10.下列方程中,关于x 的一元二次方程是( )A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( )A .12×108B .1.2×108C .1.2×109D .0.12×10912.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题13.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.15.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.16.O的半径为4,圆心O到直线l的距离为2,则直线l与O的位置关系是______. 17.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l 将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.18.关于x的方程2()0a x m b++=的解是19x=-,211x=(a,m,b均为常数,0a≠),则关于x的方程2(3)0a x m b+++=的解是________.19.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.20.如图,平行四边形ABCD中,60A∠=︒,32ADAB=.以A为圆心,AB为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为1r;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为2r,则12rr的值为______.21.抛物线()2322y x=+-的顶点坐标是______.22.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).23.如图,圆形纸片⊙O半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则 4 个小正方形的面积和为_______.24.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题25.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是AD上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为AD的中点时,求AF的值.26.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.27.解方程:(1)(x+1)2﹣9=0(2)x2﹣4x﹣45=028.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、D n′标出)29.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?30.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?31.如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).32.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB3AB对应的函数表达式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.解:二次函数y=﹣(x ﹣1)2+5的大致图象如下:.①当m≤0≤x≤n <1时,当x=m 时y 取最小值,即2m=﹣(m ﹣1)2+5,解得:m=﹣2.当x=n 时y 取最大值,即2n=﹣(n ﹣1)2+5, 解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n 时,当x=m 时y 取最小值,即2m=﹣(m ﹣1)2+5,解得:m=﹣2.当x=1时y 取最大值,即2n=﹣(1﹣1)2+5, 解得:n=52, 或x=n 时y 取最小值,x=1时y 取最大值, 2m=-(n-1)2+5,n=52, ∴m=118, ∵m <0, ∴此种情形不合题意,所以m+n=﹣2+52=12. 2.D解析:D【解析】【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=.故答案为:D.本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.4.A解析:A【解析】∵堤坝横断面迎水坡AB的坡比是1,∴BCAC,∵BC=50,∴,∴100==(m).故选A 5.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m < 时,y 的值随x 值的增大而增大,∵当2x <-时,y 的值随x 值的增大而增大,∴2m ≥- ,故选:C .【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.6.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 7.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C .【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..8.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C 、AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.9.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A 、方程2x ﹣3=x 为一元一次方程,不符合题意;B 、方程2x +3y =5是二元一次方程,不符合题意;C 、方程2x ﹣x 2=1是一元二次方程,符合题意;D 、方程x +1x=7是分式方程,不符合题意, 故选:C .【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 二、填空题13.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】解析:25 5【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=25 CNCE.. 【点睛】 本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.15.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出D E=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为131 2DM.31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.16.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.17.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DC AB AC =,∴234DP =,∴DP=32; ④如图,当∠BPD=∠BAC 时,过点D 的直线l 与另一边的交点在其延长线上,,不合题意。

平顶山市九年级上学期数学期末考试试卷

平顶山市九年级上学期数学期末考试试卷

平顶山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·新宾模拟) 如图,在△ABC中,AB=3,AC=2,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1 ,连接BC1 ,则BC1的长为().A .B .C . 4D . 62. (2分) (2020九下·龙江期中) 如图,为的内接三角形,AB为的直径,点D在上,,则的度数为().A .B .C .D .3. (2分)下列说法中正确的是()A . “任意画出一个等边三角形,它是轴对称图形”是随机事件B . “任意画出一个平行四边形,它是中心对称图形”是必然事件C . “概率为0.0001的事件”是不可能事件’D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4. (2分)(2018·松桃模拟) 如图,AB是⊙O的直径,C,D是⊙O上两点,若∠D=35°,则∠OCB的度数是()A . 35°B . 55°C . 65°D . 70°5. (2分)(2020·青羊模拟) 在平直角坐标系中,如果抛物线y=4x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A . y=4(x﹣2)2+2B . y=4(x+2)2﹣2C . y=4(x﹣2)2﹣2D . y=4(x+2)2+26. (2分)(2019·海曙模拟) 如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()A . 26°B . 28°C . 30°D . 32°7. (2分) (2019九上·宁波期中) 抛物线y=x2﹣2x+3的对称轴是直线()A . x=﹣2B . x=2C . x=﹣1D . x=18. (2分) (2017九上·东莞开学考) 如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A . 1B . 3﹣C . ﹣1D . 4﹣29. (2分)(2018·萧山模拟) 如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A . 3B . 6C .D . 1010. (2分) (2018·牡丹江模拟) 如图,圆锥形烟囱帽的底面直径为80cm,母线长为50cm,则这样的烟囱帽的侧面积是().A . 4000πcm2B . 3600πcm2C . 2000πcm2D . 1000πcm211. (2分) (2019九上·长丰月考) 已知抛物线(<0)过A(,0)、O(0,0)、B(,)、C(3,)四点,则与的大小关系是()A . >B .C . <D . 不能确定12. (2分)(2020·西安模拟) 如图,是的内接三角形,且,,的直径交于点E,则的度数为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2018九上·连城期中) 如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE ,点B 的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为________.14. (1分)(2019·盘锦) 在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.15. (1分)已知△ABC∽△A′B′C′,∠A=50°,则∠A的对应角∠A′=________度.16. (1分) (2019八下·邳州期中) 菱形中,,其周长为,则菱形的面积为________.17. (1分) (2020九下·江阴期中) 如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为________.18. (1分)(2017·通州模拟) 抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n时,y的值为________.三、解答题 (共8题;共95分)19. (10分) (2020七上·北仑期末) 计算:(1)(2)20. (10分) (2015九上·沂水期末) 育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.21. (15分)如图,专业救助船“沪救1”轮、“沪救2”轮分别位于A、B两处,同时测得事发地点C在A 的南偏东60°且C在B的南偏东30°上.已知B在A的正东方向,且相距100里,请分别求出两艘船到达事发地点C的距离.(注:里是海程单位,相当于一海里.结果保留根号)22. (10分) (2017九上·红山期末) 如图,四边形ABCD内接于⊙O,C为的中点,若∠CBD=30°,⊙O 的半径为12.(1)求∠BAD的度数;(2)求扇形OCD的面积.23. (10分)如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.24. (10分)如图,l1反映了甲离开A地的时间与离A地的距离的关系l2反映了乙离开A地的时间与离开A 地距离之间的关系,根据图象填空:(1)当时间为0时,甲离A地________千米;(2)当时间为________时,甲、乙两人离A地距离相等;(3)图中P点的坐标是________;(4) l1对应的函数表达式是:S1=________;(5)当t=2时,甲离A地的距离是________千米;(6)当S=28时,乙离开A地的时间是________时.25. (15分) (2020九下·扬州期中) 定义:形如y=|G|(G为用自变量表示的代数式)的函数叫做绝对值函数.例如,函数y=|x﹣1|,y=,y=|﹣x2+2x+3|都是绝对值函数.绝对值函数本质是分段函数,例如,可以将y=|x|写成分段函数的形式: .探索并解决下列问题:(1)将函数y=|x﹣1|写成分段函数的形式;(2)如图1,函数y=|x﹣1|的图象与x轴交于点A(1,0),与函数y=的图象交于B,C两点,过点B作x轴的平行线分别交函数y=,y=|x﹣1|的图象于D,E两点.求证△ABE∽△CDE;(3)已知函数y=|﹣x2+2x+3|的图象与y轴交于F点,与x轴交于M,N两点(点M在点N的左边),点P 在函数y=|﹣x2+2x+3|的图象上(点P与点F不重合),PH⊥x轴,垂足为H.若△PMH与△MOF相似,请直接写出所有符合条件的点P的坐标.26. (15分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共95分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、24-5、24-6、25-1、25-2、26-1、26-2、26-3、。

河南省平顶山市九年级上学期数学期末考试试卷

河南省平顶山市九年级上学期数学期末考试试卷

河南省平顶山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题) (共10题;共20分)1. (2分) (2017七下·德惠期末) 下列汽车标志中既是轴对称又是中心对称图形的是()A .B .C .D .2. (2分) (2019八下·宣州期中) 已知一元二次方程x2﹣4x+m2=0有一个根为1,则另一根为()A . 5B . ﹣3C . 3D . 以上都不对3. (2分) (2016九上·仙游期末) 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球100次,其中20次摸到黑球,你估计盒中大约有白球()A . 20个B . 28个C . 36个D . 32个4. (2分)如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长()A . 4B . 5C . 6D . 75. (2分) (2019九上·鄂尔多斯期中) 某商品原价为200元,为了吸引更多顾客,商场连续两次降价后售价为162元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为()A .B .C .D .6. (2分)已知一个圆锥的侧面展开图是一个半径为9,圆心角为120的扇形,则该圆锥的底面半径等于().A . 9B . 27C . 3D . 107. (2分)如图,在梯形ABCD中,AB∥DC,DE∥CB,△ADE周长为18,DC=4,则该梯形的周长为A . 22B . 26C . 28D . 308. (2分)把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:h=20t-5t2 .当h=20时,小球的运动时间为()A . 20B . 2C . (2+2)D . (2-2)9. (2分) (2018九上·彝良期末) 如图,C为半圆内一点,O为圆心,直径AB的长为2cm, BOC=60 ,BCO=90 ,将 BOC绕圆心O逆时针旋转至△ ,点在OA上,则边BC扫过区域(图中阴影部分)的面积为()cm2 .A .B .C .D .10. (2分)下列命题中,为假命题的是()A . 对顶角相等B . 等角的补角相等C . 两个锐角的和一定是钝角D . 三角形的内角和为180°二、填空题(共6小题) (共6题;共6分)11. (1分)(2019·定远模拟) 如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________12. (1分)(2018·龙湾模拟) 如图,将Rt△ABC的BC边绕C旋转到CE的位置,且在Rt△ABC中,∠B=90°,∠A=30°,则∠ACD=________度.13. (1分) (2018九上·梁子湖期末) 如果(a2+b2+1)(a2+b2-1)=63,那么a2+b2的值为__.14. (1分)袋子里装有两个红球,它们除颜色外完全相同.从袋中任意摸出一球,摸出一个为红球,称为________事件;摸出一个为白球,称为________事件;(选填“必然”“不确定”“不可能”)15. (1分) (2020八上·吴兴期末) 课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的,,满足的数量关系是________. 现将△ABF向上翻折,如图②,已知,,,则△ABC的面积是________.16. (1分) (2020九上·赣榆期末) 当时,直线与抛物线有交点,则的取值范围是________.三、解答题(共8小题) (共8题;共82分)17. (5分)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,求a的取值范围.18. (6分) (2020九上·常州期末) 小明放学回家看到桌上有一盘小麻糕,妈妈说当中有芝麻馅、肉馅各1个,青菜馅2个,这些小麻糕除馅外无其他差别.(1)小明随机从盘中取出一个小麻糕,取出的是芝麻馅的概率是________.(2)小明随机从盘中一次取出两个小麻糕,试用画树状图或列表的方法表示所有可能的结果,并求取出的两个都是青菜馅的概率.19. (10分)(2018·白云模拟) 如图,一条公路的转弯处是一段圆弧(1)用直尺和圆规作出所在圆的圆心O;要求保留作图痕迹,不写作法(2)若的中点C到弦AB的距离为,求所在圆的半径.20. (10分)(2017·海陵模拟) 在全民创业的热潮中,小王研制并投产了一种新产品,每件制造成本为9元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣x+25.(利润=售价﹣制造成本)(1)写出每月的利润W(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为55万元?(3)当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?21. (10分) (2016九下·长兴开学考) 已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,AC=6,求⊙O的半径.22. (15分) (2018九上·娄底期中) 如图,一次函数y=k1x+b与反比例函数的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.23. (15分)(2016·温州) 如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m= 时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是________.24. (11分) (2019九上·东台期中) 张老师给爱好学习的的小军和小俊提出这样一个问题:如图(1),在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图(2),连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.老师表扬了小军,并且告诉小军和小俊:在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这种方法称为“面积法”.请你使用“面积法”解决下列问题:(1)Rt△ABC两条直角边长为3和4,则它的内切圆半径为________;(2)如图(3),△ABC中AB=15,BC=14,AC=13,AD是BC边上的高.求AD长及△ABC的内切圆的半径;(3)如图(4),在四边形ABCD中,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,⊙O1与△ABD切点分别为E、F、G,设它们的半径分别为r1和r2,若∠ADB=90°,AE=8,BC+CD=20,S△DBC=36,r2=2,求r1的值.参考答案一、选择题(共10小题) (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共6小题) (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共8小题) (共8题;共82分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

2019九年级数学上期末试卷含答案精品教育.doc

2019九年级数学上期末试卷含答案精品教育.doc

2019九年级数学上期末试卷含答案2019九年级数学上期末试卷一、选择题(本题共12小题,每小题3分,共36分)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球3.反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是( )A.x1&gt;x2B.x1=x2C.x14.半径为6,圆心角为120&deg;的扇形的面积是( )A.3&pi;B.6&pi;C.9&pi;D.12&pi;5.如图,△ABC中,&ang;A=78&deg;,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B.C. D.6.如图,将△ABC绕着点C按顺时针方向旋转20&deg;,B点落在B&prime;位置,A点落在A&prime;位置,若AC&perp;A&prime;B&prime;,则&ang;BAC的度数是( )A.50&deg;B.60&deg;C.70&deg;D.80&deg;7.抛物线y=2x2﹣2 x+1与x轴的交点个数是( )A.0B.1C.2D.38.边长为a的正三角形的内切圆的半径为( )A. aB. aC. aD. a9.如图,过反比例函数y= (x&gt;0)的图象上一点A作AB&perp;x轴于点B,连接AO,若S△AOB=2,则k的值为( )A.2B.3C.4D.510.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A&prime;的坐标是( )A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)11.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD&perp;BD;②&ang;AOC=&ang;AEC;③BC平分&ang;ABD;④AF=DF;⑤BD=2OF.其中正确结论的个数是( )A.2B.3C.4D.512.已知抛物线y=x2+bx+c(其中b,c是常数)经过点A(2,6),且抛物线的对称轴与线段BC有交点,其中点B(1,0),点C(3,0),则c的值不可能是( )A.4B.6C.8D.10二、填空题(本题共6小题,每小题3分,共18分)13.二次函数y=2(x﹣3)2﹣4的最小值为.14.△ABC与△DEF的相似比为1:4,则△ABC与△DEF 的周长比为.15.若反比例函数y= 在第一,三象限,则k的取值范围是.16.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则&ang;C= 度.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD&perp;BC,BC=3,AD=2,EF= EH,那么EH的长为.18.如图所示,△ABC与点O在10&times;10的网格中的位置如图所示,设每个小正方形的边长为1.(1)画出△ABC绕点O旋转180&deg;后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为.三、解答题(本题共7小题,共66分)19.(8分)已知正比例函数y1=kx的图象与反比例函数y2= (k为常数,k&ne;5且k&ne;0)的图象有一个交点的横坐标是2.(1)求这两个函数的解析式;(2)求这两个函数图象的交点坐标.20.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.21.(10分)如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F.(1)求CF的长;(2)求的值.22.(10分)如图,在Rt△ABC中,&ang;C=90&deg;,BD 是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.23.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.设该种品牌玩具的销售单价为x元(x&gt;40),销售量为y件,销售该品牌玩具获得的利润为w元.(Ⅰ)根据题意,填写下表:销售单价x(元) 40 55 70 (x)销售量y(件) 600 …销售玩具获得利润w(元) …(Ⅱ)在(Ⅰ)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(Ⅲ)在(Ⅰ)问条件下,求商场销售该品牌玩具获得的最大利润是多少?此时玩具的销售单价应定为多少?24.(10分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF,现将小长方形CEFD绕点C顺时针旋转至CE&prime;F&prime;D&prime;,旋转角为&alpha;.(1)当边CD&prime;恰好经过EF的中点H时,求旋转角&alpha;的大小;(2)如图2,G为BC中点,且0&deg;&lt;&alpha;&lt;90&deg;,求证:GD&prime;=E&prime;D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD&prime;与△BCD&prime;能否全等?若能,直接写出旋转角&alpha;的大小;若不能,说明理由.25.(10分)如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP 的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2019九年级数学上期末试卷答案一、选择题(本题共12小题,每小题3分,共36分)1.下列图形中,是中心对称图形的是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念.注意中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【考点】随机事件.【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是( )A.x1&gt;x2B.x1=x2C.x1【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性进而分析得出答案.【解答】解:∵反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,&there4;每个分支上y随x的增大而增大,∵﹣2&gt;﹣3,&there4;x1&gt;x2,故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的增减性是解题关键.4.半径为6,圆心角为120&deg;的扇形的面积是( )A.3&pi;B.6&pi;C.9&pi;D.12&pi;【考点】扇形面积的计算.【分析】根据扇形的面积公式S= 计算即可.【解答】解:S= =12&pi;,故选:D.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S= 是解题的关键.5.如图,△ABC中,&ang;A=78&deg;,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B. C. D.【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.6.如图,将△ABC绕着点C按顺时针方向旋转20&deg;,B点落在B&prime;位置,A点落在A&prime;位置,若AC&perp;A&prime;B&prime;,则&ang;BAC的度数是( )A.50&deg;B.60&deg;C.70&deg;D.80&deg;【考点】旋转的性质.【分析】根据旋转的性质可知,&ang;BCB&prime;=&ang;ACA&prime;=20&deg;,又因为AC&perp;A&prime;B&prime;,则&ang;BAC的度数可求.【解答】解:∵△ABC绕着点C按顺时针方向旋转20&deg;,B点落在B&prime;位置,A点落在A&prime;位置&there4;&ang;BCB&prime;=&ang;ACA&prime;=20&deg;∵AC&perp;A&prime;B&prime;,&there4;&ang;BAC=&ang;A&prime;=90&deg;﹣20&deg;=70&deg;.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.7.抛物线y=2x2﹣2 x+1与x轴的交点个数是( )A.0B.1C.2D.3【考点】抛物线与x轴的交点.【分析】先计算判别式的值,然后根据判别式的意义判断抛物线与x轴的交点个数.【解答】解:根据题意得△=(2 )2﹣4&times;2&times;1=0,所以抛物线与x轴只有一个交点.故选B.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a&ne;0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac&gt;0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac&lt;0时,抛物线与x轴没有交点.8.边长为a的正三角形的内切圆的半径为( )A. aB. aC. aD. a【考点】三角形的内切圆与内心.【分析】根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30&deg;的直角三角形,利用锐角三角函数关系求出内切圆半径即可.【解答】解:∵内切圆的半径、外接圆的半径和半边组成一个30&deg;的直角三角形,则&ang;OBD=30&deg;,BD= ,&there4;tan&ang;BOD= = ,&there4;内切圆半径OD= &times; = a.故选D.【点评】此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30&deg;的直角三角形.9.如图,过反比例函数y= (x&gt;0)的图象上一点A作AB&perp;x轴于点B,连接AO,若S△AOB=2,则k的值为( )A.2B.3C.4D.5【考点】反比例函数系数k的几何意义;反比例函数的性质.【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y= 图象上一点,且AB&perp;x轴于点B,&there4;S△AOB= |k|=2,解得:k=&plusmn;4.∵反比例函数在第一象限有图象,&there4;k=4.故选C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.10.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A&prime;的坐标是( )A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,&there4;点A的对应点A&prime;的坐标是(﹣1,2)或(1,﹣2),故选D.【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.11.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD&perp;BD;②&ang;AOC=&ang;AEC;③BC平分&ang;ABD;④AF=DF;⑤BD=2OF.其中正确结论的个数是( )A.2B.3C.4D.5【考点】圆周角定理;三角形中位线定理;垂径定理.【分析】由圆周角定理可判断①,利用圆的性质结合外角可判断②,利用平行线的性质可判断③,由垂径定理可判断④,由中位线定理可判断⑤,可求得答案.【解答】解:∵AB是⊙O的直径,&there4;&ang;ADB=90&deg;,即AD&perp;BD,故①正确;∵&ang;ACE=&ang;DAB+&ang;EBA,&ang;AOC=2&ang;EBA,&there4;&ang;AOC&ne;&ang;AEC,故②不正确;∵OC∥BD,&there4;&ang;OCB=&ang;CBD,∵OC=OB,&there4;&ang;OCB=&ang;OBC,&there4;&ang;OBC=&ang;CBD,即BC平分&ang;ABD,故③正确;&there4;OC&perp;AD,&there4;AF=FD,故④正确;&there4;OF为△ABD的中位线,&there4;BD=2OF,故⑤正确,综上可知正确的有4个,故选C.【点评】本题主要考查圆周角定理及圆的有关性质,掌握圆中有关的线段、角的相等是解题的关键,特别注意垂径定理的应用.12.已知抛物线y=x2+bx+c(其中b,c是常数)经过点A(2,6),且抛物线的对称轴与线段BC有交点,其中点B(1,0),点C(3,0),则c的值不可能是( )A.4B.6C.8D.10【考点】二次函数的性质;一次函数图象上点的坐标特征.【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段BC(1&le;x&le;3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1&le;x&le;3)有交点,&there4; ,解得6&le;c&le;14,故选A.【点评】本题考查二次函数的性质、解不等式,明确题意,列出相应的关系式是解题的关键.二、填空题(本题共6小题,每小题3分,共18分)13.二次函数y=2(x﹣3)2﹣4的最小值为﹣4 .【考点】二次函数的最值.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.14.△ABC与△DEF的相似比为1:4,则△ABC与△DEF 的周长比为1:4 .【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比解答.【解答】解:∵△ABC与△DEF的相似比为1:4,&the re4;△ABC与△DEF的周长比为1:4.故答案为:1:4.【点评】本题考查了相似三角形的性质,熟记相似三角形周长的比等于相似比是解题的关键.15.若反比例函数y= 在第一,三象限,则k的取值范围是k&gt;1 .【考点】反比例函数的性质.【分析】根据反比例函数在第一,三象限得到k﹣1&gt;0,求解即可.【解答】解:根据题意,得k﹣1&gt;0,解得k&gt;1.故答案为:k&gt;1.【点评】本题主要考查反比例函数的性质:当k&gt;0时,函数图象位于第一、三象限,当k&lt;0时,函数图象位于第二、四象限.16.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则&ang;C= 45 度.【考点】切线的性质;平行四边形的性质.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出&ang;A=45&deg;,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,&there4;OD&perp;CD,∵四边形ABCD是平行四边形,&there4;AB∥CD,&there4;AB&perp;OD,&there4;&ang;AOD=90&deg;,∵OA=OD,&there4;&ang;A=&ang;ADO=45&deg;,&there4;&ang;C=&ang;A=45&deg;.故答案为45.【点评】本题考查平行四边形的性质、切线的性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD&perp;BC,BC=3,AD=2,EF= EH,那么EH的长为.【考点】相似三角形的判定与性质;矩形的性质.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.【解答】解:如图所示:∵四边形EFGH是矩形,&there4;EH∥BC,&there4;△AEH∽△ABC,∵AM&perp;EH,AD&perp;BC,&there4; ,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,&there4; ,解得:x= ,则EH= .故答案为: .【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.如图所示,△ABC与点O在10&times;10的网格中的位置如图所示,设每个小正方形的边长为1.(1)画出△ABC绕点O旋转180&deg;后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为.【考点】作图-旋转变换.【分析】(1)延长AO到点D使OD=OA,则点A的对应点为D,同样方法作出点B、C的对应点E、F,则△DEF与△ABC 关于点O中心对称;(2)作AB和AC的垂值平分线,它们的交点为△ABC的外心,而△ABC的外接圆为能盖住△ABC的最小圆,然后利用勾股定理计算出MA即可.【解答】解:(1)如图,△DEF为所作;(2)如图,点M为△ABC的外心,MA= = ,故答案为 .【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.三、解答题(本题共7小题,共66分)19.已知正比例函数y1=kx的图象与反比例函数y2= (k 为常数,k&ne;5且k&ne;0)的图象有一个交点的横坐标是2.(1)求这两个函数的解析式;(2)求这两个函数图象的交点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把交点的横坐标代入函数解析式,列出一元一次方程,解方程即可;(2)根据题意列出二元一次方程组,解方程组即可.【解答】解:(1)∵正比例函数y1=kx的图象与反比例函数y2= (k为常数,k&ne;5且k&ne;0)的图象有一个交点的横坐标是2,&there4;y1=2k,y2= ,∵y1=y2,&there4;2k= ,解得,k=1,则正比例函数y1=x的图象与反比例函数y2= ;(2) ,解得,,,&there4;这两个函数图象的交点坐标为(2,2)和(﹣2,﹣2).【点评】本题考查的是反比例函数与一次函数的交点问题,灵活运用待定系数法求出函数解析式、掌握正比例函数与反比例函数图象的交点的求法是解题的关键.20.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【解答】解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率= = ;(2)画树状图为:共有12种等可能的结果数,其中刚好是一男生一女生的结果数为6,所以刚好是一男生一女生的概率= = .【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.(10分)(2019秋&bull;天津期末)如图,矩形ABCD 中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE 并延长交DC于点F.(1)求CF的长;(2)求的值.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度;(2)利用相似三角形的面积比等于相似比的平方即可求出答案.【解答】解:(1)∵四边形ABCD是矩形,&there4;&ang;BAD=90&deg;,又AB= ,BC= ,&there4;BD= =3,∵BE=1.8,&there4;DE=3﹣1.8=1.2,∵AB∥CD,&there4; = ,即 = ,解得,DF= ,则CF=CD﹣DF= ﹣ = ;(2)∵AB∥CD,&there4;△DEF∽△BEA,&there4; =( )2=( )2= .【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.22.(10分)(2019&bull;南宁)如图,在Rt△ABC中,&ang;C=90&deg;,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到&ang;ODA为直径,即可得证;(2)过O作OG垂直于BE,可得出四边形ODCG为矩形,在直角三角形OBG中,利用勾股定理求出BG的长,由垂径定理可得BE=2BG.【解答】(1)证明:连接OD,∵BD为&ang;ABC平分线,&there4;&ang;1=&ang;2,∵OB=OD,&there4;&ang;1=&ang;3,&there4;&ang;2=&ang;3,&there4;OD∥BC,∵&ang;C=90&deg;,&there4;&ang;ODA=90&deg;,则AC为圆O的切线;(2)解:过O作OG&perp;BC,连接OE,&there4;四边形ODCG为矩形,&there4;GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∵OG&perp;BE,OB=OE,&there4;BE=2BG=12.解得:BE=12.【点评】此题考查了切线的判定,相似三角形的判定与性质,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解本题的关键.23.(10分)(2019&bull;塘沽区二模)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.设该种品牌玩具的销售单价为x元(x&gt;40),销售量为y件,销售该品牌玩具获得的利润为w元.(Ⅰ)根据题意,填写下表:销售单价x(元) 40 55 70 (x)销售量y(件) 600 450 300 … 1000﹣10x销售玩具获得利润w(元) 6000 1125012019 … (1000﹣10x)(x﹣30)(Ⅱ)在(Ⅰ)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(Ⅲ)在(Ⅰ)问条件下,求商场销售该品牌玩具获得的最大利润是多少?此时玩具的销售单价应定为多少?【考点】二次函数的应用;一元二次方程的应用.【分析】(Ⅰ)利用销售单价每涨1元,就会少售出10件玩具,再结合每件玩具的利润乘以销量=总利润进而求出即可;(Ⅱ)利用商场获得了10000元销售利润,进而得出等式求出即可;(Ⅲ)利用每件玩具的利润乘以销量=总利润得出函数关系式,进而求出最值即可.【解答】解:(1)填表:销售单价x(元) 40 55 70 (x)销售量y(件) 600 450 300 … 1000﹣10x销售玩具获得利润w(元) 6000 11250 12019 … (1000﹣10x)(x﹣30)(Ⅱ)[600﹣10(x﹣40)](x﹣30)=10000,解得:x1=50,x2=80,答:该玩具销售单价x应定为50元或80元;(Ⅲ)w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10&lt;0,&there4;对称轴为x=65,&there4;当x=65时,W最大值=12250(元)答:商场销售该品牌玩具获得的最大利润是12250元,此时玩具的销售单价应定为65元.【点评】此题主要考查了一元二次方程的应用以及二次函数的应用,得出w与x的函数关系式是解题关键.24.(10分)(2019秋&bull;天津期末)如图1所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF,现将小长方形CEFD绕点C顺时针旋转至CE&prime;F&prime;D&prime;,旋转角为&alpha;.(1)当边CD&prime;恰好经过EF的中点H时,求旋转角&alpha;的大小;(2)如图2,G为BC中点,且0&deg;&lt;&alpha;&lt;90&deg;,求证:GD&prime;=E&prime;D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD&prime;与△BCD&prime;能否全等?若能,直接写出旋转角&alpha;的大小;若不能,说明理由.【考点】四边形综合题.【分析】(1)根据旋转的性质得CE=CH=1,即可得出结论;(2)由G为BC中点可得CG=CE,根据旋转的性质得&ang;D&prime;CE&prime;=&ang;DCE=90&deg;,CE=CE&prime;CE,则&ang;GCD&prime;=&ang;DCE&prime;=90&deg;+&alpha;,然后根据“SAS”可判断△GCD&prime;≌△E&prime;CD,则GD&prime;=E&prime;D;(3)根据正方形的性质得CB=CD,而CD=CD&prime;,则△BCD&prime;与△DCD&prime;为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD&prime;与△DCD&prime;为钝角三角形时,可计算出&alpha;=135&deg;,当△BCD&prime;与△DCD&prime;为锐角三角形时,可计算得到&alpha;=315&deg;.【解答】(1)解:∵长方形CEFD绕点C顺时针旋转至CE&prime;F&prime;D&prime;,&there4;CE=CH=1,&there4;△CEH为等腰直角三角形,&there4;&ang;ECH=45&deg;,&there4;&ang;&alpha;=30&deg;;(2)证明:∵G为BC中点,&there4;CG=1,&there4;CG=CE,∵长方形CEFD绕点C顺时针旋转至CE&prime;F&prime;D&prime;,&there4;&ang;D&prime;CE&prime;=&ang;DCE=90&deg;,CE=CE&prime;=CG,&there4;&ang;GCD&prime;=&ang;DCE&prime;=90&deg;+&al pha;,在△GCD&prime;和△E&prime;CD中,&there4;△GCD&prime;≌△E&prime;CD(SAS),&there4;GD&prime;=E&prime;D;(3)解:能.理由如下:∵四边形ABCD为正方形,&there4;CB=CD,∵CD&prime;=CD&prime;,&there4;△BCD&prime;与△DCD&prime;为腰相等的两等腰三角形,当&ang;BCD&prime;=&ang;DCD&prime;时,△BCD&prime;≌△DCD&prime;,当△BCD&prime;与△DCD&prime;为钝角三角形时,则旋转角&alpha;= =135&deg;,当△BCD&prime;与△DCD&prime;为锐角三角形时,&ang;BCD&prime;=&ang;DCD&prime;= &ang;BCD=45&deg;则&alpha;=360&deg;﹣ =315&deg;,。

九年级数学上册期末试卷(有答案)-(新课标人教版)(2019秋).doc

九年级数学上册期末试卷(有答案)-(新课标人教版)(2019秋).doc

上学期九年级数学期末质量检测姓名:_______________班级:_______________考号:_______________一、选择题二、1、方程的左边配成完全平方后,得到的方程为().A. B. C.D.以上都不对2、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为,则满足的方程是()A. B.C. D.3、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点 A顺时针旋转900得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是( ) (A)45°(B)30°(C)25°(D)15°4、下列图形中,是中心对称图形的是()5、如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()A.与轴相离、与y轴相切 B.与轴、y轴都相离C.与轴相切、与y轴相离 D.与轴、y轴都相切7、某口袋中有20个球,其中白球个,绿球2个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=a2+b+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题11、方程有两个不等的实数根,则a的取值范围是________。

河南省平顶山九年级数学上学期期末考试卷(含答案)

河南省平顶山九年级数学上学期期末考试卷(含答案)
参考答案
注意事项:
1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,按答题卡上注意事项的要求把答案填写在答题卡上,答在试卷上的答案无效。
3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置。
一、选择题(本大题共10小题,每小题3分,共30分)
【1题答案】
1.已知α为锐角,若 ,则α的度数是( )
A.30°B.45°C.60°D.75°
2.一个由圆柱和长方体组成 几何体如图水平放置,它的俯视图是( )
A. B. C. D.
3.下列结论正确的有()
①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的
②物体在任何光线照射下影子的方向都是相同的
③物体在路灯照射下,影子的方向与路灯的位置有关
(1)求无人机的高度 (结果保留根号);
(2)求 的长度(结果精确到1m).(参考数据: , , , )
23.抛物线 与轴交于A,B两点,点A在点B的左侧.且A点的坐标为 .
(1)求抛物线的对称轴;
(2)当 时,函数值y的取值范围为 ,求n的取值范围;
(3)将抛物线在x轴上方的部分沿x轴翻折,其余部分不变,得到新的函数图象,当新函数的函数值随x的增大而减小时,请直接写出x的取值范围
A. B. C. D.
10.二次函数 (a,b,c是常数, )的自变量x与函数值y的部分对应值如下表:
x

0
1
2


t
m
n

且当 时,其对应的函数值 .有下列结论:
① ;② 和3是关于x的方程 的两个根;③对称轴为 ;④ ;其中,正确结论的个数是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020河南省鲁阳期末测试九年级数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分选择题和非选择题两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答非选择题时,将答案写在答题纸上。

写在本试卷上无效。

4.考试结束后,只将答题卡交回。

5.考试范围:中考全部内容一、选择题(本大题共8小题,共24分)1.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C. D.2.如图,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A的对应点A′的坐标为()A.(-,-1)B.(-2,0)C.(-1,-)或(-2,0)D.(-,-1)或(-2,0)3.已知点P1(x1,y1),P2(x2,y2),P3(x3,y3)在双曲线y= -上,且x1<x2<0<x3,则y1,y2,y3的大小关系为A.y1<y2<y3B.y2<y3<yC.y3<y1<y2D.y3>y2>y1()4.如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,cosα=,AB=4,则AD的长为()。

A.3B.C.D.5.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为A.6B.12C.D.46.下列运算中正确的是A.3a-a=3B.C.(-2a)3= -6a3D.ab2÷a =b27.如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上任意一点,则PK+QK的最小值为A.1B.C.2D.8.如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP与PB为直径做半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为A. B. C. D.二、填空题(本大题共7小题,共21分)9.如下图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC= .10.现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.11.计算:|4|+-(-1)8-cos45°= .12.若关于x的方程有两个实数根,则k的取值范围是13.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为14.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数y=的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为.15.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.三、解答题(本大题共8小题,共75分)16.先化简:÷+1,然后从-<x<的范围内选取一个合适的整数作为x的值带入求值.17.如图所示,在△ABE和△ACD中,给出以下4个论断:(1)AB=AC;(2)AD=AE;(3)BE=CD;(4)∠DAM=∠EAN。

以其中3个论断为题设,填入下面的“已知”栏中,1个论断为结论,填入下面的“求证”栏中,使之组成一个正确的命题,并写出证明过程。

已知:;求证:。

18.某市为了解全市九年级学生的数学学习情况,组织了部分学校的九年级学生参加4月份的调研测试,并把成绩按A,B,C,D四个等级进行统计,将统计结果绘成如下的统计图,请你结合图中所给信息解答下列问题:(A等:96分及以上;B等:72~95分;C等:30~71分;D等:30分以下,分数均取整数)(1)参加4月份调研测试的学生共有人;(2)请补全条形统计图;(3)扇形统计图中B等级所在扇形的圆心角度数是;(4)今年本市初中应届毕业生约127500人,若初中毕业生学业考试试题与4月份调研测试试题难度相当,请利用上述统计数据初步预测今年本市初中毕业生学业考试为A等级的约有多少人.19.如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距离观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁的危险?(参考数据:≈1.41,≈1.73)20.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.21.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.22.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.23.如图,抛物线y=-x2+bx+c与直线y=x+4交于C、D两点,其中点C在y轴上,点D的坐标为(6,7).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F,作PM⊥CD于点M.(1)求抛物线的解析式及sin∠PFM的值.(2)设点P的横坐标为m:①若P在CD上方,用含m的代数式表示线段PM的长,并求出线段PM长的最大值;②当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.试卷参考答案1.C2.C3.C4.B5.D6.D7.B8.D9. . 10. . 11.3 12. K≥-且K≠013.y=3(x+2)2-1 14.615.316.原式=•+1=+1∵-1<x<2,且x为整数,∴若使分式有意义,x只能取-2、-1和1.当x=1时,原式=[或者:当x=-1时,原式=-,当x=-2时,原式=-1].17.解:已知:AB=AC,AD=AE,BE=CD求证:∠DAM=∠EAN证明:在△ADC和△AEB中,则△ADC≌△AEB(SSS)故,即则∠DAM=∠EAN18.4250;72°19.解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在R t△AEC中,CE=AE•tan60°=x;在R t△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(-1),∴AD=2y=200(-1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(-1)海里.(2)由(1)可知,DF=AF=×100(-1)≈126.8∵126.8>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险。

20.(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90度,∴四边形AECF是矩形.21.解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=22.解:(1)∵△BCN绕点C逆时针旋转90°得到△ACF,∴CF=CN,∠ACF=∠BCN,∵∠DCE=45°,∴∠ACM+∠BCN=45°,∴∠ACM+∠ACF=45°,即∠MCF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS);(2)①∵△CMF≌△CMN,∴FM=MN,又∵∠CAF=∠B=45°,∴∠FAM=∠CAF+∠BAC=45°+45°=90°,②如图,把△BCN绕点C逆时针旋转90°得到△ACF,则AF=BN,CF=CN,∠BCN=∠ACF,∵∠MCF=∠ACB-∠MCB-∠ACF=90°-(45°-∠BCN)-∠ACF=45°+∠BCN-∠ACF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS),∴FM=MN,∵∠ABC=45°,∴∠CAF=∠CBN=135°,又∵∠BAC=45°,∴∠FAM=∠CAF-∠BAC=135°-45°=90°,23.(1)C在直线y=x+4上,∴C(0,4).∵点C(0,4)、D(6,7)在抛物线y=-x2+bx+c上,∴,解得,∴抛物线的解析式为:y=-x2+x+4.∵PC∥y轴,∴∠PFM=∠OCG.∴sin∠PFM=sin∠OCG=,(2)①设点P的横坐标为m,则P(m,-m2+m+4),F(m,m+4).∵PF=y P-y F=(-m2+m+4)-(m+4)=-m2+6m,在R t△PFM中,PM=PF sin∠PFM=(-m2+6m),=-(m2-6m),∵-<0,当m=3时,PM有最大值是,②∵PF∥OC,若以O、C、P、F为顶点的四边形是平行四边形,只要PF=OC=4,∴将直线y=x+4沿y轴向上或向下平移4个单位之后得到的直线,与抛物线y轴右侧的交点,即为所求之交点.由答图1可以直观地看出,这样的交点有3个.将直线y=x+4沿y轴向上平移4个单位,得到直线y=x+8,联立,,解得x1=3-,x2=3+,∴m1=3-,m2=3+;将直线y=x+2沿y轴向下平移4个单位,得到直线y=x,联立,解得x3=3+,x4=3-(在y轴左侧,不合题意,舍去),∴m3=3+.∴当m为值为3-,3+或3+时,以O、C、P、F为顶点的四边形是平行四边形.。

相关文档
最新文档