组合权向量计算过程
层次分析法及模糊综合评价建模方法
否则,k:=k+1, 转2
5) 计算 max
1 n
n i 1
w(k 1) i w(k ) i
关于如何确定成对比较矩阵 A (aij )nn 中元素 aij 的值,
Saaty等建议试用1~9尺度,即 aij 的取值范围是1,2,…,9 以及倒数是1,1\2,…,1\9, 判断矩阵的元素一般采用1~9及 其倒数的标度方法。
科研C2
w1(3)=(w11(3),w12(3),w13(3),0)T P1
P2
P3
P4
w2(3)=(0,0,w23(3),w24(3)T已得 讨论由w(2),W(3)=(w1(3), w2(3)) 计算第3层对第1层权向量
P1,P2只作教学, P4只作科研, P3兼作教学、科研。
w(3)的方法
C1,C2支配元素的数目不等
间
业 业 业 靠 通 C8
C1
C3 C4 C5 C6 C7
舒进 美
适出 化
C9
方 便
C11
C1
0
桥梁 D1
隧道 D2
渡船 D3
(1)过河效益层次结构
例3 横渡 江河、海峡 方案的抉择
经济代价 B1
过河的代价 A
社会代价 B2
环境代价 B3
投 操 冲冲 交 居 汽 对 对
入 作 击击 通 民 车 水 生
一致性指标
CI max n
n 1
随机一致性指标
判断 矩阵 1 2 3 4 5 6 7 8 9 10 阶数n
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
一致性比率
CR
CI RI
层次分析法——精选推荐
一、层次分析模型和一般步骤1、定义:层次分析法是一种定性与定量分析相结合的多因素决策分析方法。
这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。
2、层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类,建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。
二、建立层次结构模型将问题包含的因素分层:最高层——解决问题的目的;中间层——实现总目标而采取的各种措施、必须考虑的准则等。
也可称策略层、约束层、准则层等;最低层——用于解决问题的各种措施、方案等。
把各种所要考虑的因素放在适当的层次内。
用层次结构图清晰地表达这些因素的关系。
例1购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:〔例2〕选拔干部模型练习:画出下列问题的层次模型评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。
主要考虑以下几个因素: (1)教师队伍(包括平均学历和年龄结构)(2)教学设施(3)教学工作(包括课堂教学,课外活动,统考成绩和教学管理) (4)文体活动三、构造成对比较矩阵比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。
设共有 n 个元素参与比较,则称n n ij a A ⨯=)( 为成对比较矩阵。
成对比较矩阵中aij的取值可参考 Satty 的提议,aij按下述标度进行赋值。
在 1— 9及其倒数中间取值。
对例 2, 选拔干部考虑5个条件:品德x1,才能x2,资历 x3 ,年龄x4,群众关系x5。
城市的垃圾焚烧厂的选址1
城市的垃圾焚烧厂的选址垃圾发电现状随着城市人口数量的增加和城市化趋势的发展,城市垃圾处理问题已成为一个重大环保课题。
以前,各国普遍采用卫生填埋和堆肥的垃圾处理方式,占用大量的土地,并且污染环境,世界各国都积极探索垃圾处理的新途径。
垃圾焚烧发电是一项新能源技术,它体现了垃圾处理的无害化、资源化和减量化原则。
垃圾焚烧发电厂投资建设涉及到选址、设计、发电、尾气处理、项目再开发、资金运作等环节,而合理选址是垃圾有效处理和能源利用的关键环节。
垃圾焚烧发电厂选址既考虑大量的定量因素,又考虑大量的非定量因素,对诸多选址影响因素采用优化方法以得到科学合理的结果,利用多阶段决策模型,量化、清晰的数学演绎改进繁杂的决策过程,使问题解决变得简单、科学、有效。
风向、风速:污染物危害的程度和受污染的时间及浓度有关,确定工厂和居民区的相对位置时要考虑风向、风速两个因素。
【污染系数= 该风向的平均风速/风向频率】某风向污染系数小,表示该风向吹来的风所造成的污染小,因此污染源可布置在污染系数最小风向的上侧。
地形:不宜建厂的几种情况。
①谷较深,山谷走向与盛行风向交角为45~135。
②囱有效高度不可能超过下坡风厚度和背风坡湍流区高度的地方;③地四周山坡上有居民区及农田,烟囱有效高度不能超过山的高度时;④山围绕的深谷地;⑤流虽能越过山头,仍会在背风面造成污染时;⑥陆风较稳定的大型水域与山地交界的背山地段。
我们主要研究它的风向、风速以及污染系数。
应用层次分析法建立模型入下:城市生活垃圾焚烧发电厂厂址的选择主要涉及到环境因素、经济因素、社会因素和法规因素等4个决策因素。
而这四个因素细分又分为15个子因素,分别是:水污染,土地污染,大气污染,固体废弃物污染;运输成本,土地价格、建设费用,垃圾发电运营费用,垃圾数量、质量,垃圾处理补给费用,上网电价;对周边居民的影响,对生态景观的影响,供水供电通讯情况;法律、法规,政策、规划。
初步定好三个方案,通过分析拟选地址的决策因素之间的权重关系来选出最优方案。
完全层次结构模型
层次分析模型一、层次分析法讲解在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。
在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。
比如下面的问题:例1 选择旅游地国庆节即将来临,张鶇一家准备去旅游,他们想从黄山、桂林、北戴河三个旅游景点选出一个,请帮助他们作出最佳选择。
根据什么作出选择呢?为解决这个问题,我们需要作问题的分析,以便得到选择景点要考虑的因素.问题的分析:景点的选择大体上有两方面要考虑:1、是旅游者自身的情况;2、是对景点的评价。
首先分析旅游者的情况:如果经济条件宽绰、醉心旅游,自然特别看重景色条件,那么景色在他的心目中的比重就大。
如果平素俭朴,则会优先考虑费用,即费用的比重就大.中老年旅游者还会对居住条件,旅游条件,饮食比较关注。
因此,应该考虑景色、费用、居住、饮食、旅途条件等因素在张鶇一家心目中的重要程度.如何衡量这五个因素的重要程度呢?其次,如何评价景点呢?自然应该就上面的五个因素景色、费用、居住、饮食、旅途条件对景点进行评价。
最后,还要把旅游者的情况和对景点的评价进行综合,以便选定最佳的旅游景点.可是如何综合呢?下面我们用层次分析法解决上面提出的问题。
层次分析法的第一步:建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层,上层受下层影响,而层内各因素基本上相对独立,把问题条理化、层次化,构造出一个有层次的结构模型。
大体可以分成三个层次:(1)最高层(目标层):这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果;(2)中间层(准则层):这一层次中包含了为实现目标所涉及的中间环节,它还可以由若干个层次组成,包括所需考虑的准则、子准则;(3)最低层(方案层):这一层次包括了为实现目标可供选择的各种措施、决策方案等。
就本例题而言,通过上面的分析,我们可以建立如下层次模型:层次分析法的第二步:构造成对比较矩阵建立好层次后,就可以进行各因素之间的比较了.首先考虑对于选择旅游地而言,景色、费用、居住、饮食、旅途条件等准则在张鶇一家心目中的影响,即:对于第一层目标来说,第二层各因素的权重。
确定权重的7种方法
确定权重的7种方法主观赋权德尔菲专家法简介依据“德尔菲法”的基本原理,选择企业各方面的专家,采取独立填表选取权数的形式,然后将他们各自选取的权数进行整理和统计分析,最后确定出各因素,各指标的权数。
德尔菲法的主要缺点是过程比较复杂,花费时间较长。
实现方法选择专家。
一般情况下,选本专业领域中既有实际工作经验又有较深理论修养的专家10-30人左右,需征得专家本人同意。
将待定权重的p个指标和有关资料以及统一的确定权重的规则发给选定的各位专家,请他们独立给出各指标的权数值。
回收结果并计算各指标权数的均值和标准差。
将计算的结果及补充资料返还给各位专家,要求所有的专家在新的基础上确定权数。
重复3和4步骤,直至各指标权数与其均值的离差不超过预先给定的标准为止,也就是各专家的意见基本趋于一致,以此时各指标权数的均值作为该指标的权重。
此外,为了使判断更加准确,令评价者了解己确定的权数把握性大小,还可以运用“带有信任度的德尔菲法”,该方法需要在上述第5步每位专家最后给出权数值的同时,标出各自所给权数值的信任度。
这样,如果某一指标权数的任任度较高时,就可以有较大的把握使用它,反之,只能暂时使用或设法改进。
AHP层次分析法简介层次分析法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各指标的重要程度。
但该方法主观因素对判断矩阵的影响很大,当决策者的判断过多地受其主观偏好的影响时,结果不够客观。
实现方法构建层次评价矩阵构造判断矩阵构造判断矩阵就是通过各要素之间相互两两比较,并确定各准则层对目标层的权重。
简单地说,就是把准则层的指标进行两两判断,通常使用Santy的1-9标度方法给出。
对于m 个指标,构建m*m的判断矩阵,并使用确定的标度方法完成该判断矩阵A。
3. 层次单排序根据构成的判断矩阵,求解各个指标的权重。
有两种方式,一种是方根法,一种是和法。
数学建模方法详解三种最常用算法
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵1,0,ij ij ji n nijA a a a a表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ,,1,2,,i j k n L (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作 )的特征向量(归一化后)作为权向量w ,即w 满足:Aw w (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91 尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根 的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n ,而当n 时A 是一致阵.所以 比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n 数值的大小衡量A 的不一致程度.Saaty 将1nCI n(3)定义为一致性指标.0CI 时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除 外其余1n 个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ,然后计算A 的一致性指标CI .表1 随机一致性指标RI 的数值表中1,2n 时0RI ,是因为2,1阶的正互反阵总是一致阵.对于3n 的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI(4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:1,3,4,kkk w W w k s L (5)其中 kW 是以第k 层对第1k 层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:132s s s w W W W w L (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为p n p CI CI ,,1 (n 是第1 p 层因素的数目),随机一致性指标为1,,p p nRI RI L ,定义11,,P p p p n CI CI CI w L 11,,p p p p n RI RI RI wL 则第p 层的组合一致性比率为:,3,4,,p p p CI CRp s RIL (7) 第p 层通过组合一致性检验的条件为 0.1pCR .定义最下层(第s 层)对第一层的组合一致性比率为:2*sP p CR CR (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91 比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径. (五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根 ;2) 对应正特征向量w ( 的所有分量为正数);3)w IA I I A k k k lim ,其中1,1,1 I ,w 是对应 的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n ;当n 时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n .2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量 0wb .计算1,0,1,2,k k wAw k %L c .1k w%归一化,即令ni k ik k ww1111~~d .对于预先给定的精度 ,当 1||1,2,,k k i i i n L 时,1k w 即为所求的特征向量;否则返回be. 计算最大特征根 111k n ik i in %这是求最大特征根对应特征向量的迭代法, 0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a a%b .对ij %按行求和得1ni ij j %%c .将i %归一化 *121,,,ni ini w%%L 即为近似特征向量.d. 计算 11n ii iAw n ,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij %按行求积并开n 次方,即11nn iij j%%.根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量n w ,,1 的关系满iij ja,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ij相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: 21,,11min i nniij i n i j j aL (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i 的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:21,,11min ln ln i nni ij i n i j j aL (10)则化为求解关于ln i 的线性方程组.可以验证,如此解得的i 恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵 ij A a 构造修正阵 ijA a %%的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i j%为第行的个数, (11)表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵.(六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价该人体重为55kg维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵max 2 ,10CI ,100.1CR ,主特征向量0.75,0.25W 故第二层元素排序总权重为 10.75,0.25W表4 比较判断矩阵111max 1113,0,0,0.58CI CR RI ,主特征向量0.4,0.4,0.2W故相对权重 210.4,0.4,0.2,0P③ 第三层组合一致性检验问题因为 2111211112120;0.435CI CI CI W RI RI RI W ,212200.1CR CR CI RI故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:221221120.3,0.3,0.15,0.25W P W P P W求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化则最终的第四层各元素的综合权重向量为:3320.2376,0.2293,0.5331W P W ,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k ,20.2293x k ,30.5331x k ,代入 1LP123min 0.02750.0060.007f x x x131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x则得k f 0116.0min13.411375000.0017 1.6338..26.02828548.50k k s t LP k k容易求得1418.1k ,故得最优解 *336.9350,325.1650,755.9767x;最优值 *16.4497f ,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量12,,,m b b b b L ,其中, 01j b ,m为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb 时,最大隶属原则最有效;而在 1max 01,jj nbc c 1n j j b nc 时,最大隶属原则完全失效,且1max jj nb 越大(相对于1njj b 而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb 在1njj b 中的比重有关,于是令:11max njjj nj b b (12)显然,当11max 1,1njj j nj bb 时,则1 为 的最大值,当 1max 01jj nb c c ,1njj bnc时,有1n 为 的最小值,即得到 的取值范围为:11n .由于在最大隶属原则完全失效时,1n 而不为0,所以不宜直接用 值来判断最大隶属原则的有效性.为此设:11111n n n n(13)则 可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b 1sec (jnj b 1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b b(14)可见: 当 1,1,0,0,,0b L 时, 取得最大值12.当 0,1,0,0,,0b L 时, 取得最小值0.即 的取值范围为012 ,设 02120.一般地, 值越大最大隶属原则有效程度越高;而 值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:112121n n n n(15) 使用 指标能更准确地表明实施最大隶属原则的有效性.2. 指标的使用从 指标的计算公式看出 与 成反比,与 成正比.由 与 的取值范围,可以讨论 的取值范围: 当 取最大值, 取最小值时, 将取得最小值0;当 取最小值, 取最大值时, 将取得最大值:因为 0lim ,所以可定义0 时, .即:0 .由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当1 时,可认为施行最大隶属原则非常有效;当0.51 时,可认为施行最大隶属原则比较有效,其有效程度即为 值;当00.5 时可认为施行最大隶属原则是最低效的;而当0 时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据 值的大小来直接判断使用最大隶属原则的有效性而不必计算 值.根据 与 之间的关系,当0.7 ,且4n 时,一定存在1 .通常评价等级数取4和9之间,所以4n 这一条件往往可以忽略,只要0.7 就可免算 值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对 12,,,m b b b b L 进行归一化处理而得到b ,则可直接根据b 进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设 ,,,D V A c 是一个带出发点s v 和收点t v 的容量-费用网络,对于任意,ijv v A ,ijc表示弧 ,i j v v 上的容量,ij 表示弧 ,i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧 ,i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:,0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c把条件(3)中的“容量大” 看作A 上的一个模糊子集A %,定义其隶属函数 : 0,1A 为: 00,0,1,ij ij ij i j A d c c v ij c c v v e c c%其中 1,i j ij v v c A cg (平均容量)21,21,0,1lg 1i j i j ij v v A ij v v A A c c d A c cg g建立ij 是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧 ,i j v v ,人为地降低运价ij ,形成“虚拟运价”ij ,其中ij 满足:ij c 越大,相应的ij 的调整幅度也越大.选取ij 为 1kij ij ij , ,i j v v A .其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij 代替原模型M 中的ij ,得到一个新的模型M .用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列 k 的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数0000min min ||max max ||||max max ||k i k k i k ik i ki k k i k k i k ikx x x x x x x x3. 取分辨系数 01 4. 求关联度11ni ki k k r n(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列0k x 1,2,,k n L 进行一次累加生成序列 101kk i i x x1,2,,k n L(2)对0x 数列进行光滑性检验:00,k ,当0k k 时:0011101k k k k ii x x x x文献[11]进一步指出只要0101k k ii x x 为k 的递减函数即可.(3)对1x 作紧邻生成: 1111*1*,2,3,,k k k Z x x k n L一般取0.5b ax dtdx 11 (16)为灰色微分方程 01k k x aZ b 的白化方程. (4)按最小二乘法计算参数,a b(5)解(16)式并进行离散化得模拟序列1x 和0x 的计算公式: 1101exp k x x b a ak b a ,其中0,1,2,,k n L01111011exp *exp k k k x x x a x b a ak ,其中1,2,k L并假定 111101x x x文献[12,13]指出:假定 111101x x x 的理由是不充分的,文献[14]认为应当以最后一个 1n x 为已知条件来确定微分方程中常数项m c 的值,理由是最后一个数据是最新的,最能反映实际情况.同时文献[15]又进一步提出常数m c 的确定,由于数据序列中。
层次分析法(1)
综上,层次分析法的基本步骤
1)建立层次分析结构模型 (建立层次结构图)
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
2)构造成对比较阵
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3)计算权向量并作一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。
4)计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
五 判断矩阵的近似计算方法
通过前面的介绍,我们知道,在层次分析方法 中,最根本的计算任务是求解判断矩阵的最大特征根 及其所对应的特征向量。这些问题当然可以用线性代 数知识去求解,并且能够利用计算机求得任意高精度 的结果。但事实上,在层次分析法中,判断矩阵的最 大特征根及其对应的特征向量的计算,并不需要追求 太高的精度。这是因为判断矩阵本身就是将定性问题 定量化的结果,允许存在一定的误差范围。因此,我 们常常用近似算法求解判断矩阵的最大特征根及其所 对应的特征向量。 三种方法:幂法、和积法和方根法
(3)科学考察和实践表明,1~9的比例标度已完全能区分 引起人们感觉差别的事物的各种属性。
显然,任何判断矩阵都应满足:
bij>0 ,bii = 1,bij = 1/bji,i,j = 1,2,…,n
因此,对于这样的判断矩阵来说, 作n(n-1)/2 次
两两判断就可以了。
判断过程中的问题
1、合理选择咨询对象;(专长及熟悉的领域)
=
=nW
即n是A的一个特征根,每只西瓜的重量是A对应于特 征根n的特征向量的各个分量。
很自然,我们会提出一个相反的问题,如果事先不知道 每只西瓜的重量,也没有衡器去称量,我们如能设法得到 判断矩阵(比较每两只西瓜的重量是最容易的),能否导 出西瓜的重量呢?显然是可以的,在判断矩阵具有完全一 致的条件下,我们可以通过解特征值问题
层次分析法解题过程
根据组合权向量 进行方案…
根据问题的性质和目标, 将问题分解为不同的组成 因素,并根据因素间的相 互关联影响以及隶属关系 将因素按不同的层次聚集 组合,形成一个多层次的 分析结构模型。
对同一层次的各元素关于 上一层次中某一准则的重 要性进行两两比较,构造 两两比较判断矩阵。
通过判断矩阵计算被比较 元素的相对权重,并对判 断矩阵进行一致性检验。
层次分析法解题过程
目录
Contents
• 层次分析法简介 • 建立层次结构 • 构造判断矩阵 • 层次单排序 • 层次总排序 • 层次分析法应用案例
01
层次分析法简介
定义与特点
定义
层次分析法(Analytic Hierarchy Process,AHP)是一种定性与定量相结合的多准则决策 分析方法,主要用于解决结构较为复杂、决策准则较多且不易量化的决策问题。
层次的分析结构模型。
根据专家意见或用户需求, 对同一层次中各因素的相对 重要性进行两两比较,并给 出判断值,形成判断矩阵。
通过一定的计算方法(如特 征根法、和积法等)计算出 判断矩阵的最大特征值对应 的特征向量,即为权向量。
为了确保判断矩阵的一致性,需要进 行一致性检验。通过计算一致性指标 CI和随机一致性指标RI,可以得出一 致性比率CR=CI/RI。如果CR小于0.1, 则认为判断矩阵的一致性可以接受;
定义与特点
所需定量数据信息较少
层次分析法在解决问题时,不需要大量的定量数据信息,只需要对决策因素进 行两两比较和排序即可。
强调决策者的判断和决策能力
层次分析法在解决问题时,需要决策者对决策因素进行两两比较和排序,因此 需要决策者具备一定的判断和决策能力。
应用领域
13-层次分析法特征根以及其他特别问题汇总
2 1 例 A 1 / 2 1 1 / 6 1 / 4
6 列向量 4 归一化 1
0.6 0.615 0.545 算术 0.587 0.3 0.308 0.364 平均 0.324 w 0.089 0.1 0.077 0.091
n 1
= n是A为一致阵的充要条件。
一致性指标 CI 定义合理
2. 正互反阵最大特征根和特征向量的简化计算
• 精确计算的复杂和不必要 • 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。 和法——取列向量的算术平均
求Ak的行和
Ak e w 定理1 lim T k k e Ae
特征向量体现多步累积效应
4.不完全层次结构中组合权向量的计算
完全层次结构:上层每一元素与下层所有元素相关联
不完全层次结构
设第2层对第1层权向量 w(2)=(w1(2),w2(2))T已定
例: 评价教师贡献的层次结构
贡献O 教学C1 科研C2
C1,C2支配元素的数目不等
考察一个特例:
若C1,C2重要性相同, w(2)=(1/2,1/2)T,
P1~P4能力相同, w1(3)=(1/3,1/3,1/3,0)T,w2(3)=(0,0,1/2,1/2)T 公正的评价应为: P1:P2:P3:P4=1:1:2:1 • 不考虑支配元素数目不等的影响 仍用 w
第3层对第2层权向量 w1(3)=(w11(3),w12(3),w13(3),0)T w2(3)=(0,0,w23(3),w24(3)T已得 讨论由w(2),W(3)=(w1(3), w2(3)) 计算第3层对第1层权向量 w(3)的方法
层次分析法原理及计算过程详解
层次分析法原理及计算过程详解写在前面:层次分析法是一个很早的决策算法了,它能够处理多目标多准则的决策问题,思维方式却很简单。
由于其系统性等优点,后续很多算法都有借鉴,所以这里写一写。
网上关于该方法的讲解很多也很详细,所以本篇都是在前辈的基础上进行整理加工。
文章尽量详细,然后加上一些我自己的理解,希望后面看到的人能够读起来更轻松,更容易接受。
注意:文中说的判断矩阵,又称成对比较阵目录:1.层次分析法概论1.2什么是决策1.3 决策分析法原理2.层次分析法的基本步骤2.1 层次分析法步骤2.2 建立层次结构模型2.3 构造判断矩阵2.4 计算单层权向量并做一致性检验2.5 计算组合权向量(层次总排序)并做一致性检验2.6 层次分析法基本步骤归纳3. 层次分析法的优缺点3.1 层次分析法的优点4.注意事项5.可应用的领域6. 完整例子分析6.1 旅游问题6.2 干部选择问题1.层次分析法概论1.1 什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代初期由美国匹兹堡大学运筹学家托马斯·塞蒂(T.L. Saaty)在为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”的课题时提出。
它是一种应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
是对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统。
层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法。
是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
数学建模常见评价模型简介
数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。
9.2层次分析法的求解步骤
(3) (2)
其中W(p)是由第p层对第p-1
层权向量组成的矩阵
对于实际问题中不一致(但在允许范围内)的 成对比较阵A,我们可用对应于最大特征根
的特征向量作为权向量w ,即
Aw w
实际问题中,我们先进行一致性检验,判 断不一致是否在允许范围内
层次分析法的求解步骤
一致性检验 对A确定不一致的允许范围
已知:n 阶一致阵的唯一非零特征根为n
结论:n 阶正互反阵最大特征根 n, 且 =n时为一致阵
2
B 2
3
1
1/ 3
1/5 1/ 2 1
8 3 1
…B n
最大特征根 1
权向量
w (3) 1
2
w (3) 2
… n
… wn(3)
层次分析法的求解步骤
组合权向量 k1
第3层对第2层的计算结
果
2
3
4
5
0.595
w(3) 0.277 k 0.129
k
3.005
方案P1对目标的组合权重为0.5950.263+ …=0.300 方案层对目标的组合权向量为 (0.300, 0.246, 0.456)T
层次分析法的求解步骤
组合 权向量
第2层对第1层的权向量
w(2) (w(2) , , w(2) )T
1
n
第1层O 第2层C1,…Cn
第3层对第2层各元素的权向量
CIk 0.003
0.082 0.236 0.682
3.002
0.001
0.429 0.429 0.142
3
0
0.633 0.193 0.175
层次分析法评价模型
层次分析法评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
层次分析法
~ b. 对 w 按行求和得
ij
n
~ ~ wi wij
j 1
n i 1
n
i 1
T ~ ~ ~ c. 将 wi 归一化 wi wi / wi , w ( w1 , w2 ,..., wn )
, 即为近似权向量
1 ( Aw)i d. 计算 ,作为最大特征根的近似值 n i 1 wi
4
计算权组合向量并做一致性检验
计算组合权向量
在”旅游问题”中已经得到了第2层(准则层)对于第1层(目标层)的权向量,记为
w ( 2 ) ( w1 , w2 ,..., w5 )
( 2) ( 2) ( 2)
即 w (0.263,0.475,0.055,0.099 ,0.110 )
T
用同样的方法构造第3层(方案层)对于第2层的每一个准则的成对比较矩阵,不妨设为:
( 3)
( wk 1 , wk 2 ,..., wkm ) T , k 1,2,..., n
( 3) ( 3) ( 3)
为列向量构成矩阵
W ( 3) [ w1 , w2 ,..., wn ]
( 3) ( 3) ( 3)
则第3层对第1层的组合权向量为:
w
( 3)
W w
( 3)
( 2)
更一般地,若共有s层,则第k层对第1层(设只有一个因素)的组合权向量满足:
2 5 1 B1 1 / 2 1 2 1 / 5 1 / 2 1
1 1 / 3 1 / 8 B2 3 1 1 / 3 8 3 1
1 3 1 B3 1 1 3 1 / 3 1 / 3 1
1 3 4 B3 1 / 3 1 1 1 / 4 1 1
数学模型-层次分析法的基本步骤
(1)
表示。由(1)给出的aij的特点,A称为正互反矩 阵。显然比由aii=1。如用C1,…,C5依次表示景 色、费用、饮食、旅游5个准则,设某人用成对
比较距阵(正互反阵)为10Biblioteka 1 1 24
3
3
2 1 7 5 5
A
1
4
1 7
1
1 2
1 3
1 1
3 3
1 5
2
1 5
9
假设要比较某一层n个因素C1,C2 , …,Cn对上 层一个因素O的影响,如旅游决策问题中比较景
色等5个准则在选择旅游地这个目标中的重要性。
每次取两个因素Ci和Cj,用aij表示Ci和Cj对O的影 响之比,全部比较结果可用对比比较距阵
A=(aij)n×n , aij > 0
, a ji
1 a ij
素C1,…,Cn对上层因素O的权重。
11
仔细分析一下(2)式给出的成对比较阵A可以 发现,既然C1与C2之比为1:2;C1与C3之比为4:1。 那么C2与C3之比因为8:1而不是7:1才能说明成对比 较是一致的。但是,n个因素要做 n(n 1次) ,全部一 致的要求是太苛刻了。Saaty等人给出了2在成对比较 不一致的情况下计算各因素C1,…,Cn对因素O的权 重的方法,并且确定了这种不一致的容许范围。为 了说明这点我们先看成对比较完全一致。
表9-1 1-9尺度aij的含义
尺度aij 1
含义
Ci与Cj得影响相同
3
Ci与Cj得影响稍强
5
Ci与Cj得影响强
7
Ci与Cj得影响明显地强
9
Ci与Cj得影响绝对地强
评价模型——精选推荐
评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
权重确定方法归纳
权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。
按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。
客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。
两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。
客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。
下面就对当前应用较多的评价方法进行阐述。
一、变异系数法(一)变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。
是一种客观赋权的方法。
此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。
例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。
如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。
由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。
为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。
定量分析方法总结
一、灰色关联分析灰色关联分析是系统态势的一种量化比较分析,其实质就是比较若干数列所构成的曲线到理想数列所构成的曲线几何形状的接近程度,几何形状越接近,其关联度就越大。
可见,灰色关联分析是一种趋势分析,它对样本的大小没有太高的要求,一般情况下比较适合小样本,贫信息的数据,并且样本数据不需要典型的分布规律,因而,具有广泛的适用性。
灰色关联分析模型的建立:(1) 确定比较数列与参考数列;设Xi={xi(1) ,xi (2),…xi(n)}为创业板上市公司的财务指标形成的比较数据列,其中,i=1,2…17.同时,把每项指标中的最优值作为最优指标集X0,可得到参考数列:X o={xo(1),x o(2),…x o( n)}(2) 无量纲化处理;无量纲化的处理方法通常有初值化、均值化、规范化三种方法,而本文采用的是不同指标的标准化处理方法,如前文所示。
(3) 各个指标权重的确定w(k);(4) 计算关联系数S i(k);(5) 计算关联度r i设参考数列为:X o={x o(1),x o(2),…x o(n)},关联分析中被比较数列记为X i={x i(1),X i (2),…x i(n)},i=1,2,…28; n=1,2,3…12.对于一个参考数列X0,比较数列Xi,可用下述关系表示各比较曲线与参考曲线在各点的差:minmin | x o(k) - x i(k) | p maxmax | x o(k) - x i (k) |b(K)| x o(k) - x i(k) | p maxmax | x o(k) - x i(k) |式中,S i(k)是第k个时刻比较曲线x i与参考曲线x o的相对差值,这种形式的相对差值称为X i对X。
在k时刻的关联系数。
p为分辨系数,p € (0,1),引入它是为了减少极值对计算的影响。
在实际计算使用时,一般取p =0.5.若记:△ min=minmin|x o(k)-x i(k)|, △ max= maxmax|x o(k)-x i(k)|,贝9 △ min 与△ max分别为各时刻x o与X i的最小绝对差值与最大绝对差值,从而有△min+ pA maxS(k)| X0(k)- x i(k)| + pA max根据关联系数计算关联度,得到灰色关联模型为:nr i=' i(k)* w(k)i =1、层次分析法构建经营绩效评价模型层次分析法(Analytic Hierarchy Process 简称AHP)是美国运筹学家匹茨堡 大学教授Saaty 于二十世纪70年代初期提出的。