九年级数学二练试题

合集下载

数学初三上册二单元测试卷

数学初三上册二单元测试卷

一、选择题(每题4分,共20分)1. 下列各组数中,有理数是()A. √9, -√16B. √25, -√36C. √4, -√1D. √49, -√02. 已知x=3,则代数式3x-2的值是()A. 5B. 7C. 9D. 113. 下列函数中,y是x的一次函数是()A. y=2x+3B. y=x^2+2C. y=3x-4xD. y=5x^2-2x+14. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 三角形D. 梯形二、填空题(每题5分,共25分)6. 已知x=5,则2x-3的值是______。

7. 若a、b是相反数,且|a|=3,则b的值为______。

8. 函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k______,b______。

9. 在直角坐标系中,点B(-4,2)关于y轴的对称点是______。

10. 一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是______cm²。

三、解答题(每题10分,共30分)11. (10分)解下列方程:2x - 5 = 3x + 112. (10分)已知函数y=kx+b(k≠0)的图象经过点(1,2)和(3,6),求函数的表达式。

13. (10分)在直角坐标系中,点A(2,3)和点B(-4,2)的连线的斜率是多少?四、应用题(每题15分,共30分)14. (15分)某市对部分道路进行绿化,已知绿化带宽度为3米,道路总长为500米。

若绿化带面积是道路总面积的1/5,求绿化带面积。

15. (15分)某班级有男生x人,女生y人,已知男生人数是女生人数的1.5倍,且班级总人数为45人。

求男生和女生的人数。

答案:一、选择题1. C2. B3. A4. A5. A二、填空题6. 27. -38. >0,<09. (4,2)10. 24三、解答题11. x = -612. y = 2x - 113. 斜率为1/3四、应用题14. 绿化带面积为60平方米15. 男生人数为27人,女生人数为18人。

初三数学第二单元试题及答案

初三数学第二单元试题及答案

初三数学第二单元试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的平方根等于它本身,这个数是:A. 1B. 0C. -1D. 23. 一个二次方程的系数a、b、c分别为2、-3、2,那么这个方程的判别式Δ是:A. 1B. -1C. 5D. 94. 一个三角形的三边长分别为3、4、5,那么这个三角形是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 等差三角形5. 一个数列的前三项为1,3,6,第四项是:A. 9B. 10C. 12D. 15二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可以是________。

7. 一个二次方程的一般形式是________。

8. 一个三角形的内角和等于________度。

9. 一个数的立方根是2,那么这个数是________。

10. 一个数的相反数是-5,这个数是________。

三、计算题(每题5分,共15分)11. 计算√(-4)²的值。

12. 解方程:2x + 3 = 7。

13. 证明:(a + b)² = a² + 2ab + b²。

四、解答题(每题10分,共20分)14. 一个直角三角形的两条直角边分别是6和8,求斜边的长度。

15. 一个二次方程的系数a=1,b=-6,c=8,求该方程的根。

五、应用题(每题15分,共15分)16. 某工厂生产一种产品,每件产品的成本是10元,销售价格是15元。

如果工厂希望获得的利润是总销售额的20%,那么每件产品的销售价格应该调整为多少?答案:一、选择题1. B2. B3. B4. B5. D二、填空题6. ±57. ax² + bx + c = 0 (a ≠ 0)8. 1809. 810. 5三、计算题11. √(-4)² = 412. 2x + 3 = 7 → 2x = 4 → x = 213. 证明略四、解答题14. 根据勾股定理,斜边长度为√(6² + 8²) = √(36 + 64) =√100 = 1015. 判别式Δ = b² - 4ac = (-6)² - 4×1×8 = 36 - 32 = 4,根为x₁ = (6 + √4) / 2 = 4,x₂ = (6 - √4) / 2 = 1五、应用题16. 设每件产品的销售价格调整为x元,根据题意得方程:(15 - x)* (x - 10) = 0.2x,解得x = 12.5结束语:本次初三数学第二单元试题涵盖了无理数、二次方程、三角形的性质、数列规律等知识点,希望同学们通过练习能够加深对这些知识点的理解和应用。

(完整)九年级下数学第二章二次函数测试题及答案,推荐文档

(完整)九年级下数学第二章二次函数测试题及答案,推荐文档
标是 ( 3,0) ,则 A 点的坐标是________________.
y
1
A O
B
1
x
16 题图
三、解答题: 1. 已知函数 y x 2 bx 1 的图象经过点(3,2).
(1)求这个函数的解析式; (2)当 x 0 时,求使 y≥2 的 x 的取值范围.
3
2. 如右图,抛物线 y x 2 5x n 经过点 A(1, 0) ,与 y 轴交于点 B.
4. 5. 6.
4
7. 卢浦大桥拱形可以近似地看作抛物线的一部分. 在大桥截面 1:11000 的比例图上去,跨度 AB=5cm,拱高 OC=0.9cm,线段 DE 表示大桥拱 内桥长,DE∥AB,如图(1). 在比例图上,以直线 AB 为 x 轴,抛物 线的对称轴为 y 轴,以 1cm 作为数轴的单位长度,建立平面直角坐标 系,如图(2). (1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函 数定义域; (2)如果 DE 与 AB 的距离 OM=0.45cm,求卢浦大桥拱内实际桥长
(1)求抛物线的解析式; (2)P 是 y 轴正半轴上一点,且△PAB 是以 AB 为腰的等腰三角形,
试求点 P 的坐标.
y
OA
1
x
-1
B
3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从 亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初 以来累积利润 s(万元)与销售时间 t(月)之间的关系(即前 t 个月 的利润总和 s 与 t 之间的关系). (1)由已知图象上的三点坐标,求累积利润 s(万元)与销售时间 t(月)之间的函数关系式; (2)求截止到几月累积利润可达到 30 万元; (3)求第 8 个月公司所获利润是多 少万元?

北京四中2019-2020学年九年级中考综合练习二数学试题(含答案及解析)

北京四中2019-2020学年九年级中考综合练习二数学试题(含答案及解析)

北京四中2019-2020学年九年级中考综合练习二数学试题一、选择题1.若式子2x x +有意义,则x 的取值范围是( ) A. 0x ≠B. 2x ≥-且0x ≠C. 2x ≥-D. 0x ≥且2x ≠ 【答案】B【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到x+2≥0且x≠0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得x+2≥0且x≠0,所以x 的取值范围为x≥-2且x≠0.故选:B .【点睛】本题考查了二次根式有意义的条件:式子a 有意义的条件为a≥0.也考查了分式有意义的条件. 2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:4 400 000 000=4.4×109,故选C .3.实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.4.下列各式中,从左边到右边的变形是因式分解的是( )A. ()ax ay a a x y ++=+B. 221()1x y xy xy x y --=--C. 22244(2)a ab b a b -+=-D. 22(2)(2)4x y x y x y +-=- 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、∵(1)ax ay a a x y ++=++,故A 错误;B 、应把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选:C .【点睛】本题考查了因式分解的定义,因式分解是将一个多项式化为几个整式积的形式,而整式乘法是将几个整式的积展开成一个多项式,它们是互逆的恒等变形.5.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A. 3B. 1C. ﹣1D. ﹣3【答案】D【解析】由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得. 【详解】∵11m n-=1, ∴n m mn mn-=1, 则n m mn -=1, ∴mn=n-m ,即m-n=-mn ,则原式=()22m n mnm n mn ---+=22mn mn mn mn ---+=3mn mn-=-3, 故选D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用. 6.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如表:则当1x ≥时,y 的最小值是( )A. 2B. 1C. 12D. 0【答案】B【解析】【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.【详解】解:∵由表可知,当x=-1时,y=10,当x=0时,y=5,当x=1时,y=2, ∵1052a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得145a b c =⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为y=x 2-4x+5,∴其对称轴为直线x=42 22ba--=-=.∵x≥1,∴当x=2时,y最小=2420161 44ac ba--==.故选择:B.【点睛】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A. 12B. 14C. 16D. 18【答案】C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】 由抛物线的开口方向、对称轴位置、与y 轴的交点位置判断出a 、b 、c 与0的关系,进而判断①;根据抛物线对称轴为x =2b a-=1判断②;根据函数的最大值为:a+b+c 判断③;求出x =﹣1时,y <0,进而判断④;对ax 12+bx 1=ax 22+bx 2进行变形,求出a (x 1+x 2)+b =0,进而判断⑤.【详解】解:①抛物线开口方向向下,则a <0,抛物线对称轴位于y 轴右侧,则a 、b 异号,即b >0,抛物线与y 轴交于正半轴,则c >0,∴abc <0,故①错误;②∵抛物线对称轴为直线x =2b a-=1, ∴b =﹣2a ,即2a+b =0,故②正确;③∵抛物线对称轴为直线x =1,∴函数的最大值为:a+b+c ,∴当m≠1时,a+b+c >am 2+bm+c ,即a+b >am 2+bm ,故③错误;④∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b+c <0,故④错误;⑤∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=﹣b a,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的是②⑤,有2个.故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题的关键是会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题9.当m= 时,方程133x mx x-=--无解.【答案】2.【解析】【分析】按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x只能使最简公分母为0 的值,从而求出m.【详解】解:原方程化为整式方程得:x-1=m因为方程无解所以:x-3=0∴x=3当x=3时,m=3-1=2.考点:分式方程的解.10.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.【答案】(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.11.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为_____.【答案】5 【解析】【分析】连接AC分别交BD、x轴于点E、F.由菱形ABCD的面积为452,可求出AE的长,设点B的坐标为(4,y),则A点坐标为(1,y+154),由反比例函数图像上点的坐标特征可列方程求出y的值,从而可求出点B的坐标,进而可求出k的值.【详解】连接AC分别交BD、x轴于点E、F.由已知,A、B横坐标分别为1,4,∴BE=3,∵四边形ABCD为菱形,AC、BD为对角线∴S菱形ABCD =4×12AE•BE=452,∴AE=154,设点B的坐标为(4,y),则A点坐标为(1,y+154)∵点A、B同在y=kx图象上∴4y=1•(y+154)∴y=54,∴B 点坐标为(4,54) ∴k =5故答案为5. 【点睛】本题考查了菱形的性质,反比例函数的图像与性质. 反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .13.根据下列表格中2y ax bx c =++的自变量x 与函数值y 的对应值, x6.17 6.18 6.19 6.20 2y ax bx c =++0.03- 0.01- 0.02 0.04判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是________.【答案】6.18<x <6.19.【解析】【分析】利用二次函数和一元二次方程的性质.【详解】解:由表格中的数据看出-0.01和0.02更接近于0,故x 应取对应的范围.故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.14.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.【答案】3【解析】【分析】过A 作关于直线MN 的对称点A ′,连接A′B ,由轴对称的性质可知A′B 即为PA+PB 的最小值,【详解】解:连接OB ,OA′,AA′,∵AA ′关于直线MN 对称,∴''AN A N =∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ ⊥A′B 于Q ,Rt △A′OQ 中,OA′=2,∴A′B=2A′Q=即PA+PB 的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 15.某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为_________. 【答案】13【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x ,可得:0.51600800x x =++ ; 解得:x=2400,经检验:x=2400是原方程的解且符合实际意义∴由题意可得,捞到鲤鱼的概率为16001160024008003=++, 故答案为:13. 【点睛】本题考查了应用频率估计的概率应用,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:a .男生人数多于女生人数;b .女生人数多于教师人数;c .教师人数的2倍多于男生人数.①若教师人数为4,则女生人数的最大值为________ ②该小组人数的最小值为_______ 【答案】 (1). 6 (2). 12 【解析】 【分析】首先根据题意,设男生数,女生数,教师数分别为a b c 、、,然后根据条件列出a b c 、、的大小关系式,即可推断取值.【详解】设男生数,女生数,教师数分别为a b c 、、,则2,,,c a b c a b c N ∈>>> ①max 846a b b ⇒=>>>②min 3,635,412c a b a b a b c =⇒==⇒++=>>> 故答案为:6;12.【点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断.三、解答题17.计算:02021|3(4)2tan60(1)π-+--+-︒. 【答案】3- 【解析】 【分析】根据负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质进行化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=3121+- =3-【点睛】本题主要考查了负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质在实数混合计算中的综合运,难度适中.属于中考常考的基础题.18.解不等式组:2+1-1{1+2x-13x x ≥>,并把不等式组的解集在数轴上表示出来.【答案】﹣1≤x<4 【解析】【分析】求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【详解】解:解不等式①得:x≥-1; 解不等式②得:x <4.则不等式组的解集是:-1≤x <4.19.如图,正方形 ABCD 中, G 为 BC 边上一点, BE ⊥ AG 于 E , DF ⊥ AG 于 F ,连接 DE.(1)求证: ∆ABE ≅ ∆DAF ;(2)若 AF = 1,四边形 ABED 的面积为6 ,求 EF 的长. 【答案】(1)证明见详解;(2)2 【解析】 【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF ,即可根据AAS 证明△ABE ≌△DAF ; (2)设EF=x ,则AE=DF=x+1,根据四边形ABED 的面积为6,列出方程即可解决问题. 【详解】证明:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°, ∴∠BAE=∠ADF , 在△ABE 和△DAF 中BAE ADF AEB DFA AB AD ∠∠∠∠⎧⎪⎨⎪⎩=== ,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2×12×(x+1)×1+12×x×(x+1)=6,整理得:x2+3x-10=0,解得x=2或-5(舍弃),∴EF=2.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.20.已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.【答案】(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+16.∵方程有两个不相等的实数根,∴△>0.即﹣8m+16>0.解得m<2;(2)∵m<2,且m 为非负整数,∴m=0 或m=1,当m=0 时,原方程为x2-2x-3=0,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=0,解得 x 1=x 2=, 综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.【答案】(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析 【解析】 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况. (3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(结果保留小数点后两位)0.68 0.74 0.68 0.69 0.68 0.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36 【解析】 【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n)=3000,然后解方程即可.【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7; 故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元; (3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度, 则4000×3×360n +4000×0.5(1﹣360n)=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度. 故答案为36.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.23.如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x >0)交于点1)(,Aa .(1)求a ,k 的值;(2)已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P (m ,n )(m >3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x >0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.【答案】(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤. 【解析】 【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】解:(1)将1)(,A a 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+ ∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点 ∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.24.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=45,AN=210,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.【解析】【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45,AN=210,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O 直径的长度.【详解】解:(1)连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME ∥AC ,∴∠M=∠C=2∠OAF .∵CD ⊥AB ,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF ,∠BAC=90°﹣∠C=90°﹣2∠OAF ,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC ,∴CA=CN . (2)连接OC ,如图2所示. ∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45.设CH=4a ,则AC=5a ,AH=3a ,∵CA=CN ,∴NH=a ,∴AN=2222=(3)=10210AH NH a a a ++=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点睛】本题考查切线的性质;勾股定理;圆周角定理;解直角三角形.25.如图,在Rt ABC 中ACB 90∠=,BC 4=,AC 3.=点P 从点B 出发,沿折线B C A --运动,当它到达点A 时停止,设点P 运动的路程为x.点Q 是射线CA 上一点,6CQ x=,连接BQ.设1CBQ y S =,2ABP y S=.()1求出1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2补全表格中1y 的值;x1 2 3 4 6 1y______________________________以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在x 的取值范围内画出1y 的函数图象:()3在直角坐标系内直接画出2y 函数图象,结合1y 和2y 的函数图象,求出当12y y <时,x 的取值范围.【答案】(1)112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;(2)12,6,4,3,2,(3)22x 6<<,见解析. 【解析】 【分析】()1根据题意可以分别求得1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2根据()1中的函数解析式,可以将表格补充完整,并画出相应的函数图象;()3根据()1中2y 的函数解析式,可以画出2y 的函数图象,然后结合图象可以得到当12y y <时,x 的取值范围,注意可以先求出12y y =时x 的值. 【详解】()1由题意可得,164BC CQ 12x y 22x⨯⋅===, 当0x 4<≤时,2x 33xy 22⋅==, 当4x 7<≤时,()27x 4y 2x 142-⨯==-+,即112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;()1122y (0x 7)x=<≤,∴当x 1=时,y 12=;当x 2=时,y 6=;当x 3=时,y 4=;当x 4=时,y 3=;当x 6=时,y 2=; 故答案为12,6,4,3,2;在x 的取值范围内画出1y 的函数图象如图所示;()23x (0x 4)3y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩, 则2y 函数图象如图所示, 当123x x 2=时,得x 22=122x 14x=-+时,x 6=; 则由图象可得,当12y y <时,x 的取值范围是22x 6<<.【点睛】本题考查一次函数的图象、反比例函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.26.平面直角坐标系xOy 中,直线44y x =+与轴,y 轴分别交于点A ,B .抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标和抛物线的对称轴;(2)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【答案】(1)C (5,4);对称轴x=1;(2)a≥13或a <43-或a=-1. 【解析】【分析】(1)根据坐标轴上点的坐标特征可求点B 的坐标,根据平移的性质可求点C 的坐标;根据坐标轴上点的坐标特征可求点A 的坐标,进一步求得抛物线的对称轴;(2)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解【详解】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);又∵与x轴交点:令y=0代入直线y=4x+4得x=-1,∴A(-1,0),∵点B向右平移5个单位长度,得到点C,将点A(-1,0)代入抛物线y=ax2+bx-3a中得0=a-b-3a,即b=-2a,∴抛物线的对称轴x=21 22b aa a--=-=;(2)∵抛物线y=ax2+bx-3a经过点A(-1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a<4,a>43 -,将x=5代入抛物线得y=12a,∴12a≥4,a≥13,∴a≥13;②a<0时,如图2,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a>4,a<43 -,将x=5代入抛物线得y=12a,∴12a<4∴a<13,∴a<43 -;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a-2a-3a,解得a=-1.综上所述::a≥13或a<43-或a=-1.【点睛】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.27.在菱形ABCD 中,60BAD ∠=︒.(1)如图1,点E 为线段AB 的中点,连接DE ,CE .若4AB =,求线段EC 的长.(2)如图2,M 为线段AC 上一点(不与A ,C 重合),以AM 为边向上构造等边三角形AMN ∆,线段AN 与AD 交于点G ,连接NC ,DM ,Q 为线段NC 的中点.连接DQ ,MQ 判断DM 与DQ 的数量关系,并证明你的结论.(3)在(2)的条件下,若3AC =DM CN +的最小值.【答案】(1)EC=27(2)DM=2DQ ;(3)DM+CN 的最小值为2.【解析】【分析】(1)如图1,连接对角线BD ,先证明△ABD 是等边三角形,根据E 是AB 的中点,由等腰三角形三线合一得:DE ⊥AB ,利用勾股定理依次求DE 和EC 的长;(2)如图2,作辅助线,构建全等三角形,先证明△ADH 是等边三角形,再由△AMN 是等边三角形,得条件证明△ANH ≌△AMD (SAS ),则HN=DM ,根据DQ 是△CHN 的中位线,得HN=2DQ ,由等量代换可得结论.(3)先判断出点N 在CD 的延长线上时,CN+DM 最小,最小为CH ,再判断出∠ACD=30°,即可用三角函数求出结论.【详解】解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD 是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=12∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE=224223-=,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC=22224(23)27DC DE+=+=;(2)如图2,延长CD至H,使DH=CD,连接NH、AH,∵AD=CD ,∴AD=DH ,∵CD ∥AB ,∴∠HDA=∠BAD=60°,∴△ADH 是等边三角形,∴AH=AD ,∠HAD=60°,∵△AMN 是等边三角形,∴AM=AN ,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM ,∴∠HAN=∠DAM ,在△ANH 和△AMD 中,AH AD HAN DAM AN AM =⎧⎪∠=∠⎨⎪=⎩∴△ANH ≌△AMD (SAS ),∴HN=DM ,∵D 是CH 的中点,Q 是NC 的中点,∴DQ 是△CHN 的中位线,∴HN=2DQ ,∴DM=2DQ .(3)如图2,由(2)知,HN=DM ,∴要CN+DM 最小,便是CN+HN 最小,即:点C ,H ,N 在同一条线上时,CN+DM 最小,此时,点D 和点Q 重合,即:CN+DM 的最小值为CH ,如图3,由(2)知,△ADH 是等边三角形,∴∠H=60°.∵AC 是菱形ABCD 的对角线,∴∠ACD=12∠BCD=12∠BAD=30°, ∴∠CAH=180°-30°-60°=90°,在Rt △ACH 中,CH=cos30AC =2, ∴DM+CN 的最小值为2.【点睛】此题是四边形综合题,主要考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH ≌△AMD 是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.28.定义:点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如,如图1,正方形ABCD 满足1,0A ,()2,0B ,()2,1C ,()1,1D ,那么点()0,0O 到正方形ABCD 的距离为1.(1)如果点()0,G b ()0b <到抛物线2yx 的距离为3,请直接写出b 的值________. (2)求点()3,0M 到直线3y x 的距离.(3)如果点N 在直线2x =上运动,并且到直线4y x =+的距离为4,求N 的坐标.【答案】(1)b=-3;(2)()3,0M 到直线3y x 的距离为32;(3)(2, 6-42)或(2, 6+42)【解析】【分析】 (1)作草图可知,当G 在原点下方时,b=-3;(2)过点M 作直线y=x+3的垂线,与直线y=x+3相交于点H ,则线段MH 的长即为点M 到直线y=x+3的距离.由等腰直角三角形MH=22ME 求解即可;(3)分N 在直线y=x+4的上方和下方求解即可.【详解】解:(1)由图可知线段GO 长即为点G 到抛物线2y x 的距离,故GO=3,所以b=-3(2)如图,直线y=x+3与x ,y 轴分别交于点E(-3,0),F(0,3),直线y=x+3与x 轴所成的角为45°,过点M 作MH ⊥EF ,交EF 与H ,线段MH 的长度即为点M 到直线y=x+3的距离,且易知H 点与F 点重合.∵FEM ∆为等腰直角三角形,∴EM=2FM , 又∵EF=3-(-3)=6,∴MF=22EM=22×6=32 ∴MH=32即点()3,0M 到直线3yx 的距离为32;(3)如图K 为直线x=2与x 轴的交点,故K(2,0),F 为直线x=2和直线y=x+4的交点,故F(2,6)①当点N 在直线y=x+4的下方N 1处时,过点N 1作N 1S 垂直直线y=x+4,∵点N 到直线4y x =+距离为4,∴SN 1=4,点E 是直线y=x+4与x 轴的交点,∴E(-4,0),且∠FEK=45°,∴1,EFK SFN ∆∆为等腰直角三角形∴EK=FK=2-(-4)=6,F N 1=21S=42∴KN 1=FK- F N 1=6-42∴N 1(2, 6-42②当点N 在直线y=x+4的上方N 2处时,过点N 2作N 2T 垂直直线y=x+4,同理可得:N 2T=4,N 2F=2T=∴N 2K=KF+FN 2=6+∴N 2(2, 6+故点N 在直线2x =上运动,并且到直线4y x =+的距离为4,N 的坐标为(2, 6-或(2, 6+【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

初三数学二次函数的练习题

初三数学二次函数的练习题

初三数学二次函数的练习题1. 求解方程:2x² - 5x + 3 = 0解:首先,我们可以使用求根公式来求解二次方程:x = (-b ± √(b² - 4ac)) / (2a)根据给定方程,我们可以将其对应的a、b和c的值代入计算:a = 2b = -5c = 3将这些值代入求根公式:x = (-(-5) ± √((-5)² - 4(2)(3))) / (2(2))x = (5 ± √(25 - 24)) / 4x = (5 ± √1) / 4x₁ = (5 + 1) / 4 = 6 / 4 = 1.5x₂ = (5 - 1) / 4 = 4 / 4 = 1所以,方程2x² - 5x + 3 = 0的解为 x₁ = 1.5 和 x₂ = 1。

2. 求解方程:3x² + 7x - 2 = 0解:同样地,我们使用求根公式求解二次方程:a = 3b = 7c = -2将这些值代入求根公式:x = (-7 ± √(7² - 4(3)(-2))) / (2(3))x = (-7 ± √(49 + 24)) / 6x = (-7 ± √73) / 6这里的根数是无理数,所以我们保留根的精确形式:x₁ = (-7 + √73) / 6x₂ = (-7 - √73) / 6所以,方程3x² + 7x - 2 = 0的解为 x₁ = (-7 + √73) / 6 和 x₂ = (-7 -√73) / 6。

3. 求二次函数y = x² - 4x + 3的顶点坐标和对称轴方程。

解:二次函数的顶点坐标可以通过求x轴对称的线(x = -b / 2a)来找到,对称轴方程为x = -b / 2a。

对于给定的二次函数 y = x² - 4x + 3,我们可以计算出a、b和c的值:a = 1b = -4c = 3顶点坐标为(x, y),其中x = -b / 2a = -(-4) / (2*1) = 4 / 2 = 2。

初三数学试卷二十题及答案

初三数学试卷二十题及答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. √22. 如果a > 0,b < 0,那么a - b的符号是()A. 正B. 负C. 零D. 无法确定3. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(-1,2),则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 04. 在直角坐标系中,点A(3,4)关于x轴的对称点B的坐标是()A. (3,-4)B. (-3,4)C. (3,-4)D. (-3,-4)5. 已知等边三角形ABC的边长为a,则三角形ABC的周长为()A. 3aB. 2aC. aD. a/36. 下列函数中,反比例函数是()A. y = 2x + 3B. y = x^2 - 1C. y = 1/xD. y = √x7. 在直角三角形ABC中,∠C是直角,若AB = 5,BC = 4,则AC的长为()A. 3B. 5C. 13D. 178. 若等差数列{an}的首项为a1,公差为d,则第n项an可以表示为()A. a1 + (n - 1)dB. a1 - (n - 1)dC. a1 + ndD. a1 - nd9. 下列各式中,分式方程是()A. 2x + 3 = 7B. x^2 - 5x + 6 = 0C. 1/x + 2 = 3D. x + 1 = 2x10. 已知一次函数y = kx + b的图象经过点(1,2)和(3,6),则k和b的值分别为()A. k = 1,b = 1B. k = 1,b = 2C. k = 2,b = 1D. k = 2,b = 2二、填空题(每题4分,共40分)11. 若a^2 + b^2 = 0,则a和b的关系是______。

12. 二元一次方程组 \(\begin{cases} 2x + 3y = 8 \\ x - y = 1 \end{cases}\) 的解是______。

人教版数学九年级上册第二单元测试试卷(含答案)

人教版数学九年级上册第二单元测试试卷(含答案)

人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)已知二次函数y=ax2+bx+c,且a<0,4a﹣2b+c>0,则一定有( )A.b2﹣4ac<0B.b2﹣4ac≤0C.b2﹣4ac=0D.b2﹣4ac>0 2.(3分)抛物线y=3(x﹣2)2+1的对称轴是( )A.直线x=﹣2B.直线x=﹣1C.直线x=1D.直线x=2 3.(3分)将抛物线y=2x2+2向左平移3个单位长度,再向上平移2个单位长度,得到抛物线的解析式是( )A.y=2(x+3)2+4B.y=2(x+3)2C.y=2(x﹣3)2+4D.y=2(x﹣3)24.(3分)二次函数y=ax2+bx+c的部分图象如图,其对称轴是直线x=1.下列结论:①abc>0;②b2>4ac;③4a+2b+c>0;④3b﹣2c>0;⑤关于x的一元二次方程ax2+bx+c=a(a≠0)有两个不相等的实数根.其中正确结论的个数是( )A.2B.3C.4D.55.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A.y=(x﹣2)2﹣1B.y=(x﹣2)2+3C.y=x2+1D.y=x2﹣1 6.(3分)已知二次函数y=x2+ax+b=(x﹣x1)(x﹣x2)(a,b,x1,x2为常数),若1<x1<x2<2,记t=a+b,则( )A.―2<t<―34B.﹣2<t<0C.―1<t<―34D.﹣1<t<07.(3分)已知二次函数y=x2+2(k﹣1)x+k2的图象与x轴无交点,则k的取值范围是( )A.k>12B.k<12C.k>2D.k<28.(3分)将抛物线y =2x 2向右平移1个单位,再向上平移2个单位后,所得新抛物线和原抛物线相比,不变的是( )A .对称轴B .开口方向C .和y 轴的交点D .顶点9.(3分)如图,二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (3,0),与y 轴交于点C .下列结论:①ac >0;②当x >0时,y 随x 的增大而增大;③3a +c =0;④b =2a .其中正确的是( )A .④B .③C .②D .①10.(3分)用配方法将二次函数y =12x 2﹣2x ﹣4化为y =a (x ﹣h )2+k 的形式为( )A .y =12(x ﹣2)2﹣4B .y =12(x ﹣1)2﹣3C .y =12(x ﹣2)2﹣5D .y =12(x ﹣2)2﹣6二、填空题(共5小题,满分15分,每小题3分)11.(3分)二次函数y =﹣(x ﹣2)2+3的最大值是 .12.(3分)函数y =x 2m ﹣1+x ﹣3是二次函数,则m = .13.(3分)如图,抛物线y =ax 2+bx +c 的对称轴为x =1,点P 是抛物线与x 轴的一个交点,若点P 的坐标为(4,0),则关于x 的一元二次方程ax 2+bx +c =0的解为 .14.(3分)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式y =﹣0.3x 2+1.5x ﹣1,则最佳加工时间为 min .15.(3分)已知二次函数y =x 2﹣4x ﹣5的图象与x 轴交于A 、B 两点,顶点为C ,则△ABC的面积为 .三、解答题(共8小题,满分75分)16.(9分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.17.(9分)先确定抛物线y=﹣2x2+8x﹣8的开口方向、对称轴和顶点坐标,再描点画图.18.(9分)一个二次函数的图象经过(﹣1,0),(0,6),(3,0)三点.求:这个二次函数的解析式.19.(9分)某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?20.(9分)已知二次函数y=ax2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x…01234…y…﹣3﹣4﹣305…(1)求该二次函数的表达式;(2)直接写出该二次函数图象与x轴的交点坐标.21.(10分)已知y=(k﹣1)x k2+k―4是二次函数.(1)若其图象开口向下,求k的值;(2)若当x<0时,y随x的增大而减小,求函数关系式.22.(10分)已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,求:(1)点A、B、C的坐标;(2)△ABC的面积.23.(10分)已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求a的值;(2)求此抛物线的对称轴;(3)直接写出函数y随自变量的增大而减小的x的取值范围.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.A;4.B;5.D;6.D;7.A;8.B;9.B;10.D;二、填空题(共5小题,满分15分,每小题3分)11.312.3 213.x1=4,x2=﹣214.2.515.27三、解答题(共8小题,满分75分)16.解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.17.解:y=﹣2x2+8x﹣8=﹣2(x﹣2)2,∵a=﹣2<0,∴开口向下,对称轴为:直线x=2,顶点坐标为:(2,0),图象如下:18.解:设抛物线的解析式为y=ax2+bx+c,根据题意得:a―b+c=09a+3b+c=0 c=6,解得:a=―2 b=4c=6,所以抛物线的解析式为y=﹣2x2+4x+6.19.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802×(10)=4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;20.解:(1)∵抛物线经过点(0,﹣3),(2,﹣3),(1,﹣4),∴抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4),设抛物线解析式为y=a(x﹣1)2﹣4,把(0,﹣3)代入得a(0﹣1)2﹣4=﹣3,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4;(2)∵抛物线与x轴的一个交点坐标为(3,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标为(﹣1,0),即该二次函数图象与x轴的交点坐标为(﹣1,0),(3,0).21.解:(1)根据题意得k 2+k―4=2k―1≠0,解得k=﹣3或2;(2)∵当x<0时,y随x的增大而减小,∴图象开口向上,∴k﹣1>0,即k>1,∴k=2.22.解:(1)令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵A(﹣1,0),B(3,0),C(0,﹣3),∴AB=4,OC=3,∴S△ABC =12AB•OC=12×4×3=6.23.解:(1)∵二次函数y=ax2+4x+2的图象经过点A(3,﹣4),∴﹣4=9a+12+2,解得:a=﹣2,∴a的值为﹣2;(2)由(1)可知抛物线解析式为y=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴抛物线对称轴为直线x=1;(3)∵抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小.。

庆云县第二中学九年级第二次练兵考试数学试题及答案

庆云县第二中学九年级第二次练兵考试数学试题及答案

九年级第二次练兵题(满分:120 分 时间:90分钟)题号一二三 总分1920 21 22 23 24 25 得分一、选择题:本大题共10小题,每小题选对得3分,共计30分。

在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.,填入答题表内,选错、不选或选出的答案超过一个均记零分。

题号 1 2 3 4 5 6 7 8 9 10 答案1.2-的绝对值是: A .2- B .2 C .12- D .21 2.在实数5、37、3、4中,无理数是: A .5 B .37C .3D .43.若反比例函数ky x=的图象经过点(-3,2),则k 的值为 :A .-6B .6C .-5D .5 4.下列计算结果正确的是: 257=(B)3223=2510= 25105= 5.将分式方程()523111x x x x +-=++去分母,整理后得:(A)810x += (B)830x -= (C)2720x x -+= (D)2720x x --=6.如图,从地面坚直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为2305h t t =-,那么小球从抛出至回落到地面所需要的时间是:(A)6s (B)4s (C)3s (D)2s7. 下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”.判断正确的是:(A) ①②都正确. (B)只有①正确.(C)只有②正确.(D)①②都不正确.8.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是:9.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 的值为:A . 3510B .255C . 32D . 1210. 如图,直径AB 为6的半圆,绕A 点逆时针旋转 60°,此时点B 到了点B’,则图中阴影部分的面 积是:(A) 6π (B) 5π (C) 4π (D) 3π 。

九年级数学第二次月考卷及答案

九年级数学第二次月考卷及答案

九年级数学第二次月考卷一、选择题(每题4分,共40分)1. 下列选项中,( )是实数。

A. √1B. 3+4iC. 0D. 1+i2. 若|a|=5,|b|=3,则|a+b|的取值范围是( )。

A. 2≤|a+b|≤8B. 8≤|a+b|≤10C. 2≤|a+b|≤10D.8≤|a+b|≤183. 已知等差数列{an},a1=1,a3=3,则公差d为( )。

A. 1B. 2C. 3D. 44. 不等式2x3>0的解集是( )。

A. x>1.5B. x<1.5C. x>3D. x<35. 下列函数中,( )是奇函数。

A. y=x^2B. y=|x|C. y=x^3D. y=2x6. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是( )。

A. k>0,b>0B. k<0,b>0C. k<0,b<0D. k>0,b<07. 在△ABC中,a=8,b=10,cosA=3/5,则sinB的值为( )。

A. 3/5B. 4/5C. 3/4D. 4/38. 下列图形中,( )的面积可以通过底乘以高的一半来计算。

A. 正方形B. 矩形C. 三角形D. 梯形9. 已知函数f(x)=2x+1,那么f(f(x))的值为( )。

A. 2x+1B. 4x+3C. 2x+3D. 4x+110. 下列方程中,( )是一元二次方程。

A. x^2+y^2=1B. x^2+2x+1=0C. 2x3y=5D. x^33x=0二、填空题(每题4分,共40分)11. 已知数列{an}的通项公式为an=n^2n+1,则a5=______。

12. 若|a|=3,|b|=4,且a与b同向,则a•b=______。

13. 在平面直角坐标系中,点A(2,3)关于原点的对称点坐标为______。

14. 已知等差数列{an},a1=3,a5=11,则公差d=______。

九年级(上)数学综合练习题(二)

九年级(上)数学综合练习题(二)

九年级(上)数学综合练习题(二)数学选择题(本题共32分,每小题4分)1、如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 A .2:1B.C . 1:4D .1:22、若将抛物线y=12x 2先向左平移2个单位,再向下平移1个单位得到新的抛物线,则新抛物线的解析式是A .21(2)12y x =+- B .21(2)12y x =-- C .2(2)1y x =+- D . 21(2)12y x =--3、在a 2□4a □4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是A .14 B . 13 C .12 D . 1 4、如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是A .点AB .点BC .点CD .点D5、如图,⊙B 的半径为4cm , 60=∠MBN ,点A ,C 分别是射线BM ,BN 上的动点,且直线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的长度是A .8cmB .6cmC .4cmD .2cm6、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是7、两圆的圆心距为3,两圆半径分别是方程2430x x -+=的两根,则两圆的位置关系是 A .内切 B . 相交 C .外切 D . 外离A .B .C .D .ABC8、如图,,,,A B C D O 为的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动.设运动时间为(),()t s APB y ∠=︒,则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(本题共16分,每小题4分)9、边长为a 的正三角形的外接圆的半径为 .10、如图,,A C B D C D E A B E⊥⊥于点于点,且68AB DB ==,,则:ABC DBE S S =△△ .11、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为 .12、已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为 . 三、解答题(本题共25分,每小题5分) 13、解方程:2326x x -=14、如图,在ABC △中,90C =∠,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC 于E ,86AC BC ==,.求DE 的长.15、如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M ,求证:PC 是⊙O 的切线.ED C B A16、如图,从一个半径为1m 的圆形铁皮中剪出一个圆心角为90︒的扇形,并将剪下来的扇形围成一个圆锥,求此圆锥的底面圆的半径.17、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆A 、B ,恰好被南岸的两棵树C 、D 遮住,并且在这两棵树之间还有三棵树,求河的宽度.四、解答题(本题共10分,每小题5分)18、关x 的一元二次方程(x -2)( x -3)= m 有两个实数根x 1、x 2, (1)求m 的取值范围;(2)若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、如图,AB 为O 的直径,CD 是弦,且AB ⊥CD于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD .(2)若EB =8cm ,CD =24cm ,求O 的直径.五、解答题(本题共10分,每小题5分)20、某校有A 、B 两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐. (1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率; (2)求甲、乙、丙三名学生中至少有一人在B 餐厅用餐的概率.21、如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.COEDCB A六、解答题(本题共6分)22、阅读材料:为解方程()()22215140x x ---+=,我们可以将21x -视为一个整体,设21x y -=,则原方程可化为2540y y -+=,① 解得11y =,24y =.当1y =时,211x -=,22x ∴=即x = 当4y =时,214x -=,25x ∴=即x =.∴原方程的解为1x =2x =3x =4x =根据以上材料,解答下列问题.⑴填空:在原方程得到方程①的过程中,利用换元法达到降次的目的,体现了_____的数学思想.⑵解方程4260x x --=七、解答题(本题共21分,每小题7分) 23、如图,P 为正方形ABCD 内一点,若P A =a ,PB =2a ,PC =3a (a >0).(1) 求∠APB 的度数;(2) 求正方形ABCD 的面积.24、一开口向上的抛物线与x 轴交于A ,B 两点,C (m ,2-)为抛物线顶点,且AC ⊥BC . (1)若m 是常数,求抛物线的解析式; (2)设抛物线交y 轴正半轴于D 点,抛物线的对称轴交x 轴于E 点。

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------九年级数学第二学期阶段性测试(一)数学试卷亲爱的同学:好的开端是成功的一半,希望你们稳扎稳打,在考试中获得好成绩!请注意:全卷共三大题25小题,满分150分。

一、选择题。

(本题有12小题,每小题4分,共48分)1、下列运算正确的是()A、a+a=a2B、a2·a=2a3C、(2a)2÷a=4aD、(―ab)2=―ab22、我县经济发展步伐不断加快,综合实力显著增强,其中外向型经济发展迅速,近四年来实际利用外资1640万美元。

1640万美元用科学记数法表示为()A、1.64×103美元B、1.64×107美元C、0.164×108美元D、164×105美元3、计算的结果为()A、4B、C、D、164、若等腰三角形底角为72°,则顶角为()A、108°B、72°C、54°D、36°5、不等式2―x<1的解是()A、x>1B、x>―1C、x<1D、x<―16、夏天,一杯开水放在桌子上,杯中水的温度T(℃)随时间t变化的关系大致图象()T(℃)T(℃)T(℃)T(℃)OtOtOtOtABCD7、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A、小明的影子比小强的影子长B、小明的影子比小强的影子短yC、小明的影子和小强的影子一样长D、无法判断谁的影子长8、已知抛物线y=―x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A、―2.5<x<B、―1.5<x<-10xC、x>或x<—2.5D、x<或x>—2.5y9、如图,AP切圆O于点P,OA交圆O于B,且AB=1,PAP=,则阴影部分的面积S等于()OBAA、B、C、D、无法确定10、如图,把一个正方形纸片三次对折后沿虚线剪下(1)、(2)两部分,则展开(2)得()ABC D11、有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成邻边长分别是a+b 和2a+b的矩形是()a(1)b(2)b(3)aba12、已知P是线段AB的黄金分割点,点P将AB分成m、n两部分(m>n),以m为边长的正方形面积是S1,以(m+n)和n为边长的矩形的面积为S2,则S1与S2的大小关系是()A、S1>S2B、S1=S2C、S1<S2D、无法确定二、填空题。

九年级阶段二考试数学试题及答案

九年级阶段二考试数学试题及答案

九年级阶段二考试数学试题及答案一、选择题(每题3分,共30分)1. 若a+b=5,ab=6,则a²+b²的值为:A. 13B. 25C. 37D. 49答案:B2. 以下哪个选项不是二次函数的图像?A. 抛物线B. 直线C. 双曲线D. 椭圆答案:B3. 计算下列表达式的值:(2x+3)(x-1)-(3x-2)(x+2)的结果是:A. 5x-5B. 5x+5C. -5x+5D. -5x-5答案:A4. 若一个数的平方根是±2,则这个数是:A. 4B. -4C. 2D. -2答案:A5. 一个圆的半径为3cm,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C6. 下列哪个选项是不等式2x-3>5的解?A. x>4B. x<4C. x>1D. x<1答案:A7. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是多少?A. 16cmB. 21cmC. 26cmD. 31cm答案:B8. 计算下列表达式的值:(3x-2)(2x+1)+(2x+1)(x-3)的结果是:A. 5x²-5x+1B. 5x²+5x+1C. 5x²-5x-1D. 5x²+5x-1答案:B9. 一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A10. 计算下列表达式的值:(a+b)²-2ab的结果是:A. a²+2ab+b²B. a²-2ab+b²C. a²+b²D. a²-b²答案:C二、填空题(每题3分,共15分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个圆的直径为10cm,那么它的半径是_______cm。

九年级数学测试题及答案

九年级数学测试题及答案

九年级数学测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...D. √22. 一个二次方程的系数为a、b、c,且a≠0,以下哪个选项是正确的?A. 判别式Δ = b² - 4acB. 判别式Δ = b² + 4acC. 判别式Δ = 4ac - b²D. 判别式Δ = b² - 2ac3. 函数y = 3x + 2的斜率是:A. 2B. 3C. 1D. 44. 一个圆的半径为5,那么它的周长是:A. 10πB. 15πC. 20πD. 25π5. 一个等腰三角形的底边长为6,两腰相等,且周长为18,那么它的腰长是:A. 3B. 6C. 9D. 无法确定6. 以下哪个表达式是正确的因式分解?A. x² - 4 = x + 2B. x² - 4 = (x - 2)(x + 2)C. x² - 4 = (x - 2)(x - 2)D. x² - 4 = x² - 2x + 47. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 1或-18. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a + b + cC. a * b * cD. a / b / c9. 以下哪个是正比例函数?A. y = 3x²B. y = 3xC. y = 3/xD. y = 3x + 210. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共20分)11. 一个数的立方根是它本身,这个数可以是 ______ 。

12. 一个数的绝对值是它本身,这个数是非负数,即这个数可以是______ 。

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若将双曲线y=2x向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是( )A.0<a<12B.12<a<1C.1<a<2D.2<a<32.(3分)已知抛物线y=﹣(x﹣m)2+2m过不同的两点A(a,n),B(b,n),则当点C(a+b,m)在该函数图象上时,m的值为( )A.0B.1C.0或1D.±13.(3分)抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n4.(3分)如果二次函数y=ax2+bx+c的图象全部在x轴的上方,那么下列判断中一定正确的是( )A.a>0,b>0B.a>0,b<0C.a>0,c<0D.a>0,c>0 5.(3分)已知:二次函数y=﹣x2+x+6,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=m与新图象有2个交点时,m的取值范围是( )A.m<―254B.m≤―254或m=0C.m<―254或m=0D.―254<m<06.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)中,x与y的部分对应值如表:x…﹣10124…y…﹣10.510.5﹣3.5…有下列结论:①函数有最大值,且最大值为1;②b=1;③若x 0满足a x 02+bx 0+c =0,则2<x 0<3或﹣1<x 0<0;④若方程ax 2+bx +c +m =0有两个不等的实数根则m <﹣1;其中正确结论的个数是( )A .1B .2C .3D .47.(3分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x …﹣2﹣1012…y =ax 2+bx +c…tm﹣2﹣2n…且当x =―12时与其对应的函数值y >0,则下列各选项中不正确的是( )A .abc >0B .m =nC .a <83D .图象的顶点在第四象限8.(3分)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则下列结论正确的是( )A .x 1<﹣1<5<x 2B .x 1<﹣1<x 2<5C .﹣1<x 1<5<x 2D .﹣1<x 1<x 2<59.(3分)已知二次函数y =x 2+bx +c ,当m ≤x ≤m +1时,此函数最大值与最小值的差( )A .与m ,b ,c 的值都有关B .与m ,b ,c 的值都无关C .与m ,b 的值都有关,与c 的值无关D .与b ,c 的值都有关,与m 的值无关10.(3分)已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是 .12.(3分)已知抛物线y=x2与直线y=(k+2)x+1﹣2k的两个不同交点分别为A(x1,y1),B(x2,y2).若x1和x2均为整数,则实数k的值为 .13.(3分)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.14.(3分)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D (m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 .15.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为 .三、解答题(共8小题,满分75分)16.(9分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若抛物线y=x2﹣(2k+1)x+k2+k与x轴相交于A、B两点,当OA+OB=5时,求k的值.17.(9分)如图,抛物线y=―12x2+2x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明△ABC为直角三角形.18.(9分)某科技公司生产一款精密零件,每个零件的成本为80元,当每个零件售价为200元时,每月可以售出1000个该款零件,若每个零件售价每降低5元,每月可以多售出100个零件,设每个零件售价降低x元,每月的销售利润为w元.(1)求w与x之间的函数关系式;(2)为了更好地回馈社会,公司决定每销售1个零件就捐款n(0<n≤6)元作为抗疫基金,当40≤x≤60时,捐款后每月最大的销售利润为135000元,求n的值.19.(9分)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,―94)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.20.(9分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B,C两点.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上的一动点,当点E到直线BC的距离最大时,求点E 的坐标;(3)Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,B,C 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.21.(10分)如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.(10分)如图,抛物线y=﹣x2+ax与直线y=﹣x+b交于点A(4,0)和点C.(1)求a和b的值;(2)求点C的坐标,并结合图象写出不等式﹣x2+ax>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向右平移2个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.23.(10分)如图,抛物线y=ax2﹣2ax﹣3a与x轴交于A,B两点,与y轴交点为(0,﹣3),顶点为C.(1)求a的值;(2)求顶点C的坐标;(3)抛物线的对称轴与x轴交于点P,连接BC,BC的垂直平分线MN交直线PC 于点M,交BC于点N,求线段PM的长.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.D;5.C;6.C;7.C;8.A;9.C;10.D;二、填空题(共5小题,满分15分,每小题3分)11.x1=﹣3,x2=1.12.213.14 914.(﹣5,﹣4)或(0,1)15.1或―4 5三、解答题(共8小题,满分75分)16.(1)证明:∵Δ=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k取何值时,方程总有两个不相等的实数根;(2)解:由x2﹣(2k+1)x+k2+k=0,解得:x1=k,x2=k+1,∴A(k,0),B(k+1,0),∵OA+OB=5,∴|k|+|k+1|=5,①当k<﹣1时,|k|+|k+1|=5变为﹣k﹣(k+1)=5,解得:k=﹣3;②当﹣1≤k<0时,|k|+|k+1|=5变为﹣k+k+1=5,此方程无解;③当k≥0时,|k|+|k+1|=5变为k+k+1=5,解得:k=2.综上所述,k的值为﹣3或k=2.17.(1)解:对于抛物线y=―12x22x+2,当y=0时,则―12x2+2x+2=0,解得x1=―x2=当x=0时,y=2,∴A(―0),B(0),C(0,2).(2)证明:连接AC,BC,∵OA OB=AOC=∠BOC=90°,∴AC22+22=6,BC2=(2+22=12,∴AC2+BC2=6+12=18;∵AB=(―∴AB2=(2=18,∴AC2+BC2=AB2,∴△ABC是直角三角形.18.解:(1)设每个零件售价降低x元,则每个零件的实际售价为(200﹣x)元,每月的实际销售量为(1000+x5×100),则w=(200﹣x﹣80)(1000+x5×100)=20x2十1400x+120000,∵x≥0200―x―80≥0,∴0≤x≤120,∴w与x之间的函数关系式为w=﹣20x2+1400x+120000(0≤x≤120);(2)设捐款后的实际利润为p元,则p=﹣20x2+1400x+120000﹣(1000+x5×100)n,整理得:p=﹣20x2+(1400﹣20n)x+120000﹣1000n,则p是x的二次函数,其对称轴为直线x=―140020n2×(20)=70n2,∵0<n≤6,∴32≤70n2<35,∵﹣20<0,∴函数图象开口向下,当40≤x≤60时,p随x的增大而减小,∴当x=40时,p有最大值135000,即﹣20×402+40(1400﹣20n)+120000﹣1000n=135000,解得:n=5.19.解:(1)设抛物线L1的表达式是y=a(x―1)2―9 4,∵抛物线L1过点A(﹣2,0),∴0=a(―2―1)2―9 4,解得a=1 4,∴y=14(x―1)2―94.即抛物线L1的表达式是y=14(x―1)2―94;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设y=14x2+bx,则―2=14×22―2b,解得b=32即抛物线L2的解析式是y=14x2+32x.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设y=14x2+bx+2,则0=14×22+2b+2,解得:b=―3 2,即抛物线L2的解析式是y=14x2―32x+2.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设y=14x2+bx+c,则―2=14×16―4b+c―4=14×4―2b+c,解得b=12c=―4,即抛物线L2的解析式是y=14x2+12x―4.综上所述:L2的表达式为:y=14x2+32x,y=14x2―32x+2或y=14x2+12x―4.20.解:(1)∵直线y=﹣x+4与x轴交于点C,与y轴交于点B,∴点B,C的坐标分别为B(0,4),C(4,0),把点B(0,4)和点C(4,0)代入抛物线y=ax2+x+c,得:16a+4+c=0,c=4,,解之,得a=―12,c=4,,∴抛物线的解析式为y=―12x2+x+4.(2)∵BC为定值,∴当△BEC的面积最大时,点E到BC的距离最大.如图,过点E作EG∥y轴,交直线BC于点G.设点E的坐标为(m,―12m2+m+4),则点G的坐标为(m,﹣m+4),∴EG=―12m2+m+4―(―m+4)=―12m2+2m,∴S△BEC=12EG⋅OC=12×4(―12m2+2m)=―m2+4m=―(m―2)2+4,∴当m=2时,S△BEC最大.此时点E的坐标为(2,4).(3)存在.由抛物线y=―12x2+x+4可得对称轴是直线x=1.∵Q是抛物线对称轴上的动点,∴点Q的横坐标为1.①当BC为边时,点B到点C的水平距离是4,∴点Q到点P的水平距离也是4.∴点P的横坐标是5或﹣3,∴点P的坐标为(5,―72)或(―3,―72);②当BC为对角线时,点Q到点C的水平距离是3,∴点B到点P的水平距离也是3,∴点P的坐标为(3,52 ).综上所述,在抛物线上存在点P,使得以P,Q,B,C为顶点的四边形是平行四边形,点P的坐标是(5,―72)或(―3,―72)或(3,52).21.解:(1)根据题意得:D (﹣2,0),C (2,0),E ((0,1),设抛物线的解析式为y =ax 2+1(a ≠0),把D (﹣2,0)代入得:4a +1=0,解得a =―14,∴抛物线的解析式为y =―14x 2+1;(2)在y =―14x 2+1中,令y =134―3=14得:14=―14x 2+1,解得x∴距离地面134米高处,隧道的宽度是;(3)这辆货运卡车能通过该隧道,理由如下:在y =―14x 2+1中,令y =3.6﹣3=0.6得:0.6=―14x 2+1,解得x =±5,∴|2x |≈2.53(m ),∵2.53>2.4,∴这辆货运卡车能通过该隧道.22.解:(1)∵抛物线y =﹣x 2+ax 的图象过点A (4,0),∴0=﹣42+a ×4,解得a =4,∵直线y =﹣x +b 的图象过点A (4,0),∴0=﹣4+b ,解得b =4;(2)由(1)得,抛物线解析式为y =﹣x 2+4x ,一次函数解析式为y =﹣x +4,联立方程组y =―x 2+4x y =―x +4,解得:x =1y =3或x =4y =0(舍去),∴点C 坐标为(1,3),由图象得不等式﹣x 2+ax >﹣x +b 的解集为:1<x <4;(3)∵抛物线y =﹣x 2+4x 的对称轴为直线x =2,∴C 点关于对称轴的对称点坐标为(3,2),又∵抛物线y =﹣x 2+4x 的顶点坐标为(2,4),∴当M (0,4)时,N 点坐标为(2,4),此时抛物线与线段MN 有一个交点,当M (4,0)时,此时抛物线与线段MN 有一个交点,当M (1,3)时,此时抛物线与线段MN 有两个交点,∴0≤x M ≤4且x M ≠1.23.解:(1)∵抛物线y =ax 2﹣2ax ﹣3a 与y 轴交点为(0,﹣3),∴﹣3a =﹣3,∴a =1,即a 的值为1;(2)∵a =1,∴抛物线y =ax 2﹣2ax ﹣3a =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点C 的坐标为(1,﹣4);(3)∵顶点C 的坐标为(1,﹣4),∴物线的对称轴为直线x =1,∴P (1,0),∵抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点,令y =0,则x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴BP =2,PC =4,∴BC =∵MN 垂直平分BC ,∴CN =12BC MNC =90°,∴∠BPC =∠MNC .又∠MCN =∠BCP ,∴△MCN ∽△BCP ,∴CN CP =CM CB ,即4CM ,∴CM =52,∴PM =PC ﹣CM =4―52=32.即线段PM 的长为32.。

全效学习中考数学 易错提分练二 图形与几何练习(含解析)-人教版初中九年级全册数学试题

全效学习中考数学 易错提分练二 图形与几何练习(含解析)-人教版初中九年级全册数学试题

图形与几何一、选择题1.(荆州中考)已知:直线l1∥l2,一块含30°角的直角三角板如图Y2-1所示放置,∠1=25°,则∠2等于(B)A.30°B.35°C.40°D.45°【易错分析】(1)不能从实物中建立几何模型;(2)不了解三角板各角的度数;(3)不能通过作平行线把∠1与∠2联系起来.图Y2-1 图Y2-22.如图Y2-2,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC =AC;③BH=AC;④CE=CD中正确的有(B)A.1个 B.2个 C.3个 D.4个【易错分析】找不到三角形全等的条件.∵DH=DC,∠C=∠DHB,∠ADC=∠BDH,∴△BDH ≌△ADC.求出①BD=AD;③BH=AC,结论②,④为错误结论.3.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为(C)A.40°B.100°C.40°或100°D.70°或50°【易错分析】容易忽视分两种情况讨论:40°是等腰三角形的底角或40°是等腰三角形的顶角.当40°是等腰三角形的顶角时,则顶角就是40°;当40°是等腰三角形的底角时,则顶角是180°-40°×2=100°.4.(某某中考)如图Y2-3,在平行四边形ABCD 中,E 是CD上的一点,DE ∶EC =2∶3,连结AE ,BE ,BD ,且AE ,BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =(D)A .2∶5∶25B .4∶9∶25C .2∶3∶5D .4∶10∶25【易错分析】 (1)不能找到图中的相似三角形;(2)把相似三角形面积比与等高的三角形面积比混淆.根据平行四边形的性质求出DC =AB ,DC ∥AB ,求出DE ∶AB =2∶5,根据相似三角形的判定推出△DEF ∽△BAF ,求出△DEF 和△ABF 的面积比,根据三角形的面积公式求出△DEF 和△EBF 的面积比,即可求出答案.5.(黔西南中考)一直角三角形的两边长分别为3和4.则第三边的长为(D)A .5 B.7C.5D .5或7【易错分析】 已知边长为4的边可能是斜边,也可能是直角边或者说所求的边长可能是斜边也可能是直角边,所以需要分类讨论.6.(某某中考)如图Y2-4,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是(B)A .AC =ABB .∠C =12∠BOD C .∠C =∠BD .∠A =∠BOD【易错分析】 垂径定理、圆周角定理理解模糊.A .根据垂径定理不能推出AC =AB ,故A 选项错误;B .∵直径CD ⊥弦AB ,∴AD ︵=BD ︵,∵AD ︵对的圆周角是∠C ,BD ︵对的圆心角是∠BOD ,∴∠BOD =2∠C ,故B 正确;C .不能推出∠C =∠B ,故C 错误;图Y2-3 图Y2-4D .不能推出∠A =∠BOD ,故D 错误. 二、填空题 7.(呼和浩特中考)如图Y2-5,在△ABC 中,∠B =47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =__°__.【易错分析】 不能把三角形的外角与内角和进行转换.根据三角形内角和定理、角平分线的定义以及三角形外角定理求得12∠DAC +12ACF =12(∠B +∠ACB )+12(∠B +∠BAC )=12(∠B +∠B +∠BAC +∠ACB )=227°2;最后在△AEC 中利用三角形内角和定理可以求得∠AEC 的度数. 8.(某某月考)如图Y2-6,△ABC 中AB =AC ,AB 的垂直平分线MN 交AC 于点D(1)若∠A =38°,则∠DBC =__33°__.(2)若AC +BC =10 cm ,则△DBC 的周长为__10__cm__.【易错分析】 掌握线段垂直平分线上任意一点,到线段两端点的距离相等,是本题易错点.(1)∵AB =AC ,∠A =38°,∴∠ABC =12(180°-∠A )=12(180°-38°)=71°, ∵MN 垂直平分线AB ,∴AD =BD ,∴∠ABD =∠A =38°,∴∠DBC =∠ABC -∠ABD =71°-38°=33°;(2)∵MN 垂直平分AB ,∴DA =DB .∴△DBC 的周长=BC +BD +DC=BC +DA +DC =BC +AC =10 cm.9.(某某中考)若菱形的两条对角线长分别为2和3,则此菱形的面积是__3__.【易错分析】 易错点“菱形的面积公式是两对角线乘积的一半”,记忆中忘记了“一半”.10.(某某中考)如图Y2-7,将弧长为6π,圆心角为120°的扇形纸片AOB 围成圆锥形纸图Y2-5 图Y2-6帽,使扇形的两条半径OA 与OB 重合(接缝粘连部分忽略不计),则圆锥形纸帽的高是__62__.图Y2-7【易错分析】 圆锥的侧面展开图的扇形的半径、弧长、圆心角与圆锥的母线长、底面圆半径、高等之间的对应关系模糊.11.(平阴二模)如图Y2-8,线段AB 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于__50°__.【易错分析】 不懂得遇到直线与圆相切,连结圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.连结OC ,∵圆心角∠BOC 与圆周角∠CDB 都对弧BC ,∴∠BOC =2∠CDB ,又∠CDB =20°,∴∠BOC =40°,又∵CE 为圆O 的切线,∴OC ⊥CE ,即∠OCE =90°,则∠E =90°-40°=50°.12.(某某中考)如图Y2-9,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连结DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点,若BE =1,AG =4,则AB 的长为__15__.【易错分析】 不善于把矩形的性质,等边对等角的性质,等角对等边的性质,以及勾股定理进行综合运用,求不出AE=AG 最关键的一步.三、解答题13.(某某中考)为了安全,请勿超速.如图Y2-10一条公路建成通车,在某直线路段MN 限速60 km/h ,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达图Y2-8 图Y2-9 图Y2-10点B 行驶了5 s ,已知∠CAN =45°,∠CBN =60°,BC =200 m ,此车超速了吗?请说明理由.(参考数据:2≈1.41,3≈)【易错分析】 画不出辅助线,构造直角三角形.解:如答图,过点C 作CD ⊥MN ,垂足为D .∵CD ⊥MN ,∠DBC =60°,∴∠BCD =30°,∴BD =12BC =12×200=100, 由特殊锐角三角函数得:DC =1003≈100×1.73=173 m.∵CD ⊥MN ,∠CAD =45°,∴∠DCA =∠DAC =45°,∴AD =DC =173 m ,AB =173-100=73 m ,73÷5=14.6 m/s ,60 km/h =1623m/s , 14.6 m/s <1623m/s 故此车没有超速.14.如图Y2-11,在△ABC 中,∠C =90°,点D ,E 分别在AC ,AB 上,BD 平分∠ABC ,DE⊥AB ,AE =6,cos A =35.求:(1)DE ,CD 的长;(2)tan ∠DBC 的值. 【易错分析】 不能综合应用解直角三角形、直角三角形性质、相似三角形的性质、三角函数值的定义进行逻辑推理和运算,从而不知如何解答.解:(1)在Rt △ADE 中,由AE =6,cos A =AE AD =35, ∴AD =10,由勾股定理,得DE =AD 2-AE 2=102-62=8, ∵BD 平分∠ABC ,DE ⊥AB ,∠C =90°,根据角平分线性质,得DC =DE =8;第13题答图图Y2-11(2)方法一:由(1)知AD =10,DC =8,得AC =AD +DC =18.在△ADE 与△ABC 中,∠A =∠A ,∠AED =∠ACB ,∴△ADE ∽△ABC ,∴DE BC =AE AC ,即8BC =618,BC =24, ∴tan ∠DBC =CD BC =824=13. 方法二:由(1)得AC =18,又∵cos A =AC AB =35,∴AB =30, 由勾股定理,得BC =24,∴tan ∠DBC =13. 15.如图Y2-12,四边形ABCD 是正方形,点G 是BC 边上任意一点,DE ⊥AG 于E ,BF ∥DE 交AG 于F .(1)求证:AF -BF =EF ;(2)将△ABF 绕点A 逆时针旋转,使得AB 与AD 重合,记此时点F 的对应点为点F ′,若正方形边长为3,求点F ′与旋转前的图中点E 之间的距离.【易错分析】 对正方形的性质,全等三角形的判定与性质,矩形的判定与性质,以及旋转的性质综合运用能力不够,找不出解题思路.解:(1)证明:如答图,∵四边形ABCD 是正方形,∴AB =AD ,∠2+∠3=90°,∵DE ⊥AG ,∴∠AED =90°,∴∠1+∠3=90°,∴∠1=∠2,又∵BF ∥DE ,∴∠BFA =∠AED =90°.在△AED 和△BFA 中,⎩⎪⎨⎪⎧∠1=∠2,∠AED =∠BFA ,AD =AB ,图Y2-12∴△AED≌△BFA,∴BF=AE,∵AF-AE=EF,∴AF-BF=EF;(2)如答图,根据题意,得∠FAF′=90°,DE=AF′=AF,∴四边形AEDF′为矩形,∴EF′=AD=3.16.(某某中考)如图Y2-13,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=2,求AO的长.【易错分析】(1)不知道连结半径OD,通过证明Rt△BDO≌Rt△BCO证明∠BCO=90°;(2)不能综合运用相似三角形,直角三角形,三角函数解决问题.解:(1)如答图①,连结DO,∵BD切⊙O于点D,∴∠BDO=90°,∵DE∥BO,∴∠BOC=∠DEO,∠EDO=∠BOD,∵OD=OE,∴∠DEO=∠EDO,∴∠BOC=∠BOD.在Rt△BDO和Rt△BCO中,OD=OC,∠BOC=∠BOD,BO=BO,∴Rt△BDO≌Rt△BCO,∴∠BCO=∠BDO=90°,第15题答图图Y2-13第16题答图①∴直线BC 是⊙O 的切线; (2)如答图②,连结CD ,设⊙O 的半径为r , ∵CE 是⊙O 的直径,∴∠CDE =90°,∵DE ∥BO ,∴∠BOC =∠DEO ,即tan ∠BOC =tan ∠DEO =2,∵OC =OE =r ,∴BC =2r ,则BO =3r ,∵tan ∠DEO =2,∴DC =2DE ,在Rt △CDE 中,由勾股定理得:DC 2+DE 2=CE 2, 即2DE 2+DE 2=(2r )2,∴DE =233r ,∵DE ∥BO ,∴△ADE ∽△ABO ,∴AEAO =DEBO ,即22+r =233r3r ,解得r =1.∴AO =AE +OE =2+1=3.∴AO 的长为3.第16题答图②。

2024年九年级上册数学第二单元基础练习题(含答案)

2024年九年级上册数学第二单元基础练习题(含答案)

2024年九年级上册数学第二单元基础练习题(含答案)试题部分一、选择题:1. 下列哪个数是算术平方根?()A. ±2B. 3C. 9D. 42. 如果一个数的平方是49,那么这个数是()A. 7B. 7C. 7和7D. 无法确定3. 下列哪个数是实数?()A. √1B. √4C. √9D. √164. 已知a²=36,b²=64,那么a+b的值为()A. 100B. 10C. 0D. 10005. 下列哪个数的平方根是负数?()A. 25B. 0C. 25D. 96. 如果x²=81,那么x的值为()A. 9B. 9C. 9和9D. 无法确定7. 下列哪个数的平方根是无理数?()A. 4B. 9C. 16D. 28. 已知√a=5,那么a的平方根是()A. 25B. 5C. 5D. 109. 下列哪个数是整数?()A. √36B. √47C. √81D. √8010. 如果一个数的平方是144,那么这个数的平方根是()A. 12B. 12C. 12和12D. 无法确定二、判断题:1. 任何正数都有两个平方根,且它们互为相反数。

()2. 0的平方根是0。

()3. 负数没有平方根。

()4. 一个正数的平方根和立方根相等。

()5. 平方根和算术平方根是同一个概念。

()6. √36和36的平方根相等。

()7. 一个数的平方根的平方等于这个数。

()8. 如果a²=b²,那么a=b。

()9. 无理数是无限不循环小数。

()10. 实数包括有理数和无理数。

()三、计算题:1. 计算:√(64 + 36)。

2. 计算:√(81 49)。

3. 计算:3√(27/9)。

4. 计算:(√81)²。

5. 计算:√(144/36)。

6. 计算:√(400 225)。

7. 计算:2√(25) 3√(16)。

8. 计算:√(121) + √(169)。

9. 计算:(√9) × (√16)。

浙教版九年级数学下 第二章同步练习 2.1 直线与圆的位置关系

浙教版九年级数学下  第二章同步练习  2.1 直线与圆的位置关系

浙教版九年级数学下第二章直线与圆的位置关系同步练习2.1直线与圆的位置关系切线的判定第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1. 下列直线中可以判定为圆的切线的是(A)A.与圆有且仅有一个公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于直径的直线2.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含3.如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是()A.相交B.相切C.相离D.无法确定4. ⊙O的半径r=5 cm,直线l到圆心O的距离d=4,则l与⊙O的位置关系是()A.相离B.相切C.相交D.重合5.已知⊙O的半径为3,直线l上有一点P满足PO=3,则直线l与⊙O的位置关系是() A.相切B.相离C.相离或相切D.相切或相交6. ⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>R B.d<R C.d≥R D.d≤R7.已知点P(3,4),以点P为圆心,r为半径的圆P与坐标轴有四个交点,则r的取值范围是() A.r>4 B.r>4且r≠5 C.r>3 D.r>3且r≠5OP ,直线l与⊙O的位置关系是()8. 已知⊙O的半径为5,点P在直线l上,且5A.相切B.相交C.相离D.相切或相交9.如图,以点O为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB与小圆相交,则弦长AB 的取值范围是()A.8≤AB≤10B.AB≥8C.8<AB≤10D.8<AB<1010. 若⊙O的半径为R,点O到直线l的距离为d,且d与R是方程x²-4x+m=0的两根,且直线l与⊙O相切,则m的值为()A.1B.2C.3D.4第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以点C为圆心、6cm长为半径作圆,则圆与直线AB的位置关系是________.12. 已知O,圆心O到直线l的距离为1.4cm,则直线l与O的公共点的个数为.13.如图,已知∠AOB=30°,C是射线OB上的一点,且OC=4.若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是____________.14. 在平面直角坐标内,⊙P的圆心P的坐标为(8,0),半径是6,那么直线y=x与⊙P的位置关系是.15.如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2 cm为半径作⊙M.若点M在OB 边上运动,则当OM= cm时,⊙M与OA相切.16. 如图,P为正比例函数y=32x图像上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).当⊙P与直线x=2相交时x的取值范围为____________.17.如图,在Rt△ABC中,∠C=90°,斜边AB=8cm,AC=4cm.以点C为圆心作圆,半径为______cm 时,AB与⊙C相切18.在Rt△ABC中,∠C=90°,AC=3,BC=4.若以A为圆心、R为半径所作的圆与线段BC只有一个公共点,则R的取值范围是.三.解答题(共7小题,46分)19.(6分) 如图,CB是⊙O的直径,P是CB延长线上一点,PB=2,PA切⊙O于A点,PA=4.求⊙O的半径.20.(6分) 如图,在以点O为圆心的两个同心圆中,大圆的弦AB=CD,且AB与小圆相切.求证:CD与小圆也相切.21. (6分)如图, 已知等腰三角形的腰长为6 cm ,底边长4 cm ,以等腰三角形的顶角的顶点为圆心5 cm 为半径画圆,那么该圆与底边的位置关系是怎样的?22.(6分) 如图,正方形ABCD 中,点P 是对角线AC 上的任意一点(不包括端点),以P 为圆心的圆与AB 相切,求AD 与⊙P 的位置关系.23. (6分) 如图,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.CA24.(8分) 如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以点P为圆心,3为半径作⊙P,连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由.25. (8分) 如图,在平行四边形ABCD中,AB=10,AD=m,∠D=60°,以AB为直径作⊙O.(1)求圆心O到CD的距离(用含m的代数式表示);(2)当m取何值时,CD与⊙O相切?参考答案 1-5 BCBCD 6-10 DBDCD 11. 相交 12. 2 13. 2<r≤4 14. 相交 15. 416. -1<x <5 17. 2 3 18. 3≤R ≤419. 解:如图,连接OA ,∵PA 切⊙O 于A 点,∴OA ⊥PA ,设OA=x ,∴OP=x+2,在Rt △OPA 中:x 2+42=(x+2)2 , ∴x=3 ∴⊙O 的半径为3.20. 证明:过点O 分别作AB ,CD 的垂线段OE ,OF.设小圆的半径为r.∵AB 与小圆相切,∴OE =r ,∵AB =CD ,且AB ,CD 为大圆的弦,∴OE =OF ,∴OF =r ,∴CD 与小圆也相切.21.解: 如图,在等腰三角形ABC 中,作AD ⊥BC 于D ,则BD =CD =12BC =2,∴AD =AB 2-BD 2=62-22=42>5,即d >r ,∴该圆与底边的位置关系是相离.22. 解:如图, 作PE ⊥AB 于E , PF ⊥AD 于F . 设⊙P 的半径为R .. ∵⊙P 与AB 相切, ∴PE=R .又∵ABCD 是正方形, ∴AC 平分∠DAB , ∴PE=PF , ∴PF=R . ∴AD 与⊙P 相切.23. 解:作CD ⊥AB 于D , 设CD=x .在Rt △ACD 中, ∠CAD =30°, ∴AD . 在Rt △BCD 中,∠BCD =30°, ∴BD x .∵AD-BD=AB =24×0.5=12海里, =12, 解得x =>9. ∴货船不会有触礁危险.24. 解:⊙P 与x 轴相切,理由:直线y =-2x -8与x 轴交于A (-4,0),与y 轴交于B (0,-8),∴OA =4,OB =8,由题意OP =-k ,∴PB =PA =8+k ,在Rt △AOP 中,k 2+42=(8+k )2,∴k =-3,∴OP 等于⊙P 的半径,∴⊙P 与x 轴相切25. 解:(1)作AH ⊥CD 于点H.因为∠D =60°,则∠DAH =30°,DH =AD 2=m2,所以AH =AD 2-DH 2=m 2-(m 2)2=32m ,即圆心O 到CD 的距离为32m ; (2)当32m =5,即m =1033时,CD 与⊙O 相切.。

人教版九年级(上)《圆》数学试卷二(中难度)

人教版九年级(上)《圆》数学试卷二(中难度)

人教版九年级(上)《圆》数学试卷二(中难度)一.解答题(共50小题)1.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP=AC.(1)求证:P A是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.2.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,过点O作OF⊥BC,交AC于点E,连接AF,且AF是⊙O的切线.(1)求证:AF=EF.(2)若⊙O的半径为5,AB=,求AF的长.3.如图,AB为⊙O的直径,C,D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF ⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若∠BAC=∠DAC=30°,BC=2,求劣弧的长l.4.如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.5.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=10.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为6,求线段BP的长.6.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,交BC于F.(1)若∠ABC=40°,∠C=80°,求∠CBD的度数;(2)求证:DB=DE;(3)若AB=6,AC=4,BC=5,求DE的长.7.如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.8.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.9.如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.若AD =2,CD=3,求GF的长.10.如图,已知点A、C、D在⊙O上,⊙O的半径为2,CD为⊙O的直径,直线AB∥CD 且∠ADC=60°,将线段AD绕点A逆时针旋转得到线段AF,点D的对应点为点F,且点F在射线AB上,连接FC;(1)求线段AF的长;(2)若点E是上的一点,连接EF,DE,过点F作FH⊥DE于H,延长FH交⊙O 于G,若EF=2,求FG的长.11.如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若∠CBD=30°,BC=3,求⊙O半径.12.如图,在△ABC中,AB=CB,AB是⊙O的直径,D为⊙O上一点,且弧AD=弧BD,直线l经过点C、D,连接AD,交BC于点E,若∠CAD=∠CBA.(1)求证:直线l是⊙O的切线;(2)求的值.13.如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.14.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)判断BD与CF的数量关系?说明理由.15.如图,CD为⊙O的直径,弦AB⊥CD,垂足为H,P是CD延长线上一点,DE⊥AP,垂足为E,∠EAD=∠HAD.(1)求证:AE为⊙O的切线;(2)已知P A=2,PD=1,求⊙O的半径和DE的长.16.如图,在△ABC中,AB=AC,AE是BC边上的高,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BC=10,AE=12时,求AM的长度.17.如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB 延长线于点D,E为CD上一点,且BE=DE.(1)证明:BE为⊙O的切线;(2)若AM=8,AB=8,求BE的长.18.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,作DE⊥AC于点E.(1)求证:DE与⊙O相切;(2)若BD=2,AE=1,求⊙O的半径.19.如图,以△ABC的边AC为直径的⊙O恰好为△ABC的外接圆,∠ABC的平分线交⊙O 于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=4,BC=2,求DE的长.20.如图,AB是⊙O的直径,点E是的中点,CA与⊙O相切于点A交BE延长于点C,过点A作AD⊥OC于点F,交⊙O于点D,交BC于点Q,连接BD.(1)求证:BD=AF;(2)若BD=2,求CQ的长.21.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.22.如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.23.如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.24.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.25.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.26.如图,OM是⊙O的半径,过M点作⊙O的切线AB,且MA=MB,OA,OB分别交⊙O 于C,D.求证:AC=BD.27.如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).28.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.29.如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E 作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.30.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.31.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O 于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.32.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.33.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点C作直线CD交AB 的延长线于点D,使∠BCD=∠A.(1)求证:CD为⊙O的切线;(2)若DE平分∠ADC,且分别交AC,BC于点E,F,当CE=2时,求EF的长.34.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).35.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.36.如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.37.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.38.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.39.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.40.在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.41.如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.42.如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E 为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.43.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图②,D为上一点,连接DC并延长,与AB的延长线相交于点P,连接AD,若AD=CD,∠P=30°,求∠CAP的大小.44.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC 于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AC=3CD,BF=2,求⊙O的半径.45.如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC 于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.46.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.47.已知在△ABC中,BC⊥AB.AB是⊙O的弦,AC交⊙O于点D,且D为AC的中点,延长CB交⊙O于点E,连接AE.(I)如图①,若∠E=50°,求∠EAC的大小;(1)如图②,过点E作⊙O的切线,交AC的延长线于点F.若CF=2CD,求∠CAB 的大小.48.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,BC,AD与⊙O相切于点A,交BC的延长线于点D,点E是劣弧BC的中点,连接AE,CE.(1)求证:∠DAC=∠AEC;(2)延长CE,AB交于点G,使得GB=AB,若AC=2,求⊙O的半径.49.如图所示,△ABC是⊙O的内接三角形,过点B作⊙O的切线,与⊙O的直径CE所在的直线相交于点D,连接BE,其中BE=BD=3,∠D=30°.(1)求∠A的大小;(2)点A在圆上移动时,当△ABC与△BCD恰巧全等,求AE的长.50.点B是⊙O外一点,BP是∠ABC的角平分线,BA与⊙O的一个交点为D,过D作BP 的垂线交BP于E,交BC于F,交⊙O于G.(1)如图1,BC与⊙O交于点M和点N,当点G是的中点时,求证:BA是⊙O的切线;(2)如图2,当BC过点O时,画出点O到BP的距离d,猜想线段FG与d有怎样的数量关系,并证明.。

九年级上册数学北师大版第二章测试卷

九年级上册数学北师大版第二章测试卷

九年级上册数学北师大版第二章测试卷《九年级上册数学北师大版第二章测试卷》一、选择题(每题3分,共30分)1. 一元二次方程x² - 3x = 0的解是()A. x = 3B. x₁ = 0,x₁ = -3C. x₁ = 0,x₁ = 3D. x = -32. 用配方法解方程x² + 4x + 1 = 0,配方后的方程是()A. (x + 2)² = 3B. (x - 2)² = 3C. (x - 2)² = 5D. (x + 2)² = 53. 关于x的一元二次方程(k - 1)x² - 2x + 1 = 0有两个不相等的实数根,则实数k的取值范围是()A. k<2且k≠1B. k<2C. k>2D. k≤2且k≠14. 方程x² - 9 = 0的根是()A. x = 3B. x = -3C. x₁ = 3,x₁ = -3D. x = 95. 已知关于x的方程x²+bx + a = 0有一个根是- a(a≠0),则a - b的值为()A. -1B. 0C. 1D. 26. 一元二次方程ax²+bx + c = 0(a≠0),若b = 0,那么方程()A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 实数根的情况不能确定7. 若关于x的一元二次方程(m - 1)x²+5x + m² - 3m + 2 = 0的常数项为0,则m 的值等于()A. 1B. 2C. 1或2D. 08. 一个三角形的两边长分别为3和6,第三边长是方程x² - 10x + 21 = 0的根,则三角形的周长为()A. 16B. 12或16C. 15D. 129. 若x₁,x₁是一元二次方程x² - 2x - 3 = 0的两个根,则x₁·x₁的值是()A. - 3B. 3C. -2D. 210. 已知关于x的一元二次方程x²+mx + n = 0的两个实数根分别为x₁ = -2,x₁ = 4,则m + n的值是()A. -10B. 10C. -6D. 2二、填空题(每题3分,共15分)1. 一元二次方程x² - 6x + 5 = 0的两根分别是x₁、x₁,则x₁·x₁=______。

人教版九年级数学 第21章《一元二次方程》实际应用之提分专项解答题必练题型 (二)

人教版九年级数学 第21章《一元二次方程》实际应用之提分专项解答题必练题型 (二)

第21章《一元二次方程》实际应用之提分专项解答题必练题型(二)1.一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?2.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?4.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?5.宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?6.如图,要设计一幅宽20cm,长30cm的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3.如果要使彩条所占面积是图案面积的19%,求竖彩条的宽度.7.一次篮球联赛,每两个队之间都要进行一场比赛,总共要比赛36场,你能计算出有多少个队参加比赛吗?8.某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?9.如图,用长6m的铝合金条制成“日“字形窗框,请问宽和高各是多少时,窗户的透光面积为1.5m2(铝合金条的宽度不计)?10.永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地.“永定土楼”模型深受游客喜爱.图中折线(AB∥CD∥x轴)反映了某种规格土楼模型的单价y(元)与购买数量x(个)之间的函数关系.(1)求当10≤x≤20时,y与x的函数关系式;(2)已知某旅游团购买该种规格的土楼模型总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)参考答案1.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x (斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=,x2=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每斤的售价降低1元.2.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.3.解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,•(6﹣t)•t=4.t2﹣6t+8=0.t 1=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.当点Q到达C点时,S△PQB=××(6﹣t)=4∴t=答:经过2秒或秒后△PBQ的面积等于4cm2.4.解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.5.解:(1)捐款增长率为x,根据题意得:1000(1+x)2=1210,解得:x 1=0.1,x 2=﹣2.1(舍去).则x =0.1=10%.答:捐款的增长率为10%.(2)根据题意得:1210×(1+10%)=1331(元).答:第四天该校能收到的捐款是1331元.6.解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30﹣3x )(20﹣2x )=20×30×(1﹣19%),解得x 1=1,x 2=19(舍去).所以3x =3.答:竖彩条的宽度是3cm .7.解:设有x 个队参加比赛,每个队都要比赛(x ﹣1)次,但两队只比赛一次.则:,解得x 1=9,x 2=﹣8(舍去).答:有9个队参加比赛.8.解:设每轮传染中平均每个人传染了x 人,依题意得1+x +x (1+x )=121,∴x =10或x =﹣12(不合题意,舍去).所以,每轮传染中平均一个人传染了10个人.9.解:设宽为xm ,则高为m ,由题意得:x ×=1.5,解得:x 1=x 2=1,高是=1.5(米).答:宽为1米,高为1.5米.10.解:(1)当10≤x ≤20时,设y =kx +b (k ≠0)(11分)依题意,得(3分)解得(5分) ∴当10≤x ≤20时,y =﹣5x +250;(6分)(2)∵10×200<2625<20×150∴10<x <20(8分)依题意,得xy =x (﹣5x +250)=2625(10分) 即x 2﹣50x +525=0解得x 1=15,x 2=35(舍去)∴只取x =15.(12分)答:该旅游团共购买这种土楼模型15个.(13分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.如图反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家.如果菜地和青稞地的距离为a千米,小刚在青稞地除草比在菜地浇水多用了b分钟,则a、b的值分别为()
A.1,8
B.0.5,12
C.1,12
D.0.5,8
10.把一副三角板如图甲放置,其中 , , ,斜边 , ,把三角板 绕着点 顺时针旋转 得到△ (如图乙),此时 与 交于点 ,则线段 的长度为()
16.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3, ,
则BB1=.
17、如图,正方形ABCD中,AB=6,点E在边CD上,且DE=2.将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,
连接AG、CF.下列结论:①△ABG≌△AFG;
②AG∥CF;③sin∠EGC= ;④S△AGE=15.
(1)求A、B两点的坐标;
(2)求直线CD的解析式;
(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为 AB长.若存在,请直接写出点M的坐标;若不存在,请说明理由.
1.- 的倒数是()
A.- B.2C. D.-2
2.如图所示的几何体的左视图是()
3.下列图形中,是轴对称图形的是()
(A)(B)(C)(D)
4.某城市经济产值为12000000000元,这个数据用科学记数法可表示为1.2×10n,则n的值为( )
A.7B.8C.9D. 10
5.已知:直线 ,一块含30°角的直角三角板如图所示放置, ,则 等于()
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:
①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有( )
A.1个B.2个C.3个D.4个
二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.
13.不等式组 的解集是:
(A)30°
(B)35°
(C)40°
(D)45
6.如图,若△ABC和△DEF的面积分别为S1、S2,则()
A.S1=S2B.S1=S2
C.S1=S2D.S1=S2
7.已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为( )
A.4 dm B.2 dm C.2 dm D.4 )dm
8.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()
A.1.65米是该班学生身高的平均水平
B.班上比小华高的学生人数不会超过米25人
C.这组身高数据的中位数不一定是1.65
D.这组身高数据的众数不一定是1.65米
(1)九年级八班共有多少学生?
(2)计算图(10)中B所在扇形的圆心角的度数,并补全条形统计图;
(3)若该中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均10克米饭计算,这顿午饭将浪费多少千克米饭?
20.(本题满分8分)
如图(8),已知△ABC中AB=AC
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)条件下,连接CF,求证:∠E=∠ACF
21.(本题满分10分)为践行党的群众路线,乐陵市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.
活动中测得的数据如下:
①小明的身高DC=1.5m
②小明的影长CE=1.7cm
③小明的脚到旗杆底部的距离BC=9cm
A. B.
C. 4D.
11.如图,四边形ABCD是矩形,AB=8,BC=4,动点P以每秒2个单位的速度从点A沿线段AB向B点运动,同时动点Q以每秒3个单位的速度从点B出发沿B-C-D的方向运动,当点Q到达点D时P、Q同时停止运动,若记△PQA的面积为 ,运动时间为 ,则下列图象中能大致表示 与 之间函数关系图象的是:
如:圆心在 ,半径为5的圆的方程为: .(1)填空:
①以 为圆心,1为半径的圆的方程为: ;
②以 为圆心, 为半径的圆的方程为:;
(2)根据以上材料解决以下问题:
如图(16),以 为圆心的圆与 轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC垂足为D,延长BD交 轴于点E,已知 .
①连接EC,证明EC是⊙B的切线;
(3)点P为y轴右侧抛物线上一个动点,若S△PAB=32,
求出此时P点的坐标.
23.(本题满分10分)阅读下面材料:
如图15),圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上.圆心在 ,半径为 的圆的方程可以写为: .
②在BE上是否存在一点P,使PB=PC=PE=PO,若存在,求P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程;若不存在,说明理由.
24.(本题满分12分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程 的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D.点P是直线CD上的一个动点,点Q是直线AB上的一个动点.
④旗杆的影长BF=7.6m
⑤从D点看A点的仰角为30°
若要求出旗杆的高度,请你用两种方法选择需要的数据并写出计算过程(计算结果保留到0.1,参
考数据 ≈1.414. ≈1.732)
22.(本题满分10分)如图,抛物线 与 轴交于A(﹣2,0),B(6,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
植树株数(株)
5
6
7
小组个数
3
4
3
14.在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:
则这10个小组植树株数的方差是.
15.甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是.
2014-2015学年九年级第二次练兵
数学试题
注意事项:
1.本试题全卷满分120分,考试时间为120分钟.
2.答题前,考生务必将自己的学校、姓名、考号填写在答题纸应填处.
3.请将所有题目的答案答在答题纸上,答在本试题卷上一律无效.
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
其中正确的结论是.(只填序号)
三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.
18.(本题满分6分)先化简,再求值: ,其中 是方程 的解.
19.(本题满分8分)自从中央公布“八项规定”以来,乐陵市某中学积极开展“厉行节约,反对浪费”活动.为此,学校学生会对九年级八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制如下两个统计图,根据统计图提供的信息回答下列问题:
相关文档
最新文档