EMC Issues in High-Power Grid-Connected Photovoltaic Plants

合集下载

浓盐水电子有限公司-太阳能转换器产品说明书

浓盐水电子有限公司-太阳能转换器产品说明书

TPS_GCN_F_09.20E– Rev. 1 2012-10-29 Client: Huawei Technologies Co., LtdAdministration Building Headquarters of Huawei Technologies Co., Ltd.,Bantian, Longgang District, 518129 Shenzhen, PEOPLE'S REPUBLIC OFCHINAManufacturing place: Huawei Technologies Co., LtdAdministration Building Headquarters of Huawei Technologies Co., Ltd.,Bantian, Longgang District, 518129 Shenzhen, PEOPLE'S REPUBLIC OFCHINATest subject: Product: SOLAR INVERTERType:SUN2000-36KTL, SUN2000-33KTL-ATest specification: VDE-AR-N 4105:2011DIN VDE V 0124-100(VDE V 0124-100):2012DIN VDE 0126-1-1 (VDE V 0126-1-1):2013Purpose of examination: ∙Annex G.2, G.3, F3 and F4 from standard VDE-AR-N 4105∙TÜV SÜD certification mark specificationsTest result: The test results show that the presented product is in compliance with the specified requirements.Technical Report No. <70.409.16.086.03-02>G.2 Certificate of conformity for power generation unitsF.3 Requirements for the test report for power generation unitsG.3 Certificate of conformity of the network and system protectionF.4 Requirements for the test report for the NS protectionDated <2017-05-02>This technical report may only be quoted in full. Any use for advertising purposes must be granted in writing. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production.TPS_GCN_F_09.20E– Rev. 1 2012-10-29 1 Description of the test subject1.1 FunctionThese devices are transformer-less grid-connected PV inverters which converts direct current optimized by photovoltaic DC conditioner to alternating current, and they are in-tended to be connected in parallel with the public grid directly.They are intended for professional incorporation into PV system, and they are assessed on a component test basis.Firmware version: V200R0021.2 Consideration of the foreseeable misuseNot applicableCovered through the applied standardCovered by the following commentCovered by attached risk analysis1.3 Technical DataModel : SUN2000-36KTL, SUN2000-33KTL-APV input :d.c. Max. Input Voltage: 1100 Vd.c.d.c. MPP Range: 200-1000 Vd.c.d.c. Max. Input Current: 22 A /22 A /22 A /22 AIsc PV: 30 A /30 A /30 A /30 AAC output :a.c. Output Nominal Voltage: 3/N/PE~, 400Va.c. Nominal Operating Frequency: 50 Hza.c. Output Max. Current: 57,8 A (SUN2000-36KTL),48 A (SUN2000-33KTL-A)a.c. Output Rated Power: 36 kVA (SUN2000-36KTL),30 kVA (SUN2000-33KTL-A)a.c. Output Max. Active Power: 40 kW (SUN2000-36KTL), 33 kW (SUN2000-33KTL-A)a.c. Output Max. Apparent Power: 40 kVA (SUN2000-36KTL), 33 kVA (SUN2000-33KTL-A)Protection Class : IIngress protection : IP65Construction : Fixed equipmentSupply connection : Non-detachable power supply cableWeight : 55kg(SUN2000-36KTL)/60kg(SUN2000-33KTL-A)TPS_GCN_F_09.20E– Rev. 1 2012-10-29 2 Order2.1 Date of Purchase Order, Customer’s Reference2017.04.05, 7482130808/20002.2 Receipt of Test Sample, Location2016.04.15, 2017.04.15Nanjing CQC - Trusted Testing Technology Co., Ltd.No.99,Wenlan Road, Xianlin University Zone, Xianlin Street, Qixia District, NanJing, China2.3 Date of Testing2016-04-15 – 2016-05-04(original), 2017-04-15 – 2017-04-20(revised)2.4 Location of TestingNanjing CQC - Trusted Testing Technology Co., Ltd.No.99,Wenlan Road, Xianlin University Zone, Xianlin Street, Qixia District, NanJing, China2.5 Points of Non-compliance or Exceptions of the Test ProcedureNoneTPS_GCN_F_09.20E– Rev. 1 2012-10-29 3 Test Results3.1 Positive Test Results (as attachment of type D certificate)G.2 Certificate of conformity for power generation unitsCertificate of conformityPower generation unit No. 70.409.16.086.03-02ManufacturerHuawei Technologies Co., Ltd.Administration Building Headquarters of HuaweiTechnologies Co., Ltd., Bantian, Longgang District, 518129Shenzhen, PEOPLE'S REPUBLIC OF CHINA Type power generation unit SOLAR INVERTERModel SUN2000-36KTL, SUN2000-33KTL-AAssessment valuesMax. active power P Emax40048 W (SUN2000-36KTL)30322 W (SUN2000-33KTL-A)Max. apparent power S Emax40057 VA (SUN2000-36KTL)33127 VA (SUN2000-33KTL-A)Rated voltage 3/N/PE~, 400V Network connection rulesVDE-AR-N 4105 “Power generation systems connec tedto the low-voltage network”Technical minimum requirements for connection andparallel operation of power generation systems connectedto the low-voltage networkFirmware version V200R002Period of measurementFrom 2016-04-15 to 2016-05-04(original) and From 2017-04-15 to 2017-04-20(revised)The above mentioned power generation unit meets the requirements of VDE-AR-N 4105.Description of the structure and schematic set-up of the generating unit. (including single faultcheck)The generating unit integrated EMC filter on both PV and AC side converts direct current optimized byphotovoltaic DC conditioner to alternating current and it is intended to be connected in parallel with the low-voltage mains to supply common load. The generating unit has no electrical isolation between DC inputand AC output. The output is switched off by the failsafe inverter bridge and two relays in series. This al-lows a safe separation from generating unit to the network, also in case of failure. Refer to below illustra-tion.TPS_GCN_F_09.20E– Rev. 1 2012-10-29SUN2000-36KTL and SUN2000-33KTL-ATPS_GCN_F_09.20E– Rev. 1 2012-10-29 F.3 Requirements for the test report for power generation unitsExtract from test report for unit certificate“Determination of electrical properties”No. 70.409.16.086.03-02Type of systemGrid-connectedinverter for PVsystemManufacturer’s dataGeneration unitmanufacturerHuaweiTechnologies Co.,Ltd.Address:AdministrationBuildingHeadquarters ofHuaweiTechnologies Co.,Ltd., Bantian,Longgang District,518129 Shenzhen,PEOPLE'SREPUBLIC OFCHINAType of system:Grid-connected inverter for PVsystemActive power(nominal powerat referenceconditions):36kW (SUN2000-36KTL)30kW (SUN2000-33KTL-A)Rated voltage: 3/N/PE~, 400VPeriod ofmeasurement:From 2016-04-15 to 2016-05-04(original) and From 2017-04-15 to 2017-04-20(revised)Active power P Emax40048 W (SUN2000-36KTL), 30322 W (SUN2000-33KTL-A)(Assessment values)Reactive power reference(@0,91Un) – SUN2000-36KTLActive powerP/P Emax[%]10 20 30 40 50 60 70 80 90 100Max. possiblecosφunder-excited0,8020 0,8016 0,8014 0,8011 0,8009 0,8008 0,8007 0,8781* 0,9930* N/A**Max. possiblecosφover-excited0,7950 0,7975 0,7982 0,7987 0,7990 0,7991 0,7993 0,8695* 0,9880* N/A**The max. current is limited by software to 57,8 A, the apparent power and active power are limited accordingly when test at fixed grid voltage(0,91Un).S limited=P limited=57,8 x 209,3 x 3 ≈ 36293 W/VA“*”: Due to apparent power is limited to S limited, the active power is reduced accordingly when adjust cos φ. It is therefore not achieved to default cos φ at points 80% and 90% P/P Emax. The max. possible c os φ is recorded accordingly.“**”: The P Emax can not reached when test at 0,91Un.Reactive power reference (@Un) – SUN2000-36KTLActive powerP/P Emax[%]10 20 30 40 50 60 70 80 90 100Max. possiblecosφunder-excited0,8019 0,8015 0,8011 0,8010 0,8007 0,8007 0,8007 0,8006 0,9015* 0,9998*TPS_GCN_F_09.20E– Rev. 1 2012-10-29 Max. possiblecosφover-excited0,7951 0,7974 0,7982 0,7985 0,7991 0,7993 0,7993 0,7994 0,8988* 0,9998*“*”: Due to apparent power is limited to S Emax, the active power is reduced accordingly when adjust cos φ. It is therefore not achieved to default cos φ at points 90% and 100% P/P Emax. The max. possible cos φ is recorded accordingly.Reactive power reference (@1,09Un) – SUN2000-36KTLActive powerP/P Emax[%]10 20 30 40 50 60 70 80 90 100Max. possiblecosφunder-excited0,8023 0,8017 0,8012 0,8011 0,8008 0,8007 0,8007 0,8006 0,8966* 0,9998*Max. possiblecosφover-excited0,7954 0,7977 0,7984 0,7987 0,7990 0,7991 0,7994 0,7996 0,8987* 0,9998*“*”: Due to apparent power is limited to S Emax, the active power is red uced accordingly when adjust cos φ. It is therefore not achieved to default cos φ at points 90% and 100% P/P Emax. The max. possible cos φ is recorded accordingly.Reactive power reference (@Un) – SUN2000-33KTL-AActive powerP/P Emax [%]10 20 30 40 50 60 70 80 90 100Max. possiblecosφunder-excited- 0,8006 0,8010 0,8011 0,8012 0,8010 0,8010 0,8010 0,8012 0,9082*Max. possiblecosφover-excited- 0,7976 0,7977 0,7978 0,7980 0,7979 0,7973 0,7979 0,7982 0,9083*“*”: Due to apparent power is limited to S Emax, the active power is reduced accordingly when adjust cos φ. It is therefore not achieved to default cos φ at points 100% P/P Emax. The max. possible cos φ is recorded accordingly.Reactive power reference (@1,09Un) – SUN2000-33KTL-AActive powerP/P Emax[%]10 20 30 40 50 60 70 80 90 100Max. possiblecosφunder-excited- 0,8007 0,8010 0,8011 0,8012 0,8014 0,8011 0,8012 0,8008 0,9072*Max. possiblecosφover-excited- 0,7980 0,7977 0,7978 0,7980 0,7981 0,7981 0,7982 0,7981 0,9067*“*”: Due to apparent power is limited to S Emax, the active power is reduced accordingly when adjust cos φ. It is therefore not achieved to default cos φ at points 100% P/P Emax. The max. possible cos φ is recorded accordingly.TPS_GCN_F_09.20E– Rev. 1 2012-10-29 Compliance of required displacement factor cosφ– SUN2000-36KTLDefaultinsystemcontrol0,900ov 0,920ov0,940ov0,960ov0,980ov1,000 0,980un0,960un0,940un0,920un0,900unMeasuredvalueat PGUterminals0,8990 0,9198 0,9398 0,9598 0,9796 0,9998 0,9800 0,9600 0,9402 0,9202 0,9003Switching actions – SUN2000-36KTLMaking operation without default (of primary energy carrier) k i0,127Worst case at switch over of generator sections* k i-Making operation at reference conditions (of primary energycarrier)k i1,001Breaking operation at nominal power k i1,001Worst-case value of all switching operations k imax1,001Remark: “*” Not applicable for PV systemFlicker –SUN2000-36KTLAngle of network impedance ψk:32°1) 50°70°85°Coefficient of system flicker cψ: 2,38 - - -Remark: 1) R A = 0,24 Ω; X A = j 0,15 Ω at 50 Hz network impedance used for most unfavorable condition which is approximately 32° flicker angle.Reactive power transfer function – Standard-cosφ-(P)-characteristic – SUN2000-36KTLActive powerP/P n [%]10 20 30 40 50 60 70 80 90 100 cosφ0,9949 0,9987 0,9993 0,9995 0,9996 0,9799 0,9595 0,9398 0,9196 0,9999 Conform to Standard- cosφ-(P)-characteristicRemark:“*”:The maximum apparent power of the inverter is limited to SEmax. If setting cos φ≠1, the maximum active power is reduced accordingly. The active power 100% P/PEmax is therefore only achieved when cos φ = 1.Starting with a power of 0,2 P Emax, the characteristic curve shall be adhered to according to VDE AR-N 4105: 2011.TPS_GCN_F_09.20E– Rev. 1 2012-10-29 Harmonics – SUN2000-36KTLActivepowerP/Pn[%]0 10 20 30 40 50 60 70 80 90 100OrdinalnumberI [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%]2 - 0,214 0,265 0,302 0,347 0,395 0,428 0,464 0,506 0,544 0,5633 - 0,103 0,102 0,082 0,070 0,065 0,061 0,069 0,080 0,095 0,1014 - 0,075 0,090 0,084 0,074 0,065 0,056 0,047 0,043 0,051 0,0525 - 0,149 0,177 0,274 0,312 0,367 0,374 0,407 0,394 0,409 0,3896 - 0,026 0,037 0,032 0,032 0,032 0,030 0,030 0,032 0,039 0,0717 - 0,291 0,237 0,215 0,171 0,196 0,199 0,271 0,302 0,350 0,3428 - 0,021 0,021 0,030 0,028 0,030 0,032 0,033 0,036 0,037 0,0579 - 0,035 0,044 0,048 0,051 0,050 0,055 0,057 0,072 0,072 0,08310 - 0,021 0,017 0,029 0,029 0,026 0,028 0,026 0,031 0,025 0,02011 - 0,216 0,192 0,333 0,329 0,350 0,340 0,351 0,384 0,378 0,38212 - 0,018 0,019 0,030 0,029 0,026 0,028 0,027 0,036 0,035 0,02913 - 0,250 0,167 0,285 0,306 0,307 0,348 0,341 0,392 0,398 0,40414 - 0,015 0,016 0,020 0,019 0,019 0,019 0,022 0,026 0,028 0,02715 - 0,039 0,036 0,032 0,033 0,036 0,036 0,034 0,033 0,037 0,03716 - 0,015 0,014 0,018 0,018 0,019 0,020 0,023 0,030 0,033 0,03417 - 0,115 0,145 0,181 0,199 0,209 0,220 0,256 0,277 0,289 0,31118 - 0,014 0,015 0,023 0,021 0,021 0,021 0,028 0,039 0,041 0,03619 - 0,086 0,136 0,158 0,161 0,178 0,186 0,207 0,245 0,255 0,26020 - 0,013 0,013 0,020 0,016 0,015 0,016 0,018 0,026 0,028 0,02421 - 0,023 0,024 0,039 0,032 0,022 0,026 0,024 0,030 0,032 0,03422 - 0,012 0,016 0,022 0,022 0,014 0,015 0,018 0,024 0,026 0,02523 - 0,069 0,096 0,125 0,115 0,125 0,139 0,160 0,176 0,207 0,22224 - 0,015 0,020 0,024 0,027 0,021 0,038 0,024 0,031 0,035 0,03525 - 0,045 0,076 0,114 0,097 0,109 0,118 0,135 0,148 0,175 0,19626 - 0,015 0,018 0,014 0,016 0,026 0,038 0,033 0,023 0,027 0,02827 - 0,018 0,021 0,017 0,020 0,037 0,033 0,034 0,022 0,027 0,02828 - 0,013 0,017 0,013 0,012 0,021 0,016 0,031 0,031 0,022 0,02229 - 0,017 0,049 0,082 0,062 0,083 0,084 0,104 0,110 0,132 0,15430 - 0,012 0,017 0,016 0,013 0,021 0,020 0,018 0,045 0,029 0,03131 - 0,021 0,044 0,070 0,048 0,068 0,072 0,080 0,081 0,114 0,13232 - 0,012 0,013 0,014 0,011 0,014 0,020 0,016 0,031 0,025 0,03433 - 0,018 0,014 0,013 0,016 0,014 0,021 0,018 0,019 0,031 0,03934 - 0,014 0,011 0,015 0,014 0,012 0,020 0,018 0,019 0,022 0,03335 - 0,026 0,026 0,043 0,038 0,053 0,061 0,062 0,053 0,079 0,10636 - 0,014 0,011 0,013 0,016 0,015 0,019 0,020 0,017 0,022 0,03637 - 0,025 0,015 0,033 0,034 0,041 0,055 0,051 0,040 0,068 0,09138 - 0,013 0,011 0,012 0,013 0,013 0,016 0,019 0,015 0,019 0,02739 - 0,018 0,016 0,016 0,016 0,015 0,018 0,023 0,022 0,023 0,02640 - 0,013 0,011 0,015 0,013 0,012 0,015 0,020 0,021 0,019 0,020TPS_GCN_F_09.20E– Rev. 1 2012-10-29 Subharmonics – SUN2000-36KTLActivepowerP/Pn[%]0 10 20 30 40 50 60 70 80 90 100Frequency[Hz]I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%]75 - 0,045 0,047 0,049 0,051 0,052 0,054 0,056 0,059 0,060 0,061125 - 0,035 0,036 0,035 0,038 0,036 0,036 0,036 0,037 0,036 0,035 175 - 0,030 0,029 0,028 0,029 0,029 0,028 0,028 0,030 0,029 0,027 225 - 0,027 0,025 0,025 0,026 0,026 0,027 0,027 0,030 0,027 0,026 275 - 0,025 0,024 0,024 0,025 0,025 0,025 0,026 0,028 0,026 0,025 325 - 0,024 0,023 0,023 0,024 0,024 0,025 0,025 0,027 0,026 0,025 375 - 0,023 0,022 0,023 0,023 0,024 0,025 0,025 0,027 0,026 0,025 425 - 0,023 0,022 0,022 0,023 0,024 0,025 0,025 0,027 0,026 0,024 475 - 0,022 0,021 0,022 0,022 0,023 0,024 0,024 0,026 0,026 0,024 525 - 0,022 0,020 0,021 0,022 0,022 0,023 0,024 0,027 0,026 0,024 575 - 0,021 0,019 0,020 0,021 0,022 0,023 0,024 0,026 0,026 0,024 625 - 0,021 0,019 0,020 0,020 0,022 0,023 0,024 0,025 0,027 0,025 675 - 0,020 0,018 0,019 0,020 0,022 0,023 0,024 0,025 0,027 0,025 725 - 0,022 0,022 0,022 0,024 0,025 0,027 0,028 0,030 0,031 0,028 775 - 0,020 0,020 0,021 0,022 0,024 0,025 0,026 0,027 0,030 0,029 825 - 0,021 0,021 0,021 0,022 0,024 0,026 0,028 0,030 0,032 0,028 875 - 0,017 0,016 0,017 0,018 0,019 0,021 0,023 0,024 0,029 0,026 925 - 0,016 0,016 0,017 0,018 0,019 0,021 0,023 0,024 0,030 0,025 975 - 0,016 0,016 0,019 0,018 0,019 0,021 0,023 0,024 0,030 0,026 1025 - 0,017 0,019 0,026 0,021 0,019 0,021 0,022 0,029 0,034 0,026 1075 - 0,016 0,022 0,036 0,039 0,018 0,020 0,022 0,027 0,028 0,026 1125 - 0,016 0,021 0,034 0,035 0,018 0,020 0,022 0,032 0,031 0,026 1175 - 0,018 0,022 0,041 0,049 0,022 0,024 0,024 0,027 0,025 0,027 1225 - 0,020 0,024 0,024 0,032 0,030 0,049 0,025 0,026 0,025 0,027 1275 - 0,021 0,022 0,023 0,028 0,036 0,036 0,045 0,023 0,025 0,027 1325 - 0,020 0,026 0,015 0,017 0,049 0,049 0,049 0,022 0,026 0,027 1375 - 0,017 0,026 0,015 0,016 0,034 0,031 0,063 0,025 0,025 0,028 1425 - 0,018 0,025 0,015 0,016 0,037 0,022 0,047 0,047 0,025 0,028 1475 - 0,017 0,024 0,014 0,015 0,022 0,023 0,043 0,046 0,025 0,027 1525 - 0,017 0,023 0,014 0,015 0,021 0,025 0,021 0,051 0,107 0,029 1575 - 0,018 0,019 0,014 0,015 0,021 0,028 0,022 0,044 0,028 0,043 1625 - 0,018 0,018 0,022 0,016 0,018 0,029 0,022 0,025 0,108 0,041 1675 - 0,021 0,015 0,015 0,018 0,017 0,028 0,024 0,022 0,026 0,053 1725 - 0,021 0,016 0,021 0,019 0,015 0,027 0,026 0,022 0,024 0,049 1775 - 0,020 0,016 0,014 0,021 0,015 0,021 0,027 0,022 0,024 0,046 1825 - 0,020 0,016 0,013 0,019 0,016 0,021 0,031 0,023 0,025 0,042 1875 - 0,021 0,016 0,013 0,019 0,017 0,023 0,028 0,022 0,024 0,037 1925 - 0,020 0,015 0,014 0,018 0,018 0,022 0,029 0,023 0,024 0,033 1975 - 0,020 0,016 0,016 0,017 0,019 0,023 0,030 0,025 0,024 0,029TPS_GCN_F_09.20E– Rev. 1 2012-10-29Higher frequencies – SUN2000-36KTLActivepowerP/Pn[%]0 10 20 30 40 50 60 70 80 90 100Frequency[kHz]I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%]2.1 - 0,064 0,043 0,056 0,058 0,063 0,079 0,089 0,095 0,092 0,1062.3 - 0,066 0,047 0,055 0,050 0,046 0,056 0,063 0,073 0,088 0,0742.5 - 0,070 0,047 0,055 0,047 0,044 0,054 0,059 0,062 0,072 0,0742.7 - 0,084 0,058 0,066 0,053 0,049 0,060 0,075 0,073 0,072 0,0832.9 - 0,067 0,041 0,047 0,041 0,037 0,046 0,050 0,053 0,065 0,0643.1 - 0,059 0,040 0,050 0,040 0,033 0,037 0,043 0,050 0,060 0,0503.3 - 0,052 0,037 0,050 0,040 0,032 0,035 0,043 0,050 0,055 0,0563.5 - 0,045 0,037 0,038 0,037 0,031 0,035 0,040 0,036 0,041 0,0523.7 - 0,041 0,037 0,038 0,035 0,029 0,035 0,034 0,033 0,043 0,0503.9 - 0,030 0,041 0,035 0,030 0,030 0,031 0,037 0,044 0,041 0,0424.1 - 0,029 0,035 0,033 0,031 0,031 0,038 0,040 0,029 0,031 0,0334.3 - 0,025 0,027 0,032 0,032 0,026 0,028 0,028 0,028 0,029 0,0294.5 - 0,025 0,027 0,028 0,027 0,025 0,027 0,027 0,026 0,028 0,0294.7 - 0,024 0,025 0,025 0,026 0,025 0,025 0,026 0,026 0,027 0,0274.9 - 0,024 0,025 0,025 0,026 0,025 0,025 0,025 0,025 0,026 0,0275.1 - 0,024 0,024 0,024 0,026 0,025 0,026 0,027 0,028 0,029 0,0305.3 - 0,024 0,024 0,024 0,025 0,024 0,025 0,025 0,025 0,026 0,0285.5 - 0,024 0,024 0,024 0,025 0,024 0,025 0,025 0,025 0,025 0,0255.7 - 0,024 0,024 0,024 0,025 0,025 0,026 0,026 0,026 0,027 0,0285.9 - 0,024 0,024 0,024 0,024 0,024 0,025 0,024 0,025 0,025 0,0256.1 - 0,024 0,024 0,024 0,024 0,025 0,025 0,025 0,025 0,025 0,0256.3 - 0,024 0,024 0,025 0,025 0,026 0,025 0,025 0,025 0,026 0,0266.5 - 0,024 0,024 0,025 0,025 0,026 0,025 0,026 0,026 0,026 0,0266.7 - 0,024 0,024 0,024 0,024 0,025 0,025 0,025 0,025 0,025 0,0256.9 - 0,024 0,024 0,024 0,024 0,025 0,025 0,025 0,024 0,025 0,0257.1 - 0,024 0,024 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,0257.3 - 0,024 0,024 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,0257.5 - 0,024 0,024 0,024 0,024 0,024 0,025 0,024 0,024 0,024 0,0247.7 - 0,024 0,024 0,024 0,024 0,024 0,025 0,024 0,024 0,024 0,0247.9 - 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,0248.1 - 0,024 0,024 0,024 0,024 0,024 0,025 0,024 0,024 0,024 0,0248.3 - 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,0248.5 - 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,0248.7 - 0,024 0,024 0,024 0,024 0,025 0,024 0,025 0,024 0,025 0,0258.9 - 0,024 0,024 0,024 0,024 0,025 0,024 0,025 0,025 0,025 0,025 Remark:The harmonic values are maximum values from all phases.TPS_GCN_F_09.20E– Rev. 1 2012-10-29 Harmonics – SUN2000-33KTL-AActivepowerP/Pn[%]0 10 20 30 40 50 60 70 80 90 100OrdinalnumberI [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%]2 - 0,141 0,116 0,118 0,105 0,111 0,115 0,121 0,113 0,113 0,1373 - 0,183 0,193 0,227 0,207 0,193 0,195 0,188 0,196 0,203 0,2014 - 0,159 0,122 0,144 0,134 0,120 0,119 0,116 0,118 0,119 0,1225 - 0,789 0,973 0,563 0,435 0,418 0,471 0,502 0,553 0,593 0,6176 - 0,044 0,033 0,043 0,089 0,031 0,032 0,029 0,030 0,029 0,0317 - 0,409 0,903 0,805 0,713 0,548 0,439 0,351 0,314 0,297 0,3098 - 0,076 0,078 0,083 0,112 0,115 0,094 0,095 0,099 0,102 0,1419 - 0,051 0,056 0,084 0,092 0,102 0,099 0,063 0,062 0,059 0,08910 - 0,080 0,098 0,103 0,111 0,127 0,141 0,103 0,102 0,100 0,14111 - 0,428 0,219 0,111 0,381 0,512 0,569 0,593 0,594 0,618 0,61212 - 0,022 0,024 0,023 0,036 0,026 0,083 0,035 0,041 0,036 0,08913 - 0,308 0,223 0,106 0,270 0,402 0,465 0,510 0,522 0,553 0,55514 - 0,039 0,044 0,043 0,053 0,053 0,051 0,056 0,064 0,062 0,06515 - 0,031 0,041 0,036 0,047 0,047 0,046 0,051 0,054 0,054 0,05616 - 0,048 0,052 0,049 0,050 0,065 0,058 0,058 0,059 0,059 0,06917 - 0,149 0,156 0,130 0,104 0,246 0,334 0,379 0,403 0,417 0,42318 - 0,023 0,026 0,028 0,024 0,042 0,026 0,028 0,031 0,030 0,05219 - 0,137 0,117 0,158 0,169 0,200 0,311 0,394 0,462 0,512 0,55220 - 0,028 0,027 0,028 0,032 0,039 0,037 0,033 0,036 0,036 0,05521 - 0,039 0,038 0,044 0,036 0,035 0,058 0,051 0,053 0,050 0,05922 - 0,029 0,021 0,024 0,030 0,025 0,042 0,041 0,031 0,033 0,07923 - 0,100 0,054 0,078 0,080 0,072 0,141 0,185 0,209 0,230 0,23224 - 0,016 0,017 0,018 0,023 0,024 0,028 0,044 0,121 0,047 0,06725 - 0,074 0,086 0,078 0,195 0,149 0,181 0,257 0,323 0,379 0,41526 - 0,022 0,021 0,022 0,021 0,029 0,032 0,036 0,119 0,050 0,03927 - 0,034 0,035 0,037 0,034 0,030 0,041 0,052 0,073 0,072 0,05528 - 0,022 0,021 0,022 0,021 0,022 0,030 0,025 0,026 0,027 0,03429 - 0,124 0,124 0,088 0,048 0,051 0,061 0,101 0,137 0,162 0,17330 - 0,012 0,013 0,014 0,015 0,016 0,016 0,017 0,019 0,020 0,02231 - 0,116 0,150 0,135 0,126 0,142 0,111 0,140 0,194 0,240 0,27732 - 0,020 0,018 0,022 0,018 0,022 0,023 0,022 0,023 0,025 0,02733 - 0,030 0,031 0,029 0,030 0,025 0,030 0,034 0,037 0,037 0,04034 - 0,019 0,019 0,022 0,022 0,019 0,021 0,023 0,025 0,025 0,02735 - 0,080 0,072 0,067 0,038 0,055 0,036 0,058 0,096 0,133 0,16236 - 0,011 0,020 0,020 0,014 0,015 0,015 0,019 0,018 0,020 0,02237 - 0,130 0,105 0,111 0,094 0,138 0,119 0,106 0,134 0,170 0,20538 - 0,021 0,024 0,026 0,022 0,023 0,025 0,026 0,026 0,028 0,02939 - 0,026 0,025 0,028 0,024 0,030 0,029 0,026 0,029 0,030 0,03340 - 0,019 0,025 0,026 0,023 0,022 0,022 0,025 0,027 0,028 0,029TPS_GCN_F_09.20E– Rev. 1 2012-10-29 Subharmonics – SUN2000-33KTL-AActivepowerP/Pn[%]0 10 20 30 40 50 60 70 80 90 100Frequency[Hz]I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%]75 - 0,208 0,145 0,113 0,059 0,056 0,055 0,058 0,056 0,056 0,054125 - 0,067 0,226 0,146 0,048 0,047 0,046 0,045 0,046 0,045 0,044 175 - 0,191 0,126 0,117 0,079 0,046 0,046 0,045 0,046 0,045 0,045 225 - 0,093 0,069 0,115 0,095 0,054 0,054 0,054 0,055 0,053 0,054 275 - 0,071 0,048 0,084 0,135 0,047 0,049 0,047 0,049 0,047 0,048 325 - 0,073 0,041 0,063 0,123 0,082 0,042 0,043 0,043 0,041 0,045 375 - 0,050 0,043 0,064 0,105 0,109 0,046 0,050 0,054 0,051 0,120 425 - 0,047 0,045 0,058 0,096 0,172 0,069 0,050 0,051 0,050 0,139 475 - 0,044 0,041 0,054 0,057 0,110 0,124 0,046 0,047 0,047 0,152 525 - 0,036 0,034 0,037 0,060 0,124 0,141 0,113 0,048 0,064 0,222 575 - 0,037 0,040 0,041 0,064 0,044 0,125 0,184 0,293 0,235 0,102 625 - 0,036 0,039 0,040 0,067 0,042 0,121 0,117 0,057 0,071 0,221 675 - 0,035 0,036 0,037 0,067 0,040 0,041 0,179 0,289 0,230 0,050 725 - 0,029 0,033 0,033 0,050 0,051 0,036 0,038 0,045 0,043 0,043 775 - 0,031 0,032 0,033 0,051 0,048 0,037 0,038 0,042 0,041 0,057 825 - 0,028 0,029 0,030 0,031 0,064 0,035 0,039 0,040 0,041 0,061 875 - 0,025 0,056 0,043 0,030 0,061 0,034 0,039 0,042 0,042 0,075 925 - 0,038 0,030 0,038 0,031 0,058 0,047 0,036 0,038 0,038 0,078 975 - 0,033 0,055 0,046 0,031 0,046 0,048 0,036 0,037 0,037 0,075 1025 - 0,039 0,028 0,038 0,037 0,044 0,063 0,035 0,037 0,038 0,060 1075 - 0,031 0,025 0,031 0,037 0,027 0,076 0,031 0,032 0,033 0,068 1125 - 0,026 0,027 0,029 0,041 0,039 0,051 0,057 0,037 0,050 0,082 1175 - 0,022 0,025 0,026 0,033 0,037 0,059 0,088 0,046 0,106 0,068 1225 - 0,029 0,031 0,031 0,037 0,046 0,041 0,061 0,057 0,056 0,067 1275 - 0,027 0,029 0,031 0,030 0,041 0,048 0,088 0,052 0,108 0,064 1325 - 0,030 0,031 0,033 0,032 0,041 0,041 0,060 0,057 0,052 0,082 1375 - 0,024 0,026 0,029 0,028 0,031 0,044 0,034 0,038 0,039 0,058 1425 - 0,023 0,025 0,028 0,027 0,031 0,032 0,054 0,037 0,045 0,078 1475 - 0,019 0,021 0,021 0,022 0,024 0,025 0,027 0,031 0,032 0,034 1525 - 0,021 0,023 0,024 0,024 0,026 0,029 0,030 0,031 0,034 0,037 1575 - 0,018 0,019 0,021 0,020 0,023 0,025 0,026 0,028 0,030 0,032 1625 - 0,019 0,021 0,022 0,022 0,024 0,027 0,027 0,029 0,031 0,035 1675 - 0,018 0,020 0,021 0,021 0,022 0,026 0,026 0,027 0,028 0,036 1725 - 0,018 0,019 0,021 0,021 0,023 0,025 0,027 0,027 0,030 0,034 1775 - 0,017 0,027 0,022 0,022 0,023 0,024 0,029 0,028 0,032 0,036 1825 - 0,017 0,027 0,026 0,021 0,023 0,023 0,029 0,037 0,034 0,031 1875 - 0,023 0,026 0,026 0,023 0,025 0,025 0,029 0,029 0,033 0,034 1925 - 0,021 0,024 0,027 0,021 0,022 0,023 0,027 0,036 0,032 0,031 1975 - 0,025 0,021 0,028 0,024 0,025 0,027 0,028 0,030 0,032 0,035TPS_GCN_F_09.20E– Rev. 1 2012-10-29Higher frequencies – SUN2000-33KTL-AActivepowerP/Pn[%]0 10 20 30 40 50 60 70 80 90 100Frequency[kHz]I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%] I [%]2,1 - 0,125 0,183 0,148 0,150 0,168 0,164 0,147 0,167 0,204 0,240 2,3 - 0,106 0,120 0,125 0,121 0,131 0,130 0,116 0,121 0,137 0,155 2,5 - 0,067 0,090 0,116 0,135 0,147 0,175 0,169 0,164 0,168 0,174 2,7 - 0,101 0,124 0,125 0,146 0,166 0,199 0,197 0,179 0,177 0,197 2,9 - 0,079 0,068 0,085 0,109 0,136 0,158 0,185 0,182 0,170 0,153 3,1 - 0,059 0,067 0,071 0,064 0,066 0,073 0,091 0,107 0,115 0,120 3,3 - 0,064 0,083 0,082 0,101 0,111 0,123 0,143 0,167 0,174 0,168 3,5 - 0,051 0,070 0,079 0,074 0,084 0,097 0,107 0,129 0,150 0,161 3,7 - 0,046 0,070 0,075 0,075 0,071 0,070 0,073 0,076 0,077 0,086 3,9 - 0,043 0,054 0,059 0,066 0,079 0,079 0,084 0,093 0,114 0,133 4,1 - 0,039 0,045 0,050 0,049 0,054 0,057 0,062 0,066 0,071 0,088 4,3 - 0,037 0,039 0,041 0,042 0,048 0,049 0,048 0,049 0,057 0,068 4,5 - 0,036 0,041 0,044 0,039 0,044 0,048 0,050 0,051 0,050 0,054 4,7 - 0,034 0,035 0,036 0,035 0,038 0,039 0,041 0,044 0,044 0,045 4,9 - 0,034 0,036 0,037 0,035 0,036 0,038 0,038 0,040 0,040 0,040 5,1 - 0,034 0,036 0,037 0,035 0,035 0,036 0,037 0,040 0,041 0,041 5,3 - 0,033 0,034 0,034 0,034 0,033 0,035 0,034 0,035 0,036 0,036 5,5 - 0,033 0,034 0,034 0,034 0,034 0,035 0,034 0,035 0,036 0,037 5,7 - 0,033 0,033 0,034 0,035 0,036 0,035 0,034 0,035 0,036 0,036 5,9 - 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,034 0,034 6,1 - 0,032 0,033 0,033 0,033 0,033 0,034 0,033 0,033 0,034 0,034 6,3 - 0,033 0,033 0,033 0,033 0,033 0,034 0,034 0,034 0,035 0,035 6,5 - 0,033 0,034 0,035 0,035 0,035 0,035 0,036 0,035 0,036 0,036 6,7 - 0,032 0,032 0,032 0,032 0,033 0,034 0,034 0,033 0,033 0,034 6,9 - 0,032 0,032 0,032 0,032 0,033 0,033 0,033 0,033 0,033 0,033 7,1 - 0,033 0,033 0,033 0,033 0,033 0,034 0,034 0,034 0,034 0,034 7,3 - 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,034 0,033 0,033 7,5 - 0,032 0,032 0,032 0,032 0,032 0,033 0,033 0,033 0,033 0,033 7,7 - 0,032 0,032 0,032 0,032 0,032 0,032 0,033 0,033 0,033 0,033 7,9 - 0,032 0,032 0,032 0,032 0,033 0,033 0,033 0,033 0,033 0,032 8,1 - 0,032 0,032 0,032 0,032 0,032 0,032 0,033 0,033 0,033 0,033 8,3 - 0,032 0,032 0,032 0,032 0,032 0,032 0,033 0,032 0,033 0,032 8,5 - 0,032 0,032 0,032 0,032 0,032 0,032 0,033 0,032 0,033 0,032 8,7 - 0,032 0,032 0,033 0,032 0,032 0,032 0,033 0,033 0,033 0,033 8,9 - 0,032 0,032 0,032 0,032 0,032 0,032 0,033 0,033 0,033 0,033 Remark:The harmonic values are maximum values from all phases.。

瞬变电磁英语

瞬变电磁英语

瞬变电磁英语Fluctuating Electromagnetic ForcesThe realm of electromagnetism is a captivating and dynamic field of study, where the interplay between electricity and magnetism gives rise to a myriad of fascinating phenomena. At the heart of this intricate tapestry lies the concept of fluctuating electromagnetic forces, a phenomenon that has profound implications in various scientific and technological domains.Electromagnetic forces are the fundamental interactions that govern the behavior of charged particles, whether they are stationary or in motion. These forces arise from the interaction between electric and magnetic fields, which are inextricably linked through Maxwell's equations. When a charged particle experiences a change in its motion or position, it creates a fluctuating electromagnetic field, which in turn exerts a force on other nearby charged particles.The study of fluctuating electromagnetic forces has been a subject of keen interest for scientists and engineers alike. In the realm of particle physics, these forces play a crucial role in the behavior of subatomic particles and the dynamics of high-energy collisions. Theability to predict and harness these forces has enabled the development of sophisticated particle accelerators and detectors, which have revolutionized our understanding of the fundamental building blocks of matter.Beyond the realm of particle physics, fluctuating electromagnetic forces have found numerous applications in various fields. In the field of materials science, these forces play a crucial role in the understanding and manipulation of the properties of materials at the nanoscale. The ability to control and engineer these forces has led to the development of novel materials with exceptional electrical, magnetic, and optical properties, opening up new avenues for technological advancements.In the realm of electronics and communications, fluctuating electromagnetic forces are of paramount importance. The design and operation of electronic devices, from simple transistors to complex integrated circuits, rely heavily on the precise control and management of these forces. The ability to mitigate the detrimental effects of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues has been a driving force behind the continuous evolution of electronic systems, ensuring their reliability and performance.The field of energy generation and transmission is another areawhere fluctuating electromagnetic forces play a pivotal role. The generation of electricity through the use of electromagnetic induction, as seen in power generators and transformers, is a direct consequence of these forces. Similarly, the transmission of electrical power over long distances requires the careful management of electromagnetic fields to minimize energy losses and ensure grid stability.In the realm of biomedical engineering, fluctuating electromagnetic forces have found intriguing applications. The use of magnetic resonance imaging (MRI) technology, a powerful diagnostic tool, relies on the intricate interplay between electromagnetic fields and the human body. Additionally, the emerging field of bioelectromagnetics explores the potential therapeutic applications of electromagnetic fields in areas such as pain management, tissue regeneration, and the treatment of certain neurological disorders.As the world continues to evolve and technological advancements accelerate, the understanding and control of fluctuating electromagnetic forces will become increasingly crucial. Researchers and engineers across various disciplines are actively exploring new frontiers, seeking to harness the power of these forces to create innovative solutions that address the pressing challenges of our time.In conclusion, the study of fluctuating electromagnetic forces is amultifaceted and ever-evolving field of inquiry. From the fundamental principles of particle physics to the practical applications in electronics, energy, and biomedicine, these forces have shaped and continue to shape the trajectory of scientific and technological progress. As we delve deeper into the mysteries of the electromagnetic realm, we unlock new possibilities for discovery and innovation, paving the way for a future where the interplay between electricity and magnetism holds the key to unlocking the vast potential of our universe.。

SIGNALINTEGRITY(信号完整性)外文翻译

SIGNALINTEGRITY(信号完整性)外文翻译

SIGNAL INTEGRITYRaymond Y. Chen, Sigrid, Inc., Santa Clara, CaliforniaIntroductionIn the realm of high-speed digital design, signal integrity has become a critical issue, and is posing increasing challenges to the design engineers. Many signal integr ity problems are electromagnetic phenomena in nature and hence related to the EMI/EMC discussions in the previous sections of this book. In this chapter, we will discuss what the typical signal integrity problems are, where they come from, why it is important to understand them and how we can analyze and solve these issues. Several software tools available at present for signal integrity analysis and current trends in this area will also be introduced.The term Signal Integrity (SI) addresses two concerns in the electrical design aspects – the timing and the quality of the signal. Does the signal reach its destination when it is supposed to? And also, when it gets there, is it in good condition? The goal of signal integrity analysis is to ensure reliable high-speed data transmission. In a digital system, a signal is transmitted from one component to another in the form of logic 1 or 0, which is actually at certain reference voltage levels. At the input gate of a receiver, voltage above the reference value Vih is considered as logic high, while voltage below the reference value Vil is considered as logic low. Figure 14-1 shows the ideal voltage waveform in the perfect logic world, whereas Figure 14-2 shows how signal will look like in a real system. More complex data, composed of a string of bit 1 and 0s, are actually continuous voltage waveforms. The receiving component needs to sample the waveform in order to obtain the binary encoded information. The data sampling process is usually triggered by the rising edge or the falling edge of a clock signal as shown in the Figure 14-3. It is clear from the diagram that the data must arrive at the receiving gate on time and settle down to a non-ambiguous logic state when the receiving component starts to latch in. Any delay of the data or distortion of the data waveform will result in a failure of the data transmission. Imagine if the signal waveform in Figure 14-2 exhibits excessive ringing into the logic gray zone while the sampling occurs, then the logic level cannot be reliably detected.SI ProblemsT ypical SI Problems“Timing” is everything in a high-speed system. Signal timing depends on the delay caused by the physical length that the signal must propagate. It also depends on the shape of the waveform w hen the threshold is reached. Signal waveform distortions can be caused by different mechanisms. But there are three mostly concerned noise problems:•Reflection Noise Due to impedance mismatch, stubs, visa and other interconnect discontinuities. •Crosstalk Noise Due to electromagnetic coupling between signal traces and visa.•Power/Ground Noise Due to parasitic of the power/ground delivery system during drivers’ simultaneous switching output (SSO). It is sometimes also called Ground Bounce, Delta-I Noise or Simultaneous Switching Noise (SSN).Besides these three kinds of SI problems, there is other Electromagnetic Compatibility or Electromagnetic Interference (EMC/EMI) problems that may contribute to the signal waveform distortions. When SI problems happen and the system noise margin requirements are not satisfied – the input to a switching receiver makes an inflection below Vih minimum or above Vil maximum; the input to a quiet receiver rises above V il maximum or falls below Vih minimum; power/ground voltage fluctuations disturb the data in the latch, then logic error, data drop, false switching, or even system failure may occur. These types of noise faults are extremely difficult to diagnose and solve after the system is built or prototyped. Understanding and solving these problems before they occur will eliminate having to deal with them further into the project cycle,and will in turn cut down the development cycle and reduce the cost[1]. In the later part of thischapter, we will have further investigations on the physical behavior of these noise phenomena, their causes, their electrical models for analysis and simulation, and the ways to avoid them.1. Where SI Problems HappenSince the signals travel through all kinds of interconnections inside a system, any electrical impact happening at the source end, along the path, or at the receiving end, will have great effects on the signal timing and quality. In a typical digital system environment, signals originating from the off-chip drivers on the die (the chip) go through c4 or wire-bond connections to the chip package. The chip package could be single chip carrier or multi-chip module (MCM). Through the solder bumps of the chip package, signals go to the Printed Circuit Board (PCB) level. At this level, typical packaging structures include daughter card, motherboard or backplane. Then signals continue to go to another system component, such as an ASIC (Application Specific Integrated Circuit) chip, a memory module or a termination block. The chip packages, printed circuit boards, as well as the cables and connecters, form the so-called different levels of electronic packaging systems, as illustrated in Figure 14-4. In each level of the packaging structure, there are typical interconnects, such as metal traces, visa, and power/ground planes, which form electrical paths to conduct the signals. It is the packaging interconnection that ultimately influences the signal integrity of a system.2. SI In Electronic PackagingTechnology trends toward higher speed and higher density devices have pushed the package performance to its limits. The clock rate of present personal computers is approaching gigahertz range. As signal rise-time becomes less than 200ps, the significant frequency content of digital signals extends up to at least 10 GHz. This necessitates the fabrication of interconnects and packages to be capable of supporting very fast varying and broadband signals without degrading signal integrity to unacceptable levels. While the chip design and fabrication technology have undergone a tremendous evolution: gate lengths, having scaled from 50 µm in the 1960s to 0.18 µm today, are projected to reach 0.1 µm in the next few years; on-chip clock frequency is doubling every 18 months; and the intrinsic delay of the gate is decreasing exponentially with time to a few tens of Pico-seconds. However, the package design has lagged considerably. With current technology, the package interconnection delay dominates the system timing budget and becomes the bottleneck of the high-speed system design. It is generally accepted today that package performance is one of the major limiting factors of the overall system performance.Advances in high performance sub-micron microprocessors, the arrival of gigabit networks, and the need for broadband Internet access, necessitate the development of high performance packaging structures for reliable high-speed data transmission inside every electronics system.Signal integrity is one of the most important factors to be considered when designing these packages (chip carriers and PCBs) and integrating these packages together.3、SI Analysis3.1. SI Analysis in the Design FlowSignal integrity is not a new phenomenon and it did not always matter in the early days of the digital era. But with the explosion of the information technology and the arrival of Internet age, people need to be connected all the time through various high-speed digital communication/computing systems. In this enormous market, signal integrity analysis will play a more and more critical role to guarantee the reliable system operation of these electronics products. Without pre-layout SI guidelines, prototypes may never leave the bench; without post-layout SI verifications, products may fail in the field. Figure 14-5 shows the role of SI analysis in the high-speed design process. From this chart, we will notice that SI analysis is applied throughout the design flow and tightly integrated into each design stage. It is also very common to categorize SI analysis into two main stages: reroute analysis and post route analysis.In the reroute stage, SI analysis can be used to select technology for I/Os, clock distributions, chip package types, component types, board stickups, pin assignments, net topologies, and termination strategies. With various design parameters considered, batch SI simulations on different corner cases will progressively formulate a set of optimized guidelines for physical designs of later stage. SI analysis at this stage is also called constraint driven SI design because the guidelines developed will be used as constraints for component placement and routing. The objective of constraint driven SI design at the reroute stage is to ensure that the signal integrity of the physical layout, which follows the placement/routing constraints for noise and timing budget, will not exceed the maximum allowable noise levels. Comprehensive and in-depth reroute SI analysis will cut down the redesign efforts and place/route iterations, and eventually reduce design cycle.With an initial physical layout, post route SI analysis verifies the correctness of the SI design guidelines and constraints. It checks SI violations in the current design, such as reflection noise, ringing, crosstalk and ground bounce. It may also uncover SI problems that are overlooked in the reroute stage, because post route analysis works with physical layout data rather than estimated data or models, therefore it should produce more accurate simulation results.When SI analysis is thoroughly implemented throughout the whole design process, a reliable high performance system can be achieved with fast turn-around.In the past, physical designs generated by layout engineers were merely mechanical drawings when very little or no signal integrity issues were concerned. While the trend of higher-speed electronics system design continues, system engineers, responsible for developing a hardware system, are getting involved in SI and most likely employ design guidelines and routing constraints from signal integrity perspectives. Often, they simply do not know the answers to some of the SI problems because most of their knowledge is from the engineers doing previous generations of products. To face this challenge, nowadays, a design team (see Figure 14-6) needs to have SI engineers who are specialized in working in this emerging technology field. When a new technology is under consideration, such as a new device family or a new fabrication process for chip packages or boards, SI engineers will carry out the electrical characterization of the technology from SI perspectives, and develop layout guideline by running SI modeling and simulation software [2]. These SI tools must be accurate enough to model individual interconnections such as visa, traces, and plane stickups. And they also must be very efficient so what-if analysis with alternative driver/load models and termination schemes can be easily performed. In the end, SI engineers will determine a set of design rules and pass them to the design engineers and layout engineers. Then, the design engineers, who are responsible for the overall system design, need to ensure the design rules are successfully employed. They may run some SI simulations on a few critical nets once the board is initially placed and routed. And they may run post-layout verifications as well. The SI analysis they carry out involves many nets. Therefore, the simulation must be fast, though it may not require the kind of accuracy that SI engineers are looking for. Once the layout engineers get the placement and routing rules specified in SI terms, they need to generate an optimized physical design based on these constraints. And they will provide the report on any SI violations in a routed system using SI tools. If any violations are spotted, layout engineers will work closely with design engineers and SI engineers to solve these possible SI problems.3.2.Principles of SI AnalysisA digital system can be examined at three levels of abstraction: log ic, circuit theory, and electromagnetic (EM) fields. The logic level, which is the highest level of those three, is where SI problems can be easily identified. EM fields, located at the lowest level of abstraction, comprise the foundation that the other levels are built upon [3]. Most of the SI problems are EM problems in nature, such as the cases of reflection, crosstalk and ground bounce. Therefore, understanding the physical behavior of SI problems from EM perspective will be very helpful. For instance, in the following multi-layer packaging structure shown in Figure 14-7, a switching current in via a will generate EM waves propagating away from that via in the radial direction between metal planes. The fields developed between metal planes will cause voltage variations between planes (voltage is the integration of the E-field). When the waves reach other visa, they will induce currents in those visa. And the induced currents in that visa will in turn generate EM waves propagating between the planes. When the waves reach the edges of the package, part of them will radiate into the air and part of them will get reflected back. When the waves bounce back and forth inside the packaging structure and superimpose to each other, resonance will occur. Wave propagation, reflection, coupling and resonance are the typical EM phenomena happening inside a packaging structure during signal transients. Even though EM full wave analysis is much more accurate than the circuit analysis in the modeling of packaging structures, currently, common approaches of interconnect modeling are based on circuit theory, and SI analysis is carried out with circuit simulators. This is because field analysis usually requires much more complicated algorithms and much larger computing resources than circuit analysis, and circuit analysis provides good SI solutions at low frequency as an electrostatic approximation.Typical circuit simulators, such as different flavors of SPICE, employ nodal analysis and solve voltages and currents in lumped circuit elements like resistors, capacitors and inductors. In SI analysis, an interconnect sometimes will be modeled as a lumped circuit element. For instance, a piece of trace on the printed circuit board can be simply modeled as a resistor for its finite conductivity. With this lumped circuit model, the voltages along both ends of the trace are assumed to change instantaneously and the travel time for the signal to propagate between the two ends is neglected. However, if the signal propagation time along the trace has to be considered, a distributed circuit model, such as a cascaded R-L-C network, will be adopted to model the trace. To determine whether the distributed circuit model is necessary, the rule of thumb is – if the signal rise time is comparable to the round-trip propagation time, you need to consider using the distributed circuit model.For example, a 3cm long stripling trace in a FR-4 material based printed circuit board will exhibits 200ps propagation delay. For a 33 MHz system, assuming the signal rise time to be 5ns, the trace delay may be safely ignored; however, with a system of 500 MHz and 300ps rise time, the 200ps propagation delay on the trace becomes important and a distributed circuit model has to be used to model the trace. Through this example, it is easy to see that in the high-speed design, with ever-decreasing signal rise time, distributed circuit model must be used in SI analysis.Here is another example. Considering a pair of solid power and ground planes in a printed circuit board with the dimension of 15cm by 15cm, it is very natural to think the planes acting as a large, perfect, lumped capacitor, from the circuit theory point of view. The capacitor model C= erA/d, an electro-static solution, assumes anywhere on the plane the voltages are the same and all the charges stored are available instantaneously anywhere along the plane. This is true at DC and low frequency. However, when the logics switch with a rise time of 300ps, drawing a large amount of transient currents from the power/ground planes, they perceive the power/ground structure as a two-dimensional distributed network with significant delays. Only some portion of the plane charges located within a small radius of the switching logics will be able to supply the demand. And voltages between the power/ground planes will have variations at different locations. In this case, an ideal lumped capacitor model is obviously not going to account for the propagation effects. Two-dimensional distributed R-L-C circuit networks must be used to model the power/ground pair.In summary, as the current high-speed design trend continues, fast rise time reveals the distributed nature of package interconnects. Distributed circuit models need to be adopted to simulate the propagation delay in SI analysis. However, at higher frequencies, even the distributed circuit modeling techniques are not good enough, full wave electromagnetic field analysis based on solving Maxwell’s equations must come to play. As presen ted in later discussions, a trace will not be modeled as a lumped resistor, or a R-L-C ladder; it will be analyzed based upon transmission line theory; and a power/ground plane pair will be treated as a parallel-plate wave guide using radial transmission line theory.Transmission line theory is one of the most useful concepts in today’s SI analysis. And it is a basic topic in many introductory EM textbooks. For more information on the selective reading materials, please refer to the Resource Center in Chapter 16.In the above discussion, it can be noticed that signal rise time is a very important quantity in SI issues. So a little more expanded discussion on rise time will be given in the next section.信号完整性介绍在高速数字设计领域,信号完整性已经成为一个严重的问题,是造成越来越多的挑战的设计工程师。

2024版Ansoft

2024版Ansoft

Ansoft•Ansoft Software Overview•Ansoft Electrical SimulationTechnology目录•Ansoft's application in the fieldof microwave and radiofrequency•Ansoft application in the field ofpower electronics•Ansoft application in signalprocessing field•Ansoft software operation 目录guide and skill sharing01Ansoft SoftwareOverviewAnsoft software is a professional electrical field simulation software, which can simulate and analyze the electrical field, circuit, and thermal field of various electronic devices Ansoft software supports a variety of CAD data formats and can be seamlessly connected with other EDA software to achieve co simulation and optimization designIt has the characteristics of power simulationfunction, high simulation accuracy, easy to useand good opennessSoftware background and characteristicsApplication field and scopeAnsoft software is widely used in the design and analysis of motors, transformers, sensors,actors, inverters, and other electronic devicesIt can be used for electromagnetic interference (EMI) and electromagnetic compatibility (EMC)analysis of electronic systemsAnsoft software can also be used for the simulation and optimization design of microwavedevices, antennas, radars, and other high frequency electronic systemsAnsoft software was first developed by American school Dr. Zoltan J. Cendes in the 1980s After more than 30 years of development, it has become one of the most widely used electrical field simulation software in the world At present, Ansoft software hasbeen widely used in the fields ofelectronics, electrical appliances,aerospace, defense militaryindustry, etc., and has played animportant role in improving thedesign level and reducing thecost of electronic productsWith the continuousdevelopment of computertechnology and numericalsimulation technology, Ansoftsoftware will continue to improveits simulation accuracy andefficiency, and provide morepowerful support for the designand analysis of electronic devices010203 Development history and current situation02Ansoft ElectricalSimulationTechnology2D/3D Electrical Field Simulation2D Electrical Field Simulation01Provides fast and accurate solutions for planar electricalproblems3D Electrical Field Simulation02Offers comprehensive analysis of three dimensional electricalfields, taking into account the effects of complex geometry andmaterialsParameter Studies03Allow users to perform parameter sweeps to optimize designsand understand the impact of different variables on performanceHigh Frequency Circuit SimulationCircuit ModelingEnable the creation of accurate circuit models for high frequency components,such as transistors, diodes, and passive elementsSPICE IntegrationSupports integration with SPICE based circuit simulators for co simulation ofelectrical and circuit level effectsFrequency Domain AnalysisProvide tools for frequency domain analysis, including impact and tolerancecalculations, as well as S-Parameter extractionMotor Design and AnalysisMotor modelingOffers a range of motor modeling options, including permanent magnet,introduction, and switched relationship motorsPerformance AnalysisEnable detailed analysis of motor performance, including torque, speed,efficiency, and thermal characteristicsControl System IntegrationSupports integration with control system design tools, allowing for theevaluation of control strategies on the motor designAnsoft'sapplication in 03the field ofmicrowave andradiofrequencyAnsoft provides accurate models for a wide range of microwave and RF devices, including transistors, amplifiers, mixers, and oscillators With Ansoft's advanced circuitsimulators, engineers can designand analyze complex microwaveand RF circuits, taking intoaccount various parameters suchas frequency response, noisefigure, and linearityAnsoft enables system levelsimulation of microwave and RFsystems, allowing engineers toevaluate the performance of theentire system before prototypingDevice Modeling Circuit Simulation System LevelSimulation Modeling and Simulation of Microwave RF DevicesAntenna design and optimizationAntenna ModelingAnsoft provides powerful tools for modeling ants ofvarious types, such as wire, microstrip, and reflectorantsRadiation Pattern AnalysisEngineers can use Ansoft to analyze the radiationpatterns of antenna and optimize them for specificapplicationsAntenna Array DesignWith Ansoft, engineers can design and simulateantenna arrays, taking into account factors such asbeamforming, sidelobe levels, and grating lobesEMC AnalysisAnsoft enables engineers to perform electromagnetic compatibility (EMC) analysis to ensure that their designs comply with international EMC standards要点一要点二EMI AnalysisEngineers can use Ansoft to identify potential sources of electrical interference (EMI) in their designs and take measures to limit themSignal Integrity AnalysisAnsoft provides tools for signal integrity analysis, allowing engineers to assess the impact of EMI on signal quality and system performance要点三Electrical compatibility and interference analysis04Ansoft application inthe field ofpowerelectronicsAccurate modeling of power electronic devices: Ansoft provides a comprehensive set of tools for modeling and simulating power electronic devices, such as diodes, transformers, and thyristors These tools enable engineers to accurately report the behavior of these devices under various operating conditions Simulation of power electroniccircuits: With Ansoft, engineerscan simulate power electroniccircuits to predict theirperformance and behavior Thisincludes the ability to analyzecircuit waveforms, calculatepower losses, and assess theimpact of different componentparameters on circuitperformanceThermal analysis of powerelectronic devices: Ansoft'sthermal analysis tools allowengineers to study the heattransfer and temperaturedistribution in power electronicdevices This is critical for ensuringthe reliability and durability ofthese devices, as overeating canlead to precision failureModeling and Simulation of Power Electronic DevicesDesign and optimization of motor drive system•Motor design and analysis: Ansoft provides a range of tools for motordesign and analysis, enabling engineers to optimize motorperformance and efficiency This includes the ability to model differenttypes of motors, such as induction motors, permanent magnetsynchronous motors, and switched relationship motors•Drive system simulation: With Ansoft, engineers can simulate theentire motor drive system, including the motor, power converter, andcontrol system This allows them to assess the system's performanceunder different operating conditions and optimize the design forimproved efficiency and reliability•Control system design: Ansoft's control system design tools enableengineers to design and implement advanced control algorithms formotor drive systems This includes the ability to model and simulatevarious control strategies, such as field oriented control, direct torquecontrol, and model predictive controlHarmonic Analysis and Governance of Power System05Ansoft application insignalprocessingfieldTransmission linemodelingAnsoft provides accurate models for transmission lines, allowing for the analysis of signal promotion and reflection in complex systemsS-parameterextractionThe software can extract S-parameters, which are key tounderstanding the behavior ofhigh frequency signals incircuitsCrosstalk andcoupling analysisAnsoft enables the analysis ofcrosstalk and coupling effectsin multi layer PCBs andpackages, ensuring signalintegrity in dense designs01 02 03Power delivery network (PDN)modelingAnsoft provides tools to model the PDN, including power plans, via, and decoupling capacitorsIR drop and voltage regulationanalysisThe software can analyze IR drop and voltage regulation issues, ensuring reliable power delivery to critical componentsPower and ground bond analysisAnsoft can simulate power and ground bond effects, which are important considerations in high speed digital designs3D field solversAnsoft's 3D field solvers enable accurate simulation of electrical fields, allowing for the prediction of EMC/EMI issues Radiatedemissions analysisThe software can analyze radiatedemissions from PCBs and systems,helping to identify potential EMIproblemsSusceptibilityanalysisAnsoft can simulate thesusceptibility of a design toexternal EMI sources, providinginsights into potential interferenceissuesEMC/EMI simulation and prediction06Ansoft softwareoperationguide and skillsharingSystem requirementsIntroduce the hardware andsoftware requirements forrunning Ansoft software,including operating system,processor, memory, disk space,and necessary softwaredependenciesInstallation stepsDetail the step by step process for installing Ansoft software, including downloading the installation package, running the installer, and following the prompts to complete the installationConfiguration settingsExplain how to configure Ansoftsoftware after installation, includingTHANKS感谢观看。

电气外文翻译---电力电子系统的电磁兼容问题

电气外文翻译---电力电子系统的电磁兼容问题

外文资料译文Power Electronics Electromagnetic CompatibilityThe electromagnetic compatibility issues in power electronic systems are essentially the high levels of conducted electromagnetic interference (EMI) noise because of the fast switching actions of the power semiconductor devices. The advent of high-frequency, high-power switching devices resulted in the widespread application of power electronic converters for human productions and livings. The high-power rating and the high-switching frequency of the actions might result in severe conducted EMI. Particularly, with the international and national EMC regulations have become more strictly, modeling and prediction of EMI issues has been an important research topic.By evaluating different methodologies of conducted EMI modeling and prediction for power converter systems includes the following two primary limitations: 1) Due to different applications, some of the existing EMI modeling methods are only valid for specific applications, which results in inadequate generality. 2) Since most EMI studies are based on the qualitative and simplified quantitative models, modeling accuracy of both magnitude and frequency cannot meet the requirement of the full-span EMI quantification studies, which results in worse accuracy. Supported by National Natural Science Foundation of China under Grant 50421703, this dissertation aims to achieve an accurate prediction and a general methodology. Several works including the EMI mechanisms and the EMI quantification computations are developed for power electronic systems. The main contents and originalities in this research can be summarized as follows.I. Investigations on General Circuit Models and EMI Coupling ModesIn order to efficiently analyze and design EMI filter, the conducted EMI noise is traditional decoupled to common-mode (CM) and differential-mode (DM) components. This decoupling is based on the assumption that EMI propagation paths have perfectly balanced and time-invariant circuit structures. In a practical case, power converters usually present inevitable unsymmetrical or time-variant characteristics due to the existence of semiconductor switches. So DM and CM components can not be totally decoupled and they can transform to each other. Therefore, the mode transformation led to another new mode of EMI: mixed-mode EMI. In order to understand fundamental mechanisms by which the mixed-mode EMI noise is excited and coupled, this dissertation proposes the general concept of lumped circuit model for representing the EMI noise mechanism for power electronic converters. The effects of unbalanced noise source impedances on EMI mode transformation are analyzed. The mode transformations between CM and DM components are modeled. The fundamental mechanism of the on-intrinsic EMI is first investigated for a switched mode power supply converter. In discontinuousconduction mode, the DM noise is highly dependent on CM noise because of the unbalanced diode-bridge conduction. It is shown that with the suitable and justified model, many practical filters pertinent to mixed-mode EMI are investigated, and the noise attenuation can also be derived theoretically. These investigations can provide a guideline for full understanding of the EMI mechanism and accuracy modeling in power electronic converters. (Publications: A new technique for modeling and analysis of mixed-mode conducted EMI noise, IEEE Transactions on Power Electronics, 2004; Study of differential-mode EMI of switching power supplies with rectifier front-end, Transactions of China Electrotechnical Society, 2006)II. Identification of Essential Coupling Path Models for Conducted EMI Prediction Conducted EMI prediction problem is essentially the problem of EMI noise source modeling and EMI noise propagation path modeling. These modeling methods can be classified into two approaches, mathematics-based method and measurement-based method. The mathematics method is very time-consuming because the circuit models are very complicated. The measurement method is only valid for specific circuit that is conveniently to be measured, and is lack of generality and impracticability. This dissertation proposes a novel modeling concept, called essential coupling path models, derived from a circuit theoretical viewpoint, means that the simplest models contain the dominant noise sources and the dominant noise coupling paths, which can provide a full feature of the EMI generations. Applying the new idea, this work investigates the conducted EMI coupling in an AC/DC half-bridge converter. Three modes of conducted EMI noise are identified by time domain measurements. The lumped circuit models are derived to describe the essential coupling paths based on the identification of the EMI coupling modes. Meanwhile, this study illustrates the extraction of the parameters in the afore-described models by measurements, and demonstrates the significance of each coupling path in producing conducted EMI. It is shown that the proposed method is very effective and accurate in identifying and capturing EMI features. The equivalent models of EMI noise are sorted out by just a few simple measurements. Under these approaches, EMI performance can be predicted together with the filtering strategies. (Publications: Identification of essential coupling path models for conducted EMI prediction in switching power converters, IEEE Transactions on Power Electronics, 2006; Noise source lumped circuit modeling and identification for power converters, IEEE Transactions on Industrial Electronics, 2006)III. High Frequency Conducted EMI Source ModelingThe conventional method of EMI prediction is to model the current or voltage source as a periodic trapezoidal pulse train. However, the single slope approximation for rise and fall transitions can not characterize the real switching transitions involved in high frequency resonances. In most common noise source models simple trapezoidal waveforms are used where the high frequency information of the EMI spectrum is lost. Those models made several important assumptions which greatly impair accuracy in the high frequency range of conducted noise. To achieve reasonable accuracy for EMI modeling at higher frequencies, the relationship between the switching transitions modeling and the EMI spectrum is studied. An important criterion is deduced to givethe reasonable modeling frequency range for the traditional simple approximation method. For the first time, an improved and simplified EMI source modeling method based on multiple slope approximation of device switching transitions is presented. To confirm the proposed method, a buck circuit prototype using an IGBT module is implemented. Compared with the superimposed envelops of the measured spectra, it can be seen that the effective modeling frequency is extended to more than 10 MHz, which verifies that the proposed multiple slopes switching waveform approximation method can be applied for full-span EMI noise quantification studies. (Publications: Multiple slope switching waveform approximation to improve conducted EMI spectral analysis of power converters, IEEE Transactions on Electromagnetic Compatibility, 2006; Power converter EMI analysis including IGBT nonlinear switching transient model, IEEE Transactions on Industrial Electronics, 2006)IV. Loop Coupling EMI Modeling in Power Electronic SystemsPractical examples of power electronic systems that have various electrical, electromechanical and electronics apparatus emit electromagnetic energy in the course of their normal operations. In order to predict the EMI noise in a system level, it is significant to model the EMI propagation characteristics through electromagnetic coupling between two apparatus circuit within a power electronic system. The PEEC modeling technique which was first introduced in 1970s has recently becomes a popular choice in relation to the electromagnetic analysis and EMI coupling. In previous studies, the integral equation based method was mostly applied in the electrical modeling and analysis of the interconnect structure in very large scale integration systems, only at the electronic chip and package level. By introducing the partial inductance theory of PEEC modeling technique, this work investigates the EMI loop coupling issues in power electronic circuits. The work models the magnetic flux coupling due to EMI current on one conductor and another by mutual inductance. To model the EMI coupling between the grounding circuits, this study divides the ground impedance into two parts: one is the internal impedance and the other is the external inductance. The external inductance due to the fields external to the rectangular grounding loop and flat conductor is modeled. To verify the mathematical models, the steel plane grounding test configurations are constructed and the DM and CM EMI coupling generation and modeling technique are experimentally studied. The comparison between the measured and calculated EMI noise voltage validates the proposed analysis and models. These investigations and results can provide a powerful engineering application of analyzing and solving the coupling EMI issues in power electronic circuits and systems. (This part of work is one of the main contributions of the awarded project of Military Science and Technology Award in 2006, where the author is No. 4 position. Publication: Loop coupled EMI analysis based on partial inductance models, Proceedings of the Chinese Society of Electrical Engineering, 2007)V. Conducted EMI Prediction for PWM Conversion UnitsPWM-based power conversion units are the main EMI noise sources in power systems. Due to the various PWM strategies and the large number of switches, a common analytical approach for the PWM-based switched converter systems has notbeen dated. Determination of the frequency spectrum of a PWM converter is quite complex and is often done by using an FFT analysis of a simulated time-varying switched waveform. This approach requires considerable computing capacity and always leaves the uncertainty as to whether a subtle simulation round-off or error may have slightly tarnished the results obtained. By introducing the principle of the double Fourier integral, this work presents a general method for modeling the conduced EMI sources of PWM conversion units by identifying double integral Fourier form to suit each PWM modulation. Appling the proposed method, three PWM strategies have been discussed. The effects of different modulation schemes on EMI spectrum are evaluated. The EMI modeling and prediction efforts from an industrial application system are studied comprehensively. Comparison between the measured and the predicted spectrum confirms the validity of the EMI modeling and prediction method. This method breaks through the limitations of time-consuming and considerable accumulated error by traditional time-domain simulations. A standard without relying on simulation but a common analytical approach has been obtained. Clearly, it can be regarded as a common analytical approach that would be useful to be able to model and predict the exact EMI performance of the PWM-based power electronic systems. (Publications: DM and CM EMI Sources Modeling for Inverters Considering the PWM Strategies, Transactions of China Electrotechnical Society, 2007. High Frequency Model of Conducted EMI for PWM Variable-speed Drive Systems, Proceedings of the Chinese Society of Electrical Engineering, 2008)电力电子系统的电磁兼容问题电力电子系统的电磁兼容问题,集中体现为半导体器件的开关工作方式产生的传导性电磁干扰(EMI)。

开关电源设计及其英文翻译

开关电源设计及其英文翻译

开关电源设计及其英文翻译Switching Power Supply DesignSwitching power supply work in high frequency, high pulse state, are analog circuits in a rather special kind. Cloth boards to follow the principle of high-frequency circuit wiring.1, layout:Pulse voltage connection as short as possible, including input switch connected to the transformer, output transformer to the rectifier tube cable. Pulse current loop as small as possible such as the input filter capacitor is returned to the transformer to the switch capacitor negative. Some out-ended output transformers are the output rectifier to the output capacitor back to transformer circuit X capacitor as close as possible to the input switching power supply, input lines should be avoided in parallel with other circuits, should be avoided. Y capacitor should be placed in the chassis ground terminal or FG connectors. A total of touch induction and transformer to maintain a certain distance in order to avoid magnetic coupling. Such as poor handling of feeling in between inductor and transformer plus a shield, over a number of EMC performance for power supply to the greater impact.General the output capacitor can be used the other two a close rectifier output terminal should be close to, can affect the power supply output ripple index, two small capacitor in parallel results should be better than using a large capacitor. Heating devices to maintain a certain distance, and electrolytic capacitors to extend machine life, electrolytic capacitors is the switching power supply bottleneck life, such as transformers, power control, high power resistors and electrolytic to maintain the distancerequired between the electrolyte leaving space for heat dissipation , conditions permitting, may be placed in the inlet.Control part to pay attention to: Weak signal high impedance circuit connected to sample the feedback loop as short as in the processing as far as possible avoid interference, the current sampling signal circuits, in particular the current control circuit, easy to deal with some unexpected bad The accident, which had some skill, now to 3843 the circuit example shown in Figure (1) Figure 1 better than Yu Figure 2, Figure 2 Zai full time by observing the current waveform oscilloscope Mingxian superimposed spikes, Youyuganrao limited flow ratio design Zhi Dian low, Figure 1 there is no such phenomenon, there are switch drive signal circuit, switch resistance should be close to the switch driver can switch the work to improve the reliability of this and the high DC impedance voltage power MOSFET driver characteristics.Second, routingAlignment of current density: now the majority of electronic circuit board using insulated copper constitute tied. Common PCB c opper thickness of 35μm, the alignment valuecan be obtained in accordance with 1A/mm experience the value of current density, the specific calculations can be found in textbooks. T o ensure the alignment principles of mechanical strength should be greater than or equal to the width of 0.3mm (other non-power supply circuit board may be smaller minimum line width). PCB copper thickness of 70μm is also common in switching power supply, then the current density can be higher.Add that, now Changyong circuit board design tool design software generally items such as line width, line spacing, hole size and so dry plate Guo Jin Xing parameters can be set. In thedesign of circuit boards, design software automatically in accordance with the specifications, can save time, reduce some of the workload and reduce the error rate.Generally higher on the reliability of lines or line density wiring can be used double panel. Characterized by moderate cost, high reliability, to meet most applications.The ranks of some of the power module products are also used plywood, mainly to facilitate integration of power devices such as transformer inductance to optimize wiring, cooling and other power tube. Good consistency with the craft beautiful, transformer cooling good advantage, but its disadvantage is high cost, poor flexibility, only suitable for industrial mass production.Single-sided, the market circulation of almost universal switching power supply using single-sided circuit board, which has the advantage of lower costs in the design and production technology are also taken some measures to ensure its performance.Single PCB design today to talk about some experience, as a single panel with low cost, easy-to-manufacture features, the switching power supply circuit has been widely used, because of its side tied only copper, the device's electrical connections, mechanical fixation should rely on the copper layer, the processing must be careful.To ensure good performance of the mechanical structure welding, single-sided pad should be slightly larger to ensure that the copper and substrate tied good focus, and thus will not be shocked when the copper strip, broken off. General welding ring width should be greater than 0.3mm. Pad diameter should be slightly larger than the diameter of the device pins, but not too large, to ensure pin and pad by the solder connection betweenthe shortest distance, plate hole size should not hinder the normal conditions for the degree of investigation, the pad diameter is generally greater than pin diameter 0.1-0.2mm. Multi-pin device to ensure a smooth investigation documents can also be larger.Electrical connection should be as wide as possible, in principle, should be larger than the width of pad diameter, special circumstances should be connected in line with the need to widen the intersection pad (commonly known as Generation tears), to avoid breaking certain conditions, line and pad. Principle of minimum line width should be greater than 0.5mm.Single-board components to be close to the circuit board. Need overhead cooling device to device and circuit board between the pins plus casing, can play a supporting device and increase the dual role of insulation to minimize or avoid external shocks on the pad and the pin junction impact and enhance the firmness of welding. Circuit board supporting the weight of large parts can increase the connection point, can enhance joint strength between the circuit board, such as transformers, power device heat sink.Single-sided welding pins without affecting the surface and the shell spacing of the prior conditions, it can be to stay longer, the advantage of increased strength of welded parts, increase weld area and immediately found a Weld phenomenon. Shear pin long legs, the welding force smaller parts. In T aiwan, the Japanese often use the device pins in the welding area and the circuit board was bent 45 degrees, and then welding process, its reasoning Ibid. Double panel today to talk about the design of some of the issues, in relatively high number of requests, or take the line density of the larger application environments usingdouble-sided PCB, its performance and various indicators of a lot better than a single panel.Two-panel pad as holes have been high intensity metal processing, welding ring smaller than a single panel, the pad hole diameter slightly larger in diameter than pins, as in the welding process solder solution conducive to penetrate through the top hole solder pad to increase the welding reliability. But there is a disadvantage if the hole is too large, wave soldering tin when the jet impact in the lower part of the device may go up, have some flaws.High current handling of alignment, line width in accordance with pre-quote processing, such as the width is not enough to go online in general can be used to increase the thickness of tin plating solution, the method has a good variety of1. Will take the line set to pad property, so that when the circuit board manufacturing solder alignment will not be covered, the whole hot air normally be tin plated.2. In the wiring by placing pads, the pad is set to take in line shape, pay attention to the pad holes set to zero.3. In the solder layer placed on line, this method is the most flexible, but not all PCB manufacturers will understand your intentions, needed captions. Place the line in the solder layer of the site will not coated solder tinning line several methods as above, to note that, if the alignment of a very wide all plated with tin in solder after the solder will bond a lot and distribution is very uneven, affecting appearance. Article tin can be used generally slender width in the 1 ~ 1.5mm, length can be determined according to lines, tin part of the interval 0.5 ~ 1mm Double-sided circuit board for the layout, the alignment provides a very selective, make wiring more reasonable. On theground, the power ground and signal ground must be separated, the two to converge in filter capacitors, in order to avoid a large pulsed current through the signal ground connection instability caused by unexpected factors, the signal control circuit grounding point as far as possible, a skill, as far as possible the alignment of the non-grounded wiring layer in the same place, the last shop in another layer of earth.Output line through the filter capacitors, the general first, and then to the load, input line must also pass capacitor, to the transformer, the theoretical basis is to ripple through trip filter capacitor.Voltage feedback sampling, in order to avoid high current through the alignment of the feedback voltage on the sampling point must be the most peripheral power output to increase the load effect of target machine.Alignment change from a wiring layer to another wiring layer generally used hole connected, not through the pin pad device to achieve, because the plug in the device may be damaged when the relationship between this connection, there is current in every passage of 1A, at least two through-hole, through hole diameter is greater than the principle of 0.5mm, 0.8mm generally processed ensure reliability.Cooling devices, in some small power supply, the circuit board traces can be and cooling, characterized by the alignment as generous as possible to increase the cooling area is not coated solder, conditions can even be placed over holes, enhanced thermal conductivity .Today to talk about the aluminum plate in the switching power supply application and multilayer printed circuit in the switching power supply applications.Aluminum plate by its own structure, has the following characteristics: very good thermal conductivity, single Mianfu copper, the device can only be placed in tied copper surface, can not open electrical connection hole so as not to place jumper in accordance with a single panel.Aluminum plate is generally placed patch device, switch, the output rectifier heat conduction through the substrate to go out, very low thermal resistance, high reliability can be achieved. Transformer with planar chip structure, but also through substrate cooling, the temperature is lower than the conventional, the same size transformer with a large aluminum plate structure available output power. Aluminum plate jumper bridge approach can be used. Aluminum plate power are generally composed by the two PCB, another one to place the control circuit board, through the physical connection between the two boards is integrated.As the excellent thermal conductivity of aluminum plate, in a small amount of manual welding more difficult, solder cooling too fast and prone to problems of a simple and practical way of existing, an ironing ordinary iron (preferably temperature regulation function), over and iron for the last, fixed, and t emperature to 150 ℃ and above the aluminum plate on the iron, heating time, and then affix the components according to conventional methods and welding, soldering iron temperature is appropriate to the device easy to , is too high when the device may be damaged, or even copper strip aluminum plate, the temperature is too low welding effect is not good, to be flexible.Recent years, with the multi-layer circuit board applications in switching powersupply circuit, printed circuit transformer makes it possible,due to multilayer, smaller spacing also can take advantage of Bianya Qi window section, the main circuit board can be re- Add 1-2 formed by the multilayer printed coil to use the window, the purpose of reducing circuit current density, due to adopt printed coil, reducing manual intervention, transformers consistency, surface structure, low leakage inductance, coupling good . Open-type magnetic core, good heat dissipation. Because of its many advantages, is conducive to mass production, it is widely used. But the research and development of large initial investment, not suitable for small-scale health.Switching power supply is divided into, two forms of isolation and non-isolated, isolated here mainly to talk about switching power supply topologies form below,non-specified, are to isolate the power. Isolated power supply in accordance with the structure of different forms, can be divided into two categories: a forward and flyback. Flyback transformer primary side means that when the Vice-edge conduction cut-off, transformer storage. Close of the primary, secondary side conduction, the energy released to the load of work status, general conventional flyback power multiplex, twin-tube is not common. Forward refers to the primary conduction in transformer secondary side while the corresponding output voltage is induced into the load, the direct transfer of energy through the transformer. According to specifications can be divided into conventional forward, including the single-transistor forward, Double Forward. Half-bridge, bridge circuits are all forward circuit.Forward and flyback circuits have their own characteristics in the process of circuit design to achieve optimal cost-effective, can be applied flexibly. Usually in the low-power flyback can beadopted. Slightly larger forward circuit can use a single tube, medium-power can use Double Forward circuit or half-bridge circuit, low-voltage push-pull circuit, and the half-bridge work in the same state. High power output, generally used bridge circuit, low voltage can be applied push-pull circuit.Flyback power supply because of its simple structure, and to cut the size of a similar size and transformer inductance, the power supply in the medium has been widely applied. Presentation referred to in some flyback power supply can do dozens of watts, output power exceeding 100 watts would be no advantage to them difficult. Under normal circumstances, I think so, but it can not be generalized, PI's TOP chips can do 300 watts, an article describes the flyback power supply can be on the KW, but not seen in kind. Power output and the output voltage level.Flyback power transformer leakage inductance is a critical parameter, because the power needs of the flyback transformer stored energy, to make full use of transformer core, the general must be open in the magnetic circuit air gap, the aim is to change the core hysteresis back line of the slope, so that transformers can withstand the impact of a largepulse current, which is not core into saturation non-linear state, the magnetic circuit in the high reluctance air gap in the state, generated in the magnetic flux leakage is much larger than completely closed magnetic circuit .Transformer coupling between the first pole is the key factor determining the leakage inductance, the coil to be very close as far as possible the first time, the sandwich can be used around the law, but this would increase the distributed capacitance transformer. Use core as core with a long window, can reduce the leakage inductance, such as the use of EE, EF, EER, PQ-based EItype magnetic core effective than good.The duty cycle of flyback power supplies, in principle, the maximum duty cycle of flyback power supply should be less than 0.5, otherwise not easy loop compensation may be unstable, but there are some exceptions, such as the U.S. PI has introduced the TOP series chip can work under the conditions of duty cycle is greater than 0.5.Duty cycle by the transformer turns ratio to determine former deputy side, I am an anti-shock view is, first determine the reflected voltage (output voltage reflected through the transformer coupling the primary voltage value), reflecting a certain voltage range of voltage increase is duty cycle increases, lower power loss. Reduce the reflected voltage duty cycle decreases, increases power loss. Of course, this is a prerequisite, when the duty cycle increases, it means that the output diode conduction time, in order to maintain output stability, more time will be to ensure that the output capacitor discharge current, the output capacitor will be under even greater high-frequency ripple current erosion, while increasing its heat, which in many circumstances is not allowed.Duty cycle increases, change the transformer turns ratio, transformer leakage inductance will increase, its overall performance change, when the leakage inductance energy large enough, can switch to fully offset the large account space to bring low-loss, no further increase when the meaning of duty, because the leakage inductance may even be too high against the peak voltage breakdown switch. Leakage inductance as large, may make the output ripple, and other electromagnetic indicators deteriorated. When the duty hours, the high RMS current through the switch, transformer primary current rms andlowered the converter efficiency, but can improve the working conditions of the output capacitor to reduce fever. How to determine the transformer reflected voltage (duty cycle) Some netizens said switching power supply feedback loop parameter settings, work status analysis. Since high school mathematics is rather poor, "Automatic Control Theory," almost on the make-up, and for the door is still feeling fear, and now can not write a complete closed-loop system transfer function, zero for the system, the concept of feeling pole vague, see Bode plot is only about to see is a divergence or convergence, so the feedback compensation can not nonsense, but there are a number of recommendations. If you have some mathematical skills, and then have some time to learn then the University of textbooks,"Principles of Automatic Control" digest look carefully to find out, combined with practical switching power supply circuit, according to the work of state for analysis. Will be harvested, the Forum has a message, "coach feedback loop to study the design, debugging," in which CMG good answer, I think we can reference.Then today, on the duty cycle of flyback power supply (I am concerned about the reflected voltage, consistent with the duty cycle), the duty cycle with the voltage selection switch is related to some early flyback switching power supply using a low pressure tube, such as 600V or 650V AC 220V input power as a switch, perhaps when the production process, high pressure tubes, easy to manufacture, or low-pressure pipes are more reasonable conduction losses and switching characteristics, as this line reflected voltage can not be too high, otherwise the work order to switch the security context of loss of power absorbing circuit is quite impressive.Reflected voltage 600V tube proved not more than 100V, 650V tube reflected voltage not greater than 120V, the leakage inductance voltage spike when the tubes are clamped at 50V 50V working margin. Now that the MOS raise the level of manufacturing process control, flyback power supplies are generally used 700V or 750V or 800-900V the switch. Like this circuit, overvoltage capability against a number of switching transformer reflected voltage can be done a bit higher, the maximum reflected voltage in the 150V is appropriate, to obtain better overall performance.TOP PI's recommendation for the 135V chipset with transient voltage suppression diode clamp. But his evaluation board generally reflected voltage to be lower than the value at around 110V. Both types have their advantages and disadvantages: Category: shortcomings against over-voltage, low duty cycle is small, a large pulse current transformer primary. Advantages: small transformer leakage inductance, electromagnetic radiation and low ripple index higher switch loss, the conversion efficiency is not necessarily lower than the second.The second category: a large number of shortcomings of power loss, a large number of transformer leakage inductance, the ripple worse. Advantages: Some strong against over-voltage, large duty cycle, lower transformer losses and efficiency higher.Reflected voltage flyback power supply and a determining factorReflected voltage flyback power supply with a parameter related to that is the output voltage, output voltage, the lower the larger the transformer turns ratio, the greater the transformer leakage inductance, switch to withstand higher voltage breakdown switch is possible to absorb power consumption ishigher, has the potential to permanently absorb the circuit power device failure (particularly with transient voltage suppression diode circuits). In the design of low-voltage low-power flyback power output optimization process must be handled with care, its approach has several:1, using a large core of a power level lower leakage inductance, which can improve the low-voltage flyback power conversion efficiency, reduce losses, reduce output ripple and improve multi-output power of the cross regulation in general is common in household appliances with a switch power, such as CD-ROM drive, DVB set-top boxes.2, if the conditions were not increased core, can reduce the reflected voltage, reducing the duty cycle. Reduce the reflected voltage can reduce the leakage inductance but may reduce the power conversion efficiency, which is a contradiction between the two, must have an alternative process to find a suitable point, replace the transformer during the experiment can detect the transformer original side of the anti-peak voltage, peak voltage to minimize the anti-pulse width, and magnitude of the work safety margin increase converter. Generally reflected voltage 110V when appropriate.3, enhance the coupling, reducing losses, the introduction of new technologies, and the routing process, transformers to meet the security specifications will between the primary and secondary side to insulation measures, such as pad tape, plus side air insulation tape. These will affect the performance of transformer leakage inductance, the reality can be used in production around the primary winding secondary wrapping method. Or sub-system with a triple insulated wire wound to remove the insulation between the initial level, can enhance thecoupling, even use wide copper winding.The article refers to low voltage output is less than or equal to 5V output, as this type of small power supply, my experience is that the power output of more than 20W output can use a forward, get the best value for money, of course, this is not the right decision , and personal habits, relationship between the application environment, the next time to talk about the flyback power supply with a magnetic core, magnetic circuit air gap opening some understanding, I hope you receive adequate guidance.Flyback power transformer core magnetization state at work in one way, it needs to open the air gap magnetic circuit, similar to the pulsating direct current sensor. Part of the magnetic coupling through the air gap. Why I understand the principle of open air gap as follows: As the power ferrite also has a similar rectangle of the operating characteristics (hysteresis loop), operating characteristics curve in the Y-axis magnetic induction (B), now the general production process saturation point in 400mT above, the general value in the design of this value should be more appropriate in the 200-300mT, X-axis magnetic field strength (H) the value of current intensity is proportional to the magnetization. Open magnetic circuit air gap equal to the magnetic hysteresis loop to the X axis tilt, in the same magnetic induction intensity, can withstand a greater magnetizing current, equivalent to core store more energy, this energy cut-off switch When spilled into the load through the transformer secondary circuit, flyback power core to open the air gap is twofold. One is to transfer more energy, and the second to prevent the core into saturation.Flyback Power Transformer magnetization state in one way,not only to pass through the magnetic coupling energy, is also responsible for input and output isolation voltage transform multiple roles. Therefore, the treatment gap need to be very careful, the air gap leakage inductance can become too large, increase the hysteresis loss, iron loss, copper loss increases, affecting the power of the whole performance. Air gap is too small has the potential to transformer core saturation, resulting in damage to powerThe so-called flyback power supply is continuous and discontinuous mode transformer working conditions, working in full load condition in the power transformer complete transfer, or incomplete transmission mode. General design of the working environment, conventional flyback power supply should work in continuous mode, this switch, circuit loss are relatively small, and can reduce the stress of work input and output capacitors, but that there are some exceptions.Requires in particular that: As the characteristics of the flyback power supply is also more suitable for design into a high-voltage power supply, and high-voltage power transformers generally work in discontinuous mode, I understand the need for as high voltage power supply output voltage of the rectifier diodes. Because of the manufacturing process characteristics, high-tension diode, reverse recovery time is long, low speed, the current continuous state, the diode has a positive bias in the recovery, reverse recovery energy loss is very large, is not conducive to converter performance increase, ranging from reduced conversion efficiency, rectifiers, severe fever, weight is even burnt rectifier. As in the intermittent mode, the diode is reverse biased under zero bias, loss can be reduced to a relatively low level. Therefore, high voltage power supply work indiscontinuous mode, and the frequency can not be too high.Another type of flyback power supply work in the critical state, the general type of power supply work in FM, or FM-width-modulated dual-mode, a number of low-costself-excitation power (RCC) is often used this form in order to ensure stable output transformer As the operating frequency, output current or input voltage change, close to the fully loaded transformer is always maintained at between continuous and intermittent, this power is only suitable for small power output, otherwise the handling characteristics of electromagnetic compatibility will be a headacheFlyback switching power supply transformer should work in continuous mode, it required relatively large winding inductance, of course, is to some extent continuous, excessive pursuit of absolute continuity is not realistic, may need a great core, very much coil turns, accompanied by a large leakage inductance and distributed capacitance, worth the trouble. So how does this parameter to determine, through repeated practice, and analysis of peer design, I think, in the nominal voltage input, the output reached 50% and 60% transformer from intermittent, continuous state of transition to more appropriate. Or at thehighest input voltage state, the full output, the transformer can transition to the continuous state on it.开关电源状态,电源工作在高频率,高脉冲的模拟电路的一个比较特殊的一种。

最新开关电源设计及其英文翻译

最新开关电源设计及其英文翻译

开关电源设计及其英文翻译Switching Power Supply DesignSwitching power supply work in high frequency, high pulse state, are analog circuits in a rather special kind. Cloth boards to follow the principle of high-frequency circuit wiring.1, layout:Pulse voltage connection as short as possible, including input switch connected to the transformer, output transformer to the rectifier tube cable. Pulse current loop as small as possible such as the input filter capacitor is returned to the transformer to the switch capacitor negative. Some out-ended output transformers are the output rectifier to the output capacitor back to transformer circuit X capacitor as close as possible to the input switching power supply, input lines should be avoided in parallel with other circuits, should be avoided. Y capacitor should be placed in the chassis ground terminal or FG connectors.A total of touch induction and transformer to maintain a certain distance in order to avoid magnetic coupling. Such as poor handling of feeling in between inductor and transformer plus a shield, over a number of EMC performance for power supply to the greater impact. General the output capacitor can be used the other two a close rectifier output terminal should be close to, can affect the power supply output ripple index, two small capacitor in parallel results should be better than using a large capacitor. Heating devices to maintain a certain distance, and electrolytic capacitors to extend machine life, electrolytic capacitors is the switching power supply bottleneck life, such as transformers, power control, high power resistors and electrolytic to maintain the distance required between the electrolyte leaving space for heat dissipation , conditions permitting, may be placed in the inlet.Control part to pay attention to: Weak signal high impedance circuit connected to sample the feedback loop as short as in the processing as far as possible avoid interference, the current sampling signal circuits, in particular the current control circuit, easy to deal with some unexpected bad The accident, which had some skill, now to 3843 the circuit example shown in Figure (1) Figure 1 better than Yu Figure 2, Figure 2 Zai full time by observing the current waveform oscilloscope Mingxian superimposed spikes, Youyuganrao limited flow ratio design Zhi Dian low, Figure 1 there is no such phenomenon, there are switch drive signal circuit, switch resistance should be close to the switch driver can switch the work to improve the reliability of this and the high DC impedance voltage power MOSFET driver characteristics.Second, routingAlignment of current density: now the majority of electronic circuit board using insulated copper constitute tied. Common PCB copper thickness of 35μm, the alignmentvalue can be obtained in accordance with 1A/mm experience the value of current density, the specific calculations can be found in textbooks. To ensure the alignment principles of mechanical strength should be greater than or equal to the width of 0.3mm (other non-power supply circuit board may be smaller minimum line width). PCB copper thickness of 70μm is also common in switching power supply, then the current density can be higher. Add that, now Changyong circuit board design tool design software generally items such as line width, line spacing, hole size and so dry plate Guo Jin Xing parameters can be set. In the design of circuit boards, design software automatically in accordance with the specifications, can save time, reduce some of the workload and reduce the error rate.Generally higher on the reliability of lines or line density wiring can be used double panel. Characterized by moderate cost, high reliability, to meet most applications.The ranks of some of the power module products are also used plywood, mainly to facilitate integration of power devices such as transformer inductance to optimize wiring, cooling and other power tube. Good consistency with the craft beautiful, transformer cooling good advantage, but its disadvantage is high cost, poor flexibility, only suitable for industrial mass production.Single-sided, the market circulation of almost universal switching power supply using single-sided circuit board, which has the advantage of lower costs in the design and production technology are also taken some measures to ensure its performance.Single PCB design today to talk about some experience, as a single panel with low cost, easy-to-manufacture features, the switching power supply circuit has been widely used, because of its side tied only copper, the device's electrical connections, mechanical fixation should rely on the copper layer, the processing must be careful.To ensure good performance of the mechanical structure welding, single-sided pad should be slightly larger to ensure that the copper and substrate tied good focus, and thus will not be shocked when the copper strip, broken off. General welding ring width should be greater than 0.3mm. Pad diameter should be slightly larger than the diameter of the device pins, but not too large, to ensure pin and pad by the solder connection between the shortest distance, plate hole size should not hinder the normal conditions for the degree of investigation, the pad diameter is generally greater than pin diameter 0.1-0.2mm. Multi-pin device to ensure a smooth investigation documents can also be larger.Electrical connection should be as wide as possible, in principle, should be larger than the width of pad diameter, special circumstances should be connected in line with the need to widen the intersection pad (commonly known as Generation tears), to avoid breaking certain conditions, line and pad. Principle of minimum line width should be greater than 0.5mm.Single-board components to be close to the circuit board. Need overhead cooling device to device and circuit board between the pins plus casing, can play a supporting device and increase the dual role of insulation to minimize or avoid external shocks on the pad and the pin junction impact and enhance the firmness of welding. Circuit board supporting the weight of large parts can increase the connection point, can enhance joint strength between the circuit board, such as transformers, power device heat sink.Single-sided welding pins without affecting the surface and the shell spacing of the prior conditions, it can be to stay longer, the advantage of increased strength of welded parts, increase weld area and immediately found a Weld phenomenon. Shear pin long legs, the welding force smaller parts. In Taiwan, the Japanese often use the device pins in the welding area and the circuit board was bent 45 degrees, and then welding process, its reasoning Ibid. Double panel today to talk about the design of some of the issues, in relatively high number of requests, or take the line density of the larger application environments using double-sided PCB, its performance and various indicators of a lot better than a single panel.Two-panel pad as holes have been high intensity metal processing, welding ring smaller than a single panel, the pad hole diameter slightly larger in diameter than pins, as in the welding process solder solution conducive to penetrate through the top hole solder pad to increase the welding reliability. But there is a disadvantage if the hole is too large, wave soldering tin when the jet impact in the lower part of the device may go up, have some flaws.High current handling of alignment, line width in accordance with pre-quote processing, such as the width is not enough to go online in general can be used to increase the thickness of tin plating solution, the method has a good variety of1. Will take the line set to pad property, so that when the circuit board manufacturing solder alignment will not be covered, the whole hot air normally be tin plated.2. In the wiring by placing pads, the pad is set to take in line shape, pay attention to the pad holes set to zero.3. In the solder layer placed on line, this method is the most flexible, but not all PCB manufacturers will understand your intentions, needed captions. Place the line in the solder layer of the site will not coated solder tinning line several methods as above, to note that, if the alignment of a very wide all plated with tin in solder after the solder will bond a lot and distribution is very uneven, affecting appearance. Article tin can be used generally slender width in the 1 ~ 1.5mm, length can be determined according to lines, tin part of the interval 0.5 ~ 1mmDouble-sided circuit board for the layout, the alignment provides a very selective, make wiring more reasonable. On the ground, the power ground and signal ground must be separated, the two to converge in filter capacitors, in order to avoid a large pulsed current through the signal ground connection instability caused by unexpected factors, the signal control circuit grounding point as far as possible, a skill, as far as possible the alignment of the non-grounded wiring layer in the same place, the last shop in another layer of earth. Output line through the filter capacitors, the general first, and then to the load, input line must also pass capacitor, to the transformer, the theoretical basis is to ripple through trip filter capacitor.Voltage feedback sampling, in order to avoid high current through the alignment of the feedback voltage on the sampling point must be the most peripheral power output to increase the load effect of target machine.Alignment change from a wiring layer to another wiring layer generally used hole connected, not through the pin pad device to achieve, because the plug in the device may be damaged when the relationship between this connection, there is current in every passage of 1A, at least two through-hole, through hole diameter is greater than the principle of 0.5mm, 0.8mm generally processed ensure reliability.Cooling devices, in some small power supply, the circuit board traces can be and cooling, characterized by the alignment as generous as possible to increase the cooling area is not coated solder, conditions can even be placed over holes, enhanced thermal conductivity .Today to talk about the aluminum plate in the switching power supply application and multilayer printed circuit in the switching power supply applications.Aluminum plate by its own structure, has the following characteristics: very good thermal conductivity, single Mianfu copper, the device can only be placed in tied copper surface, can not open electrical connection hole so as not to place jumper in accordance with a single panel.Aluminum plate is generally placed patch device, switch, the output rectifier heat conduction through the substrate to go out, very low thermal resistance, high reliability can be achieved. Transformer with planar chip structure, but also through substrate cooling, the temperature is lower than the conventional, the same size transformer with a large aluminum plate structure available output power. Aluminum plate jumper bridge approach can be used. Aluminum plate power are generally composed by the two PCB, another one to place the control circuit board, through the physical connection between the two boards is integrated.As the excellent thermal conductivity of aluminum plate, in a small amount of manual welding more difficult, solder cooling too fast and prone to problems of a simpleand practical way of existing, an ironing ordinary iron (preferably temperature regulation function), over and iron for the last, fixed, and temperature to 150 ℃ and above the aluminum plate on the iron, heating time, and then affix the components according to conventional methods and welding, soldering iron temperature is appropriate to the device easy to , is too high when the device may be damaged, or even copper strip aluminum plate, the temperature is too low welding effect is not good, to be flexible.Recent years, with the multi-layer circuit board applications in switching power supply circuit, printed circuit transformer makes it possible, due to multilayer, smaller spacing also can take advantage of Bianya Qi window section, the main circuit board can be re- Add 1-2 formed by the multilayer printed coil to use the window, the purpose of reducing circuit current density, due to adopt printed coil, reducing manual intervention, transformers consistency, surface structure, low leakage inductance, coupling good . Open-type magnetic core, good heat dissipation. Because of its many advantages, is conducive to mass production, it is widely used. But the research and development of large initial investment, not suitable for small-scale health.Switching power supply is divided into, two forms of isolation and non-isolated, isolated here mainly to talk about switching power supply topologies form below, non-specified, are to isolate the power. Isolated power supply in accordance with the structure of different forms, can be divided into two categories: a forward and flyback. Flyback transformer primary side means that when the Vice-edge conduction cut-off, transformer storage. Close of the primary, secondary side conduction, the energy released to the load of work status, general conventional flyback power multiplex, twin-tube is not common. Forward refers to the primary conduction in transformer secondary side while the corresponding output voltage is induced into the load, the direct transfer of energy through the transformer. According to specifications can be divided into conventional forward, including the single-transistor forward, Double Forward. Half-bridge, bridge circuits are all forward circuit.Forward and flyback circuits have their own characteristics in the process of circuit design to achieve optimal cost-effective, can be applied flexibly. Usually in the low-power flyback can be adopted. Slightly larger forward circuit can use a single tube, medium-power can use Double Forward circuit or half-bridge circuit, low-voltage push-pull circuit, and the half-bridge work in the same state. High power output, generally used bridge circuit, low voltage can be applied push-pull circuit.Flyback power supply because of its simple structure, and to cut the size of a similar size and transformer inductance, the power supply in the medium has been widely applied. Presentation referred to in some flyback power supply can do dozens of watts, output power exceeding 100 watts would be no advantage to them difficult. Under normalcircumstances, I think so, but it can not be generalized, PI's TOP chips can do 300 watts, an article describes the flyback power supply can be on the KW, but not seen in kind. Power output and the output voltage level.Flyback power transformer leakage inductance is a critical parameter, because the power needs of the flyback transformer stored energy, to make full use of transformer core, the general must be open in the magnetic circuit air gap, the aim is to change the core hysteresis back line of the slope, so that transformers can withstand the impact of a large pulse current, which is not core into saturation non-linear state, the magnetic circuit in the high reluctance air gap in the state, generated in the magnetic flux leakage is much larger than completely closed magnetic circuit .Transformer coupling between the first pole is the key factor determining the leakage inductance, the coil to be very close as far as possible the first time, the sandwich can be used around the law, but this would increase the distributed capacitance transformer. Use core as core with a long window, can reduce the leakage inductance, such as the use of EE, EF, EER, PQ-based EI type magnetic core effective than good.The duty cycle of flyback power supplies, in principle, the maximum duty cycle of flyback power supply should be less than 0.5, otherwise not easy loop compensation may be unstable, but there are some exceptions, such as the U.S. PI has introduced the TOP series chip can work under the conditions of duty cycle is greater than 0.5.Duty cycle by the transformer turns ratio to determine former deputy side, I am an anti-shock view is, first determine the reflected voltage (output voltage reflected through the transformer coupling the primary voltage value), reflecting a certain voltage range of voltage increase is duty cycle increases, lower power loss. Reduce the reflected voltage duty cycle decreases, increases power loss. Of course, this is a prerequisite, when the duty cycle increases, it means that the output diode conduction time, in order to maintain output stability, more time will be to ensure that the output capacitor discharge current, the output capacitor will be under even greater high-frequency ripple current erosion, while increasing its heat, which in many circumstances is not allowed.Duty cycle increases, change the transformer turns ratio, transformer leakage inductance will increase, its overall performance change, when the leakage inductance energy large enough, can switch to fully offset the large account space to bring low-loss, no further increase when the meaning of duty, because the leakage inductance may even be too high against the peak voltage breakdown switch. Leakage inductance as large, may make the output ripple, and other electromagnetic indicators deteriorated. When the duty hours, the high RMS current through the switch, transformer primary current rms and lowered the converter efficiency, but can improve the working conditions of the output capacitor to reduce fever. How to determine the transformer reflected voltage (duty cycle)Some netizens said switching power supply feedback loop parameter settings, work status analysis. Since high school mathematics is rather poor, "Automatic Control Theory," almost on the make-up, and for the door is still feeling fear, and now can not write a complete closed-loop system transfer function, zero for the system, the concept of feeling pole vague, see Bode plot is only about to see is a divergence or convergence, so the feedback compensation can not nonsense, but there are a number of recommendations. If you have some mathematical skills, and then have some time to learn then the University of textbooks, "Principles of Automatic Control" digest look carefully to find out, combined with practical switching power supply circuit, according to the work of state for analysis. Will be harvested, the Forum has a message, "coach feedback loop to study the design, debugging," in which CMG good answer, I think we can reference.Then today, on the duty cycle of flyback power supply (I am concerned about the reflected voltage, consistent with the duty cycle), the duty cycle with the voltage selection switch is related to some early flyback switching power supply using a low pressure tube, such as 600V or 650V AC 220V input power as a switch, perhaps when the production process, high pressure tubes, easy to manufacture, or low-pressure pipes are more reasonable conduction losses and switching characteristics, as this line reflected voltage can not be too high, otherwise the work order to switch the security context of loss of power absorbing circuit is quite impressive.Reflected voltage 600V tube proved not more than 100V, 650V tube reflected voltage not greater than 120V, the leakage inductance voltage spike when the tubes are clamped at 50V 50V working margin. Now that the MOS raise the level of manufacturing process control, flyback power supplies are generally used 700V or 750V or 800-900V the switch. Like this circuit, overvoltage capability against a number of switching transformer reflected voltage can be done a bit higher, the maximum reflected voltage in the 150V is appropriate, to obtain better overall performance.TOP PI's recommendation for the 135V chipset with transient voltage suppression diode clamp. But his evaluation board generally reflected voltage to be lower than the value at around 110V. Both types have their advantages and disadvantages:Category: shortcomings against over-voltage, low duty cycle is small, a large pulse current transformer primary. Advantages: small transformer leakage inductance, electromagnetic radiation and low ripple index higher switch loss, the conversion efficiency is not necessarily lower than the second.The second category: a large number of shortcomings of power loss, a large number of transformer leakage inductance, the ripple worse. Advantages: Some strong against over-voltage, large duty cycle, lower transformer losses and efficiency higher.Reflected voltage flyback power supply and a determining factorReflected voltage flyback power supply with a parameter related to that is the output voltage, output voltage, the lower the larger the transformer turns ratio, the greater the transformer leakage inductance, switch to withstand higher voltage breakdown switch is possible to absorb power consumption is higher, has the potential to permanently absorb the circuit power device failure (particularly with transient voltage suppression diode circuits). In the design of low-voltage low-power flyback power output optimization process must be handled with care, its approach has several:1, using a large core of a power level lower leakage inductance, which can improve the low-voltage flyback power conversion efficiency, reduce losses, reduce output ripple and improve multi-output power of the cross regulation in general is common in household appliances with a switch power, such as CD-ROM drive, DVB set-top boxes.2, if the conditions were not increased core, can reduce the reflected voltage, reducing the duty cycle. Reduce the reflected voltage can reduce the leakage inductance but may reduce the power conversion efficiency, which is a contradiction between the two, must have an alternative process to find a suitable point, replace the transformer during the experiment can detect the transformer original side of the anti-peak voltage, peak voltage to minimize the anti-pulse width, and magnitude of the work safety margin increase converter. Generally reflected voltage 110V when appropriate.3, enhance the coupling, reducing losses, the introduction of new technologies, and the routing process, transformers to meet the security specifications will between the primary and secondary side to insulation measures, such as pad tape, plus side air insulation tape. These will affect the performance of transformer leakage inductance, the reality can be used in production around the primary winding secondary wrapping method. Or sub-system with a triple insulated wire wound to remove the insulation between the initial level, can enhance the coupling, even use wide copper winding.The article refers to low voltage output is less than or equal to 5V output, as this type of small power supply, my experience is that the power output of more than 20W output can use a forward, get the best value for money, of course, this is not the right decision , and personal habits, relationship between the application environment, the next time to talk about the flyback power supply with a magnetic core, magnetic circuit air gap opening some understanding, I hope you receive adequate guidance.Flyback power transformer core magnetization state at work in one way, it needs to open the air gap magnetic circuit, similar to the pulsating direct current sensor. Part of the magnetic coupling through the air gap. Why I understand the principle of open air gap as follows: As the power ferrite also has a similar rectangle of the operating characteristics (hysteresis loop), operating characteristics curve in the Y-axis magnetic induction (B), now the general production process saturation point in 400mT above, thegeneral value in the design of this value should be more appropriate in the 200-300mT, X-axis magnetic field strength (H) the value of current intensity is proportional to the magnetization. Open magnetic circuit air gap equal to the magnetic hysteresis loop to the X axis tilt, in the same magnetic induction intensity, can withstand a greater magnetizing current, equivalent to core store more energy, this energy cut-off switch When spilled into the load through the transformer secondary circuit, flyback power core to open the air gap is twofold. One is to transfer more energy, and the second to prevent the core into saturation.Flyback Power Transformer magnetization state in one way, not only to pass through the magnetic coupling energy, is also responsible for input and output isolation voltage transform multiple roles. Therefore, the treatment gap need to be very careful, the air gap leakage inductance can become too large, increase the hysteresis loss, iron loss, copper loss increases, affecting the power of the whole performance. Air gap is too small has the potential to transformer core saturation, resulting in damage to powerThe so-called flyback power supply is continuous and discontinuous mode transformer working conditions, working in full load condition in the power transformer complete transfer, or incomplete transmission mode. General design of the working environment, conventional flyback power supply should work in continuous mode, this switch, circuit loss are relatively small, and can reduce the stress of work input and output capacitors, but that there are some exceptions.Requires in particular that: As the characteristics of the flyback power supply is also more suitable for design into a high-voltage power supply, and high-voltage power transformers generally work in discontinuous mode, I understand the need for as high voltage power supply output voltage of the rectifier diodes. Because of the manufacturing process characteristics, high-tension diode, reverse recovery time is long, low speed, the current continuous state, the diode has a positive bias in the recovery, reverse recovery energy loss is very large, is not conducive to converter performance increase, ranging from reduced conversion efficiency, rectifiers, severe fever, weight is even burnt rectifier. As in the intermittent mode, the diode is reverse biased under zero bias, loss can be reduced to a relatively low level. Therefore, high voltage power supply work in discontinuous mode, and the frequency can not be too high.Another type of flyback power supply work in the critical state, the general type of power supply work in FM, or FM-width-modulated dual-mode, a number of low-cost self-excitation power (RCC) is often used this form in order to ensure stable output transformer As the operating frequency, output current or input voltage change, close to the fully loaded transformer is always maintained at between continuous and intermittent, thispower is only suitable for small power output, otherwise the handling characteristics of electromagnetic compatibility will be a headacheFlyback switching power supply transformer should work in continuous mode, it required relatively large winding inductance, of course, is to some extent continuous, excessive pursuit of absolute continuity is not realistic, may need a great core, very much coil turns, accompanied by a large leakage inductance and distributed capacitance, worth the trouble. So how does this parameter to determine, through repeated practice, and analysis of peer design, I think, in the nominal voltage input, the output reached 50% and 60% transformer from intermittent, continuous state of transition to more appropriate. Or at the highest input voltage state, the full output, the transformer can transition to the continuous state on it.开关电源状态,电源工作在高频率,高脉冲的模拟电路的一个比较特殊的一种。

LLCL滤波并网逆变器的改进型加权平均电流控制策略

LLCL滤波并网逆变器的改进型加权平均电流控制策略

第27卷㊀第8期2023年8月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.8Aug.2023㊀㊀㊀㊀㊀㊀LLCL 滤波并网逆变器的改进型加权平均电流控制策略杨明1,㊀杨杰1,㊀赵铁英1,㊀郑晨2,㊀韦延方1(1.河南理工大学电气工程与自动化学院,河南焦作454003;2.河南省电力公司电力科学研究院,河南郑州450052)摘㊀要:加权平均电流(WAC )控制因其对并网逆变器固有的降阶特性而备受关注㊂然而,数字控制延时引起的系统反向谐振峰易导致传统WAC 控制失效,并网逆变器对弱电网下电网阻抗的适应范围减小㊂鉴于此,本文不从WAC 控制的降阶角度出发,而是通过逆变器与电网互联系统等效阻抗模型的网侧电流稳定性角度重新审视,提出一种采用LLCL 滤波并网逆变器的前馈复矢量滤波器改进型WAC 控制策略,用以提升并网逆变器等效输出阻抗在低频域的相位,可使其在奈奎斯特全频域内的相位均高于-90ʎ,进而增强系统的稳定性㊂最后,通过仿真分析验证了所提控制策略的有效性㊂关键词:加权平均电流控制;数字控制延时;反向谐振峰;等效阻抗模型;复矢量滤波器DOI :10.15938/j.emc.2023.08.012中图分类号:TM464文献标志码:A文章编号:1007-449X(2023)08-0109-13㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-04-24基金项目:国家自然科学基金(U1804143,61703144);河南理工大学青年骨干教师资助计划(2020XQG -18);河南省矿山电力电子装置与控制创新型科技团队基金(CXTD2017085)作者简介:杨㊀明(1982 ),男,博士,副教授,研究方向为新能源并网发电技术㊁电能质量控制等;杨㊀杰(1997 ),男,硕士研究生,研究方向为光伏并网逆变器控制技术;赵铁英(1977 ),女,博士,研究方向为电力系统状态监控及故障限流;郑㊀晨(1990 ),男,博士后,研究方向为光伏并网发电系统稳定性分析等;韦延方(1982 ),男,博士,副教授,研究方向为电力系统及其新型输配电的分析和控制㊂通信作者:杨㊀杰Improved weighted average current control strategy forLLCL connected invertersYANG Ming 1,㊀YANG Jie 1,㊀ZHAO Tieying 1,㊀ZHENG Chen 2,㊀WEI Yanfang 1(1.School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454003,China;2.State Grid Henan Electric Power Research Institute,Zhengzhou 450052,China)Abstract :The weighted average current (WAC)control strategy has attracted much attention because of its lower-order effect on grid-connected inverters.However,the system reverse resonant peak caused by digital control delay causes the traditional WAC control to fail,and the inverter s adaptation range to the grid impedance under the weak power grid is reduced.In view of this,this article does not proceed from the perspective of WAC control reduction,but re-examines it from the perspective of grid-side current sta-bility of the equivalent impedance model of the inverter and grid interconnection system.An improved WAC control strategy of feedforward complex vector filter using LLCL grid-connected inverter is proposed to improve the phase of the equivalent output impedance of the grid-connected inverter in the low-frequen-cy domain.It can make the phase in the full frequency domain of Nyquist higher than-90ʎ,thereby en-hancing the stability of the system.Finally,theoretical and simulation analysis verify the effectiveness ofthe proposed control strategy.Keywords:weighted average current control strategy;digital delay;reverse resonant peak;equivalent impedance model;complex vector filte0㊀引㊀言并网逆变器作为新能源分布式发电单元与电网之间的关键接口设备,其性能优劣对入网电能质量具有重要影响㊂由于逆变器机侧输出电压中含有大量的开关谐波,为满足并网要求,通常在逆变器输出端配置LCL滤波器[1-2]㊂然而,逆变器开关频率较低时,LCL滤波器对开关谐波的衰减效果较弱㊂相应地,LLCL滤波器近些年在并网逆变器的应用中备受关注㊂相较于LCL滤波器而言,LLCL滤波器多出了一条电容与电感的串联谐振支路,将该支路的谐振频率设置为开关频率,可对高频开关次谐波达到极强的衰减效果[3-4]㊂此外,在机侧电感相同的前提下,总电感量较LCL滤波器降低40%以上,串联谐振支路抗参数漂移能力强,适合于大规模生产[5]㊂通常,抑制LCL谐振尖峰的控制策略,同样适用于LLCL滤波器㊂对于并网逆变器的稳定性控制策略,已有诸多学者从不同角度进行分析,主要包括4个方面:1)电流控制器的改进:例如,文献[6-7]对传统比例积分电流控制器进行改进,提出光伏并网逆变器通用比例复数积分控制策略,该方法克服了电流控制器对系统低频增益与稳定裕度之间的矛盾,并且在较小的积分系数条件下即可达到足够高的基频增益,但在不同控制坐标系(如静止αβ坐标系和三相abc坐标系)下实现较为复杂;2)一次设计:例如,文献[8]从并网逆变器的一次设计出发,采用传统网侧电流反馈电容电流阻尼双环控制,考虑电网阻抗影响并设计 坚强的 光伏并网逆变器,然而该设计过程并未考虑数字控制延时对系统高频域的影响,当数字控制延时不可忽略时,该设计方法可能导致系统失稳;3)附加补偿装置:例如,文献[9-10]通过对逆变器与电网互联系统的等效阻抗模型推导,提出在公共耦合点处串联或并联附加整流装置的控制策略,该方法可有效抑制电网背景谐波并提高系统的稳定性,但附加装置不仅增大设备成本和体积,还需要额外配置滤波器,不利于广泛推广;4)相位补偿:例如,文献[11]通过在电网电压前馈通道串联相角补偿环节,实现并网逆变器的相角主动补偿控制,但补偿环节中的微分项难以在实际工程中直接实现;此外,文献[12]采用相位补偿与虚拟阻抗优化结合的控制策略,可实现阻尼特性的独立控制,但控制结构较为复杂㊂上述对并网逆变器的稳定性控制均为三阶系统,控制复杂度较大㊂近些年,关于并网逆变器的加权平均控制策略备受关注,主要包括两类:分裂滤波电容控制和加权平均电流控制㊂前一种控制策略对滤波器参数精度依赖性较大,当参数发生漂移时,该方法可能失效[13-14];加权平均电流控制策略是一种对机侧电流和网侧电流进行加权反馈的间接控制策略,因其特有的降阶特性而受到广泛应用[15-16]㊂文献[17]考虑电网电压前馈影响,对传统加权平均电流控制的加权系数计算方法进行改进,可将控制系统从三阶降为与电网阻抗无关的一阶系统,极大地增强了并网逆变器在弱电网条件下的鲁棒性,然而该控制策略并未考虑数字控制延时的影响㊂事实上,当并网逆变器采用数字控制时,数字控制延时的影响不可忽略㊂文献[18]参考了文献[17]中对加权系数的计算方法,分析表明,数字控制延时的存在会引起系统产生一个附加反向谐振峰,该谐振峰在弱电网下随着电网阻抗的变化而发生偏移,导致系统稳定裕度降低甚至失稳,鉴于此,提出在电网电压前馈串联超前补偿器用以提升系统稳定裕度,却无法保证电网阻抗宽范围变化时系统均具有足够的稳定裕度㊂同时,为了降低加权控制中无源阻尼产生的功率损耗,文献[19]采用电容电流有源阻尼进行加权平均电流控制,通过附加补偿环节来改善有源阻尼带来的额外自由度,但该方法需要在补偿环节中产生一拍延时,实现较为困难㊂综上所述,现有的加权平均电流控制策略对系统稳定性提升仍存在一定的局限性,并且都是从电流环控制角度出发㊂鉴于此,本文以LLCL滤波并网逆变器与电网互联系统的等效阻抗模型出发,不再以降阶角度进行分析,而是从网侧电流稳定性角度重新审视,提出一种基于前馈复矢量滤波器的改进型加权平均电流控制策略,并给出参数的详细设计过程,以此来提高并网逆变器的稳定性㊂理论和仿真验证表明,所提控制策略可保证并网逆变器在电网阻抗宽范围变化时具有良好的稳定性,并且提高了系统对电网阻抗的鲁棒性㊂011电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀1㊀LLCL 滤波并网逆变器的加权平均电流控制方法㊀㊀三相LLCL 滤波并网逆变器的主电路拓扑结构如图1所示㊂图1中:V dc 代表直流侧母线电压;Q 1~Q 6是三相逆变桥的功率开关管;V inv 代表逆变器桥臂侧输出电压;LLCL 滤波器由机侧电感L 1㊁网侧电网L 2㊁串联支路电容C 和电感L f 构成;R d 代表串联阻尼电阻;电网可等效为电压源与电网阻抗串联的等效模型,V g 代表电网电压,由于电网阻抗中的阻性分量有利于系统稳定,因此考虑最恶劣的情况,即电网阻抗为纯感性;L g 代表电网电感;i 1㊁i c 和i 2分别代表逆变器机侧电流㊁电容电流和网侧电流㊂图1㊀三相LLCL 滤波并网逆变器拓扑结构Fig.1㊀Topology of LLCL grid-connected inverter加权平均电流(weighted average current,WAC)控制方法通过对机侧电流i 1和网侧电流i 2进行加权控制,是一种间接的电流控制策略㊂LLCL 滤波并网逆变器加权平均电流控制方法的系统结构图如图2所示㊂图2中:i ref 代表指令参考电流;i WAC 代表加权平均电流;G c (s )代表电流控制器的传递函数,本文采用比例积分控制器,即G c (s )=k p +k i /s ,其中k p 和k i 分别为比例系数和积分系数;K pwm 代表三相逆变桥调制增益,当脉宽调制的三角载波幅值为1时,有K pwm =V dc /2;V pcc 代表公共耦合点(point of com-mon coupling,PCC)电压;G f (s )代表PCC 电压前馈增益;β代表电流加权系数㊂图2㊀加权平均电流控制系统结构图Fig.2㊀System structure diagram of weighted averagecurrent control根据图2,可以推导出参考电流i ref 到加权平均电流i WAC 的传递函数,即系统开环传递函数表达式为T (s )=G c(s )K pwms (L 1+L 2)s 2(L f C +βL T C )+sR d C +1s 2L f C +L 1L TCL 1+L 2()+sR d C +1+L g [1-K pwm G f (s )](s 2L f C +sR d C +1){}㊂(1)式中L T =L 2+L g ㊂由式(1)可知,在PCC 电压前馈增益和电流加权系数分别满足G f (s )=1/K pwm ,β=L 1/(L 1+L 2)条件时,式(1)可以简化为T (s )=G c (s )K pwms (L 1+L 2)㊂(2)比较式(1)和式(2)可知,WAC 控制是一种降阶控制策略,并网逆变器控制系统由原来的三阶系统降为一阶系统,并且降阶后的开环传递函数与时变电网电感无关,系统在弱电网下对L g 的鲁棒性增强㊂图3为系统开环传递函数的Bode 图,并网逆变器具体参数见表1[20-21]㊂从图3可以看出,降阶后系统具有足够的稳定裕度和较高的带宽范围,并网逆变器的控制复杂度降低㊂图3㊀传递函数T (s )的Bode 图Fig.3㊀Bode diagram of T (s )2㊀考虑数字控制延时对系统的影响分析㊀㊀并网逆变器一般采用数字控制,将不可避免地111第8期杨㊀明等:LLCL 滤波并网逆变器的改进型加权平均电流控制策略引入计算延时㊁采样延时和调制延时,为便于系统在连续域中分析,数字控制延时的传递函数表达式为G d (s )=1T s 1-exp -sT ss exp -sT s ʈexp -1.5sT s ㊂(3)式中T s 代表系统采样周期㊂式(3)所示的数字控制延时等效传递函数中含有指数环节,一般对其进行Pàde 近似处理,式(3)的三阶Pàde 近似延时表达式为G d (s )=120-60a 0s +12a 20s 2-a 30s 3120+60a 0s +12a 20s 2+a 30s 3㊂(4)式中a 0=1.5T s ㊂考虑数字控制延时后,系统结构图如图4所示㊂根据图4可以推导出系统开环传递函数表达式为T d (s )=G c (s )K pwm G d (s )s (L 1+L 2)11+G (s )㊂(5)式中传递函数G (s )的表达式为G (s )=L gL 1+L 2+L 1L T /L fˑ[s 2+(sR d C +1)/(L f C )][1-G d (s )]s 2+(L 1+L T )(sR d C +1)L 1L T C +(L 1+L T )L f C +L g L 1L T C /(L 1+L 2)㊂(6)图4㊀考虑数字控制延时的系统结构图Fig.4㊀System structure diagram considering digitalcontrol delay显然,由式(5)可知,数字控制延时的引入导致WAC 控制的降阶作用失效,因此有必要对数字控制延时带来的影响进行分析㊂图5给出了传递函数T d (s )在弱电网下的Bode 图㊂从图5可以看出,系统开环传递函数产生一个附加反向谐振尖峰,随着L g 增加,该反向谐振尖峰逐渐向低频域偏移,造成系统稳定裕度降低,直至并网逆变器失去稳定性㊂对于数字控制延时的引入,导致弱电网下附加反向谐振尖峰偏移而引起的并网逆变器失稳问题,文献[18]提出一种在PCC 电压前馈通道串联超前补偿器的并网逆变器稳定性提升控制策略,该控制策略可显著改善反向谐振尖峰补偿点处的稳定裕度㊂然而,该控制策略导致PCC 电压比例前馈对电网电压背景谐波的抑制效果减弱,且无法保证L g 在较宽范围变化时系统均具有足够的稳定裕度㊂图5㊀传递函数T d (s )的Bode 图Fig.5㊀Bode diagram of T d (s )3㊀基于等效阻抗模型的改进型加权平均电流控制策略㊀㊀事实上,并网逆变器的实际控制目标为网侧电流i 2㊂鉴于此,本文不从降阶的角度对系统稳定性进行分析,而是通过并网逆变器与电网互联系统的稳定性对控制系统进行重新审视㊂3.1㊀互联系统的等效阻抗模型并网逆变器的稳定性可通过其等效阻抗模型进行分析,图6给出了互联系统的等效阻抗模型㊂其中,并网逆变器等效为电流源I s (s )与逆变器输出阻抗Z out (s )并联的诺顿电路,电网可等效为电压源V g (s )与电网阻抗Z g (s )的串联电路㊂图6㊀等效阻抗模型Fig.6㊀Equivalent impedance model根据图6可得,网侧电流i 2(s )的表达式为i 2(s )=I s(s )-V g (s )Z out(s )[]11+Z g(s )/Zout (s )㊂(7)将图4所示系统结构图进行等效变换,变换后的系统等效结构图如图7所示㊂211电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图7㊀系统等效结构图Fig.7㊀Equivalent system structure diagram ㊀㊀其中传递函数G1(s)和G2(s)的表达式分别为: G1(s)=G d(s)K pwm(s2L f C+sR d C+1)s2(L f+L1)C+sR d C+1+G d(s)G c(s)sβK pwm C;(8)G2(s)=s2(L f+L1)C+sR d C+1+G d(s)G c(s)sβK pwm Cs3[(L f+L1)L2C+L1L f C]+s2(L2+L1)R d C+s(L2+L1)+G d(s)G c(s)βK pwm[s2(L f+L2)C+sR d C+1]㊂(9)㊀㊀根据图7可以推导出电流源I s(s)和输出阻抗Z out(s)的表达式分别为:I s(s)=G c(s)G1(s)G2(s)1+(1-β)G c(s)G1(s)G2(s)i ref(s);(10)Z out(s)=-V pcc(s)i2(s)=1+(1-β)G c(s)G1(s)G2(s)G2(s)[1-G f(s)G1(s)]㊂(11)根据线性控制理论可知,若阻抗比Z g(s)/ Z out(s)满足Nyquist稳定性判据,则互联系统稳定㊂基于阻抗的并网逆变器稳定性判据如下:1)并网逆变器在强电网下能够稳定工作;2)阻抗比Z g(s)/Z out(s)满足Nyquist稳定判据㊂由于并网逆变器一般在强电网下进行设计,因此基于阻抗的稳定性判据第1条容易满足㊂并网逆变器控制系统的相位裕度表达式可通过上述稳定判据的第2条得到,即㊀PM=180ʎ-[arg Z g(j2πf c)-arg Z out(j2πf c)]= 90ʎ+arg Z out(j2πf c)㊂(12)式中f c代表阻抗Z g(s)与Z out(s)的交截频率㊂根据式(12)可知,并网逆变器稳定的条件为相位裕度PM>0ʎ,即输出阻抗Z out(s)在频率f c处的相位高于-90ʎ㊂图8给出了Z out(s)的Bode图㊂显然,Z out(s)在低频域呈现出容抗特性,并且相位曲线低于-90ʎ,交截频率f c随着L g的增加而逐渐向低频域偏移,在L g=1mH时,系统相位裕度为-9.6ʎ,并网逆变器已然失去稳定性㊂图8㊀输出阻抗Z out(s)的Bode图Fig.8㊀Bode diagram of output impedance Z out(s)此外,电网中含有大量的背景谐波电压,当并网逆变器处于临界稳定状态时,即系统相位裕度为0,此时阻抗模型在交截频率f c处有Z g(j2πf c)+Z out(j2πf c)=0㊂由式(7)可知,电网中频率为f c的背景谐波电压将被放大,网侧电流含有较多的谐波分量,该现象称为并网逆变器的谐波谐振㊂事实上,即使PM>0ʎ,当系统相位裕度接近0时,频率f c附近的电网背景谐波电压仍会得到放大,造成网侧电流发生畸变㊂因此,为保证并网逆变器在弱电网下具有较高质量的输出网侧电流i2,同时避免谐波谐振现象的发生,控制系统应具有足够的相位裕度㊂3.2㊀基于前馈复矢量滤波器的改进型控制策略由3.1节分析可知,系统在低频域的相位裕度较低导致并网逆变器失稳,为了提高系统的稳定性,增大并网逆变器对电网阻抗的适应范围,应对311第8期杨㊀明等:LLCL滤波并网逆变器的改进型加权平均电流控制策略Z out (s )在低频域的相位进行补偿㊂分别记传递函数H 1(s )和H 2(s )的表达式如下:H 1(s )=1+(1-β)G c (s )G 1(s )G 2(s )G 2(s );(13)H 2(s )=11-G f (s )G 1(s )㊂(14)根据式(11)可得Z out (s )=H 1(s )H 2(s ),图9分别给出了H 1(s )和H 2(s )的Bode 图㊂从图9可以看出,H 2(s )含有一个反向谐振尖峰,用f r1代表该谐振尖峰处的频率,在低于f r1的频域内,H 2(s )具有负相位,不利于系统的稳定性;在高于f r1且低于f r2的频域内,H 2(s )的相位大于0,有利于提高系统的相位裕度;H 2(s )在高于f r2频域内具有较小的负相位,对系统影响很小㊂图9㊀传递函数H 1(s )和H 2(s )的Bode 图Fig.9㊀Bode diagram of H 1(s )and H 2(s )由于H 2(s )在频率f r1和f r2处的相位为0,将s =j ω代入式(14),并使用欧拉公式,令H 2(j ω)的虚部等于0,整理可得L 1R d C 2ω2cos(1.5T s ω)+sin(1.5T s ω)[(1-L f Cω2)2/ω+(R d C )2ω-L 1Cω(1-L f Cω2)]-βk p R d K pwm L f C 2ω2=βK pwm C (R d Ck i -k p )㊂(15)由此可知,谐振频率f r1和f r2均为式(15)的根㊂由于式(15)是一个超越方程,难以对其进行求解,此处采用图像法间接获得方程的根㊂图10给出了式(15)所对应的函数图像,根据表1所给并网逆变器参数可得谐振频率f r1ʈ2268Hz㊁f r2ʈ6913Hz㊂值得说明的是,不同并网逆变器参数,求解谐振频率f r1和f r2的值均可采用式(15)的图像法间接获得其近似解㊂图10㊀式(15)所对应的函数图像Fig.10㊀Function image corresponding to equation (15)通过上述分析可知,若要提高控制系统的相位裕度,增强并网逆变器的稳定性,需要增大H 2(s )在低于f r1频域内的相位,同时保证高于f r1频域内的相位大于0㊂令传递函数T 0(s )=-G f (s )G 1(s ),其Bode 图如图11所示㊂根据式(14)可知,T 0(s )位于H 2(s )的分母部分,为了提高系统的相位裕度,可通过增大T 0(s )在低于f r1频域内的相位,减小其在高于f r1频域内的相位,进而间接获得较高的相位裕度㊂图11㊀传递函数T 0(s )的Bode 图Fig.11㊀Bode diagram of T 0(s )根据前述提高系统相位裕度的补偿原则,本文提出一种在PCC 电压前馈通道中串联一阶低通复矢量滤波器的相位补偿控制策略,一阶低通复矢量滤波器的传递函数表达式为G fv (s )=k cξωLs -j ωL +ξωL㊂(16)411电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀式中:k c 为比例系数;ωL 代表转折角频率;ξ代表阻尼系数㊂图12给出了该滤波器的Bode 图,可以看出,该滤波器在转折频率f L 处的幅值增益为20lg k c ,相移为0ʎ㊂低于f L 的频域内相位变化范围为0ʎ~arctan(1/ξ),高于f L 的频域内相位变化范围为-90ʎ~0ʎ㊂因此,根据前述相位补偿原则,可令谐振频率f r1=ωL /(2π)=f L㊂图12㊀一阶低通复矢量滤波器的Bode 图Fig.12㊀Bode diagram of first-order low-pass complexvector filter暂时考虑比例系数k c =1,相位补偿后的传递函数H 2(s )和T 0(s )变为:H ᶄ2(s )=11-G f (s )G fv (s )G 1(s );(17)T ᶄ0(s )=-G f (s )G fv (s )G 1(s )㊂(18)传递函数T ᶄ0(s )的Bode 图如图13所示,从图13可以看出,随着阻尼系数ξ的减小,T ᶄ(s )在低于f r1频域内的相位曲线逐渐抬升,高于f r1频域内的相位曲线逐渐下降,意味着逆变器输出阻抗在低频域的相位得到补偿,系统相位裕度逐渐增大㊂然而,在ξ减小的同时,T ᶄ0(s )的幅值增益在奈奎斯特全频域(f s /2)内逐渐下降,这将导致逆变器输出阻抗的幅值增益降低,减弱对电网背景谐波的抑制效果㊂为了兼顾系统稳定性和电网背景谐波抑制效果,以及避免输出阻抗含有右半平面极点,可选取阻尼系数ξ=1/31/2,此时复矢量滤波器在低频域对传递函数T ᶄ0(s )可提供最大60ʎ的相位补偿㊂补偿后传递函数H ᶄ2(s )的Bode 图如图14所示㊂从图14可以看出,H ᶄ2(s )在低频域的相位得到极大提升,此时系统在弱电网下具有足够的相位裕度㊂然而,在低于f r1附近的频域内,H ᶄ2(s )的相位小于-90ʎ,产生了相位衰减,不利于并网逆变器在强电网下的稳定性㊂此外,可以明显看出H ᶄ2(s )的低频增益降低,并网逆变器对电网背景谐波抑制效果减弱㊂图13㊀传递函数T ᶄ0(s )的Bode 图Fig.13㊀Bode diagram of T ᶄ0(s)图14㊀传递函数H ᶄ2(s )的Bode 图Fig.14㊀Bode diagram of H ᶄ2(s )为了保证传递函数H ᶄ2(s )在奈奎斯特全频域内的相位高于-90ʎ,根据式(17)可以推导出其相频特性表达式为arg H ᶄ2(j ω)=artan k c ξωL(ξωL )2+(ω-ωL )2I m (ω)1-k c ξωL(ξωL )2+(ω-ωL )2R e (ω)ȡ-90ʎ㊂(19)式中R e (ω)和I m (ω)的表达式分别为:511第8期杨㊀明等:LLCL 滤波并网逆变器的改进型加权平均电流控制策略R e (ω)=R e2(ω)[ξωL R e1(ω)+(ω-ωL )I m1(ω)]+I m2(ω)[ξωL I m1(ω)-(ω-ωL )R e1(ω)][R e2(ω)]2+[I m2(ω)]2;I m (ω)=R e2(ω)[ξωL I m1(ω)-(ω-ωL )R e1(ω)]-I m2(ω)[ξωL R e1(ω)+(ω-ωL )I m1(ω)][R e2(ω)]2+[I m2(ω)]2;R e1(ω)=cos(1.5T s ω)(1-L f Cω2)+sin(1.5T s ω)R d Cω;I m1(ω)=cos(1.5T s ω)R d Cω-sin(1.5T s ω)(1-L f Cω2);R e2(ω)=1-(L f +L 1)Cω2+βK pwm Cω[k p sin(1.5T s ω)+k i /ωcos(1.5T s ω)];I m2(ω)=R d Cω+βK pwm Cω[k p cos(1.5T s ω)-k i /ωsin(1.5T s ω)]㊂üþýïïïïïïïïïïïï(20)㊀㊀由式(19)可得0<k c ɤ(ξωL )2+(ω-ωL )2R e (ω)ξωL=Z (ω)㊂(21)为了保证补偿后的H ᶄ2(s )不产生相位衰减,比例系数k c 应小于等于Z (ω)在低于f r1频域内的最小值㊂图15给出了Z (ω)关于频率的函数图像㊂从图15可以看出,Z (ω)在低于f r1频域内具有一个极小值,同时亦为Z (ω)的最小值,由此可得k c 的取值范围为0<k c ɤ0.62㊂(22)图16给出了在不同k c 取值下H ᶄ2(s )的Bode图㊂从图16可以看出,当k c ɤ0.62时,H ᶄ2(s )在奈奎斯特全频域内的相位均高于-90ʎ,并且随着k c 的减小,在低频域内的相位和幅值增益均降低㊂此外,当k c 减小的同时,谐振频率f r1处的幅值增益逐渐增大,有利于对该频率附近的电网背景谐波抑制㊂因此,综合考虑系统的相位裕度和谐波抑制效果,折中选取比例系数k c =0.2㊂图15㊀Z (ω)的函数图像Fig.15㊀Function image of Z (ω)将参数ξ=1/31/2㊁k c =0.2代入式(16),用Z ᶄout (s )代表进行相位补偿后的逆变器等效输出阻抗,根据式(17)可知Z ᶄout (s )=H 1(s )H ᶄ2(s )㊂根据分布式并网发电标准,弱电网可通过系统短路容量比(short circuit ratio,SCR)进行评价,当SCRȡ3时称为强电网,2ɤSCR <3时称为弱电网,SCR <2时称为极弱电网[22]㊂本文考虑并网逆变器在系统短路容量比大于2.5的范围内进行稳定性分析,即L g 从0mH 变化到12.8mH(对应SCR =2.5)㊂图16㊀传递函数H ᶄ2(s )的Bode 图(ξ=1/31/2)Fig.16㊀Bode diagram of H ᶄ2(s )Z ᶄout (s )的Bode 图如图17所示,比较图8可知,补偿后的输出阻抗在低频域的相位明显增大,当L g =12.8mH 时系统仍具有10.5ʎ的相位裕度,并网逆变器在SCRȡ2.5范围内均具有足够的相位裕度㊂此外,Z ᶄout (s )在低频域的幅值增益低于Z out (s ),并网逆变器对电网电压背景谐波的抑制效果减弱,但在基频(f 0=50Hz)处Z ᶄout (s )的幅值增益为42dB,仍可对电网电压进行较高的抑制,使得并网逆变器输出质量优良的网侧电流i 2㊂611电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图17㊀输出阻抗Z ᶄout (s )的Bode 图Fig.17㊀Bode diagram of output impedance Z ᶄout (s )3.3㊀网侧电流稳定性分析由于加权平均电流控制是一种对网侧电流的间接控制策略,因此有必要对并网逆变器网侧电流的稳定性进行分析㊂根据图7可以推导出弱电网下参考电流i ref 到网侧电流i 2的闭环传递函数表达式为ψ(s )=i 2(s )i ref (s )=G c (s )G 1(s )G 2(s )1+G 1(s )G 2(s )[((1-β)G c (s ))-G f (s )]+Z g (s )G 2(s )㊂(23)进行相位补偿后的闭环传递函数表达式为ψᶄ(s )=i ᶄ2(s )i ref (s )=G c (s )G 1(s )G 2(s )1+G 1(s )G 2(s )[((1-β)G c (s ))-G fv (s )G f (s )]+Z g (s )G 2(s )㊂(24)根据式(23)和式(24)可以画出补偿前后闭环传递函数在SCRȡ2.5范围内,电网电感变化时的主导闭环极点根轨迹,分别如图18(a)和图18(b)所示㊂从图18(a)可以看出,随着L g 的增加,ψ(s )系统闭环极点逐渐向虚轴靠拢,直至产生右半平面极点,导致并网逆变器控制系统失稳;比较图18(b)可知,进行相位补偿后的系统闭环传递函数ψᶄ(s ),在L g ɤ12.8mH 范围内变化时其闭环极点均在左半平面,并网逆变器始终具有较好的稳定性㊂从图18(b)亦可看出,比例系数k c 对闭环系统的稳定性有着重要的影响㊂随着k c 的增加,闭环传递函数ψᶄ(s )的根轨迹逐渐向虚轴偏移,系统将出现不稳定闭环极点,导致并网逆变器在弱电网下失稳㊂因此,在保证对输出阻抗进行相位补偿的同时,要保证闭环传递函数无右半平面的闭环极点㊂图18㊀闭环传递函数ψ(s )和ψᶄ(s )的根轨迹Fig.18㊀Root locus of closed-loop transfer function ψ(s )and ψᶄ(s )3.4㊀LLCL 滤波器参数漂移对系统稳定性影响实际工程中,滤波器普遍采用铁心电感,并网逆变器在不同环境工作下,由于器件老化等其他因素可能会造成LLCL 滤波器参数的实际值偏离设定值,因此,分析LLCL 滤波器参数漂移对所提控制策略的稳定性影响是非常有必要的㊂其中,设置滤波器参数L 1㊁L 2㊁L f 和C 的实际值均偏离设定值的范围为ʃ5%,设定值如表1所示㊂根据前述所提控制策略的参数设计,分别给出了滤波器参数发生漂移后的并网逆变器输出阻抗Z ᶄout (s )的Bode 图,如图19所示㊂从图19可以看出,当滤波器参数发生轻微偏移时,仅对Z ᶄout (s )在高频域的幅相特性产生较小的影响,而对于中低频域几乎无影响㊂因此,所提控制策略对LLCL 滤波器参数漂移具有极强的鲁棒性㊂值得说明的是,LLCL 滤波器中L f 和C 串联支路的目711第8期杨㊀明等:LLCL 滤波并网逆变器的改进型加权平均电流控制策略的是为了衰减开关频率次谐波,而参数L f和C发生漂移将会影响滤波器对高频次开关谐波的衰减效果,但会对开关频率附近的谐波产生较强的衰减作用㊂图19㊀LLCL滤波器参数漂移时输出阻抗Zᶄout(s)的Bode图Fig.19㊀Bode diagram of output impedance Zᶄout(s)when LLCL filter parameters drift 811电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀4㊀仿真结果与分析为验证所提基于PCC电压前馈通道中串联一阶低通复矢量滤波器的鲁棒性并网逆变器加权平均电流控制策略,在MATLAB/Simulink中搭建如图1所示的三相LLCL滤波器并网逆变器仿真模型,并网逆变器参数见表1㊂其中,一阶低通复矢量滤波器的实现形式如图20所示㊂表1㊀并网逆变器参数Table1㊀Parameters of grid-connected inverters图20㊀一阶低通复矢量滤波器的实现形式Fig.20㊀Realization form of first-order low-pass complex vector filter图21分别给出了在传统加权平均电流控制下,并网逆变器输出网侧电流i2和公共耦合点电压V pcc的仿真波形㊂为便于显示,已将公共耦合点电压缩小3倍㊂从图21可以看出,在电网电感L g= 0.5mH时,网侧电流i2和A相公共耦合点电压V pcca 波形质量良好,对i2进行快速傅里叶分析可得其总谐波失真数为2.20%;在电网电感L g=1mH时,并网逆变器已然失去稳定,侧电流i2发生严重振荡,总谐波失真数为28.03%,已经远远超出了并网条件的限定值5%㊂并网逆变器在所提鲁棒性控制策略下运行时的网侧电流i2和公共耦合点电压V pcc的仿真波形,如图22所示㊂显然,采用所提控制策略运行时,并网逆变器网侧电流质量得到明显改善,在电网电感为2㊁7㊁12.8mH条件下,i2的总谐波失真数分别为1.22%㊁1.12%㊁3.60%,均满足并网要求的限定值㊂图21㊀传统控制策略下的i2和V pcc仿真波形Fig.21㊀Simulation waveforms of i2and V pcc under tra-ditional control strategy图22㊀所提控制策略下的i2和V pcc仿真波形Fig.22㊀Simulation waveforms of i2and V pcc under the proposed control strategy911第8期杨㊀明等:LLCL滤波并网逆变器的改进型加权平均电流控制策略。

光伏逆变器EMC测试报告及认证报告书

光伏逆变器EMC测试报告及认证报告书

TEST RESULTS E M I S S I O N ................................................................................................................. 7 4.1 EMISSION IN THE FREQUENCY RANGE UP TO 30 MHZ .................................................................................. 7 4.1.1 Harmonics on AC Mains..................................................................................................................... 7 4.1.2 Voltage changes, voltage fluctuations and flicker on AC mains ......................................................... 7 4.1.3 Mains Terminal Continuous Disturbance Voltage ............................................................................. 8 4.2 EMISSION IN THE FREQUENCY RANGE ABOVE 30 MHZ .............................................................................. 11 4.2.1 Radiated emission ............................................................................................................................. 11

中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法

中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法

第25卷 第5期2021年5月 电 机 与 控 制 学 报Electric Machines and ControlVol 25No 5May2021中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法武玉才1, 庞永林2, 侯旭辰1(1.华北电力大学电气与电子工程学院,河北保定071003;2.国网内蒙古东部电力有限公司电力科学研究院,呼和浩特010020)摘 要:针对中小型无刷励磁同步发电机组旋转整流桥二极管的单管开路故障问题,提出一种基于柔性线圈的诊断方法。

以一台改造184B型6.8kW三相无刷励磁同步发电机组旋转整流桥的一个二极管发生开路故障为例,结合励磁机电枢绕组的空间布局及其感应电动势特点分析了旋转整流桥二极管的导通规律,根据二极管开路故障前后电枢磁场的变化特征,获取了电枢磁场增量磁势特征并确立了故障判据,提出在励磁机定子铁轭上包绕柔性线圈,通过柔性线圈感应电压的25Hz转频分量检测和识别二极管开路故障。

二维有限元仿真和样机实验结果表明,利用柔性线圈感应电压的25Hz转频分量可以实现对旋转整流桥二极管开路故障的在线检测。

关键词:中小型无刷励磁同步发电机组;旋转整流桥;二极管;开路故障;柔性线圈;在线检测DOI:10.15938/j.emc.2021.05.006中图分类号:TM307文献标志码:A文章编号:1007-449X(2021)05-0042-10收稿日期:2020-01-08基金项目:河北省自然科学基金(E2020502064);中央高校基本科研业务费专项资金(2020MS094)作者简介:武玉才(1982—),男,博士,副教授,研究方向为电气设备状态监测与故障诊断;庞永林(1995—),男,硕士,研究方向为无刷励磁机状态监测与故障诊断;侯旭辰(1996—),男,硕士,研究方向为磁悬浮轴承设计及控制系统优化。

通信作者:庞永林On linedetectionmethodforrotatingrectifierbridgediodeopen circuitfaultofsmallandmedium sizedbrushlessexcitationsynchronousgeneratorsetWUYu cai1, PANGYong lin2, HOUXu chen1(1.SchoolofElectricalandElectronicEngineering,NorthChinaElectricPowerUniversity,Baoding071003,China;2.ElectricPowerResearchInstitute,StateGridEastInnerMongoliaElectricPowerCompanyLimited,Hohhot010020,China)Abstract:Aimingatanopencircuitdiodefaultintherotatingrectifierbridgeofsmallandmedium sizedbrushlessexcitationsynchronousgeneratorsets,adiagnosismethodbasedonflexiblecoilswasproposed.Anopencircuitdiodefaultintherotatingrectifierbridgeinamodified184Btype6.8kWthree phasebrushlessexcitationsynchronousgeneratorsetwaschosenasanexample,andtheconductionlawofthediodeintherotatingrectifierbridgewasanalyzedbasedonthespatiallayoutoftheexciterarmaturewind inganditsinducedelectromotiveforcecharacteristics.Accordingtothevariationcharacteristicsofthear maturemagneticfieldbeforeandaftertheopencircuitfault,theincrementalmagneticpotentialcharacter isticsofthearmaturemagneticfieldwereobtained,andthefaultcriterionwasestablished.Finally,itwasproposedtowrapaflexiblecoilonthestatoryokeoftheexciter,anddetectandidentifytheopencircuitdiodefaultthroughthe25Hzrotatingfrequencycomponentoftheinducedvoltageoftheflexiblecoil.Two dimensionalfiniteelementsimulationandexperimentresultsshowthatthe25Hzrotatingfrequencycomponentoftheinducedvoltageoftheflexiblecoilcanbeusedfortheon linedetectionofanopencir cuitdiodefaultinrotatingrectifierbridge.Keywords:smallandmedium sizedbrushlessexcitationsynchronousgeneratorset;rotatingbridge;di ode;open circuitfaults;flexiblecoil;on linedetection0 引 言近年来,无刷励磁技术发展迅速,中小型无刷励磁同步发电机组体积小、便携带、失磁故障少、抗无线电干扰能力强,在工业,船舶,国防中有大量应用。

一种新型SEPIC_可拓展高增益DC-DC_变换器

一种新型SEPIC_可拓展高增益DC-DC_变换器
输入电流纹波,以延长光伏板的使用寿命,同时以避
免泄漏 电 流 并 降 低 辐 射 电 磁 干 扰 ( electromagnetic
interference,EMI) 。 工业上,应用最为广泛的是传统
Boost 变换器。 理论上,它可以获得无穷大的输出电
压。 然而,无源和有源器件的寄生电阻在占空比接
。 太阳能是
清洁无污染的可再生能源,对其进行高效开发利用
[2]
只能在一定的占空比范围内变化。
,例如,太阳能光伏板的
输出电压远低于直流母线电压 [4 - 6] 。 为了解决太阳
能光伏板和直流母线电压之间的电压水平不匹配问
题, 需 要 一 个 具 有 高 电 压 增 益 的 DC-DC 变 换
器 [7 - 14] 。 除了高增益特性外,该变换器还应具有低
其性能优势。 最后,搭建了一台 200 W 的实验样机进行验证,实验结果表明了所提变换器的正确
性和可行性。
关键词:光伏发电;非隔离;SEPIC 变换器;高增益;低电压应力
DOI:10. 15938 / j. emc. 2023. 04. 007
中图分类号:TM46
文献标志码:A
文章编号:1007- 449X(2023)04- 0064- 11
近极端值的情况下会恶化变换器的电压增益。
文献[4 - 11] 中介绍了许多具有高增益的 DC-
DC 变换器拓扑。 它们可以分为带磁耦合的拓扑和
电压增益,低输入电流纹波,以及低电压应力。 它能
直流并网前级母线电压(380 ~ 400 V) 。 这些特点
使其在太阳能光伏发电系统中的应用占据优势。
1 工作原理
第 27 卷 第 4 期
2023 年 4 月

电气英语证书考试(PEC)-电力系统专业英语词汇

电气英语证书考试(PEC)-电力系统专业英语词汇

电气英语证书考试(PEC)—电力系统专业英语词汇active filter 有源滤波器Active power 有功功率ammeter—电流表taped—transformer-多级变压器amplitude modulation (AM) 调幅analytical 解析的Arc reignition 电弧重燃Arc suppression coil 消弧线圈arc—extinguishing-chamber—灭弧室dynamo-直流发电机Armature 电枢Armature--电枢Internal—-combustion——engine--内燃机Automatic oscillograph 自动录波仪Automatic—control—自动控制Principles—of—electric-circuits—电路原理Automatic-—meter-—reading——自动抄表Boiler--锅炉Autotransformer 自藕变压器Autotransformer 自耦变压器baghouse 集尘室Bare conductor 裸导线binary 二进制Blackout 断电、停电Brush-—电刷Deenergize—-断电Bus tie breaker 母联断路器Bushing 套管bushing—tap—grounding—wire—套管末屏接地线power-transformer—电力变压器calibrate 校准Capacitor bank 电容器组Carbon brush 炭刷cascade—transformer-串级变压器disconnector—隔离开关Combustion turbine 燃气轮机Commutator--换向器Underground—-cable-—地下电缆Composite insulator 合成绝缘子conductor-导线current-transformer-CT-电流互感器Converter (inverter) 换流器(逆变器)Copper loss 铜损Counter--emf——反电势coupling—capacitor-耦合电容earthing-switch—接地开关Creep distance 爬电距离crusher 碎煤机decimal 十进制Demagnetization 退磁,去磁detection-impedance-检测阻抗asynchronous-machine-异步电机Digital—signal—processing—数字信号处理Dispatcher 调度员Distribution dispatch center 配电调度中心Distribution system 配电系统Distribution—-automation—-system--配电网自动化系统Servomechanism—-伺服系统Domestic load 民用电Drum 汽包,炉筒Eddy current 涡流electrostatic—voltmeter-静电电压表variable-transformer—调压变压器EMC (electromagnetic compatibility) 电磁兼容exciting—winding-激磁绕组grading-ring—均压环Extra-high voltage (EHV) 超高压Feeder 馈电线FFT (fast Fourier transform) 快速傅立叶变换fixed—contact-静触头steam-turbine-汽轮机flash-counter-雷电计数器charging(damping)-resistor—充电(阻尼)电阻Flexible AC transmission system(FACTS)灵活交流输电系统Fossil-fired power plant 火电厂frequency modulation (FM) 调频frequency-domain 频域fuse 保险丝,熔丝gas-insulated-substation—GIS—气体绝缘变电站turbogenerator-汽轮发电机generator-发电机GIS (gas insulated substation, geographic information system)气体绝缘变电站,地理信息系统glass-insulator-玻璃绝缘子inverter-station-换流站glow-discharge—辉光放电harmonic—谐波grounding—capacitance—对地电容step-up—(down)—transformer-升(降)压变压器hexadecimal 十六进制high—voltage-testing-technology—高电压试验技术Power—electronics-电力电子humidity 湿度hydro—power-station—水力发电站lightning—arrester-避雷器IC (integrated circuit)集成电路IEC (international Electrotechnical Commission)国际电工(技术)委员会IEE (Institution of Electrical Engineers)电气工程师学会(英)IEEE (Institute of Electrical and Electronic Engineers)电气与电子工程师学会(美)impulse—current-冲击电流power—network—电力网络impulse-flashover—冲击闪络insulation—绝缘Independent pole operation 分相操作Induction 感应Inductive (Capacitive) 电感的(电容的)inhomogenous-field—不均匀场overvoltage-过电压Instrument transducer 测量互感器insulation—coordination—绝缘配合aging—老化internal—discharge—内部放电alternating—current-交流电Iron loss 铁损ISO (international standardization organization) 国际标准化组织Kinetic(potential)energy 动(势)能LAN (local area network)局域网Lateral 支线Leakage flux 漏磁通LED (light emitting diode) 发光二极管Light(boiling)—water reactor 轻(沸)水反应堆lightning-overvoltage—雷电过电压arc-discharge—电弧放电lightning—stroke-雷电波AC—transmission—system-交流输电系统Line trap 线路限波器Load shedding 甩负荷Loop system 环网系统loss—angle(介质)损耗角attachment-coefficient—附着系数magnetic—field—磁场attenuation—factor-衰减系数Main and transfer busbar 单母线带旁路Malfunction 失灵mean-free-path-平均自由行程anode-(cathode)—阳极(阴极)mean-molecular-velocity—平均分子速度breakdown-(电)击穿mixed—divider—(阻容)混合分压器transmission—line-传输线moisture 潮湿,湿气moving—contact—动触头hydraulic—turbine—水轮机Nameplate 铭牌negative—ions—负离子bubble-breakdown—气泡击穿neutral-point-中性点hydrogenerator-水轮发电机non-destructive—testing-非破坏性试验cathode-ray—oscilloscope-阴极射线示波器non—uniform-field—不均匀场cavity—空穴,腔nuclear-power—station—核电站bus—bar—母线numerical 数字的octal 八进制oil-filled—power-cable-充油电力电缆overhead—line—架空线Oil—impregnated paper 油浸纸绝缘operation amplifier 运算放大器operation amplifier 运算放大器Operation mechanism 操动机构oscilloscope—示波器sulphur—hexafluoride-breaker—SF6—断路器Outgoing (incoming) line 出(进)线partial—discharge—局部放电corona—电晕passive filter 无源滤波器Peak—load 峰荷peak-reverse-voltage—反向峰值电压composite-insulation—组合绝缘peak-voltmeter-峰值电压表potential-transformer—PT—电压互感器Phase displacement (shift) 相移Phase Lead(lag)相位超前(滞后)Phase shifter 移相器phase-to—phase-voltage-线电压Dielectric—电介质,绝缘体photoelectric-emission—光电发射critical—breakdown—voltage-临界击穿电压photon—光子Discharge—放电Pneumatic(hydraulic)气动(液压)point—plane-gap—针板间隙earth(ground)-wire—接地线polarity-effect-极性效应dielectric—constant—介质常数porcelain—insulator-陶瓷绝缘子front(tail)-resistance-波头(尾)电阻Potential stress 电位应力(电场强度)Power factor 功率因数Power line carrier (PLC) 电力线载波(器)power—capacitor-电力电容dielectric—loss—介质损耗Power—-factor--功率因数Torque--力矩Power—flow current 工频续流power-system-电力系统Primary(backup)relaying 主(后备)继电保护Prime grid substation 主网变电站Protective relaying 继电保护pulverizer 磨煤机Pulverizer 磨煤机Pumped storage power station 抽水蓄能电站quasi-uniform—field-稍不均匀场direct-current-直流电radio—interference—无线干扰divider—ratio-分压器分压比rated 额定的rating-of-equipment-设备额定值grounding—接地Reactance (impedance) 电抗(阻抗)Reactive 电抗的,无功的Reactive power` 无功功率Reactor 电抗器Reclosing 重合闸Recovery voltage 恢复电压Rectifier 整流器Relay panel 继电器屏relay-继电器iron-core—铁芯Reserve capacity 备用容量residual-capacitance—残余电容electrochemical-deterioration—电化学腐蚀resonance 谐振,共振Restriking 电弧重燃Retaining ring 护环RF (radio frequency) 射频Right-of—way 线路走廊Rms (root mean square) 均方根值Rogowski—coil—罗可夫斯基线圈vacuum—circuit-breaker—真空断路器routing-testing-常规试验electric-field—电场Rpm (revolution per minute) 转/分Salient—pole 凸极scale 刻度,量程Schering-bridge-西林电桥live—tank-oil—circuit—breaker-少油断路器Series (shunt)compensation 串(并)联补偿Shaft 转轴Shield wire 避雷线-shielding-屏蔽electron—avalanche-电子崩Short-circuit ratio 短路比short—circuit-testing-短路试验electronegative-gas-电负性气体Shunt reactor 并联电抗器Silicon carbide 碳化硅Silicon rubber 硅橡胶Single (dual,ring) bus 单(双,环形)母线Skin effect 集肤效应Slip ring 滑环space—charge-空间电荷epoxy—resin-环氧树脂sparkover 放电sphere—gap—球隙rotor—转子Spot power price 实时电价Static var compensation (SVC) 静止无功补偿Stationary (moving) blade 固定(可动)叶片Stator(rotor)定(转)子steel—reinforced—aluminum—conductor-—钢芯铝绞线tank—箱体stray-capacitance-杂散电容motor-电动机stray—inductance-杂散电感stator-定子streamer—breakdown-流注击穿expulsion-gap-灭弧间隙substation-变电站Insulator-绝缘子Superheater 过热器Supervisory control and data acquisition (SCADA) 监控与数据采集surface-breakdown—表面击穿field-strength—场强Surge 冲击,过电压surge-impedance-波阻抗dead-tank—oil—circuit—breaker—多油断路器suspension—insulator-悬式绝缘子bushing—套管sustained—-discharge—-自持放电field--stress--电场力Switchboard 配电盘,开关屏switching—-overvoltage——操作过电压field-—distortion--场畸变Synchronous condenser 同步调相机Synchronous condenser 同步调相机Tap 分接头Telemeter 遥测terminal 接线端子Tertiary winding 第三绕组test-object-被试品synchronous-generator—同步发电机thermal-—breakdown-—热击穿field--gradient--场梯度thermal—power—station—火力发电站metal—oxide-arrester-MOA—氧化锌避雷器Tidal current 潮流time—domain 时域Time—of-use(tariff)分时(电价)Transfer switching 倒闸操作treeing--树枝放电field—-emission-—场致发射trigger—electrode-触发电极highvoltage—engineering-高电压工程Trip circuit 跳闸电路Trip coil 跳闸线圈tuned-circuit—调谐电路winding-绕组Turn (turn ratio) 匝(匝比,变比)Ultra—high voltage (UHV)特高压uniform--field--均匀场flashover—-闪络Uninterruptible power supply 不间断电源voltage—divider—分压器circuit-breaker-CB-断路器wave—-front(tail)-—波头(尾)gaseous-—insulation--气体绝缘Withstand test 耐压试验withstand—-voltage——耐受电压Prime—-mover--原动机XLPE(Cross Linked Polyethylene )交联聚乙烯(电缆)XLPE—cable-交链聚乙烯电缆(coaxial)-cable-(同轴)电缆Zero sequence current 零序电流Zinc oxide 氧化锌。

20170731_北京_中加基金_EMC告警问题处理

20170731_北京_中加基金_EMC告警问题处理

20170731_北京_中加基⾦_EMC告警问题处理中加基⾦-EMC存储报警问题处理【处理时间】2017年07⽉31⽇现场处理【客户名称】中加基⾦【主机信息】EMC VNX5300 FCNXX 10.1.18.246/248 和10.1.18.247/248 【处理⼈员】毕光明【问题说明】现象:存储告警灯常亮,EMC存储Unisphere图形管理界⾯发现有如下报错:Severity : ErrorSystem : FCNXXDomain : LocalCreated : Jul 30, 2017 6:21:04 PMMessage : DPE (Bus 0 Enclosure 0) is faulted.Full Description : Disk Processor Enclosure (Bus 0 Enclosure 0) is faulted. Serversmay have lost access to disk drives in this storage system.Recommended Action : Contact your service provider.Event Code : 0x7409事件分析1、⾸先现场检查EMC存储状态,发现只有EMC存储告警灯常亮,但各部件的告警灯正常。

2、登录EMC管理控制台,查看各部件状态,发现各部件转台正常。

3、收集2个控制器的⽇志包,能看到如下的报错⽇志:07/30/17 10:17:38 Spe0 PowA 993 SP Environmental Interface Failure. [DeviceError] 0 136 a8000000 07/30/17 10:18:33 2580 Storage Array Faulted Bus 0 Enclosure 0 : Faulted07/30/17 10:21:04 Bus0 Enc0 7409 Disk Processor Enclosure is faulted. See alerts for details.提⽰电源A有报错4、查看电源状态:c:\EMC\Navisphere\7.31.33.0.41.1\msgbin\NavisecCli.exe -np getcrus -all-------------------------------------------------------------------------------- DPE7 Bus 0 Enclosure 0 *FAULT*(Bus 0 Enclosure 0 : Faulted)Enclosure Drive Type: SASCurrent Speed: 6GbpsMaximum Speed: 6GbpsSP A State: PresentSP B State: PresentBus 0 Enclosure 0 Power A State: PresentBus 0 Enclosure 0 Power B State: PresentBus 0 Enclosure 0 SPS A State: PresentBus 0 Enclosure 0 SPS B State: PresentBus 0 Enclosure 0 SPS A Cabling State: ValidBus 0 Enclosure 0 SPS B Cabling State: ValidBus 0 Enclosure 0 CPU Module A State: PresentBus 0 Enclosure 0 CPU Module B State: PresentBus 0 Enclosure 0 SP A I/O Module 0 State: EmptyBus 0 Enclosure 0 SP A I/O Module 1 State: EmptyBus 0 Enclosure 0 SP B I/O Module 0 State: EmptyBus 0 Enclosure 0 SP B I/O Module 1 State: EmptyBus 0 Enclosure 0 DIMM Module A State: PresentBus 0 Enclosure 0 DIMM Module B State: Present显⽰电源(Power)A/B以及电池(SPS)A/B都是正常状态。

考虑频率响应的虚拟同步发电机暂态同步策略

考虑频率响应的虚拟同步发电机暂态同步策略

第27卷㊀第12期2023年12月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.12Dec.2023㊀㊀㊀㊀㊀㊀考虑频率响应的虚拟同步发电机暂态同步策略于晶荣1,㊀王益硕1,㊀孙文2,㊀邱均成1(1.中南大学自动化学院,湖南长沙410083;2.国网湖南省电力有限公司邵阳供电分公司,湖南邵阳422502)摘㊀要:为了解决虚拟同步发电机(VSG )在严重故障中与电网失去同步的暂态稳定问题,提出一种考虑频率响应的自适应暂态同步方法㊂采用功角和功率偏差作为判断系统是否发生失稳的信号,并设置频率偏差与频率变化率的阈值条件,按照极限频率自适应地调整虚拟惯量与阻尼参数,以控制VSG 快速恢复到稳定工作点㊂与现有方法相比,该策略避免了功率微分项向系统引入噪声,同时通过自主调节频率阈值,能够实现不同的动态恢复过程㊂此外,采用等面积定则分析了受扰VSG 的暂态特性,从大信号角度验证该策略提高了系统的稳定性㊂仿真结果证明了所提自适应暂态同步策略的快速性,并比较了不同阈值对频率快速响应过程的影响,验证了所提策略的正确性和有效性㊂关键词:暂态同步稳定性;虚拟同步发电机;功率控制;惯量调节;阻尼调节;频率响应DOI :10.15938/j.emc.2023.12.013中图分类号:TM464文献标志码:A文章编号:1007-449X(2023)12-0127-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-07-26基金项目:湖南省自然科学基金(2022JJ30742);长沙市自然科学基金(kq2202103)作者简介:于晶荣(1981 ),女,博士,副教授,研究方向为电能质量分析与控制技术;王益硕(1998 ),女,硕士研究生,研究方向为新能源电能质量控制技术;孙㊀文(1998 ),男,硕士,研究方向为分布式能源与电能质量控制技术;邱均成(1997 ),男,硕士研究生,研究方向为电能质量治理和逆变器故障穿越㊂通信作者:王益硕Transient synchronization strategy of virtual synchronous generatorconsidering frequency responseYU Jingrong 1,㊀WANG Yishuo 1,㊀SUN Wen 2,㊀QIU Juncheng 1(1.College of Automation,Central South University,Changsha 410083,China;2.Shaoyang Power Supply Branch of State Grid Hunan Electric Power Co.,Ltd.,Shaoyang 422502,China)Abstract :An adaptive transient synchronization method considering frequency response was proposed to enhance the transient stability of the virtual synchronous generator (VSG)that loses grid synchronization during severe shocks.The method employs the power angle and power deviation to determine whether the system was destabilized.It controls the VSG to rapidly restore stability by modifying the virtual inertia and damping coefficient under frequency threshold conditions,such as frequency deviation and the rate of change of pared with existing approaches,in the strategy the noise created by power dif-ferential was avoided,while the frequency threshold can be set autonomously based on the load s re-quirements to achieve various dynamic recovery processes.Furthermore,the transient properties of the disturbed VSG were examined employing the equal area criterion,and it is demonstrated that the strategy can improve the system s large-signal stability.The simulation results demonstrate swiftness of the pro-posed adaptive transient synchronization strategy,assess the effects of various thresholds on the frequencyfast response procedure,and finally validate correctness and effectiveness of the proposed strategy.Keywords:transient synchronization stability;virtual synchronous generator;power control;inertia ad-justment;damping adjustment;frequency response0㊀引㊀言近年来,并网逆变器作为分布式能源与电网之间的接口,被广泛地应用于电力系统[1]㊂但逆变器通常缺乏传统同步发电机(synchronous generator, SG)固有的惯量与阻尼特性,在面临传输线路故障等问题时,会表现出更为快速而复杂的暂态过程[2-3]㊂为了模拟SG的运行特性,同时为电网提供电压与频率支持,虚拟同步发电机(virtual syn-chronous generator,VSG)成为了极富前景的控制方法[4-5]㊂VSG采用功率环与大电网同步,是典型的二阶系统,在改善频率动态响应的同时,也应兼顾功率的快速响应[6-7]㊂为了解决功频响应与参数设计之间的矛盾,常用的方法是降阶控制[8-9]与自适应惯性控制[10-13]㊂这些方法从小信号角度来分析优化VSG的动态过程与稳定性,充分利用了平衡点附近的线性化模型㊂然而,在传输线路故障㊁电压暂降等大干扰的工况下,小信号方法不再适用,更应关注VSG与电网保持同步的能力[13-15]㊂这时,根据VSG受扰后是否存在稳定工作点,同步问题可分为两类㊂其中,由于II型暂态问题没有任何平衡点,需要配合故障清除才能避免失步问题[16-17]㊂I型暂态问题有2个平衡点,文献[18]指出,非惯性系统(如下垂控制或功率同步控制)在该暂态问题下的暂态响应一定能与电网保持同步㊂此外,文献[19]采用李雅普诺夫直接法,证明了随着阻尼系数的增加,系统的吸引域会扩大,其暂态稳定性也会改善㊂VSG则在非惯性系统的基础上加入积分环节,引入的虚拟惯量极大地提高了系统的频率稳定性,但由于缺乏阻尼,VSG 将面临失稳的风险[20]㊂目前,提高VSG暂态稳定性的方法有两大类,一是调节功率参考,二是修改控制器㊂电力系统暂态失稳的根本原因是有功参考与输出的不平衡[15],因此调节功率参考是最直接的提高暂态稳定性的方法㊂文献[19]利用功角曲线对无功控制进行定性分析,表明无功下垂系数会恶化VSG的暂态稳定性,因此在故障期间提高无功或电压幅值参考可以补偿电压降,扩大暂态稳定裕度[21-22]㊂降低有功参考来减小加速面积㊁增大减速面积的方法同样有效[23]㊂文献[24]为使VSG始终存在平衡点,引入参考功角概念,本质上是通过调整有功参考实现功角跟踪㊂这些方法均在一定程度上减小了Ⅱ型暂态问题的发生概率,但不可避免地降低了VSG的功率输出能力,同时由于难以准确量化参考调节量,只能在趋势上预防VSG发生失步㊂修改控制器参数或控制结构将进一步解决上述问题㊂传统VSG的暂态稳定性与动态响应之间存在矛盾,因此惯性与阻尼特性需要权衡设计[25]㊂文献[26-28]采用额外锁相环检测电网频率,并前馈到有功参考,在不影响控制器参数设计的情况下等效增大VSG的暂态阻尼㊂文献[29]前馈的是频率微分,可以等效增大暂态惯性㊂文献[30]基于SG 同步电抗的不对称特性,设计了一种不对称虚拟暂态阻抗控制㊂文献[31-32]则提出加速阶段大惯量㊁减速阶段小惯量的交替惯量控制,使VSG在暂态期间有近似一阶的动态响应㊂与小扰动类似,控制器参数的自适应设计在提高VSG暂态稳定性方面具有良好的应用前景㊂尽管两类方案在一定程度上能避免暂态失稳问题,但并不能彻底消除VSG的失步风险,更无法促进已失稳系统的暂态恢复㊂文献[33]利用频率偏差㊁功率偏差及其变化率等信号对VSG的正㊁负反馈区域进行判断,发现VSG一旦进入正反馈模式,就必然导致系统不稳定㊂为恢复稳定,该方法自适应地将控制器参数调节为负惯量与负阻尼,避免VSG的功角发散㊂但是,功率变化率作为功率的微分,会引入噪声干扰模式切换控制,从而容易造成正负反馈区间的误判㊂此外,该方法无法同时兼顾频率响应与暂态同步稳定性要求,即使系统最终能够恢复平衡,也要经历一个长期的动态过程,这对电力系统的安全运行是不利的㊂为改进上述方法的不足之处,本文提出一种考虑频率响应特性的自适应暂态同步策略,确保VSG 在失稳后能迅速回到稳定工作点㊂该策略采用功角与功率偏差来判断系统是否进入失稳区间,避免了功率微分的极性判定,消除了噪声的影响㊂设置了频率偏差与频率变化率(the rate of change of fre-quency,RoCoF)的阈值条件,根据频率极限自适应821电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀地调整惯量与阻尼参数,使VSG 不仅满足暂态同步稳定性,而且实现快速频率响应㊂本策略能够根据电网规约要求自主调整频率阈值㊂此外,通过等面积定则验证了系统稳定性,最后在MATLAB /Simulink 平台上搭建系统模型,验证了所提策略的可行性㊂1㊀系统结构与暂态失稳问题1.1㊀基于VSG 的系统结构VSG 并网主电路拓扑如图1所示㊂图中:V dc 为直流侧电压;C dc 为直流侧电容㊂VSG 交流侧的输出电压经滤波电感L f 与滤波电容C f 后连接至公共耦合点(point of common coupling,PCC),V 与I 为VSG 输出电压与电流㊂Z 1与Z 2为两个并联的线路阻抗,Z g =Z 1//Z 2㊂V g 表示无穷大母线电压㊂图1㊀VSG 并网主电路拓扑Fig.1㊀VSG grid-connected main circuit topologyVSG 的同步单元如图2所示㊂其中:P ref 与P 分别为有功功率的参考和实际输出;ω0为额定频率,稳态时等于电网频率ωg㊂图2㊀VSG 的同步单元Fig.2㊀Synchronization unit of VSG有功控制可以模拟SG 的调速器与惯量特性,即摆动方程为P ref -P -D (ω-ω0)=Jsω㊂(1)式中:D 为阻尼系数;J 为虚拟惯量;ω为VSG 的输出角频率;s 为频域下的拉普拉斯算子㊂图2中θref 是参考电压相位,表达式为θref =ωs㊂(2)无功回路通常采用Q -V 下垂控制,用于调节逆变器输出电压V ,表达式为V =k q (Q ref -Q )+V 0㊂(3)式中:k q 为无功下垂系数;Q ref 与Q 分别为无功功率的参考和实际输出;V 0为系统标称电压㊂系统的等效电路如图3所示㊂VSG 被视为一个可控电压源,Z inv 为电源内阻㊂线路阻抗通常呈高感性,可忽略线路电阻,即Z g ʈj ωL g =j X g ㊂根据电路理论,VSG 向电网输送的有功㊁无功功率分别为:P =32VV g sin δX g;Q =32V 2-VV gcos δX g ㊂üþýïïïï(4)式中δ用于表示PCC 电压与电网电压的相角偏差,被称为功角,它与VSG 输出频率㊁电网频率之间的关系为δ=θref -θg =ʏ(ω-ωg )d t =ʏ(ω-ω0)d t ㊂(5)图3㊀系统等效电路Fig.3㊀System equivalent circuit将式(4)代入式(3)中,可以求得PCC 电压V 与功角δ之间的关系为V (δ)=13k q[1.5k q V g cos δ-X g +(1.5k q V g cos δ-X g )2+6k q X g (V 0+k q Q ref )]㊂(6)联合式(4)与式(6),即可求得P 关于δ的非线性关系㊂容易发现,P (δ)与无功回路的参数k q ㊁V 0㊁Q ref 的取值有关㊂为简化分析,本文着重探讨有功回路在暂态失稳问题中的作用,暂时忽略无功回路参数设计对P (δ)特性的影响,即认为VSG 输出电压幅值总能支撑PCC 电压㊂不再详细讨论无功功率控制环㊂1.2㊀失稳问题描述VSG 的输出功率P 与功角δ之间呈正弦关系,正弦曲线的幅值为3VV g /2X g ,但这种正弦的非线性特性会给电网同步带来一些问题㊂通常,电网扰动可表现为阻抗突变或PCC 电压骤降,这将导致功角曲线的峰值突然减小㊂VSG 受扰前后的I 型暂态功角曲线如图4所示㊂扰动发生前,P ref 与功角曲线交于2个平衡点,其中:s 点为稳定平衡点(stable equilibrium point,921第12期于晶荣等:考虑频率响应的虚拟同步发电机暂态同步策略SEP),u 点为不稳定平衡点(unstable equilibriumpoint,UEP),VSG 稳定运行于s 点㊂扰动发生后,功角曲线仍与P ref 有2个交点,SEP 变为s 1点,UEP 变为u 1点,由于δ无法突变,功角曲线的变化将导致VSG 的输出功率发生跳变(由s 点至a 点)㊂图4㊀Ⅰ型暂态问题的功角曲线Fig.4㊀Power angle curve of type-Ⅰtransient problem结合式(1)与式(5),当系统工作点从a 点向s 1点移动的过程中,P ref >P 使得Jsω大于0,系统开始加速㊁功角变大,工作点向右移动;向右越过s 1点后,P ref <P 使得系统开始减速㊂如果VSG 的输出频率在到达u 1点之前能减速至额定频率ω0,并继续减速,功角才开始减小㊁工作点向左移动㊂上述过程将重复发生,经过一段动态过程后一定会稳定在s 1点,系统稳定㊂相反地,如果工作点第一次右移至u 1点时,频率仍大于ω0,系统会继续加速㊁右移并越过u 1点,导致VSG 的功角不断增大,很快与电网失去同步并引发振荡㊂2㊀自适应暂态同步策略本文提出的自适应暂态同步策略的运行机制如图5所示㊂图5㊀自适应暂态同步策略的运行机制Fig.5㊀Operational mechanism of adaptive transientsynchronization strategy根据1.2节分析,判断I 型暂态问题是否失稳的重要条件是,系统运行工作点是否向右移动并越过UEP㊂此外,UEP 对应的功角一定满足:δu 1>π2㊂(7)工作点越过UEP 后,有功功率也会低于参考,即ΔP =P ref -P ȡc 1㊂(8)式中c 1是根据系统稳态值整定的稍大于0的常数㊂因此,VSG 失稳的边界条件为同时满足式(7)与式(8)㊂系统越过UEP 后会失稳的原因是VSG 的ω不断增大㊂考虑到控制参数可调,改写式(1)为Jd ωd t=ΔP -D Δω㊂(9)式中Δω=ω-ω0㊂式(9)意味着修改J 与D 的取值即可决定d ω/d t 项的符号,系统加减速完全可控㊂系统失稳时Δω>0,因此期望VSG 能尽快减速,直到Δω=0,工作点才开始左移并逐渐稳定㊂同时,为了避免系统面临漫长的动态恢复过程,最理想的状态是ω以最快的速度减小,并在工作点逐渐恢复到SEP 的过程中适时改变惯量与阻尼系数,变减速为加速㊂若控制得当,系统的功率与频率将在工作点第一次接近SEP 时恰好同时平衡,VSG 稳定㊂在改变VSG 的加减速状态时,要注意频率偏差与RoCoF 不能过大,否则会对电力系统与负载的安全运行造成威胁㊂频率的边界条件应按照电网规约进行设计,表达式为:|Δω|ɤΔωmax =2πΔf max ;d ωd tɤk =2πf ㊃max ㊂}(10)式中:Δωmax 表示角频率偏差允许的最大值;k 表示角频率变化率允许的最大值㊂系统稳态运行时,虚拟惯量J 0与阻尼系数D 0保持恒定;失去稳定后,自适应调节控制参数,按照频率边界条件,使VSG 的输出角频率按照图6中的理想响应曲线变化㊂将失稳后的频率响应分为两个阶段㊂第一阶段是减速与匀速阶段,VSG 以-k 为斜率减小输出频率;但受Δωmax 限制,当ω减小至ω0-Δωmax 时应保持不变,在极限频率条件下使δ快速减小㊂随着工作点的左移,应适时开始加速,即进入第二阶段,VSG 以k 为斜率将ω增大至ω0㊂031电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图6㊀输出频率的理想响应曲线Fig.6㊀Ideal response curve of output frequency根据图6与式(5)易知,频率响应曲线与ω=ω0围成的面积即为δ的稳态值与暂态最大值的偏差㊂在该面积与频率阈值的共同作用下,响应曲线存在三角曲线与梯形曲线2种类型㊂2种曲线的加速时刻t2可根据面积来计算:设t2时刻Δω=x,则加速持续时间为t3–t2=x/k,积分求得δ的偏移量为Δδ=ʏt3t2[k(t-t3)+ω0-ω0]d t=-x22k㊂(11)由于δt3等于稳态功角δs1,则Δδ=δt3–δt2=δs1–δt2,加速时刻的判断条件为2k(δ-δs1)-x2ɤ-c2㊂(12)式中c2为略大于0的常数㊂为确保VSG能恰好在SEP稳定,应在合适的时刻退出同步策略,即δ-δs1ɤc3㊂(13)式中c3同为一个略大于0的常数㊂满足式(13)后,系统惯量与阻尼系数恢复为J0与D0㊂3㊀控制参数设计与稳定性分析3.1㊀虚拟惯量与阻尼系数设计自适应暂态同步策略中各阶段控制参数的设计介绍如下:1)减速阶段㊂当系统同时满足式(7)与式(8) (失稳判断条件)时,期望VSG的ω以最大RoCoF 减速,J1与D1应满足的条件为P ref-P-D1ΔωJ1=-k㊂(14)令D1=0可以缩短暂态过程,则J1=-P ref-Pk㊂(15) 2)匀速阶段㊂当ω减小到阈值时,期望RoCoF 为0㊂此时Δω=-Δωmax,无论J2取何值,只要分子为0即可满足要求㊂为不失一般性,可令J2= J0㊂则D2=-P ref-PΔωmax㊂(16) 3)加速阶段㊂当满足式(12)(加速时刻判断条件)时,期望ω以最大RoCoF加速㊂仍令D3=0来缩短暂态,虚拟惯量J3应满足J3=P ref-Pk㊂(17)按照上述策略设计每个阶段的虚拟惯量与阻尼系数,就能够实现VSG的快速频率恢复㊂3.2㊀基于等面积定则的稳定性分析自适应暂态同步策略控制的等面积定则示意图如图7所示㊂图7㊀等面积定则示意图Fig.7㊀Schematic diagram of the equal area criterion为保守考虑系统的暂态稳定性,假设系统具有零阻尼㊂当系统恢复过程中的最大功角为δc时,ω=ω0㊂VSG从s点向c点运行过程中的控制策略为:P ref-P=J0ω㊃=J0δ㊃㊃,δsɤδɤδu1;P ref-P=J1ω㊃=J1δ㊃㊃,δu1<δɤδc㊂}(18)根据等面积定则,计算该过程中的加速区域A 的面积与减速区域B1㊁B2的面积,如果二者大小相等则说明系统一定会在c点实现频率平衡㊂首先,在式(18)第一个式子的左右两边同时乘以dδ/d t得P ref-PJ0dδd t=d2δd t2dδd t=12dd t dδd t()2㊂(19)以此为基础可以计算加减速面积为:131第12期于晶荣等:考虑频率响应的虚拟同步发电机暂态同步策略S A =ʏδs1δsP ref -P J 0d δ=12d δs 1d t ()2-d δsd t()2[];S B 1=ʏδu1δs1P ref -P J 0d δ=12d δs 1d t ()2-d δu 1d t ()2[];S B 2=ʏδcδu1P ref -PJ 1d δ=k (δc -δu 1)㊂üþýïïïïïïïïï(20)式中δc –δu 1可按照图6中的曲线计算,即δc -δu 1=ʏt 00[(-kt +ωu 1)-ω0]d t =ʏt 00-kt +d δu 1d t()d t =12k d δu 1d t ()2-d δc d t()2[]㊂(21)由于频率平衡,d δs /d t =d δc /d t =0㊂因此易得S A=12d δs 1d t ()2=S B 1+S B 2㊂(22)由此证明,本文所提策略能使VSG 在大扰动情况下保持暂态同步稳定㊂4㊀仿真结果与分析为了验证本文提出的自适应暂态同步策略的有效性,根据图1所示的VSG 并网拓扑,在MATLAB /Simulink 平台搭建仿真模型,并进行时域仿真㊂仿真模型参数如表1所示㊂表1㊀仿真模型参数Table 1㊀Parameters of simulation model㊀㊀㊀参数数值直流侧电压V dc /V 800直流侧电容C dc /μF 4700滤波电容C f /μF100滤波电感L f /mH 4标称电压幅值V 0/V 170额定频率f 0/Hz50有功功率参考P ref /kW 16线路阻抗L 1,L 2/mH 8,8初始虚拟惯量J 070初始阻尼系数D 0300VSG 输出电压含有大量谐波,需要滤波器将谐波滤除,滤波器的参数整定原则为谐振频率应远大于系统的基波频率,小于开关频率的0.1~0.2倍[34]㊂滤波电感L f 的选择应注意压降要小于额定电压的10%㊂LC 滤波器的参数选择会在一定程度上影响VSG 的电压环动态㊂本文通过配置电压环的PI 参数,使电压环的带宽远大于功率环带宽,因此在功率环中可以忽略该部分动态响应㊂电压电路环的参数设计不再赘述㊂本文将暂态扰动分为两类,一是线路阻抗突变,二是电网电压骤降㊂以线路阻抗突变为例进行验证㊂4.1㊀常系数控制的VSG 仿真常系数控制的VSG 在t =1s 时断开三相开关K,使L g 由4mH 增大为8mH,仿真结果如图8所示㊂图8㊀常系数控制的VSG 仿真结果Fig.8㊀Simulation results of VSG with constant coefficientcontrol受到扰动后约0.4s,本在减速的VSG 开始加速,但此时Δω>0,说明系统很快越过了u 1点,有功功率也在此刻骤然减小,甚至变为负值㊂使得VSG 很快与电网失去同步,逆变器输出的有功功率与输出频率在失稳状态中大幅波动,功角逐渐发散㊂4.2㊀不同暂态同步策略的仿真结果对比将本文的自适应暂态同步策略与文献[33]所提策略进行对比㊂仿真中,c 1=0.1㊁c 2=10–3㊁c 3=10–6㊂根据电网规约在暂态期间对频率的要求,设置频率的边界条件为Δf max =1Hz,f ㊃max =2.5Hz /s [35-36]㊂VSG 线路阻抗突变后的仿真结果231电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀如图9所示,数据对比列于表2㊂图9㊀不同暂态同步策略的VSG 仿真结果Fig.9㊀Simulation results of VSG with different transi-ent synchronization strategies表2㊀不同暂态同步策略的仿真结果对比Table 2㊀Comparison of simulation results of differenttransient synchronization strategies单位:s暂态同步策略失稳时刻返回UEP 时刻恢复时间文献[33]所提策略 1.3 1.65 2.50本文所提策略1.31.630.92文献[33]所提策略在失稳区间内时,较大的负阻尼使VSG 不能单调减速㊂VSG 的工作点返回并越过UEP 时,暂态策略恢复正惯量与正阻尼,导致动态恢复过程不受控制,系统波动的时间变长,在受扰后约2.5s 后才能稳定运行㊂本文所提策略在判断系统失稳后,输出频率能按照边界条件减速,并在合适的位置开始加速,最短时间内实现系统稳定㊂VSG 在受扰后约0.92s 恢复稳定㊂仿真结果表明,2种策略在同一时刻判断系统失稳,与常系数控制策略相比,失稳时刻提前;常系数控制的VSG 在越过UEP 后仍能继续减速,得益于较大的阻尼系数㊂4.3㊀不同频率阈值的仿真结果对比本文所提策略的频率响应表现为三角曲线,是由于Δf max 设置较大,f ㊃max 设置较小㊂为探究频率阈值对VSG 响应时间的影响,设置了不同的算例㊂数据对比列于表3,仿真结果如图10所示㊂3个算例中,系统受扰后恢复稳定所需要的时间分别为0.68㊁0.7与0.45s,说明频率边界条件会改变VSG 的动态响应:f ㊃max 保持不变,随着Δf max 减小,频率响应会由三角曲线变为梯形曲线,且系统恢复稳定的时间变长;Δf max 保持不变,随着f ㊃max 增大,频率响应也会由三角曲线变为梯形曲线,但系统恢复稳定的时间将会缩短㊂图10(d)和图10(e)给出3种算例中虚拟惯量与阻尼系数的变化情况:f ㊃max 越小,惯量与阻尼变化越大㊂虚拟惯量的正负符号是由VSG 的加减速要求与ΔP 共同决定的,有可能发生跳变;只有在梯形响应曲线的情况下,阻尼系数才会根据ΔP 调节㊂惯量与阻尼自适应地改变,最终促进系统恢复同步并快速进入稳态㊂仿真结果验证了本文所提策略在I 型暂态失稳问题中的优越性能:能准确㊁及时地判断VSG 是否失稳;可根据输出信号状态自适应调节虚拟惯量与阻尼系数;最终明显改善了系统恢复稳定的动态特性㊂表3㊀不同频率阈值的仿真结果对比Table 3㊀Comparison of simulation results for different fre-quency thresholds算例Δf max /Hz f ㊃max /(Hz /s)恢复时间/s响应曲线算例10.550.68梯形算例2150.70三角形算例31250.45梯形4.4㊀无功控制参数对暂态同步策略的影响在上述仿真验证过程中,均假设VSG 输出电压幅值总能支撑PCC 电压,但是无功回路下垂系数k q 的加入将显著影响系统的暂态同步㊂为验证无功控制回路的影响,设置了不同的k q ,并在t =1s 时,331第12期于晶荣等:考虑频率响应的虚拟同步发电机暂态同步策略电网电压V g 骤降为0.55pu㊂设置频率的边界条件为Δf max =1Hz,f ㊃max =2.5Hz /s,仿真结果如图11所示㊂图10㊀不同频率阈值的VSG 仿真结果Fig.10㊀Simulation results of VSG with different fre-quencythresholds图11㊀不同无功下垂系数的VSG 仿真结果Fig.11㊀Simulation results of VSG with different reac-tive power droop coefficients仿真结果的数据对比如表4所示㊂当k q =0.001时,VSG 的输出频率没有减速趋势,直接进入431电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀失稳状态,说明系统发生了II型暂态问题,此时输出频率在50Hz附近小幅振荡,功角在90ʎ附近振荡(见图11(b)与图11(c)的缩略图)㊂表4㊀不同无功下垂系数的仿真结果对比Table4㊀Comparison of simulation results with different reactive power droop coefficientsk q稳态功角/(ʎ)PCC电压幅值/V恢复时间/s系统暂态0.000161.57167.4 2.32未失稳0.000568.55158.20.85Ⅰ型暂态问题0.00190.00144.8 Ⅱ型暂态问题在同样电网电压骤降情况下,随着无功下垂系数k q的增大,稳态功角也增大,PCC电压却减小㊂结合式(4)可知,VSG输出的最大有功峰值也将减小,严重影响系统的稳定性㊂5㊀结㊀论针对VSG的I型暂态失稳问题,本文提出一种考虑频率响应的自适应暂态同步策略㊂该策略改进了失稳判断条件,避免采用功率微分项作为判断信号;可设置不同的频率阈值,并自适应地调整虚拟惯量与阻尼系数,实现不同的VSG暂态同步过程;提高了失稳VSG的暂态恢复速度,且频率阈值越大,响应速度越快,其动态过程可分为三角曲线与梯形曲线2种类型㊂最后,通过仿真实验结果验证了无功控制策略不会影响本文所提策略的有效性;同时可以收敛II 型暂态问题中VSG,避免系统大幅振荡㊂但本文未考虑II型暂态问题时VSG的应对策略,尤其是故障切除后系统快速稳定的策略;此外,本文所提方法对线路阻抗检测㊁电网电压检测方法要求较高,需要进一步探索检测方案㊂参考文献:[1]㊀ROKROK E,SHAFIE-KHAH M,CATALAO J.Review of prima-ry voltage and frequency control methods for inverter-based islan-ded microgrids with distributed generation[J].Renewable and Sustainable Energy Reviews,2018,82:3225.[2]㊀王博,杨德友,蔡国伟.高比例新能源接入下电力系统惯量相关问题研究综述[J].电网技术,2020,44(8):2998.WANG Bo,YANG Deyou,CAI Guowei.Review of research on power system inertia related issues in the context of high penetra-tion of renewable power generation[J].Power System Technology, 2020,44(8):2998.[3]㊀SHARMA G,NARAYANAN K,ADEFARATI T,et al.Frequen-cy regularization of a linked wind-diesel system using dual struc-ture fuzzy with ultra-capacitor[J].Protection and Control of Mod-ern Power Systems,2022,7(1):1.[4]㊀ZHONG Qingchang,WEISS G.Synchronverters:inverters thatmimic synchronous generators[J].IEEE Transactions on Industri-al Electronics,2011,58(4):1259.[5]㊀吕志鹏,盛万兴,刘海涛,等.虚拟同步机技术在电力系统中的应用与挑战[J].中国电机工程学报,2017,37(2):349.LÜZhipeng,SHENG Wanxing,LIU Haitao,et al.Application and challenge of virtual synchronous machine technology in power system[J].Proceedings of the CSEE,2017,37(2):349. [6]㊀QU Shengwei,WANG Zhijie.Cooperative control strategy of virtu-al synchronous generator based on optimal damping ratio[J].IEEE Access,2021,9:709.[7]㊀PAN Donghua,WANG Xiongfei,LIU Fangcheng,et al.Transientstability of voltage-source converters with grid-forming control:a design-oriented study[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(2):1019.[8]㊀QUAN Xiangjun,HUANG A Q,YU Hui.A novel order reducedsynchronous power control for grid-forming inverters[J].IEEE Transactions on Industrial Electronics,2020,67(12):10989.[9]㊀于鸿儒,苏建徽,王一丁,等.并网逆变器降阶模型及其构建方法的分析与对比[J].电力系统自动化,2020,44(10):155.YU Hongru,SU Jianhui,WANG Yiding,et al.Analysis and comparison of reduced-order model and modeling method for grid-connected inverter[J].Automation of Electric Power Systems, 2020,44(10):155.[10]㊀陈来军,王任,郑天文,等.基于参数自适应调节的虚拟同步发电机暂态响应优化控制[J].中国电机工程学报,2016,36(21):5724.CHEN Laijun,WANG Ren,ZHENG Tianwen,et al.Optimalcontrol of transient response of virtual synchronous generatorbased on adaptive parameter adjustment[J].Proceedings of theCSEE,2016,36(21):5724.[11]㊀于晶荣,孙文,于佳琪,等.基于惯性自适应的并网逆变器虚拟同步发电机控制[J].电力系统保护与控制,2022,50(4):137.YU Jingrong,SUN Wen,YU Jiaqi,et al.Virtual synchronousgenerator control of a grid-connected inverter based on adaptiveinertia[J].Power System Protection and Control,2022,50(4):137.[12]㊀郭建祎,樊友平.基于改进粒子群算法的VSG参数自适应控制策略[J].电机与控制学报,2022,26(6):72.GUO Jianyi,FAN Youping.Adaptive VSG parameter controlstrategy based on improved particle swarm optimization[J].Elec-tric Machines and Control,2022,26(6):72.[13]㊀KUNDUR P.Power system stability and control[M].New York:McGraw Hill Book Company,1994.[14]㊀SARKAR M,MEEGAHAPOLA L G,DATTA M.Reactive pow-er management in renewable rich power grids:a review of grid-codes,renewable generators,support devices,control strategies531第12期于晶荣等:考虑频率响应的虚拟同步发电机暂态同步策略。

基于IMPMMS并网的新能源电压稳定性分析

基于IMPMMS并网的新能源电压稳定性分析

第28卷㊀第3期2024年3月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.28No.3Mar.2024㊀㊀㊀㊀㊀㊀基于IMPMMS 并网的新能源电压稳定性分析郑军铭1,㊀冯丽2,㊀蔡志远1,㊀张炳义1(1.沈阳工业大学电气工程学院,辽宁沈阳110870;2.沈阳职业技术学院电气工程学院,辽宁沈阳110033)摘㊀要:新能源并网比例过高导致新能源电网电压稳定性低和机组脱网风险,永磁发电机组(IM-PMMS )对系统具有电压补偿能力,能满足新能源电网无功需求㊂本文根据永磁发电机组的结构和工作原理,分析了永磁发电机组的电压补偿机理,推导影响无功调节能力的参数㊂结合新能源通过永磁发电机组并网的状态方程,建立电力系统仿真模型,对比不同程度电压跌落下永磁发电机组与传统机组的电压补偿能力及电压隔离作用,最后研制一台缩比样机㊂仿真和试验结果表明:网侧电压跌落幅度越大,永磁发电机组电压补偿能力越强,且永磁发电机组机械隔离可以隔离故障对新能源机组的影响,有效防止新能源脱网风险的发生,提高新能源发电系统的电压稳定性㊂关键词:高比例新能源;永磁发电机组;无功补偿能力;电压隔离;电压稳定性DOI :10.15938/j.emc.2024.03.007中图分类号:TM351;TM712文献标志码:A文章编号:1007-449X(2024)03-0066-09㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-08-08作者简介:郑军铭(1990 ),男,博士研究生,研究方向为特种电机设计及其控制;冯㊀丽(1982 ),女,硕士,副教授,研究方向为电机及其控制;蔡志远(1963 ),男,博士,教授,博士生导师,研究方向为特种电机设计及控制;张炳义(1954 ),男,博士,教授,博士生导师,研究方向为特种电机设计及控制㊂通信作者:张炳义Voltage stability analysis of new energy based on IMPMMSgrid connectionZHENG Junming 1,㊀FENG Li 2,㊀CAI Zhiyuan 1,㊀ZHANG Bingyi 1(1.School of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China;2.School of Electrical Engineering,Shenyang Polytechnic College,Shenyang 110033,China)Abstract :In view of the problem that the high proportion of new energy grid-connected leads to the volt-age stability of the new energy grid and the risk of the unit being disconnected from the grid,the inertia motivity permanent magnet machine set (IMPMMS)has the voltage compensation capability for the sys-tem,which can meet the reactive power requirements of the new energy grid.According to the structure and working principle of the IMPMMS,the voltage compensation mechanism of the permanent magnetgenerator set was analyzed,and the influencing parameters that affect its reactive power regulation ability were bined with the state equation of the new energy through the grid connection of the IM-PMMS,the simulation model of the power system was established,and the voltage compensation capabili-ty and the voltage isolation effect of the IMPMMS and the traditional generator set under different degrees of voltage drop were compared,and finally a scaled prototype was developed.The simulation and test re-sults show that the greater the voltage drop on the grid side,the stronger the voltage compensation capa-bility of the IMPMMS,and the mechanical isolation of the IMPMMS can isolate the impact of the fault onthe new energy generator set,prevent the risk of new energy off-grid and improve the voltage stability ofthe entire new energy power generation system.Keywords:high proportion of new energy;inertia motivity permanent magnet machine set;voltage com-pensation capability;voltage isolation;voltage stability0㊀引㊀言随着化石能源的逐渐枯竭㊁环境恶化以及气候变暖等问题日益突出,在双碳目标下新能源的开发与应用已成为能源领域的重要基础和发展方向,大量风力㊁光伏发电等新能源机组并网比例不断增长是未来电力系统的必然趋势[1-2]㊂但随着新能源发电在电力系统的占比增加和同步机占比的降低,新型电力系统应对扰动或故障穿越的能力降低,给电力系统安全运行和稳定性带来了新的挑战㊂虚拟同步发电机(virtual synchronous generator, VSG)技术是将同步发电机特性引入到新能源变流器控制中,使新能源机组具备与同步发电机相似的响应特性,不仅可实现频率解耦㊁下垂控制㊁综合惯量控制等功能,而且还可以增加系统的惯性,提高稳定性[3-4],但VSG技术无法支撑电网的电压,需要额外的装置来提供无功功率㊂新能源接入电力系统要求其既满足自身需要,还要满足输电线路上设备的无功需求㊂广泛应用于新能源电网中的SVC和STATCOM装置具备无功补偿能力,可维持电网的电压稳定,但SVC的无功功率会随着并网点电压降落而减小,而STATCOM由于功率转换器的限制,在电网故障下无法提供超出容量的无功功率,增加了电压不稳定风险[5-6]㊂高比例新能源电网发展使得调相机重新受到电力行业的重视,相比于SVC和STATCOM,调相机作为同步旋转设备,可短时间内向系统提供强大的无功支撑,而且无功输出可根据电网运行情况进行灵活调节[7]㊂但调相机安装位置集中在送端换流站,不能有效抑制新能源并网的电压波动,与 就地平衡 无功补偿原则相悖,故文献[8]提出了分层分散配置调相机的方法,即分布式调相机,但调相机接入点距新能源电场始终存在一定的电气距离,当系统电压不稳定时,新能源并网点电压波动依然很大,新能源机组仍然存在脱网的风险㊂所以提高新能源机组自身电压补偿能力是本领域的研究重点㊂文献[9]提出了惯性储能永磁发电机组(inertia motivi-ty permanent magnet machine set,IMPMMS),将新能源机组与电网串联起来,改变了新能源机组通过电力电子器件的并网方式,使新能源并网接口具备真实大惯量,可提升对新能源电网频率的支撑能力和新能源机组的故障穿越能力;采用文献[10]提出的源网相位差控制策略,可实现永磁发电机组向电网稳定地传输有功功率㊂目前还没有针对永磁发电机组对新能源电网无功补偿能力方面的研究,因此,本文针对永磁发电机组在新能源电网电压稳定性中起到的作用进行分析㊂根据永磁发电机组结构,首先介绍永磁发电机组的工作原理和功能,针对新能源电力系统电压稳定性的问题,对永磁发电机组电压补偿特性进行分析,从无功调压机理上确定影响电网无功支撑能力的参数;然后结合列写的永磁发电机组状态方程,确定新能源通过永磁发电机组并网的状态方程,建立基于PSCAD的永磁发电机组的电力系统仿真模型;通过仿真分析可知,随着电压跌落深度增大,永磁发电机组无功支撑能力越明显,在电压跌落100%情况下稳定运行,而且可隔绝电网侧的电压跌落,使新能源侧不受电网故障带来的影响,这是传统机组不具备的;由于机组功率㊁尺寸较大以及实验条件的限制,最后以一台缩比样机进行实验验证,证明永磁发电机组可使电力系统电压稳定,防止新能源侧发生脱网事故㊂1㊀永磁发电机组介绍1.1㊀永磁发电机组结构及工作原理永磁发电机组系统原理图和结构图分别如图1和图2所示㊂永磁发电机组由1台永磁电动机和1台永磁发电机组成㊂永磁电动机和永磁发电机皆采用外转子结构,2台电机转子和外转子滚筒以及两侧端盖共同构成永磁机组的旋转部件,称为一体化飞轮转子㊂永磁电动机由新能源机组驱动,新能源机组与永磁电动机一起作为原动机为永磁发电机提供机械转矩,永磁发电机将机械能变为电能后直接并入电网㊂在运行时,2台永磁电机转子同时㊁同向和同速旋转,这个转速也是电网的同步转速㊂永磁发电组可实现当电网电能发生阶跃变化时提供零响应补偿,同时还可以通过永磁电动机侧的变频器实现有功功率调节,以及通过永磁发电机转子侧的励磁系统实现对电网无功功率补偿㊂76第3期郑军铭等:基于IMPMMS并网的新能源电压稳定性分析图1㊀永磁机组系统原理图Fig.1㊀Schematic diagram of IMPMMSsystem图2㊀永磁机组三维拓扑结构Fig.2㊀Three dimensional topology of IMPMMS1.2㊀永磁发电机组应用前景1.2.1㊀永磁发电机组应用的可行性由图1可知,新能源采用永磁发电机组并网的方式既不需要改变新能源变流器的结构,也不要求在电网侧添加任何新设备,只需满足设计的永磁发电机组将二者串联起来即可,说明这种并网方式是可行的㊂新型并网方式不仅仅是利用永磁发电机组将新能源测和电网侧串联起来,最重要的是重新使新能源电网拥有了与传统机组如火电机组㊁水电机组㊁核电机组等相似的稳定性,其稳定来源正是永磁机组㊂其中永磁发电机组中永磁发电机的电压特性以及转子侧励磁系统提供无功支撑,维持网侧电压稳定;共用外转子的真实的机械惯量可为电网提供充足的惯性,抑制频率波动,维持频率稳定[9]㊂1.2.2㊀永磁发电机组应用的经济性永磁发电机组系统相当于在新能源和电网之间增加了由2台永磁电机组成的能量转换环节㊂目前单台装机量最多的风机组为1MW,以1MW 永磁发电机为例,电机额定效率在97%以上㊂如果2台永磁电机效率达到97%,那永磁发电机组的额定效率可达到94%甚至更高㊂但因风机㊁光伏等新能源机组的输出功率的随机性,大部分时间输出功率在40%~70%区间变化㊂永磁发电机组在大幅度降额运行时仍可以保持较高的效率,使得永磁发电机组在新能源出力较低时不会增加过多的损耗;在新能源机组不出力的特殊工况下,永磁电动机空载运行,永磁发电机并网做电动机运行,这时永磁发电机组运行特性与调相机相同,能够为电网提供一定的无功支撑能力㊂综上,永磁发电机组在额定运行时不会增加过多的电能损耗,降额运行时也可以保持高效率,在经专门设计后,工作效率可进一步提高;不依赖昂贵的电池存储系统,可降低新能源电网故障率,总体看来永磁发电机组工作效率可以接受,应用的经济性可期待㊂1.2.3㊀永磁发电机组的应用范围永磁发电机组的额定容量可根据新能源机组的容量选择㊂对于直驱风力发电机,目前单台最大容量为5.5MW,半直驱风力发电机单台最大容量为12MW,而光伏发电因其能够分单元连接的特点,可依据永磁发电机组的容量进行整定配合㊂根据当前大容量永磁电机制造工艺水平其容量可达到10MW 级别甚至100MW 都是可实现的,所以永磁发电机组可满足单台(容量为几兆瓦)以及若干台并联(总容量为几十兆瓦)的新能源机组并网,增加了永磁发电机组应用的灵活性和适用范围㊂2㊀永磁发电机组无功调压特性分析根据永磁发电机组介绍可知,永磁发电机组是同一套机械系统连接的两套永磁电机的系统,仅由各自的电磁转矩相互影响㊂当电网侧发生电压暂降时,在永磁发电机组中的永磁发电机定子绕组中会产生感应电流,此时定子电流增大,造成转速下降,系统进入到波动的动态过程,但转速变化给永磁电动机电压带来的影响微乎其微㊂所以分析永磁发电机组电压补偿特性只需考虑与电网直接相连的永磁发电机即可㊂永磁发电机输出无功功率可表示为Q G =U q I d -U d I q ㊂(1)其中:I d ㊁I q 分别为永磁发电机直轴电枢电流和交轴电枢电流;U d ㊁U q 分别为永磁发电机直轴电枢电压和交轴电枢电压㊂当电网侧发生电压波动时,永磁发电机侧可向电网提供感性或容性的无功功率㊂永磁发电机组的无功响应原理可从永磁发电机的电压补偿特性角度进行分析,本章节以电压暂降为例,电网侧电压从U 1降低至U 2,永磁发电机端电压变化量ΔU =U 1-U 2,故永磁发电机所需增发的无功为Q G +=Q 2-Q 1=U 2I 2-U 1I 1㊂(2)其中:I 1为暂降前的电流;I 2为暂降后永磁发电机发出的电流㊂令ΔI =I 1-I 2,代入式(2)得86电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀Q G +=(U 1-ΔU )(I 1+ΔI )-U 1I 1=U 2ΔI -ΔUI 1㊂(3)其中:U 1取决于永磁发电机组所在电网处的短路容量㊁等值阻抗和电网结构特征决定;ΔU 取决于永磁发电机与电压暂降发生处的电气距离;I 1取决于永磁发电机组系统初始运行状态,所以永磁发电机组电压补偿能力主要由ΔI 决定,通过改变ΔI 可增加永磁发电机组的电压补偿能力㊂永磁发电机组电压补偿特性从时间角度划分可分为次暂态特性和暂态特性㊂在电网侧发生电压跌落瞬间,永磁发电机组的发电机侧电枢绕组感生大量电流,增发无功功率抑制系统电压跌落,该阶段为永磁发电机组自发的无功响应,即次暂态特性,在次暂态下永磁发电机电枢电流直轴分量变化量ΔI d =-[(1X ᵡd +X T)e-1T ᵡd +(1X ᶄd +X T )e -1T ᶄd +1X d +X T ]ΔE G +e -tT aX ᵡdΔU cos(ωt +δG )㊂(4)其中:X ᵡd㊁X ᶄd和X d 分别为永磁发电机的直轴次暂态电抗㊁直轴暂态电抗和直轴稳态电抗;T ᵡd 和T ᶄd 分别为永磁发电机直轴次暂态时间常数和直轴暂态时间常数;T a 为电枢时间常数;X 0为常数,与永磁发电机组系统结构参数有关;ΔE G 为永磁发电机电动势与端电压之差;ω为永磁发电机角速度;δG 为永磁发电机功角㊂当永磁发电机在次暂态阶段不足以支撑电网所跌落的电压时,永磁发电机励磁系统启动进行强励,即暂态阶段㊂永磁发电机的励磁系统采用标准的IEEE 励磁机AC1A 型[11],其暂态电压方程为ΔE ᶄq=X ᶄd X d ΔE q +X d -X ᶄd X d ΔU -X ᶄd X d T ᶄd0dΔE ᶄqd t㊂(5)其中:E q ㊁E ᶄq 分别为永磁发电机空载电动势和暂态电动势;T ᶄd0为励磁绕组时间常数㊂线性化处理后空载电动势简化为ΔE q =-K A ΔU ㊂(6)其中K A 为永磁发电机励磁调节器的增益倍数㊂对式(4)进行拉式变换,结合式(6)可得ΔI d =-ΔU X ᶄd {1+(1X ᶄd-K A +1X d )ΔU1+X ᶄd X dT ᶄd0sìîíïïïïïï2㊂(7)其中:第一项为永磁发电机自发的无功响应;第二项与励磁系统调节作用有关㊂由式(4)和式(7)可知,在电网侧电压波动过程中,永磁发电机组的电压补偿能力与永磁发电机的端电压变化幅度㊁X ᵡd ㊁X ᶄd ㊁T ᶄd0参数和励磁调节器增益倍数K A 有关㊂3㊀永磁发电机组电力系统仿真3.1㊀永磁发电机组状态方程永磁机组中的永磁电动机和永磁发电机运动方程为d d t ΔωeM =12H (T eM-T mM -K DM ΔωeM );d d tδM =ω0ΔωeM ㊂üþýïïïï(8)d d t ΔωeG =12H(T mG -T eG -K DG ΔωeG );d d tδG =ω0ΔωeG ㊂üþýïïïï(9)其中:H 为永磁发电机组惯性时间常数;T eM 和T eG 分别为永磁电动机和永磁发电机的机械转矩;K DM 和K DG 分别为永磁电动机和永磁发电机的阻尼系数;ωeM 和ωeG 分别为永磁电动机和永磁发电机转子角速度;δM 和δG 分别为永磁电动机和永磁发电机功角;ω0为永磁发电机组额定角速度㊂根据永磁发电机组机械传动特性可知,ωeM =ωeG =ωe ,将式(8)和式(9)合并可得d d t Δωe =12H [T eM-T eG -(K DM +K DG )Δωe ]㊂(10)永磁发电机组中永磁电动机和永磁发电机功角关系为δM +δG =δMG ㊂(11)永磁发电机组功率平衡方程为:㊀㊀㊀㊀㊀T eM -T eG =P mech ;(12)㊀㊀㊀㊀㊀T eM =E M U MX Msin δM ;(13)㊀㊀㊀㊀㊀T eG =E G U GX G sin δG ㊂(14)其中:P mech 为机械损耗;X M 和X G 分别为永磁电动机和永磁发电机的等值电抗㊂在永磁机组运行过程中P mech 可视为常数,式(11)和式(12)可改为:ΔδM +ΔδG =ΔδMG ;K M ΔδM -K G ΔδG=0㊂}(15)96第3期郑军铭等:基于IMPMMS 并网的新能源电压稳定性分析其中K M 和K G 分别为同步转矩系数㊂永磁发电机机械转矩偏差ΔT eG =K G ΔδG =K M K GK M +K G ΔδMG㊂(16)将式(15)和式(16)代入式(9)得到永磁发电机组状态方程㊀d d t Δωe ΔδMG éëêêùûúú=-(K DM +K DG )2H -K M K G2H (K M +K G )(1+K GK M )ω00éëêêêêùûúúúúˑΔωe ΔδMG éëêêùûúú+12H 0éëêêêùûúúúΔT eM ㊂(17)3.2㊀新能源通过永磁发电机组并网的状态方程为了全面反映永磁发电机组的运行特性,在永磁发电机组实际运行中,应考虑新能源机组状态变量㊂以风力发电机为例,永磁发电机组仅与变流器连接,风机输出功率等于永磁机组的输入功率,可得转矩平衡方程T eWind =T eM ㊂(18)其中T eWind 为风力发电机输出转矩,其方程为ΔT eWind =k 1ΔE d +k 2ΔE q ㊂(19)其中:E d 和E q 分别为风力发电机直轴㊁交轴电压;k 1和k 2为风力发电机相关系数㊂所以T em 和风力发电机之间参数关系可由式(18)和式(19)建立㊂同样,电流平衡方程式为:I dWind =I dM ;I qWind =I qM ㊂}(20)其中:I dWind 和I qWind 分别为风力发电机直轴㊁交轴电流;I dM 和I qM 分别为永磁电动机直轴㊁交轴电流㊂永磁发电机组中永磁电动机定子电流可表示为:Δi dM =a 1ΔδM ;Δi qM=b 1ΔδM㊂}(21)其中a 1和b 1与永磁发电机组初始条件和参数有关㊂因此,风力发电机与永磁发电机组之间的电流关系由式(20)和式(21)建立㊂基于以上分析,风力发电机通过永磁发电机组并网的状态方程d d t X IMPMMS X Wind éëêêùûúú=A IMPMMS A 12A 21A Wind éëêêùûúúˑX IMPMMS X Wind éëêêùûúú㊂(22)其中:X IMPMMS 和X Wind 分别为永磁发电机组和风力发电机状态变量矩阵;A IMPMMS 和A Wind 分别为永磁发电机组和风力发电机原有状态矩阵;A 12和A 21为反映永磁发电机组和风力发电机之间关系的矩阵㊂3.3㊀模型仿真结合永磁发电机组的状态方程和新能源机组通过永磁发电机组并网的状态方程,在电力系统仿真软件PSCAD 中搭建永磁发电机组系统仿真模型,模型为4机2区系统,验证永磁发电机组的电压补偿特性㊂如图3所示,连接母线2和4处的传统发电机被两个输出功率为1MW 的风力发电机取代,且风力发电机以最大输出模型运行㊂在风场中一部分风力发电机以传统方式并网,另一部分串入永磁发电机组,永磁发电机组额定容量为1000kW,其主要参数如表1所示㊂图3㊀基于PSCAD 的永磁机组电力系统仿真模型Fig.3㊀Simulation model of IMPMMS power systembased on PSCAD表1㊀永磁发电机组主要参数Table 1㊀Main design parameters of IMPMMS㊀㊀参数数值发电机额定功率P G /kW 1000电动机额定功率P M /kW 1000额定电压U N /V3300转速n /(r /min)1500转子外径D 1/mm 1700筒壁长度L ef /mm 1630筒壁厚度Δ/mm 50发电机极数p G 4电动机极数p M 6输出转矩T m /(N㊃m)6366X d /pu0.95X ᶄd /pu 0.35X ᵡd /pu 0.28T ᶄd0/s 5.8K A30007电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀3.3.1㊀串入永磁发电机组前后电压补偿能力分析模型仿真时间共15s,设置在输电线路中F 处10s 时刻电压分别跌落20%㊁40%㊁60%㊁80%和100%,持续0.1s 后恢复正常,对比不同电压跌落串入永磁发电机组和传统机组情况下输出的无功功率分别如图4(a)和图4(b)所示㊂由图4(a)图4(b)可知,随着电压跌落程度加深,输出无功功率皆增大;电压跌落深度小于40%时,串入永磁发电机组和传统机组的输出无功功率基本一致,而电压跌落深度大于40%时,串入永磁发电机组比传统机组输出的无功功率要大,且在电压跌落深度100%,即发生短时中断故障时,串入永磁发电机组仍可以提供12.6pu,无功功率比电压跌落90%时提供的无功功率大2.3pu,而传统机组提供的无功功率仅为10.1pu,比电压跌落90%时提供的无功功率大0.9pu㊂图4㊀不同电压跌落程度情况下输出无功功率Fig.4㊀Output reactive power under different voltagedrop degrees从图5可以看出相比于传统机组,串入永磁发电机组可更好地抑制电压的跌落,且并网点2处电压恢复时间缩短了0.3s,电压补偿能力得到了显著提升㊂由此可知,随着电压跌落幅度增大,永磁发电机组为系统可提供更强的无功支撑能力,使得系统电压更加稳定㊂图5㊀母线2处电压变化Fig.5㊀Voltage change at bus 23.3.2㊀永磁发电机组电压隔离作用分析永磁发电机组的电压隔离作用原理如图6所示㊂新能源串入永磁发电机组,相当于在新能源和电网之间加入了一个永磁同步电机的机械环节,因永磁同步电机机械系统的惯性常数通常达到秒级,当电网侧电压发生跌落时会被此机械系统隔绝,电动机侧基本不会受到电网故障带来的影响,起到保护新能源机组的作用㊂图6㊀永磁发电机组电压隔离原理Fig.6㊀Voltage isolation principle of IMPMMS17第3期郑军铭等:基于IMPMMS 并网的新能源电压稳定性分析以新能源国家标准[12]中要求的 在并网点电压跌落至20%额定电压时能够保证不脱网连续运行625ms 为参照,设置模型在10s 时电压跌落至0.2pu,0.1s 后恢复至额定电压,分析永磁发电机组的电压隔离作用㊂由图7和图8可知,当网侧电压跌落时,永磁发电机电流瞬间增大,这是由于电网电压突然下降导致的,在这过程中永磁发电机电流达到了正常电流的5.5倍,但没有导致发电机故障,瞬时过电流之后,发电机恢复至稳定状态㊂在此过程中,永磁发电机向电网提供无功支撑,稳定了电网的电压水平㊂在整个过程中,永磁电动机侧的电压和电流没有受到影响,依旧能够保持平稳㊂另外永磁发电机侧动态过程会导致永磁机组转速发生变化,但从图9可以看出,转速变化幅度很小,几乎不会受到影响㊂由电压暂降仿真结果可得,当电网电压发生突变时,由于机械轴隔离作用,永磁发电机组可以将电网的故障隔离在永磁发电机内,防止永磁电动机侧的新能源脱网;在发生0.2pu 低电压故障时,可以保护新能源系统远超625ms,证明永磁发电机组在提高网侧电压稳定性上具有特有的优势㊂图7㊀永磁发电机组电压变化Fig.7㊀Voltage variation of IMPMMS4㊀实验测试研制一台额定容量55kW 的缩比样机,进行测试㊂缩比样机参数如表2所示,测试的主要目的在于对缩比样机电压隔离作用和对电网无功支撑作用进行验证㊂永磁电动机侧由变频器驱动,永磁发电机侧与ITECH -7900型电网模拟器相连接,电网模拟器模拟电网电压突变㊂试验电流和电压波形采用FLUKE4000CN 型功率分析仪测得,相应的数据同步上传至上位机中,进行数据后处理㊂实验平台如图10所示㊂图8㊀永磁发电机组电流变化Fig.8㊀Current variationofIMPMMS图9㊀永磁机组转速变化Fig.9㊀Speed change of IMPMMS表2㊀缩比样机参数Table 2㊀Main design parameters of scaled prototype㊀㊀参数数值额定功率P SMP /kW 55额定电压U SMP /V 380转速n /(r /min)1500X d /pu 1.045X ᶄd /pu 0.25X ᵡd /pu 0.24T ᶄd0/s6.427电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图10㊀实验平台Fig.10㊀Experimental platform㊀㊀缩比样机转速达到额定转速后,调整电网模拟器以达到额定状态,设置电网模拟器电压从1pu 变为0.2pu 保持0.1s,记录该过程中永磁发电机和永磁电动机侧的电压㊁电流以及电网侧电压的变化㊂从图11和图12可知,在电压暂降时,永磁发电机出现电流突增,增加至6.1倍,永磁发电机没有出现故障,瞬时电流过后又恢复到新的稳定状态;此过程中永磁电动机侧电压和电流基本不受影响,依旧能保持平稳㊂由图13可知,在整个实验过程中,在电压暂降后,缩比样机向电网提供持续的无功,使电网电压最低为0.51pu,大于0.2pu,仅用0.25s 左右将电网电压恢复至1pu,满足国家标准的要求㊂综上,试验结果与仿真结果基本一致,得到了同样的结论,证明永磁发电机组具有使得网侧电网稳定㊁防止新能源脱网的作用㊂图11㊀缩比样机电压变化Fig.11㊀Voltage change of scaledprototype图12㊀缩比样机电流变化Fig.12㊀Current change of scaledprototype图13㊀网侧电压变化Fig.13㊀Grid side voltage change5㊀结㊀论高比例新能源电网普遍存在无功补偿能力不足的问题,新能源机组脱网风险陡增,严重威胁系统安全可靠运行㊂新能源采用永磁发电机组并网使得新能源并网接口重新具备同步电机属性,不仅提升了新能源电网的惯性,而且可以有效防止新能源并网点电压失稳问题的发生㊂本文介绍了永磁发电机组的结构,分析了工作原理和电压补偿特性,列写了新能源通过永磁发电机组并网的状态方程,通过电力系统仿真和缩比样机实验证明了相比于新能源采用变流器直接并网,采用永磁发电机组并网在提高电压稳定性方面具有独特的优势,得到结论如下:1)永磁发电机组由2台永磁电机组成,因永磁电机优秀属性,具备可与调相机相媲美的强大的瞬时无功支撑能力和短时过载能力㊂通过分析无功调37第3期郑军铭等:基于IMPMMS 并网的新能源电压稳定性分析压特性可知,永磁机组的电压补偿能力与永磁发电机侧的结构参数㊁励磁系统控制参数等有关,合理设计和优化永磁发电机可提高永磁发电机组的电压补偿能力㊂2)通过电力系统仿真结果可知:当电压跌落小于40%时,永磁发电机组无功补偿能力突出不明显;在电压跌落60%和80%时,相比于不串入永磁发电机组,永磁发电机组提供的无功分别提高10.4%和10.8%,并网点电压跌落幅度分别降低0.1pu和0.19pu;当电压跌落100%,即短时中断的极限工况时,永磁发电机组仍然可以向网侧输出大量的无功功率,将并网点电压跌落幅度降低0.25pu,说明与新能源采用变流器直接并网相比,随着电网侧电压跌落程度加剧,新能源采用永磁发电机组并网的无功补偿能力越发突显,可提供更多的无功功率抑制电压的跌落,明显提高了新能源电网电压的稳定性㊂3)研究了永磁发电机组的电压隔离作用㊂通过电力系统仿真和缩比样机实验证明当电网侧发生电压波动时永磁发电机组的机械系统会将故障隔离,永磁发电机承受了电网侧的故障电流和电压变化,此期间与永磁电动机侧连接的新能源变流器几乎不受到影响,新能源机组稳定运行时间远超国家标准要求㊂因此永磁发电机组的电压隔离作用可保护新能源机组有效防止其脱网,提高新能源并网的故障穿越能力,进一步提高新能源电网的稳定性㊂4)与现有的无功补偿装置(VSG㊁SVC和STAT-COM)相比,永磁发电机组具有过电流㊁过电压等耐受能力不受制于电力电子器件㊁不需要大型储能系统提供惯性㊁可直接在并网点自发地向电网提供感性或容性的无功功率的优点,而且是集无功调节㊁惯性支撑㊁瞬时补偿于一体的多功能并网装置,有助于提高电网强度和新能源并网传输的可靠性㊂参考文献:[1]㊀施静容,李勇,贺悝,等.一种提升交直流混合微电网动态特性的综合惯量控制方法[J].电工技术学报,2020,35(2):337.SHI Jingrong,LI Yong,HE Li,et al.A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J].Transactions of China Electrotechnical Soci-ety,2020,35(2):337.[2]㊀牛景瑶,王德林,喻心,等.提高风电消纳水平的低惯性电网参数优化[J].电机与控制学报,2022,26(2):111.NIU Jingyao,WANG Delin,YU Xin,et al.Parameter optimiza-tion of low inertia power system to improve wind power consump-tion level[J].Electric Machines and Control,2022,26(2):111.[3]㊀TZELEPIS D,HONG Q,BOOTH C,et al.Enhancing short-cir-cuit level and dynamic reactive power exchange in GB transmission networks under low inertia scenarios[C]//2019International Con-ference on Smart Energy Systems and Technologies(SEST),Sep-tember9-11,2019,Rua Dr.Roberto Frias,S/n,Porto,Portu-gal.2019:8849020.[4]㊀YAN X,ZHANG W.Review of VSG control-enabled universalcompatibility architecture for future power systems with high-pene-tration renewable generation[J].Applied Sciences,2019,9(7): 1484.[5]㊀刘振亚,张启平,王雅婷,等.提高西北新甘青750kV送端电网安全稳定水平的无功补偿措施研究[J].中国电机工程学报,2015,35(5):1015.LIU Zhengya,ZHANG Qiping,WANG Yating,et al.Research on reactive compensation strategies for improving stability level of sending-end of750kV grid in Northwest China[J].Proceedings of the CSEE,2015,35(5):1015.[6]㊀TELEKE S,ABDULAHOVIC T,THIRINGER T,et al.Dynamicperformance comparison of synchronous condenser and SVC[J].IEEE Transactions on Power Delivery,2008,23(3):1606.[7]㊀WANG P,LIU X,MOU Q,et al.Start-up control and grid inte-gration characteristics of300MVar synchronous condenser with voltage sourced converter-based SFC[J].IEEE Access,2019,7: 176921.[8]㊀付敏,崔灿灿,王璐瑶,等.分布式调相机励磁系统参数优化模型研究[J].电机与控制学报,2022,26(2):9.FU Min,CUI Xianxian,WANG Luyao,et al.Parameters optimi-zation model study of excitation system of distributed synchronous condenser[J].Electric Machines and Control,2022,26(2):9.[9]㊀郑军铭,冯丽,蔡志远,等.提高短时中断故障期间新能源微电网稳定性的惯性储能永磁发电机组[J].电工技术学报, 2022,37(23):6000.ZHENG Junming,FENG Li,CAI Zhiyuan,et al.An inertia mo-tivity permanent magnet machine set for solving short-term inter-ruption of new energy microgrid[J].Transactions of China Elec-trotechnical Society,2022,37(23):6000.[10]㊀周莹坤,卫思明,许国瑞,等.电机串联新能源并网系统的控制方法及其运行模式[J].电工技术学报,2016,31(S2):159.ZHOU Yingkun,WEISiming,XU Guorui,et al.Research of thecontrol method and operating pattern for the motor-generator Pair(MGP)grid-connected system[J].Transactions of China Elec-trotechnical Society,2016,31(S2):159.[11]㊀SAJJAD H,DAYAN R,GAMINI J,et al.A robust exciter con-troller design for synchronous condensers in weak grids[J].IEEE Transactions on Power Systems,2022,37(3):1857.[12]㊀GB/T19963-2011,风电场接入电力系统技术规定[S].(编辑:刘素菊)47电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀。

无传感器下中频逆变电源死区补偿与控制策略

无传感器下中频逆变电源死区补偿与控制策略

第27卷㊀第10期2023年10月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.10Oct.2023㊀㊀㊀㊀㊀㊀无传感器下中频逆变电源死区补偿与控制策略贺玫璐1,㊀薛鹏飞2,㊀刘平3,㊀刘永杰3,㊀苗轶如3(1.太原科技大学电子信息工程学院,山西太原030024;2.国网山西省电力公司太原供电公司,山西太原030012;3.湖南大学电气与信息工程学院,湖南长沙410082)摘㊀要:在飞机停靠阶段采用400Hz 地面电源代替飞机辅助动力源是降低机场碳排放量的重要手段㊂然而,受限于开关频率与电压高动态响应速度的要求,400Hz 逆变电源通常采用输出电压单闭环控制策略,减少了LC 滤波器中电感电流的采样与控制环节,导致控制系统设计难度加大,同时因无法获得电流极性而缺少了死区补偿方向㊂为了提高400Hz 逆变电源负载电压的控制性能与电能质量,首先针对400Hz 逆变电源中因死区对逆变器输出电压基波幅值㊁相位误差以及低次谐波畸变的影响机理进行分析,进而提出一种基于电流观测的死区补偿策略㊂根据电感电流的状态方程,提出构建无零漂的电流观测模型,得到电感电流的极性,对调制电压信号进行补偿,实现对死区效应的抑制㊂然后建立系统的传递函数,结合幅频特性曲线,从抗扰动性㊁高频衰减特性以及动态响应速度几个方面总结出比例-谐振控制器的参数优化设计方法㊂最后搭建仿真模型与实验平台,对所提电流观测模型㊁死区补偿方法以及控制器参数优化设计方法的可行性与有效性进行验证㊂关键词:航空地面电源;逆变器;电流观测;死区补偿;比例谐振控制器;谐波畸变DOI :10.15938/j.emc.2023.10.017中图分类号:TM301.2文献标志码:A文章编号:1007-449X(2023)10-0171-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-07-03基金项目:汽车零部件先进制造技术教育部重点实验室开放项目(2021KLMT02)作者简介:贺玫璐(1988 ),女,硕士,讲师,研究方向为电力电子与电力传动㊁电力变换控制技术;薛鹏飞(1988 ),男,硕士,工程师,研究方向为新能源利用与分布式发电技术㊁电力变换控制技术;刘㊀平(1983 ),男,博士,副教授,博士生导师,研究方向为电动汽车驱动与控制技术;刘永杰(1999 ),男,硕士研究生,研究方向为电力电子变换器拓扑与控制技术;苗轶如(1988 ),男,博士,助理研究员,研究方向为电机与电力电子变换器的控制技术㊂通信作者:刘永杰Deadtime compensation and control strategy for middle frequencyinverter power supply without current sensorHE Meilu 1,㊀XUE Pengfei 2,㊀LIU Ping 3,㊀LIU Yongjie 3,㊀MIAO Yiru 3(1.School of Electronic Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;2.Taiyuan Power Supply Company,State Grid Taiyuan Electric Power Co.,Ltd.,Taiyuan 030012,China;3.College of Electrical and Information Engineering,Hunan University,Changsha 410082,China)Abstract :Instead of the auxiliary power system,a 400Hz ground power unit is applied to airplanes dur-ing stopovers in airports,which is an important means of reducing carbon emissions of airport.However,under the restraint of switching frequency and high dynamic response speed,a single control loop is usu-ally implemented in 400Hz voltage-source inverter,and the sampling and control of the inductor current in the LC filter are avoided,which will make the design of the control system more difficult,and the di-rection of the dead-time compensation can not be obtained due to the lack of the current polarity.In viewof the above problems,this paper analyzes the influence on the output voltage of inverter due to the dead-time,including the errors of fundamental amplitude and phase,and the low-order harmonic distortion, and a dead-time compensation strategy based on current observation is proposed.According to the state equation of the inductor current,a current observation model without zero drift was proposed to obtain the polarity of the inductor current and the modulation voltage signal was compensated to suppress the dead-time effect.Then,combined with the amplitude-frequency characteristic curve,the parameter optimiza-tion design method of the single closed-loop proportional-resonant controller was studied.Finally,a simu-lation model and an experimental platform were established to verify the feasibility and effectiveness of the current observation model,dead-time compensation method and controller parameter optimization design method proposed in this paper.Keywords:ground power unit;inverter;current observation;dead-time compensation;proportional reso-nance controller;harmonic distortion0㊀引㊀言当飞机在机场停靠时,用航空地面电源替代飞机辅助动力电源为飞机负载提供电能,可有效降低燃油消耗,减少碳排放量,还可以实现风能㊁太阳能等可再生能源的本地消纳与实时利用[1-2]㊂机场地面电源通常为有效值115V㊁频率400Hz 带LC滤波器的三相四线制交流电源[3],LC无源滤波器用于滤除逆变器开关过程产生的高次谐波㊂中线能够为零序电流提供回路,当为三相不平衡负载供电时,可实现三相对称电压输出,从而增强电源的带不平衡负载能力㊂目前已有多种面向400Hz中频交流电源的逆变器拓扑结构被相继提出,包括Δ/Y变压器拓扑[4]㊁带高频变压器的三相H桥拓扑[5]㊁分裂电容式三相逆变器拓扑[6]㊁三相四桥臂逆变器拓扑[7]㊁三电平中点钳位拓扑[8]以及矩阵式拓扑结构等[9]㊂其中,分裂电容式三相逆变器拓扑结构简单,可以等效成3个独立的单相半桥逆变器,简化控制系统与调制策略设计,在母线电压不发生严重跌落的情况下可以满足电压变换需求㊂由于机场地面电源的基频为400Hz,而开关频率最大不超过15kHz,加之数字控制延时的影响,导致电压外环-电流内环的双闭环控制系统难以满足动态响应的需求,因此减少了电流的采样与控制环节,仅采用输出电压的单闭环控制策略[10]㊂因此,针对400Hz交流电源的多种单闭环控制策略被相继提出,包括状态反馈重复混合控制等单闭环输出电压控制[11]和多频率比例谐振级联控制等方法[9],但是以上几种控制系统结构相对复杂,且运算量过大,单个控制周期内可能无法完成所有代码的执行㊂文献[12-13]提出将LC型滤波器改造为LCC型滤波器,该方案可消除基频负载电流对输出电压的影响,输出电压与逆变器输入电压基波保持同相位跟随,降低了单闭环控制系统的设计难度,但增加了无源器件的体积与重量㊂为防止上下桥臂同时开通而引起的短路故障,需要对每个器件的开通信号进行延时,存在一段上下桥臂开关管均保持关断的状态,也就形成了 死区 ㊂死区会减小基波的幅值,同时产生三㊁五㊁七次等低次谐波,降低交流电源的电能质量[14]㊂针对死区所产生的非线性误差问题,国内外学者已提出多种抑制方法,包括基于脉冲补偿[15]㊁基于平均误差补偿[16]以及死区消除策略[17]等,但是以上方法均需要以电感电流的极性为依据,从而做出正确处理方法㊂而在航空地面电源中,由于取消了LC滤波器中电感电流的采样与控制,增加了死区补偿的难度㊂针对400Hz中频交流电源的死区补偿与单闭环控制问题,本文以逆变器负载电压对给定正弦电压的跟踪效果与电能质量为优化目标㊂在无电流传感器的前提下,通过构建高精度电流观测器模型作为寻优策略,为死区补偿提供精确的电流极性㊂为了取得更好的跟踪效果,以单闭环比例-谐振控制器的参数优化方法作为寻优策略,以比例-谐振控制器中的比例系数与谐振系数作为优化变量,建立系统的传递函数,并结合幅频特性曲线得到比例-谐振控制器的参数优化设计方法,最后通过仿真与实验依次对电流观测模型㊁死区补偿方法以及控制系统在不平衡负载下的稳态与动态性能进行验证㊂1㊀LC逆变器的死区效应分析本文的研究对象为面向机场地面电源的三相四271电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀线制逆变器,其拓扑结构如图1所示㊂其中:u dc 表示直流母线电压;C 1与C 2表示直流分裂电容;S 1~S 6构成三相电压源型逆变桥;L a ㊁L b ㊁L c 与C a ㊁C b ㊁C c构成三相LC 滤波器;Z a ㊁Z b ㊁Z c 为三相负载,彼此保持独立㊂负载中线与分裂电容中点连接,为零序电流提供续流回路㊂图1㊀三相四线制逆变器拓扑结构Fig.1㊀Topology structure of three-phase and four-wireinverter1.1㊀死区对逆变器输出电压的影响分析由于开关器件的关断延时大于开通延时,为了防止上下桥臂开关管同时开通而发生短路故障,需要对开关管驱动信号加入开通延时,从而出现了上下桥臂同时处于关断的状态,也就是死区阶段㊂以a 相为例进行说明,图2为死区阶段a 相示意图㊂开关管S 1与S 4同时处于关断状态,当i a >0时,S 4的反并联体二极管完成续流,此时逆变器a 相输出电压u an =-u dc /2,而当i a <0时,S 1的反并联体二极管完成续流,此时逆变器a 相输出电压u an =u dc /2㊂为了简化数学模型,由ABC 轴系经过CLARK 变换后,得到两相静止坐标系下三相交流异步电机的电机数学模型㊂图2㊀死区阶段的示意图Fig.2㊀Equivalent circuit of phase a current commuta-ting during dead-time图3为一个开关周期内因死区产生的电压误差示意图,其中p ∗1㊁p ∗4表示未加入死区情况下开关管S 1与S 4的理想开关信号,p 1㊁p 4表示加入死区后开关管S 1与S 4的实际开关信号㊂在一个开关周期T s 内,因死区时间t d 引起的电压平均误差Δu an 可以表示为Δu an=t d T s u dc ,i a <0;-t dTsu dc ,i a >0㊂ìîíïïïï(1)图3㊀死区引起电压误差示意图Fig.3㊀Voltage error caused by dead-time一个基波周期内,Δu an 的等效电压波形如图4(a)所示,死区产生电压误差的方向与i a 的极性有关,并在逆变器输出电压中产生低次谐波㊂在开关频率为10kHz㊁u dc =400V㊁调制比为0.5的条件下,对Δu an 进行快速傅里叶变换(fast Fourier trans-formation,FFT)分析,结果如图4(b)所示㊂表1给出不同死区时间作用下,u an 的基波幅值㊁相位以及3次与5次谐波含量㊂可以看出,随着死区时间的增加,u an 的基波幅值减小,相位偏差逐渐增加,总谐波畸变率(total harmonic distortion,THD)㊁3次谐波㊁5次谐波的含量不断增加㊂表1㊀不同死区时间下逆变器输出电压的谐波特性Table 1㊀Harmonic characteristics of u an under differentdead-time死区时间/μs THD /%基波幅值/V 基波相位/(ʎ)3次谐波/%5次谐波/%0143.2161.90.00.050.020.5144.6160.90.90.470.261146.1159.9 1.60.970.511.5147.3158.9 2.4 1.470.782148.6157.93.21.981.04371第10期贺玫璐等:无传感器下中频逆变电源死区补偿与控制策略图4㊀死区引起电压误差波形与FFT结果Fig.4㊀Waveform and FFT results of voltage error caused by dead-time1.2㊀死区对负载电压的影响分析由1.1节分析可知,死区效应会引起逆变器输出电压发生低次谐波畸变,本节则从低次谐波相位与幅值两个方面分析死区对负载电压产生的影响㊂由图4可知,死区引起的逆变器输出电压误差Δu an 的基波相位与i a保持一致,当a相接入不同阻抗的阻性或阻感性负载时,i a的相位也会发生变化,因此不同负载特性下Δu an的基波相位不同,最终导致负载电压的相位发生偏移㊂因此,当接入三相不平衡负载时,死区会导致三相负载电压存在一定的不对称度㊂400Hz交流电源的LC滤波器需要兼顾滤波性能与动态响应速度,谐振频率一般设置在1.6kHz附近[10],因此LC滤波器对死区产生的3次与5次谐波并不具备明显的抑制作用㊂为了对以上分析进行验证,本文取L=1mH㊁C=10μF,当Z a分别为10Ω阻性负载与5mH电感㊁5Ω串联构成的阻感性负载两种情况下,比较2μs死区对负载电压u a的影响,如表2所示㊂可以看出,两种不同负载的接入下,负载电压的基波相位存在2ʎ的偏差㊂同时LC滤波器对死区产生的3次谐波具有放大作用,对5次谐波的衰减效果也并不显著㊂表2㊀不同负载下死区对负载电压的影响Table2㊀Influence of u a caused by dead-time underdifferent loads负载类型THD/%3次谐波/%5次谐波/%相位偏差/(ʎ) 10Ω 3.38 1.510.53-0.2 1mH+5Ω 5.12 2.40.79 2.02㊀电感电流观测模型对电感电流进行精确检测是实现死区补偿策略的基本前提,但是400Hz交流电源通常采用单闭环控制策略,仅对输出电压进行采样与控制,并不额外增加电流传感器,针对这一问题,本节对电感电流观测模型展开研究㊂电感电流i a的状态方程为Ld i ad t=u an-u a㊂(2)其中负载电压u a通过采样直接得到,而逆变器输出电压可通过电压控制器输出的给定电压u∗an得到,可以表示为u∗an=mu dc2㊂(3)式中m为逆变器调制信号的占空比,需要注意的是,给定电压u∗an与逆变器实际输出电压u an并不相同,还需要考虑死区引起的电压误差Δu an㊂u an可以表示为u an=u∗an-Δu an㊂(4)根据式(2)~式(4),构建i a的观测器数学模型,如图5所示㊂由于逆变器输出电压为高频开关波形,无法通过采样得到,只能通过给定电压u∗an作为输入得到电感电流观测值i^a㊂但是u∗an并不能直接替代u an,需要考虑Δu an,由第1节的分析得知,Δu an主要由3次与5次谐波构成,但是对频率较高的正弦输入信号进行积分运算,产生的正弦输出信号幅值会大幅度衰减,Δu an中3次与5次谐波对电流观测器的扰动作用可以忽略㊂但是Δu an还存在较低的直流误差,该误差可能导致积分的零点漂移,因此采用文献[18]的方法,在积分运算之前引入高通滤波器,用于消除积分零漂㊂本文采用的电流观测算法如图5(b)所示㊂高通滤波器截止频率ωn设置为200rad/s,即截止频率为30Hz附近,既能够滤除直流信号,也不会对400Hz信号产生幅值和相位的影响㊂471电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图5㊀电感电流观测器模型Fig.5㊀Observer of i a3㊀考虑死区补偿的控制器优化设计采用比例-谐振(proportional resonance,PR)控制器G PR (s )实现负载电压u a 对正弦给定信号u ∗a 的跟踪,其表达式为G PR (s )=k p +2k c ζω0ss 2+2ζω0s +ω20㊂(5)式中:k p ㊁k c 分别为比例系数与谐振系数;设置谐振频率ω0=800πHz,阻尼比ζ=0.5,将调制与数字控制延时等效为一阶惯性环节,整个控制系统的结构如图6所示㊂图中u ^an 视为调制过程的电压扰动量,包括因死区产生的三次㊁五次等低次谐波以及开关频率及其倍数频率附近分布的高次边带谐波,i ao 表示负载电流,T s 表示开关周期,为100μs㊂图6㊀控制系统结构Fig.6㊀Structure of control system图6所示的系统可以等效为u a (s )=u ∗a (s )G close (s )+i o (s )G i2u (s )㊂(6)式中:G close (s )为系统的闭环传递函数;G i2u (s )为负载电流到负载电压的传递函数,根据图6,控制系统的开环传递函数G open (s )表达式为G open (s )=k p s 2+2ζω0(k p +k c )s +k p ω20(LCs 2+1)(s 2+2ζω0s +ω20)(1+1.5T s s )㊂(7)G close (s )与G i2u (s )可通过G open (s )表示,表达式为:G close (s )=G open (s )1+G open (s );G i2u (s )=Ls[1+G open (s )](LCs 2+1)㊂üþýïïïï(8)由于传递函数的阶数过高,难以直接通过自动控制理论对PR 控制器中的系数进行直接计算,因此本文借助MATLAB 软件绘制不同k p ㊁k c 取值下G close (s )与G i2u (s )的幅频特性曲线,对k p ㊁k c 进行最优取值设计㊂首先令k p =1,k c 从0开始逐渐增加至30,G close (s )与G i2u (s )的幅频特性曲线如图7所示㊂当k c 取值较小时,在基频400Hz 处G i2u (s )的幅值增益在0dB 线以上,同时G close (s )的幅值增益低于0dB 线,此时u a 不能跟随u ∗a ,同时控制系统无法抑制i ao 对u a 的扰动㊂当k c >5时,随着k c 的增加,G close (s )在低频的幅值增益逐渐逼近0dB 线,截止频率影响较小,G i2u (s )在400Hz 处的幅值增益明显减小㊂图7㊀k p =1,不同k c 取值下的幅频特性曲线Fig.7㊀Bode diagrams with different k c and k p =1然后令k c =5,k p 从0开始逐渐增加至30,G close (s )与G i2u (s )的幅频特性曲线如图8所示㊂随着k p 增加,电压的跟随性能与对负载电流的抑制效果均愈发显著,同时G close (s )的截止频率随着k p 增571第10期贺玫璐等:无传感器下中频逆变电源死区补偿与控制策略加而增大㊂图8㊀k c =5,不同k p 取值下的幅频特性曲线Fig.8㊀Bode diagrams with different k p and k c =5根据k p ㊁k c 对G close (s )与G i2u (s )的影响规律,利用MATLAB 的Sisotool 工具箱配置k p ㊁k c ,得到k p =5㊁k c =25,此时G close (s )与G i2u (s )的幅频特性曲线如图9所示㊂在400Hz 处,G close (s )的相角为0,增益十分接近1,可实现u a 对u ∗a 的等比例同相位跟踪,截止频率接近2kHz,已达到10kHz 开关频率条件下的最快动态响应㊂同时,对400Hz 基波负载电流具有显著的抑制作用㊂图6中,为了抑制死区效应产生的低频非线性误差,在闭环控制系统中还加入死区补偿环节,在一个开关周期内,死区引起的平均电压误差可以表示为Δu an=-sign(i a )u dc td 2T s㊂(9)式中sign(i a )表示i a 的极性,当i a >0时,输出为1,反之输出为-1㊂将式(8)中i a 用电流观测器的输出i ^a 替换,根据i ^a 对逆变器输出电压的指令值u ∗an进行前馈补偿,以抵消因死区加入而产生的输出电压误差㊂b㊁c 两相也采用与图6相同的控制策略㊂图9㊀k p =5㊁k c =25下的幅频特性曲线Fig.9㊀Bode diagrams with k p =5and k c =254㊀仿真结果与分析在MATLAB 的Simulink 平台搭建如图1所示的拓扑结构模型㊁图5所示的电流观测器模型以及图6所示的三相负载电压控制模型,对本文提出的基于电流观测的400Hz 逆变电源的死区补偿与控制策略进行仿真验证㊂首先对电流观测效果与高通滤波器截止频率进行验证,如图10所示㊂在图10(a)中,因未加入高通滤波器,由于零漂的存在,在积分器的作用下,观测电流将会向下偏移㊂在图10(b)中,加入截止频率为10Hz 的高通滤波器后,观测电流与实际电流存在幅值上的误差,且观测器的动态调整过程较长㊂图10(c)给出了引入截止频率30Hz 高通滤波器后电流观测效果,可以看出,观测电流与实际电流基本一致,图10(d)为引入截止频率100Hz 高通滤波器后电流观测效果,观测电流与实际电流存在相位偏差㊂以上仿真结果证明在观测器模型中引入30Hz 高通滤波器可以精确重构电感电流㊂电感电流的精确采样为本文提出的平均电压补偿提供了正确的方向㊂在死区时间2μs 条件下,对设计的PR 控制器与死区补偿效果进行验证,当10Ω阻性负载接入下,输出电压的稳态波形与FFT 分析结果如图11所示㊂负载电压幅值162.6V,671电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀THD 仅为1.82%㊂图10㊀电流观测模型的仿真波形Fig.10㊀Simulation waveform of observer for current为了进一步证明本文所提出基于电流观测的死区补偿方法的有效性,将图11(b)的FFT 分析结果与图12所示的无死区和死区时间2μs 却未进行补偿这两种情况下负载电压的低次谐波进行比较㊂与图12(a)相比,基波电压幅值均为162.8V,相位均没有变化,说明PR 控制器可以抑制死区对基波幅值与相位产生的影响㊂但是未进行死区补偿情况下的负载电压幅值为162.1V,并存在2ʎ的相位偏差㊂同时存在4.5%的3次谐波,而在图11(b)中,经过补偿后的3次谐波含量仅为1.08%,说明本文提出的基于电流观测的死区补偿方法能够有效降低因死区产生的低次谐波㊂图11㊀PR 控制下稳态负载电压的仿真波形与FFT Fig.11㊀Simulation waveform and FFT result of ua图12㊀无死区与未采用补偿情况下的FFT 分析Fig.12㊀FFT analysis under no dead-time and dead-timeof 2μs771第10期贺玫璐等:无传感器下中频逆变电源死区补偿与控制策略图13给出了负载从10Ω突然切换至1mH +5Ω阻感负载情况下u a 的仿真波形与FFT 分析结果,u a 经过约1个周期的调整重新恢复至稳态,且负载切换后依然保持较低的谐波畸变,证明了本文所设计PR 控制器具有良好的动态特性㊂图13㊀负载突变下负载电压的仿真波形与FFT Fig.13㊀Dynamic simulation waveform of u a5㊀实验结果与分析为了进一步对本文所提方法进行验证,搭建了一台3kW 的实验平台,如图14所示㊂采用瑞途优特信息公司研制的RTU-BOX 作为数字信号处理器,可自动将MATLAB 仿真模型转换为程序代码㊂逆变部分采用该公司验证的600V-30A 三相全桥驱动器㊂在死区时间为2μs,对接入不平衡负载情况下的控制效果进行验证㊂图15为稳态实验波形,尽管负载电流幅值与相位均不保持对称,但是三相负载电压保持对称输出㊂图16给出当一相负载功率突然增加时的实验波形,经过2ms 的调整时间,三相负载电压重新达到平衡,有效值为115V,实验结果证明了本文针对PR 控制器进行的参数优化设计是有效可行的㊂图14㊀实验平台Fig.14㊀Experimentalplatform图15㊀不平衡负载下的稳态实验波形Fig.15㊀Steady-state experimental waveforms under unbalancedloads图16㊀负载突变下的动态实验波形Fig.16㊀Dynamic-state experimental waveforms underload suddenly changing为了验证本文针对PR 控制器参数优化设计方法的正确性,令逆变器a 相与b 相输出相同幅值与频率正弦电压㊂但是a 相采用的PR 控制器参数为:k p =2㊁k c =5,b 相则采用第3节得到控制器参数k p =5㊁k c =25㊂两者的对比实验结果如图17所示㊂可以看出,a 相负载电压存在严重的畸变,而采用本文设计得到的PR 控制器参数能输出高质量的电压㊂图18给出了负载突变下,本文所采用PR 控制器的负载电压u b 的实验波形与电压外环-电流内环的双闭环控制策略下的负载电压u a 的实验波形㊂871电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀可以看出,双闭环控制系统需要3个基波周期才能重新恢复至稳定,且中间存在振荡,而本文所采用单闭环PR 控制器则具有良好的动态性能㊂图17㊀不同PR 控制器参数下的负载电压实验波形Fig.17㊀Experimental waveforms under different valuesof k p and kc图18㊀负载突变下不同控制方法的负载电压动态实验波形Fig.18㊀Experimental waveforms under different controlmethods对不同死区时间下,未进行死区补偿与采用本文所提基于电流观测模型的平均电压前馈补偿两种情况下的负载电压THD㊁3次谐波与5次谐波进行比较,比较结果如图19所示㊂可以明显看出,未进行补偿情况下负载电压的THD㊁3次谐波与5次谐波含量随着死区时间的增加而增大,采用本文所提的基于电流观测的平均电压补偿策略能够有效抑制低次谐波畸变㊂图19㊀补偿前后的THD ㊁3次谐波与5次谐波Fig.19㊀THD ,3rd and 5th harmonic of u a before and af-ter compensation with different dead-time6㊀结㊀论本文针对400Hz 基于LC 滤波器的三相四线制航空逆变电源的死区补偿与单闭环比例谐振控制策略展开研究,并通过仿真与实验验证,在不同死区时间与三相不平衡负载条件下得到了良好的补偿与控制效果,并得到以下结论:1)在开环情况下,死区会引起负载电压基波的幅值与相位误差,并导致3次㊁5次谐波畸变,在不平衡负载条件下,还会增加三相负载电压的不平衡度;2)负载电压的跟随特性以及控制系统对负载电流的抑制效果与PR 控制器比例系数和谐振系数成正相关,通过对PR 控制器的参数优化设计,可以校正死区引起幅值和相位偏差,并具有良好的动态性能,但是不能抑制死区引起的3次谐波畸变;3)本文所提出基于高通滤波器的电感电流观测模型,能够精确重构电感电流,为死区补偿模型提供正确的电流极性㊂在死区时间分别为0.5㊁1㊁971第10期贺玫璐等:无传感器下中频逆变电源死区补偿与控制策略1.5㊁2μs情况下,本文所提无电流传感器的死区补偿方法能将负载电压的3次谐波依次降低1.6%㊁2.4%㊁2.8%,5次谐波依次降低0.3%㊁0.4%㊁0.7%㊂参考文献:[1]㊀重庆市人民政府办公厅,四川省人民政府办公厅.关于印发成渝地区双城经济圈碳达峰碳中和联合行动方案的通知[R].2022.[2]㊀周星宏.航空中频地面电源控制策略的研究[D].成都:西华大学,2021.[3]㊀JENSEN U B,BLAABJERG F,PEDERSEN J K.A new controlmethod for400-Hz ground power units for airplanes[J].IEEE Transactions on Industry Applications,2000,36(1):180. [4]㊀NINAD N A,LOPES L A C.Control ofΔ-Y transformer basedgrid forming inverter for unbalanced stand-alone hybrid systems[C]//2012IEEE Electrical Power and Energy Conference,Octo-ber10-12,2012,London,Canada.2012:176-181. [5]㊀CHEN Li,JI Shiming,TAN Dapeng.Multiple-loop digital controlmethod for a400-Hz inverter system based on phase feedback[J].IEEE Transactions on Power Electronics,2013,28(1):408.[6]㊀MANANDHAR U,ZHANG Xinan,GOOI H B,et al.Active DC-link balancing and voltage regulation using a three-level converter for split-link four-wire system[J].IET Power Electronics,2020, 13(12):2424.[7]㊀KIM J H,SUL S K.A carrier-based PWM method for three-phasefour-leg voltage source converters[J].IEEE Transactions on Power Electronics,2004,19(1):66.[8]㊀ROJAS F,CARDENAS R,CLARE J,et al.A design methodolo-gy of multi resonant controllers for high performance400Hz ground power units[J].IEEE Transactions on Industrial Electronics, 2019,66(8):6549.[9]㊀ROHOUMA W,ZANCHETTA P,WHEELER P W,et al.A four-leg matrix converter ground power unit with repetitive voltage con-trol[J].IEEE Transactions on Industrial Electronics,2015,62(4):2032.[10]㊀李子欣,王平,李耀华,等.采用数字控制的400Hz大功率逆变电源[J].中国电机工程学报,2009,29(6):36.LI Zixin,WANG Ping,LI Yaohua,et al.400Hz high-power volt-age-source inverter with digital control[J].Proceedings of theCSEE,2009,29(6):36.[11]㊀张凯,彭力,熊健,等.基于状态反馈与重复控制的逆变器控制技术[J].中国电机工程学报,2006,26(10):56.ZHANG Kai,PENG Li,XIONG Jian,et al.State-feedback-withintegral control plus repetitive control for PWM inverters[J].Proceedings of the CSEE,2006,26(10):56.[12]㊀江渝,黄敏,姜琦,等.电感双电容自调节逆变系统输出电压质量的控制[J].中国电机工程学报,2015,35(2):426.JIANG Yu,HUANG Min,JIANG Qi,et al.The control of the out-put voltage quality for the self-adjustable inductor-capacitor-ca-pacitor inverter[J].Proceedings of the CSEE,2015,35(2):426.[13]㊀袁龙,郭强.三相LCC并网逆变器的参数设计方法与控制策略[J].电力电子技术,2018,52(8):101.YUAN Long,GUO Qiang.Parameters designed method and con-trol strategy of three phase LCC grid-connected inverter[J].Pow-er Electronics,2018,52(8):101.[14]㊀罗登,林宏健,舒泽亮.单相二极管箝位三电平逆变器死区时间补偿技术[J].电力自动化设备,2018,38(8):147.LUO Deng,LIN Hongjian,SHU Zeliang.Dead time compensationtechnology of single-phase diode-clamped three-level inverter[J].Electric Power Automation Equipment,2018,38(8):147.[15]㊀邱长青,汪丁泉,华斌,等.五电平有源钳位型变换器SVPWM死区效应分析与补偿方法研究[J].电机与控制学报,2023,27(5):117.QIU Changqing,WANG Dingquan,HUA Bin,et al.Analysisand compensation method of dead-zone effect in SVPWM at five-level active neutral-point-clamped converter[J].Electric Ma-chines and Control,2023,27(5):117.[16]㊀汤梦阳,苗轶如,雍涛.DPWMMIN调制方法的损耗分析及其非线性电压误差补偿策略[J].电力系统保护与控制,2022,50(2):21.TANG Mengyang,MIAO Yiru,YONG Tao.Loss analysis andnonlinear voltage error compensation strategy of DPWMMIN mod-ulation method[J].Electric Power Automation Equipment,2022,50(2):21.[17]㊀刘和平,路莹超,王华斌,等.电压型逆变器分段死区补偿调制策略[J].电机与控制学报,2018,22(3):25.LIU Heping,LU Yingchao,WANG Huabin,et al.Dead-timecompensation modulation strategy of subsection integrated in volt-age source inverter[J].Electric Machines and Control,2018,22(3):25.[18]㊀孙灵喜,黄海宏,韦友龙,等.基于负低-高通滤波器的并网电流反馈新型有源阻尼方法[J].电机与控制学报,2023,27(2):27.SUN Lingxi,HUANG Haihong,WEI Youlong,et al.Activedamping method for grid-connected current feedback based onnegative low-high pass filter[J].Electric Machines and Control,2023,27(2):27.(编辑:邱赫男)081电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀。

三相三相电能表显示逆相序c相电流负数

三相三相电能表显示逆相序c相电流负数

三相电能表显示逆相序C相电流负数1. 引言三相电能表是用于测量和显示三相交流电能消耗的仪器。

它通常由三个独立的电流互感器和一个电压互感器组成,用于测量各个相位的电流和总体的电压。

在正常情况下,三个相位的电流应该是均衡且正向的。

然而,在某些特殊情况下,可能会出现逆相序(Phase Reversal)现象,即C相(通常为中间的那一相)的电流显示为负数。

本文将详细介绍逆相序现象的原因、影响以及解决方法。

2. 逆相序现象的原因逆相序现象指的是三个相位(A、B、C)中,C相的电流显示为负数。

其主要原因有以下几点:2.1 相序错误在安装或连接过程中,如果将A、B、C三个相位连接错误,就会导致逆相序现象。

例如,将A、B两个线缆接反。

2.2 变压器接线错误变压器是将高压变换成低压供给用户使用的设备。

如果变压器接线错误,也会导致逆相序现象。

例如,将变压器的C相接反。

2.3 供电网络故障供电网络故障也是逆相序现象的一个常见原因。

例如,当供电网络中的变压器损坏或线路短路时,可能会导致逆相序现象。

3. 逆相序现象的影响逆相序现象对电能表的测量和计费有一定影响,具体表现如下:3.1 测量误差逆相序现象会导致电流测量值出现负数。

由于电能表通常只记录正向有功电能,因此负数的电流值将被忽略,导致测量误差。

3.2 计费错误在一些地区,电力公司根据用户消耗的正向有功电能来计费。

如果逆相序现象导致C相的电流显示为负数,在计费过程中将无法正确统计用户实际消耗的电能,从而造成计费错误。

4. 解决逆相序问题的方法针对逆相序问题,可以采取以下解决方法:4.1 检查连接首先需要检查三个相位(A、B、C)是否正确连接。

确保A、B、C三个线缆与电能表的对应接线端子连接正确。

4.2 检查变压器接线如果逆相序现象发生在变压器处,需要检查变压器的接线是否正确。

确保A、B、C 三个相位与变压器的对应接线端子连接正确。

4.3 调整相序如果以上方法都无法解决问题,可以考虑调整相序。

Memosens 2.0技术应用:数字传感器说明书

Memosens 2.0技术应用:数字传感器说明书

Digital with Memosens 2.0 technologyApplication•Long-term monitoring and limit control in processes with stable process conditions •Chemical industry •Pulp and paper industry •Power plants (e. g. flue gas cleaning)•Incinerator plants •Water treatment •Drinking water •Cooling water •Well waterWith ATEX, IECEx, CSA C/US, NEPSI, Japan and INMETRO approvals for use in hazardous areas Zone 0, Zone 1 and Zone 2.Your benefits•Robust sensor with long diffusion path for poisoning substances •Low-maintenance due to large, dirt-repellent PTFE diaphragm •Suitable for tough applications: process glass for highly alkaline media •Can be used at pressures up to 17 bar (246.5 psi) (absolute)•Integrated NTC 30K temperature sensor •Different measuring elements for use in oxidizing and reducing mediaOther advantages provided by Memosens technology•Maximum process safety thanks to non-contact, inductive signal transmission •Data security thanks to digital data transmission •Very easy to use as sensor data are saved in the sensor •Predictive maintenance can be performed by recording sensor load data in the sensorProducts Solutions ServicesTechnical Information Memosens CPS12EORP sensor for standard applications in process technology and environmental engineeringTI01494C/07/EN/01.20714869792020-06-29Memosens CPS12E2Endress+HauserFunction and system designMeasuring principle ORP measurement The ORP potential is a unit of measurement for the state of equilibria between oxidizing and reducing components of a medium. The ORP is measured using a platinum or gold electrode. Similar to pH measurement, an integrated Ag/AgCl reference system is used as a reference electrode.Measuring systemThe complete measuring system comprises at least:•ORP sensor CPS12E •Memosens data cable CYK10 or CYK20•Transmitter, e. g. Liquiline CM44, Liquiline CM42•Assembly •Immersion assembly, e. g. Dipfit CPA111•Flow assembly, e. g. Flowfit CPA250•Retractable assembly, e. g. Cleanfit CPA871•Permanent installation assembly, e. g. Unifit CPA842Additional options are available depending on the application:Automatic cleaning and calibration system, e. g. Liquiline Control CDC903412A00321441Example of a measuring system for ORP measurement 1Retractable assembly Cleanfit CPA8712ORP sensor CPS12E 3Memosens data cable CYK104Transmitter Liquiline CM44xThe ORP sensor is available with a gold or platinum electrode:•Gold electrode For oxidizing media, e. g. cyanide oxidization, nitrite oxidization, ozone measurement,hydrogen superoxide measurement •Platinum electrode For reducing media, e. g. chromate reduction or for chlorine dosing in swimming poolsCommunication and data processing Communication with the transmitterAlways connect digital sensors with Memosens technology to a transmitter with Memosens technology. Data transmission to a transmitter for analog sensors is not possible.Memosens CPS12EEndress+Hauser 3Digital sensors can store measuring system data in the sensor. These include the following:•Manufacturer data •Serial number •Order code •Date of manufacture •Calibration data •Calibration date •Offset of integrated temperature sensor •Offset of ORP measurement •Number of calibrations •Calibration history •Serial number of the transmitter used to perform the last calibration or adjustment •Operating data •Temperature application range •ORP application range •Date of initial commissioning •Maximum temperature value •Hours of operation under extreme conditions •Number of sterilizations •CIP counterDependability ReliabilityEasy handling Sensors with Memosens technology have integrated electronics that store calibration data and other information (e. g. total hours of operation or operating hours under extreme measuring conditions).Once the sensor has been connected, the sensor data are transferred automatically to the transmitter and used to calculate the current measured value. As the calibration data are stored in the sensor,the sensor can be calibrated and adjusted independently of the measuring point. The result:•Easy calibration in the measuring lab under optimum external conditions increases the quality of the calibration.•Pre-calibrated sensors can be replaced quickly and easily, resulting in a dramatic increase in the availability of the measuring point.•Thanks to the availability of the sensor data, maintenance intervals can be accurately defined and predictive maintenance is possible.•The sensor history can be documented on external data carriers and in evaluation programs.•The saved application data of the sensor can be used to determine the continued use of the sensor in a targeted manner.Interference immunityData security thanks to digital data transmission Memosens technology digitizes the measured values in the sensor and transmits the data to the transmitter via a non-contact connection that is free from potential interference. The result:•If the sensor fails or there is an interruption in the connection between the sensor and transmitter,this is reliably detected and reported.•The availability of the measuring point is reliably detected and reported.SafetyMaximum process safety With inductive transmission of the measured value using a non-contact connection, Memosens guarantees maximum process safety and offers the following benefits:•All problems caused by moisture are eliminated:•No corrosion at the connection •Measured values cannot be distorted by moisture •The transmitter is galvanically decoupled from the medium. Issues concerning "symmetrical high-impedance" or "asymmetry" or the type of impedance converter are a thing of the past.•Electromagnetic compatibility (EMC) is guaranteed by screening measures for the digital transmission of measured values.•Intrinsically safe electronics mean operation in hazardous areas is not a problem. Complete flexibility thanks to individual Ex approvals for all components, such as sensors, cables and transmitters.Memosens CPS12E4Endress+HauserInputMeasured variable ORP TemperatureMeasuring range –1 500 to 1500 mV Pay attention to the operating conditions in the process.Power supplyElectrical connection2Measuring cable CYK10 or CYK20‣Memosens measuring cable, e. g. Connect the CYK10 or CYK20 to the sensor.For further information on cable CYK10, see BA00118C.Performance characteristicsReference system Ag/AgCl reference lead with Advanced Gel 3 M KClInstallationOrientation •Do not install the sensors upside-down.•The installation angle from the horizontal must be at least 15°.An installation angle < 15° is not permitted, as otherwise the electrolyte may separate from the diaphragm at elevated temperatures. The electrolytic contact is then no longer guaranteed.3Installation angle at least 15° from the horizontal APermitted orientation B Incorrect orientationMemosens CPS12EEndress+Hauser 5Installation instructions •Before screwing in the sensor, make sure the assembly thread, the O-rings and the sealing surface are clean and undamaged and that the thread runs smoothly.•Pay attention to the installation instructions provided in the Operating Instructions of the assembly used.‣Screw in the sensor and tighten by hand with a torque of 3 Nm (2.21 lbf ft) (specifications onlyapply if installing in Endress+Hauser assemblies).For detailed information on removing the moistening cap, see BA01988CEnvironment Ambient temperature rangeRisk of damage from frost!‣Do not use the sensor at temperatures below –15 °C (5 °F) .Storage temperature 0 to 50 °C (32 to 122 °F)Degree of protection IP 68 (10 m (33 ft) water column, 25 °C (77 °F), 45 days, 1 M KCl)Electromagnetic compatibility (EMC)Interference emission and interference immunity as per EN 61326-1: 2013ProcessProcess temperature range –15 to 135 °C (5 to 275 °F)Process pressure range 0.8 to 17 bar (11.6 to 246.5 psi) absoluteL CAUTIONPressurization of sensor due to prolonged use under increased process pressure Possibility of sudden rupture and injury from glass splinters!‣Avoid fast heating of these pressurized sensors if they are used under reduced process pressure or under atmospheric pressure.‣When handling these sensors, always wear protective goggles and appropriate protective gloves.Conductivity Reference system AA:minimum 50 μS/cm (minimized flow; pressure and temperature must be stable)Memosens CPS12E6Endress+Hauser4Pressure-temperature ratings AApplications G and P x Atmospheric pressureMechanical constructionDesign, dimensions5CPS12E with Memosens plug-in head. Engineering unit: mm (in)1Memosens plug-in head with process connection 2O-ring with thrust collar 3Internal reference lead 4Reference lead 5Temperature sensor 6Junction 7Gold or platinum electrodeMemosens CPS12EEndress+Hauser 7Weight Installed length120 mm (4.72 in)225 mm (8.86 in)360 mm (14.17 in)425 mm (16.73 in)Weight 40 g (1.4 oz)60 g (2.1 oz)90 g (3.2 oz)100 g (3.5 oz)Materials Sensor shaftGlass to suit process ORP measuring elementPlatinum or gold Metal leadAg/AgCl ApertureRing-shaped PTFE diaphragm, sterilizable O-ringFKM Process couplingPPS fibre-glass reinforced Nameplateceramic metal oxideTemperature sensorNTC 30K Plug-in head Memosens plug-in head for digital, non-contact data transmission, pressure resistance16 bar (232 psi)(relative)Process connections Pg 13.5Certificates and approvalsmark The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EU directives. The manufacturer confirms successful testing of theproduct by affixing to it the mark.Ex approval ATEX II 1G Ex ia IIC T3/T4/T6 GaIECEx Ex ia IIC T3/T4/T6 GaNEPSI Ex ia IIC T3/T4/T6 GaCSA C/US •IS Cl. I Div 1, GP A-D Ex ia IIC T3/T4/T6•IS Cl. I Zone 0, AEx ia IIC T3/T4/T6Japan Ex Ex ia IIC T3/T4/T6 GaINMETRO Ex ia IIC T3/T4/T6 GaEx versions of digital sensors with Memosens technology are identified by an orange-red ring on the plug-in head.Pay attention to the instructions for Memosens data cable CYK10 and transmitter CM82.TÜV certificate for Memosens plug-in headPressure resistance 16 bar (232 psi) relative, minimum three times the safety pressure EAC The product has been certified according to guidelines TP TC 004/2011 and TP TC 020/2011 which apply in the European Economic Area (EEA). The EAC conformity mark is affixed to the product.Ordering informationProduct page /cps12eMemosens CPS12E8Endress+HauserProduct Configurator On the product page there is a Configure button to the right of the product image.1.Click this button. The Configurator opens in a separate window.2.Select all the options to configure the device in line with your requirements. In this way, you receive a valid and complete order code for the device.3.Export the order code as a PDF or Excel file. To do so, click the appropriate button on the rightabove the selection window.For many products you also have the option of downloading CAD or 2D drawings of the selected product version. Click the CAD tab for this and select the desired file type using picklists.Scope of delivery The delivery comprises:•Sensor in the version ordered •Operating Instructions •Safety instructions for the hazardous area (for sensors with Ex approval)AccessoriesThe following are the most important accessories available at the time this documentation was issued.‣For accessories not listed here, please contact your Service or Sales Center.Device-specific accessories AssembliesUnifit CPA842•Installation assembly for food, biotechnology and pharmaceutics •With EHEDG and 3A certificate •Product Configurator on the product page:/cpa842Technical Information TI01367CCleanfit CPA875•Retractable process assembly for sterile and hygienic applications •For in-line measurement with standard sensors with 12 mm diameter, e.g. for pH, ORP, oxygen •Product Configurator on the product page:/cpa875Technical Information TI01168CDipfit CPA140•pH/ORP immersion assembly with flange connection for very demanding processes •Product Configurator on the product page:/cpa140Technical Information TI00178CCleanfit CPA871•Flexible process retractable assembly for water, wastewater and the chemical industry •For applications with standard sensors with 12 mm diameter •Product Configurator on the product page:/cpa871Technical Information TI01191CCleanfit CPA450•Manual retractable assembly for installing sensors with a diameter of 120 mm in tanks and pipes •Product Configurator on the product page:/cpa450Technical Information TI00183CMemosens CPS12EEndress+Hauser 9Cleanfit CPA473•Stainless steel process retractable assembly with ball valve shutoff for particularly reliable separation of the medium from the environment •Product Configurator on the product page:/cpa473Technical Information TI00344CCleanfit CPA474•Plastic process retractable assembly with ball valve shutoff for particularly reliable separation of the medium from the environment •Product Configurator on the product page:/cpa474Technical Information TI00345CDipfit CPA111•Immersion and installation assembly made of plastic for open and closed vessels •Product Configurator on the product page:/cpa111Technical Information TI00112CFlowfit CPA240•pH/ORP flow assembly for processes with stringent requirements •Product Configurator on the product page:/cpa240Technical Information TI00179CFlowfit CPA250•Flow assembly for pH/ORP measurement •Product Configurator on the product page:/cpa250Technical Information TI00041CEcofit CPA640•Set comprising adapter for 120 mm pH/ORP sensors and sensor cable with TOP68 coupling •Product Configurator on the product page:/cpa640Technical Information TI00246CBuffer solutionsORP buffer solution CPY3•220 mV, pH 7, 250 ml (8.5 fl oz)•468 mV, pH 0.1, 250 ml (8.5 fl oz)Product Configurator on the product page: /cpy3Measuring cableMemosens data cable CYK10•For digital sensors with Memosens technology •Product Configurator on the product page:/cyk10Technical Information TI00118CMemosens laboratory cable CYK20•For digital sensors with Memosens technology •Product Configurator on the product page: /cyk20。

光伏并网逆变器_相关英语

光伏并网逆变器_相关英语

1光伏逆变器Photovoltaic grid-connected inverter 断路器circuit-breaker直流/交流滤波器DC/AC filter熔丝/熔断器fuse变压器transformer2端子terminal钣金件sheet metal电解电容electrolytic capacitor热缩管heat shrink tube避雷器surge arrester3电流传感器electric current transducer导轨guide rail接触器contactor母排busbar连接器connector螺丝刀screwdriver4螺母nut扳手(Am.)a wrench;(Br.)a spanner剥线钳wire strippers压线钳crimping pliers散热器radiator电阻resistor阻抗impedance5型式实验type test放电discharge试验顺序sequence of tests电气参数试验electrical ratings test危险hazard电气间歇clearance爬电距离creepage distance6绝缘insulation模拟电网simulated utility品质因素quality factor谐振频率resonant frequency最大功率跟踪maximum power point tracking (MPPT) 外壳enclosure击穿break down7中性neutral额定值rated定额rating剩余电流residual current有效值r.m.s value8孤岛效应islanding计划性孤岛效应intentional islanding非计划性孤岛效应unintentional islanding防孤岛效应anti-islanding直接接触direct contact防护等级degree of protection公共连接点point of common coupling 9电压偏差voltage deviation基波fundamental谐波harmonic不平衡度unbalance factor校准calibration校验verification10可接触accessible电力转换设备power conversion equipment保护连接protective bonding次级电路secondary circuit静电放电electrostatic discharge (ESD)电磁兼容性electromagnetic compatibility (EMC) 11刻度/量程scale弹簧spring分流/分路/并联/旁路shunt整流器rectifier极性polarity(保险丝)烧断blow12阴极cathode集电极collector发射极emitter漏电流leakage夹住/夹紧clamp通风/流通空气ventilation紧密/结合compound13故障malfunction发电机generator湿度humidity潮湿/湿气moisture万用表multimeter半导体semiconductor 二极管diode14晶闸管thyristor电子晶体管transistor相位(控制) phase硅silicon晶体crystal薄片wafer阳极/正极anode15热的/热量的thermal线电压line停止/终了cease标准/判据criteria示波器oscilloscope 使…饱和saturate动态区域active region有源滤波器active filter带通滤波器narrowband filter低通滤波器low-pass filter高通滤波器high-pass filter16门限/阈值threshold应变计量器strain gage编码encode反向放大器inverting amplifier同相放大器uninverting amplifier制造fabricate集成电路integrated circuit封装capsule截止/关闭cutoff为…标号label触发器flip-flop上升沿leading edge下降沿lagging(trailing)edge线圈/绕组coils/winding17允许温升allowable temperature rise 并联in parallel with串联in series with损耗loss固有的inherent必需的/必不可少的indispensable空载no load满载full load过载overload欠电压undervoltage继电器relay合金alloy频率frequency转/分、秒revolutions per minute/second 18发电generating检修overhauling斩波电路chopper circuit光纤optical fiber波导/波导管waveguide带宽bandwidth发光二极管light emitting diode载波carrier传导/传播propagate调制器modulator解调器demodulator19延时time delay瞬态响应transient response反馈信号feedback signal动态响应dynamic response失配mismatch晶体管transistor无功功率reactive power电压互感器potential transformer电路元件circuit components电路参数circuit parameters电气设备electrical device电能electric energy电能转换器energy converter20自感self-inductor互感mutual-inductor电介质dielectric蓄电池storage battery电动势 e.m.f = electromotive fore电路图circuit diagram支路circuit branch有效值effective values均方根值r.m.s value = root mean square values 变比/匝比turns ratio工频power frequency21电压表voltmeter电流表ammeter千分尺micrometer温度计thermometer插座receptacle应力stress操作/控制/处理manipulations振动/冲击jerk传感器transducer。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EMC Issues in High-Power Grid-ConnectedPhotovoltaic PlantsRodolfo Araneo,Member,IEEE,Sergio Lammens,Marco Grossi,and Stefano BertoneAbstract—This paper outlines the main electromagnetic compat-ibility issues frequently encountered in high-power grid-connected photovoltaic(PV)systems,and proposes several guidelines that al-low to obtain an effective and highly efficient layout of the plant. Atfirst,with reference to a1-MWp PV plant of Sorgenia Solar, Italy,the paper focuses on the peculiar aspects concerning the radio-frequency behavior of a large-size PV plant:the great ex-tent of the direct-current cabling,the capacitance toward earth of the PV source,the common-mode(CM)disturbance generated by inverters,the galvanic isolation ensured by dedicated low-voltage power transformers,and the presence of resonant circuits for CM leakage currents.The dominant electromagnetic phenomena and coupling mechanisms are pointed out by means of an equivalent circuit and through measurements.In the light of the matured ex-perience,several guidelines are proposed and a new reliable layout is implemented on a second1-MWp PV plant.New measurements confirm the validity of the proposed design strategy.Index Terms—Electromagnetic conductive interference,electro-magnetic coupling,electromagnetic radiative interference,leakage currents,photovoltaic(PV)power systems.I.I NTRODUCTIONI N RECENT years,the need for clean power generation isbeing recognized more and more worldwide.Environmen-tal concerns correlated with conventional energy supply and use(e.g.,global warming caused by greenhouse gas emissions, air pollution,acid precipitation,ozone depletion,and possible radioactive substance emissions)have boosted the research for possible solutions,which today mainly include improved energy efficiency and increased renewable energy supplies[1].The energy production from self-renewing environment-friendly sources has become one of the most appealingfields of research for engineers and scientists.Among them,the solar photovoltaic (PV)source is considered as one of the leading potential sources of electricity for the21st century due to several reasons[2]:it utilizes an abundant energy source(the sun),has no emissions, can be easily integrated in buildings,and the cost of the in-stalled kilowatt peak(kWp)is decreasing and becoming more affordable.The worldwide-installed PV power capacity shows a nearly exponential increase,which is mostly dominated by grid-connected applications[3].In Europe,subsidy programsManuscript received November28,2008;revised April2,2009.First published August4,2009;current version published August21,2009.R.Araneo is with the Department of Electrical Engineering,“La Sapienza”University of Rome,Rome500185,Italy(e-mail:rodolfo.araneo@uniroma1.it). mmens and M.Grossi are with Sorgenia Solar S.r.l.,Rome121-00125, Italy(e-mail:mmens@sorgenia.it;marco.grossi@sorgenia.it).S.Bertone is with Finmotor S.r.l.,Milan20019,Italy(e-mail:info@finlab.it). Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/TEMC.2009.2026055and changes in the energy laws promulgated by several coun-tries in the last years in accordance to European Union(EU) recommendations have been pushing constant developments of PV systems,and have made the PV market grow at rates of40% and more.The spreading of grid-connected systems had a significant impact on several engineering research issues,ranging from an industrialfield concerning the inverter topologies[4]and the optimization of the maximum power point tracker(MPPT)[5] to a powerfield concerning the power quality of the energy injected into the grid(power factor characteristics,harmonic distortion,and possible direct-current injection)[6],systems preventing possible islanding[7],[8],and grid stability under distributed energy generation[9],[10].Several issues worthy of investigation also arise in the elec-tromagnetic compatibility(EMC)field,especially when dealing with high-power grid-connected PV plants.The main topics are radiated and conducted emissions,and immunity problems in electronic equipment.The long direct-current(DC)cabling,the common-mode(CM)voltages generated by inverters,the pres-ence or absence of line frequency power transformers,and the grounding of PV components are all the aspects that affect the radio-frequency(RF)behavior of the PV system,especially as it concerns conducted and radiated disturbances in the frequency range from150kHz to30MHz.These problems are subtle since the PV plant components are usually chosen on the basis of energy performance and efficiency criteria,and on-site mea-surements are usually unavoidable for the characterization of such complex systems.Despite the wide spreading of PV systems,to the best of our knowledge,little effort has been spent to investigate EMC aspects of high-power grid-connected PV plants,as the main contributions present in the literature focused on low-power systems.Two EU projects[11],[12](the research in[11]and [12]was funded in part by The European Commission in the framework of the Non Nuclear Energy Programme,JOULE III) comprehensively investigate numerous PV plants in terms of RF engineering by means of measurements and numerical simula-tions.The main focus is on the emissions at RF on the DC-side of the system.Impedance characteristics and antenna factors for PV systems whose powers range from1to40kWp are an-alyzed and,although the physical values may vary significantly from system to system,common properties are identified.Mea-surements are made on a2.9-kWp grid-connected PV plant for the investigation of the CM current on the ground connection of the single-phase inverter in[13].Other works concern the development of appropriate equipment and setups for the RF measurements of the DC side such as the DC-line impedance0018-9375/$26.00©2009IEEEFig.1.Grid-connected PV plant of Molfetta (Sorgenia Solar property)of 1MWp.stabilization network (LISN)[14],or the examination of possi-ble electromagnetic emission limits [15].In this paper,the RF behavior of high-power grid-connected PV plants is investigated and specific guidelines are proposed for the design of a layout that were reliable form an EMC point of view.Special attention is focused on the possible coupling mechanisms between the DC field and the alternating-current (AC)side of the PV system,which may provide favorable paths for the flow of CM disturbance currents.The paper is orga-nized as follows.In Section II,the main design aspects of high-power PV plants are presented with reference to a first 1-MWp grid-connected PV plant of Sorgenia Solar,Molfetta,Italy:an equivalent circuit and a simple CM model are proposed to shed light on the dominant disturbance coupling mechanisms.Section III presents several frequency domain measurements of CM disturbances encountered in the Molfetta plant under dif-ferent operating conditions.The experimental data allow us to understand the effect of the conducted and radiated disturbances caused by the flow of CM currents into the ground connection,especially on electronic equipment that uses the same connec-tion for grounding or earthing purposes.The effect of Enerdoor passive filters introduced at some critical points of the plant to solve the conducted interference problem is also reported.In the light of the matured experience,in Section IV,general guidelines are given that allow to design a EMC reliable layout of large-area plants.The proposed layout is implemented on a second successive PV plant of Sorgenia Solar,Benevento,Italy.Finally,new measurements show the validity of the proposed design strategy.II.H IGH -P OWER G RID -C ONNECTED PV S YSTEMSA.Design AspectsThe high-power grid-connected solar PV systems are com-posed of several components and subsystems.The basic de-vices are the PV modules,which are generally field-installed in arrays,assemblies with their own support structure and foun-dation,as shown in Fig.1.The PV arrays,generally,consist of one or more strings,i.e.,panels connected in series,which constitute the basic DC power producing units.The arrays are grouped in a PV power subsource,whose output is connected to an appropriate three-phase inverter.More subsources com-pose the whole PV power source.Appropriate switchboards are field-installed throughout the PV source to allow the parallelconnection of strings and arrays.The inverters are then paral-leled on the AC side in an appropriate switchboard,where the grid-interface device is placed,and the whole output is deliv-ered to the medium voltage (MV)distribution network through a line-frequency power transformer to form a grid-connected interactive system.PV systems are also usually equipped with electronic equipment for the acquisition and transmission of environmental data and for security purposes.A simplified one-line diagram of the PV system of Molfetta is shown in Fig.2.It is composed of 4704polycrystalline panels grouped in four PV subsources:the first subgenerator consists of 1184Solon of 210Wp,the second one of 1168Solon of 205Wp,the third one of 1200SEM of 220Wp,and the fourth one is composed of 448SEM of 210Wp and 688SEM of 215Wp.The total rated power of the PV system is 99804kWp.The modules are aggregated in strings composed of 16series-connected pan-els,so that the total number of strings is 294.The PV system extends over two hectares,and is isolated from the ground.The DC voltage level of the PV source is 600V .The four inverters are SunWay TG290of Elettronica Santerno,with maximum input power of 286kWp.The output rms AC voltage of the inverters is 202V .The four inverters are parallel-connected on the AC side on an appropriate low-voltage (LV)switchboard at 202V ,and an LV/medium voltage (MV)202V/20kV power transformer is used to deliver the produced power to the network.An LV transformer is then used to feed the auxiliary services of the plant.B.RF CharacterizationThe EMC characterization of a large PV system is a diffi-cult task,because several aspects influence its RF properties,and generally,all the main parameters of the plant are exactly not known in advance (e.g.,grounding and height of the mod-ules/cabling above the ground).However,the modularity of these plants and some peculiar characteristics that differentiate the PV sources from any other DC voltage source allow us to recognize some common RF characteristics.The main CM disturbances that can be encountered in the frequency range 150kHz–30MHz in a large-sized PV sys-tem are conducted disturbances (generated by the commuta-tions of the power electronic switches utilized by the invert-ers)and the radiated interferences (due to the radiation of CM currents and/or coupling with external electromagnetic fields).ARANEO et al.:EMC ISSUES IN HIGH-POWER GRID-CONNECTED PHOTOVOLTAIC PLANTS641Fig.2.Simplified one-line diagram of the PV system of Molfetta.Since high-power PV systems are generally placed in rural en-vironments,the last issues (coupling with electromagnetic field originated external to the plant)is often negligible.In Fig.3,an equivalent circuit representation of a single PV subgenerator of the Molfetta plant is reported.In the following,with reference to this plant,the RF aspects specifically related to PV systems are discussed,pointing out the dominant disturbance mechanisms that will be eliminated next by the proposed layout in Section IV.1)PV DC Side:The RF behavior of the DC side of a PV system is dominated by the capacitance between generator and earth,and the DC cable inductance.Steady-state characteristics of a PV panel can be modeled by means of the equivalent circuit shown in Fig.3,composed of a connection of a current source,two diodes,a parallel and a se-ries resistance,and a capacitance [16].The most important point is that the single PV panel represents a capacitance toward the earth due to the large area of the modules.The capacitance usu-ally depends on several factors,e.g.,the size of the module,the height above the ground,and the relative humidity that affects the dielectric permittivity of air.For large ungrounded PV ar-rays,typical values of the capacitance have been found to range between 50and 150nF/kWp for glass-faced modules,and up to 1µF /kWp for thin-film modules in damp environments or rainy days.Moreover,in large PV systems,the DC side may extend over several hectares while DC lines may extend in length up to 150m,thus increasing the effect of the distributed transversal capacitance.This capacitance usually provides a path for CM leakage currents.The CM impedance of the DC side is also affected by the grounding of the module frames (equipment grounding):grounding leads to a significant reduction of the CM impedance at lower frequencies (below 1MHz).Grounding of the PV mod-ule frames is an interesting matter of discussion,concerning not only EMC aspects,but also the protection of personnel and property.Although all commercial PV modules are made with reinforced insulation (class II components),their grounding is allowed because it usually helps to ensure maximum system642IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY ,VOL.51,NO.3,AUGUST2009Fig.3.Equivalent circuit of a PVsubsource.Fig.4.(a)CM voltage v cm .(b)Its harmonics.safety over the entire life of the plant (25years and more).Fur-thermore,a live electrical conductor (usually the negative one)of the DC two-wire PV field may be solidly grounded to operate the PV generator as a solidly earthed system (system ground-ing).This leads to a further reduction of the CM impedance at lower frequencies.DC circuit grounding is another interesting issue:it is a common practice in the U.S.where it is recom-mended by the National Electric Code (Section 690)[17],while the common European practice is to operate the PV generator ungrounded.As concerns the DC cabling,its length influences the ef-fect of not only the distributed transversal capacitance but also of the distributed longitudinal inductance,which is part of a resonant circuit,as it is evident from Figs.3and 4.Further-more,its length is quite often comparable with the wavelength of the disturbance so that,in general,wave propagation effects cannot be neglected.Thereby,the well-known multiconductor transmission line model shown in Fig.3is used [18].Since the PV generator may act as an antenna,RF radiation due to CM currents can be large,especially close to possible resonant frequencies of the CM circuit.Therefore,the coupling among different lines via radiated fields must be seriously accounted for.To this purpose,distributed voltages and current sources must be introduced to model excitation effects.2)Inverters:The core of the PV plant are the inverters that are required to feed energy into the grid,to invert the DC current into an AC one with the lowest harmonic content,and to boost up or chop down the DC voltage of the PV generator to the rms value of the grid voltage.To fulfill all these requirements,the inverters make use of several components:an input EMC DC filter,a DC/DC converter,a full-bridge DC/AC inverter,and an output EMC AC filter.The single-stage DC–AC conversion topology is quite often used in common PV inverters.In this topology,the full-bridge inverter,shown in Fig.3,is the core part,which is usually controlled by means of unipolar or bipo-lar pulsewidth modulation (PWM)techniques,as described in well-known textbooks [19].The inverter makes use of power semiconductor switches (bipolar junction transistors (BJTs),ARANEO et al.:EMC ISSUES IN HIGH-POWER GRID-CONNECTED PHOTOVOLTAIC PLANTS643 insulated gate bipolar transistors(IGBTs),or MOSFETs)thatcommutate at high switching frequencies(>16kHz)to avoidlow-order harmonics and minimize the cost of EMCfilters.From an EMC point of view,the full-bridge inverter is a sourceof a CM voltage v cm that can be calculated from the voltages ofthe three midpoints of the three legs with respect to the negativeDC bus,v RO,v SO,and v TO asv cm=13(v RO+v SO+v TO).(1)Fig.4(a)shows the v cm generated by a full-bridge inverter controlled by a synchronous double PWM,with modulating frequency f1=50Hz,carrier frequency f s=1050Hz(fre-quency modulation ratio m s=21),and amplitude modulation ratio m a=1.The low value of the latter parameter has been chosen for the sake of clarity.It is evident that v cm contains high-order harmonics that are clearly shown in Fig.4(b),where its Fourier transform is reported.Because of the presence of harmonics of order higher than200,it follows that if the carrier frequency is16kHz or more,the whole RF range from150kHz to30MHz has to be considered.3)Line-Frequency LV Transformers:Grid-connected PV systems may include line-frequency LV transformers in the con-version stage.These may be necessary to boost up to400V the full bridge output voltage that is usually in the range between 202and270V if no high step-up DC/DC converter is present and/or to guarantee a galvanic isolation between the grid and the PV system.This isolation provides personal protection and avoids the injection of continuous current into the grid.How-ever,since the line-frequency transformer is heavy,expensive, and increases the complexity of the inverter,a large number of inverter topologies without transformer and with multistage conversions have been developed in the literature and are avail-able today[20].They have a low side effect on personal safety and grid integration,and are particularly advantageous for their high efficiencies.However,the removal of the transformer,and hence,its isolation capability must be carefully considered.In fact,avoiding the transformer results in a galvanic connection between the AC side of the PV system and the PV source.This problem is well known when dealing with low-power single-phase inverters connected to the low-voltage grid[21],[22]. C.CM Disturbance PatternsThe four paths available for CM disturbances toflow inside the PV plant are shown in Fig.3:they consist of the capacitance between each module and the ground of the DC subsource, the capacitance toward the ground connection of the inverter, the galvanic connection on the AC side with other subsources, and the radiation mechanism.The CM equivalent circuit of the system is shown in Fig.5: it consists of the stray capacitances,the DC circuits,and the inverters and the switchboard for the parallel connection of the inverters on the AC side.This circuit can be highly resonant, due to the presence of the inductances and capacitances of the DC and ACfilter elements of the inverters,together with the PV array earth capacitance and cabling inductance.The CM volt-ages v cm generated in the full-bridge inverters can excitethis Fig.5.Equivalent circuit for the CM disturbances.circuit and make CM leakage currents i cmflow.Due to the high values of the stray capacitance and to the fact that all the compo-nents of the PV system are optimized to improve the overall effi-ciency,the damping elements in this resonant circuit can be very small so that the CM currents can reach amplitudes well above the permissible levels,such as those allowed by the standards [23],[24]for the AC side.Furthermore,the problem is made more tricky by the fact that the resonant frequencies of the CM circuit are notfixed,due to the varying PV array earth capac-itance that depends on environmental conditions.The leakage currents can be reduced by including damping passive compo-nents orfilters in the circuit;however,these elements reduce the overall efficiency of the energy conversion system.The CM currents can be source of severe conducted interfer-ence that can cause defaults in the operation of inverter elec-tronic circuits of the inverters(MPPT and devices that super-vise the interaction with the grid)and/or in sensitive electronic equipment(e.g.,a security camera system).These disturbances are enhanced by the fact that electronic components are usu-ally grounded to the same ground connection.Furthermore,as previously explained,the source-to-victim coupling can also be radiated.The CM radiated disturbances can be further en-hanced if the power cables feeding electronic equipment and/or their signal cables run near the DC power cables in parallel raceways.D.EMC Requirements and LimitsAs concerns the conducted RF emissions of the inverters,in-ternational standards for industrial[23],[25]and domestic[24] environments enforce the maximum levels on the AC side.How-ever,for the DC side,no standard is available(although in the European project[11],possible limits have been examined and proposed).A simple(and still common)approach is to use for the DC side the same RF limits as in the standards for AC con-nections.After afirst period,when inverters emitted high levels of RF disturbances on the DC side,manufacturers soon realized the importance of reducing them;today,modern inverters from644IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY,VOL.51,NO.3,AUGUST2009experienced manufacturers comply with AC standard limits.In any case,when several inverters are used,parallel-connected in the same PV system,the disturbances generated by single inverters can add up so that the limits may be exceeded.An im-portant issue to be pointed out here is that,for the main terminals disturbance voltage in the frequency band150kHz–30MHz, the Standard EN-61800-3(that specifies EMC requirements for power drive systems(PDSs)and to which industrial PV inverter can be assimilated)imposes limits higher than those imposed by the Standard EN-55011for industrial,scientific,and medi-cal(ISM)equipments.The disturbance voltage limits(average and quasi-peak)for PDS of category C3(i.e.,PDS of rated voltage less than1kV)intended for use in the second envi-ronment(industrial),with rated nominal current higher than 100A,are shown in Fig.6,while the limits for Group1-Class A equipments(suitable for use in all establishments other than domestic)are shown in Figs.9and10.It is,thus,evident that, roughly speaking,the power inverters are allowed to produce more disturbance.III.O N-S ITE M EASUREMENTSThe measurements have been performed in situ according to the Standard EN55001,by using a voltage probe and a receiver in accordance to the publication CISPR16-1[26]:the volt-age probe is a PMM SHC-1and the voltage receiver is a PMM 9000,with average and quasi-peak detectors.The standards pre-scribe measuring the voltage disturbances in the frequency range 150kHz–30MHz at each main terminal of the equipment under test(EUT).In the following,only the CM voltage disturbances will be shown for the sake of conciseness and because they are more pertinent to the subject of this paper.Fig.6(a)and(b)shows the v cm disturbance level at the DC input terminals of inverter 1,when the inverter’s output power is40and17kW,respectively.The point of measurement is indicated with the letter A in Fig.2.Both the quasi-peak and average measurements are reported together with the limits pre-scribed by the Standard EN-61800-3.It can be noted that the disturbance level does not depend on the power supplied by the inverter,but it is intrinsically generated by the working of the inverter.Even if the disturbances meet the specified limits,they are characterized by a high level,especially in the lower part of the frequency range of interest,and they will be the cause of incorrect operation of electronic devices,as will be seen in the following.The effect of Enerdoorfilters connected in parallel between the positive and negative conductors,and ground at the DC input port of the inverter is shown in Fig.6(c).It can be observed that the disturbance level significantly decreases especially in the low-frequency range(below1MHz).The CM disturbance level on the AC side at the three-phase output port of the inverter is similar to the disturbance shown in Fig.6(a) and(b),although it is not reported for brevity.What is worth emphasizing here is that a high level of voltage disturbance is generated by each single inverter on both the DC and AC side; this can propagate through the plant by means of the coupling mechanisms describedpreviously.Fig.6.CM disturbance voltage measured at the DC input terminals of Inverter 1(point A in Fig.2)when the inverter’s output power is(a)40kW and (b)17kW.Limits prescribed by EN61800-3are also reported.(c)The effect of Enerdoorfilters connected in parallel between the positive and negative conductors and ground.To investigate,in more detail,the behavior of the CM dis-turbances,v cm has been measured at the DC output terminals of a panelboard for parallel of PV panels in the subsource 1 (point B in Fig.2).In Fig.7(a),the v cm level from9to150kHz at this point is shown,while in Fig.7(b),the v cm level from 150kHz up to30MHz is reported.The measurement corrob-orates the fact that the conducted disturbances propagate along the DC cabling.Furthermore,in order to point out that these dis-turbances return through the ground connection,v cm has been measured at the ground connection of inverter 1,between the ground system of the MV/LV substation(to which the inverter’s ground conductor is connected)and the ground system of theARANEO et al.:EMC ISSUES IN HIGH-POWER GRID-CONNECTED PHOTOVOLTAIC PLANTS645Fig.7.CM disturbance voltage measured at the DC output terminals of a panelboard for parallel of PV panels in the subsource 1(point B in Fig.2)in the frequency range (a)9–150kHz and (b)150kHz–30MHz.Fig.8.CM disturbance voltage measured at the ground connection of inverter n ◦1,between the ground system of the MV/LV substation to which the inverter’s ground conductor is connected and the ground system of the DC side of the PV plant (point C in Fig.2).DC side coming from the PV plant (point C in Fig.2).The measurement results are shown in Fig.8.This last measurement confirms that the CM disturbances delivered by the inverter,af-ter propagating across the DC and AC side of the PV system,couple again through the ground connections (paths A and B in Fig.3).To point out more clearly that the voltage disturbances prop-agate on the AC side of the plant,v cm has been measured at the AC input terminals of the subsource 1auxiliary services panelboard (point D in Fig.2),and is shown in Fig.9.It isworth Fig.9.CM disturbance voltage measured at the AC input terminals of the subsource n ◦1auxiliary services panelboard (point D in Fig.4).Fig.10.CM disturbance voltage measured at the AC input terminals of the UPS (point E in Fig.2)when (a)the inverters are working and (b)the inverters are disconnected.noting that the auxiliary services of the system are fed by a line-frequency LV delta–star power transformer with voltage ratio 400/202V .The latter does not block out the RF disturbances,since its isolating effect is overtaken by radiation mechanisms and conductive mechanisms through the common ground con-nection,as shown in Figs.3and 5.Moreover,it is clear that the disturbance level is higher than the limits prescribed by the standard [23].This means that the inverters do not disturb each other,but their whole effect is dangerous for sensitive equip-ment fed by the auxiliary service panelboard (e.g.,intrusion646IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY,VOL.51,NO.3,AUGUST2009Fig.11.One-line diagram of the proposed EMC reliable PV power generating system.detection system,fire detection system,and grid and PV protec-tion devices).The AC disturbances have also been measured at the input terminals of the uninterruptible power supply(UPS)(point E in Fig.2),and the results is shown in Fig.10(a).It is also evident that in this case,the disturbance level is higher than the allowable limits.To reduce it,Enerdoor RFfilters have been installed between the auxiliary service panelboard and the UPS. The positive effect is shown in Fig.10(b),which clearly shows that now the limits are met.IV.D ESIGN G UIDELINES AND P ROPOSED L AYOUT Accumulated experience through the design and operation of more than15PV plants in the last two years,with nominal power ranging from1to15MWp,has allowed us to identify some guidelines and advisory recommendations for the design of PV industrial electric power systems that will satisfy the general EMC operational requirements,in general.The proposed EMC reliable scheme is reported in Fig.11.Equipment grounding of the PV module frames and support, which are connected to the ground reference point,isfirst sug-gested since it makes the overall CM impedance of the PV power generating system toward earth more controllable.Although equipment grounding reduces the impedance at low frequen-cies,it allows to obtain a more stable value of the impedance in different weather conditions and dramatically reduces danger-ous resonance effects.Moreover,bonding of the PV module frames is also rec-ommended:the module frames are interconnected with low-impedance paths(ground conductors or support buses)and con-nected to the ground electrode system that has to be extended over the entire PV area with buried ground wires.This prac-tice reduces voltage differences within the PV power generating system(especially at lower frequencies),resonance effects,and fluctuations in the CM impedance.Power transformers should be used at the AC output of the inverters to introduce a galvanic isolation between the inverter that is the source of the disturbances and the AC side of the sys-tem.The type of three-phase-transformer connection is mainly dictated by the distribution system grounding of the AC side and coordination of protective devices.Delta–wye transformers are usually adopted with middle-power-ranged inverters,whereas solidly grounded primary wye–wye transformers are used with high-power inverters to minimize the possible problem of fer-roresonance.From an EMC point of view,the most effective solution should be seeked together with the distribution system of the PVfield,looking at the plant in its whole.A solidly grounded neutral AC distribution system(the neutral is con-nected to the same ground electrode system used for the PV field)with delta–wye connected LV/LV transformers,and with the PVfield operated ungrounded(with electronic ground fault detectors)turns out to be a reliable solution.In fact,it allows the control of transients and temporary overvoltages that may affect sensible AC equipment operating performance,while it does not provide a closed loop for the CM disturbance currents that may circulate thought the AC and DC side of the plant passing through the ground electrode system.Special care must also be paid to protection against ually,an industrial PV power generating system does not introduce a lighting protection level(LPL),so that an ex-ternal lighting protection system(LPS)is not usually required. However,a set of surge protection devices(SPDs)properly se-lected,coordinated,and installed are required to suppress both common-and differential-mode transients,and consequently, reduce failures of inverters.SPDs(class II)are generally in-stalled in the string parallel boxes,and at the DC and AC termi-nals of the inverters.Finally,attention should be focused on the inverter immunity against fast conducted transients.High-quality inverters from experienced manufacturers should be used.They are usually provided with good RF EMCfilters(which are interior parts of the inverter)that are useful to increase the reliability of the inverter since they enhance immunity against common-and differential-mode transients that could cause inverter upsets or, in some cases,failures.Additional RFfilters could be added to reduce the CM disturbances when the layout of the plant has not been properly designed,but they should be avoided because they affect the overall energy performance of the plant.In fact, power dissipation is always present in these components,usually associated with ohmic losses and leakage currents.Also,when using high-qualityfilters,it should be kept in mind that these components should work efficiently for20–25years in an open-air(industrial)environment,where performance degradations can occur more rapidly.The proposed layout has been tested on a new1-MWp PV plant in Benevento,Italy.The PV generator is composed of 5916Solarfun SET-NY crystalline modules grouped in four PV subsources divided as follows:1368170-Wp modules in the subgenerator1,1392170-Wp and132180-Wp modules。

相关文档
最新文档