金属工艺(金属热处理)
金属热处理基本知识
金属热处理基本知识金属热处理是一种通过加热和冷却来改变金属结构和性能的工艺,广泛应用于工业制造过程中。
本文将介绍金属热处理的基本知识,包括常见的热处理方法、热处理的目的以及热处理对金属材料性能的影响。
一、常见的热处理方法1. 固溶处理固溶处理是一种通过加热金属至其固溶温度,然后迅速冷却以增加金属的硬度和强度的方法。
常见的固溶处理方法包括淬火和时效处理。
淬火是将金属加热至固溶温度,然后迅速冷却以形成固溶体,从而提高金属的硬度和强度。
时效处理是在淬火后,将金属加热至适当温度保持一段时间,以达到固溶体中的晶粒溶解和析出硬化相的目的,提高金属的综合性能。
2. 马氏体转变马氏体转变是一种通过加热金属至马氏体起始温度,然后迅速冷却以在金属中形成马氏体组织的方法。
马氏体转变可以显著提高金属的强度和硬度,同时还可以改善其耐磨性能和韧性。
常见的马氏体转变方法包括淬火和回火。
淬火是将金属加热至马氏体起始温度,然后迅速冷却以形成马氏体,进而提高金属的硬度和强度。
回火是在淬火后,将金属加热至适当温度保持一段时间,使马氏体转变为较为稳定的组织,从而提高金属的韧性。
3. 回火处理回火处理是一种通过加热金属至适当温度,然后保温一段时间以改善金属的组织和性能的方法。
回火处理可以降低金属的硬度和强度,提高其韧性和延展性。
不同的回火处理参数可以得到不同的金属组织和性能。
常见的回火处理方法包括低温回火、中温回火和高温回火,分别适用于不同的金属材料和应用需求。
二、热处理的目的金属热处理的主要目的是改善金属材料的组织和性能,以满足特定的工艺和使用要求。
具体来说,热处理可以实现以下几个方面的目标:1. 提高金属的硬度和强度:通过热处理,可以使金属中的晶体细化,晶体界面增多,从而提高金属的硬度和强度。
2. 改善金属的韧性和延展性:热处理可以消除金属中的内应力和缺陷,减少晶界的孔洞,从而提高金属的韧性和延展性。
3. 提高金属的耐磨性和耐蚀性:通过调整金属的组织和相态,热处理可以增加金属的耐磨性和耐蚀性,提高其在恶劣环境下的使用寿命。
金属热处理工艺
金属热处理工艺金属热处理是一种热加工工艺,它将金属放入高温环境中,使其发生改变,从而达到改善材料性能的目的。
金属热处理分为两种:烘和淬火。
烘是金属热处理工艺中最普遍的一种,它是将金属加热至一定温度,使结构发生变化,从而改善金属的物理性能。
而淬火是将金属加热到一定的温度,然后彻底冷却,使金属的结构发生变化,从而改变金属的力学性能。
烘是改变金属结构的重要方法之一。
它能够改变金属结构的稳定性,改变金属的硬度和强度,从而改善金属的力学行为。
另外,它还能改变金属的抗腐蚀性能,以及降低金属的热膨胀系数,以增强金属的热稳定性。
烘工艺还可以改变金属的表面形貌和结构,提高金属的加工精度和抛光性能。
淬火是改变金属的力学性能的重要方法之一。
它能够改变金属的抗拉应力、抗压应力和弹性系数,从而改善金属的力学行为。
淬火还可以改善金属的热处理性能,以及金属的韧性和抗疲劳性能。
此外,淬火可以改善金属的塑性性能,以及金属结构的稳定性,从而提高金属的塑性变形速度,减少金属结构的破坏率,从而改善金属的性能。
金属热处理工艺除了有烘和淬火外,还有其他热处理工艺,如渗碳、回火、回火和淬火、回火交替、硬质合金热处理等。
金属渗碳是将碳元素渗透到金属表面,从而改变金属的组织结构,从而改变金属的力学性能。
硬质合金热处理是一种将各种原料(金属和金属合金)经过加热和焊接等工艺合成而成的硬质合金,它能够改变金属的抗冲击性能,以及金属的抗热力学性能和抗老化性能,从而提高金属的使用性能。
金属热处理是一种重要的热加工工艺,它能够改善金属的力学性能和热处理性能,从而提高金属的使用性能。
金属热处理工艺有烘、淬火、渗碳和硬质合金热处理等,这些工艺改变金属的力学性能,以及金属的热处理性能,从而提高金属的使用性能。
因此,金属热处理工艺在金属行业越来越重要,可以满足不同应用场合对金属性能要求的需求。
金属的热处理工艺
金属的热处理工艺
金属热处理工艺是一种通过改变金属的组织结构和性能来达到特定要
求的工艺。
它主要包括退火、正火、淬火、回火、表面强化等多种方法,每种方法都有各自不同的特点和适用范围。
退火是一种使金属材料在一定温度下缓慢冷却,从而改变其组织结构
和性能的方法。
退火可以分为全退火和局部退火两种。
全退火是将整
个金属材料加热至一定温度并保持一段时间,然后缓慢冷却至室温。
局部退火则是只对金属材料的某些部位进行加热处理。
正火是一种使金属材料在高温下均匀加热并快速冷却的方法。
正火可
以使金属材料具有更高的硬度和耐磨性,但也会使其脆化。
淬火是一种将已经加热至高温的金属材料迅速浸入水或油中进行快速
冷却的方法。
淬火可以使金属材料达到最高硬度和强度,但也会导致
其脆性增加。
回火是一种使已经淬火的金属材料在一定温度下加热并保温一段时间,然后缓慢冷却的方法。
回火可以使金属材料的硬度和强度降低,但也
可以减少其脆性。
表面强化是一种将金属材料表面进行特殊处理以提高其耐磨性、耐腐蚀性等性能的方法。
常见的表面强化方法包括喷丸、电镀、氮化等。
在金属热处理工艺中,温度和时间是非常关键的因素。
不同的金属材料和不同的工艺需要不同的温度和时间来达到最佳效果。
此外,淬火时冷却介质(如水或油)也会影响结果。
总之,金属热处理工艺可以改变金属材料的组织结构和性能以达到特定要求。
不同的方法有各自不同的特点和适用范围,在实际应用中需要根据具体情况选择合适的方法,并控制好温度、时间等关键因素以保证效果。
金属的热处理工艺
金属的热处理工艺金属热处理工艺是通过加热和冷却金属材料来改变其物理和化学性质的过程。
这种工艺在金属材料的生产和加工过程中起着至关重要的作用。
热处理工艺可以改变金属材料的硬度、强度、韧性、耐蚀性和其他性能,从而满足不同工程应用的需求。
热处理工艺包括加热、保温和冷却三个基本步骤。
首先,将金属材料加热到一定温度,使其达到所需的组织状态。
不同的金属需要不同的加热温度和时间来达到最佳效果。
保温是将加热后的金属材料保持在一定温度下一段时间,以确保材料的组织均匀化。
最后,通过合适的冷却方法,使金属材料迅速冷却到室温,固定其新的组织状态。
常见的热处理工艺包括退火、正火、淬火、回火等。
退火是将金属材料加热到足够高的温度,然后缓慢冷却,以减轻材料内部的应力,改善其韧性和可加工性。
正火是将金属材料加热到临界温度以上,然后以适当速率冷却,以增加材料的硬度和强度。
淬火是将金属材料加热到临界温度以上,然后迅速冷却,使材料快速固化,从而获得高硬度和强度。
回火是在淬火后将金属材料再次加热到适当温度,然后冷却,以减轻淬火过程中产生的应力,提高材料的韧性和可靠性。
除了这些基本的热处理工艺,还有一些特殊的工艺,如表面硬化、气体渗碳、氮化等。
表面硬化是通过在金属表面形成硬质层,以提高材料的耐磨性和耐腐蚀性。
气体渗碳是将金属材料暴露在富含碳的气体环境中,使其表面富含碳元素,从而增加材料的硬度和耐磨性。
氮化是将金属材料暴露在氮气环境中,使其表面形成氮化层,从而提高材料的硬度和耐磨性。
金属热处理工艺的效果与多个因素有关,包括材料的成分、形状和尺寸,加热和冷却速率,以及工艺参数的控制等。
为了获得理想的效果,需要根据具体的材料和应用要求来选择适当的热处理工艺。
金属热处理工艺是一项重要的工艺,通过改变金属材料的组织状态,可以改善其性能和使用特性。
不同的热处理工艺可以使金属材料具有不同的硬度、强度、韧性和耐蚀性,以满足不同工程应用的需求。
正确选择和控制热处理工艺对于确保金属制品的质量和性能至关重要。
金属热处理工艺
金属热处理工艺
热处理是一种重要的工艺,它使各种金属材料和结构能够以最有效的方式优化性能和结构。
热处理可以改变金属材料的组织结构、增强抗腐蚀性、改善机械性能、恢复表面外观和性能、改变金属的密度、硬度、强度、延展率、热稳定性等。
金属热处理可以分为常温热处理和高温热处理。
常温热处理包括晶间转变、热处理、淬火、回火和表面淬火等;高温热处理主要是指固溶处理和正火处理。
固溶处理包括正火固溶、液相固溶、间接固溶等;正火处理包括正火、表面熔化半熔化、气相入侵、逆火和冷变形等。
常温热处理主要用于改善金属材料的体积稳定性和改善其力学性能。
晶间转变可以改变金属的硬度和强度;淬火可以根据金属的硬度要求选择不同的处理深度;回火可以改善金属的断裂韧性;表面淬火可以使金属表面抗磨损性大大提高。
高温热处理是通过改变金属材料组织结构来改善其性能的一种重要工艺。
固溶处理可以有效地改变金属的抗拉强度,抗压强度,断裂韧性,抗磨损性和耐腐蚀性;正火处理可以改变金属的硬度,强度,延展性,冲击韧性,抗磨性,耐氧化性和耐蚀性等。
金属热处理工艺的创新是正在加速进行的。
目前,新型金属热处理工艺不仅涉及到各种传统的热处理技术,还包括新型超快速热处理技术、激光热处理技术、表面改性技术、电子束热处理技术、电弧热处理技术等,为工业应用提供了更广泛的选择。
综上所述,金属热处理工艺是一种重要的工艺,它可以改变金属的性能,提高金属材料的质量和使用寿命。
金属热处理工艺的改进和创新,为工业应用提供了更大的空间,使其具有更强的应用能力。
金属材料的热处理
金属材料的热处理金属材料的热处理是指通过加热、保温和冷却等一系列工艺,改变金属材料的组织结构和性能的方法。
热处理可以使金属材料获得理想的组织和性能,从而满足不同工程需求。
在工程实践中,热处理是非常重要的一环,下面我们来详细了解一下金属材料的热处理过程。
首先,我们来谈谈金属材料的热处理工艺。
热处理工艺包括退火、正火、淬火、回火等几种主要方法。
其中,退火是指将金属材料加热到一定温度,然后通过控制冷却速度,使其组织发生改变,消除应力和提高塑性。
正火是指将金属材料加热到一定温度,然后保温一段时间,再进行适当冷却,以改善其硬度和强度。
淬火是指将金属材料加热到临界温度以上,然后迅速冷却,使其获得高硬度和高强度。
回火是指在淬火后,将金属材料重新加热到一定温度,然后进行适当冷却,以减轻淬火所产生的脆性。
其次,我们来讨论金属材料热处理的影响因素。
热处理的效果受到许多因素的影响,如加热温度、保温时间、冷却速度等。
加热温度是影响热处理效果的关键因素之一,不同金属材料对应的加热温度也不同。
保温时间是指金属材料在一定温度下的停留时间,它决定了金属材料的组织结构和性能。
冷却速度也是影响热处理效果的重要因素,不同冷却速度会导致金属材料组织结构和性能的差异。
最后,我们来总结一下金属材料热处理的应用。
金属材料的热处理广泛应用于航空航天、汽车制造、机械制造等领域。
通过热处理,可以改善金属材料的力学性能、耐磨性能、耐蚀性能等,提高其使用寿命和可靠性。
因此,热处理在工程实践中具有非常重要的意义。
综上所述,金属材料的热处理是一项非常重要的工艺,通过合理的热处理工艺,可以使金属材料获得理想的组织和性能。
在实际应用中,我们需要根据不同金属材料的特点和工程需求,选择合适的热处理工艺,以获得最佳的效果。
希望本文能够对大家了解金属材料的热处理有所帮助。
金属热处理原理与工艺
金属热处理原理与工艺金属热处理是指对金属材料进行加热处理来改变其组织结构和性质的一种方法。
这种方法可以通过控制加热温度和保温时间等参数来实现不同的处理效果。
金属热处理可以改善金属的硬度、强度、韧性、延展性、耐磨性、耐腐蚀性等性能,从而满足不同的工业应用需求。
金属热处理的原理金属热处理的原理基于金属的组织结构和性质随温度的变化而变化。
当金属材料受到热加工时,温度升高会导致金属晶粒的尺寸增加,晶粒之间的间距变大,这使得金属的塑性和韧性增加。
而当金属材料受到冷加工时(如锻造、轧制),由于冷加工过程中金属材料处于冷却状态,因此晶粒不会发生明显的变形,而是保持原来的晶粒组织。
这种组织结构会使金属变得更加硬而脆,但相应的韧性和延展性会降低。
金属热处理的工艺金属热处理的工艺包括加热、保温和冷却等步骤。
根据不同的处理效果,这些步骤的温度和时间可以做出相应的调整。
以下是几种常见的金属热处理方法:1. 灭火处理:灭火处理是指将金属加热至高温后迅速冷却至室温的处理过程。
这种处理可以改变金属的组织结构,从而提高其硬度和强度。
灭火处理通常适用于需要较高硬度和强度的金属制品。
2. 固溶处理:固溶处理是指将金属加热至一定温度后进行保温,使固态的金属中的固溶体中的扰动原子可以逸出到基体里。
这种处理可以改变金属的组织结构,从而提高其韧性和延展性。
固溶处理通常适用于需要具有良好机械性能和耐腐蚀性的金属制品。
3. 时效处理:时效处理是指将金属加热至一定温度进行保温,然后迅速冷却后再进行再加热保温的过程。
这种处理可以使金属的晶粒长大并沉淀出一些固相化合物,从而提高金属的强度和硬度。
时效处理通常适用于需要高强度和高韧性的金属制品。
4. 钝化处理:钝化处理是指将金属制品加热至一定温度后,在空气或氧化性环境中,使其表面形成一层韧性较强的氧化皮。
这种处理可以使金属制品具有较好的耐腐蚀性。
金属热处理是一种重要的金属加工工艺,可以通过控制加热温度、保温时间和冷却速率等参数来实现不同的处理效果,以满足不同的工业应用需求。
金属热处理工艺
回火方法 加热温度 力学性能
(℃)
特点
应用范围
硬度 (HRC)
低温回火 中温回火 高温回火
150~250 350~500 500~650
高硬度、耐磨 性 高弹性、韧性
良好的综合力 学性能
刃具、量具、 冷冲模等
弹簧、钢丝绳 等
连杆、齿轮及 轴类
58~65 35~50 20~30
表面热处理和化学热处理
金属热处理工艺
温度-时间关系曲线
热处理用于消除上一工艺 过程所产生的金属材料内部 组织结构上的某些缺陷,改 善切削性能,还可进一步提 高金属材料的性能,充分发 挥材料性能的潜力。因此, 大部分机器零件都要进行热 处理。
金属热处理类型:
整体处理、表面热处理和化学热处理。 整体处理包括:退火、正火、淬火和回火等;
淬火介质:淬火冷却时所用的介质。
钢的种类不同,淬火介质不同,常用介质:水、油。 水便宜,冷却能力较强,碳素钢件用的多。油冷却能 力较水低、成本高,但,可防止工件产生裂纹等缺陷, 合金钢多用。
后冷却到室温的热处理工 艺。
其目的是稳定组织,减少内应力,降低脆性, 获得所需性能。
一、表面淬火 表面淬火是仅对工件表层进行淬火的工艺。 目的:为了获得高硬度的表面层和有利的残余应力分布,提高
工件的硬度和耐磨性。 表面淬火加热的方法很多,如感应加热、火焰加热、电接触加
热、激光加热等。
二、化学热处理 化学热处理是将金属和合金工件置于一定温度的活性介质中保
温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和 性能的热处理工艺。
与退火类似,但冷却速度比退火快。钢件在正火后的 强度和硬度比退火稍高,但消除残余应力不彻底。又 因操作简便、生产率高,所以,正火常优先采用。低 碳钢件可代替退火。
金属热处理的工艺过程介绍
金属热处理的工艺过程介绍金属热处理是指通过加热和冷却来改变金属材料的化学和物理性质的过程。
金属热处理可以改变材料的硬度、强度、韧性、耐磨性、耐蚀性等性能,使其达到设计要求,同时还可以提高材料的加工性能和使用寿命。
下面将对金属热处理的工艺过程进行详细介绍。
1.加热:金属热处理的第一步是将金属材料加热至一定温度。
加热温度取决于金属的种类和具体的处理要求。
常用的加热方法有电阻加热、火焰加热和感应加热等。
2.保温:在将金属材料加热到所需温度后,需要使其保持一定时间,以确保温度均匀分布,使金属内部结构逐渐达到热平衡状态。
保温时间的长短也取决于金属的种类和要求。
3.冷却:在保温后,需要将金属材料迅速冷却,以固定金属的结构状态和性能。
冷却方法有多种,如油冷、水冷、气体冷却等,具体取决于金属的种类和处理要求。
不同冷却速度将导致不同的组织和性能变化。
4.退火:退火是一种常用的金属热处理方法,通过加热和适当冷却,可以降低金属材料的硬度,增加其韧性。
退火可分为完全退火和回火两种形式。
完全退火是指将金属材料加热至一定温度,然后缓慢冷却至室温。
这种方法可消除应力,改善材料的韧性和塑性,减少晶粒大小,提高机械性能。
回火是指将钢件先加热至一定温度,然后进行适当冷却。
回火可以分为多种类型,如低温回火、中温回火和高温回火等,不同回火温度将产生不同的效果,如提高强度、韧性、抗冲击性等。
5.高温热处理:高温热处理是指将金属材料加热至较高温度,然后进行适当冷却,以改变材料的晶体结构和组织状态。
高温热处理可以提高金属的强度、硬度、耐磨性和抗腐蚀性等性能。
常见的高温热处理方法包括正火、球化退火、奥氏体化、固溶处理等。
这些方法可以调整金属的化学成分、晶体结构和组织状态,以改变其性能。
6.淬火:淬火是将金属材料快速冷却至室温,以快速固化其晶体结构和组织状态。
淬火可以极大地提高材料的硬度和强度,但同时也会增加其脆性。
因此,在进行淬火处理时需要根据具体要求进行适当的调节和控制。
金属材料热处理工艺(详细工序及操作手法)
金属材料热处理工艺(详细工序及操作手法)一、热处理的定义热处理是指金属在固态下经加热、保温和冷却,以改变金属的内部组织和结构,从而获得所需性能的一种工艺过程。
热处理的三大要素:①加热( Heating)目的是获得均匀细小的奥氏体组织。
②保温(Holding)目的是保证工件烧透,并防止脱碳和氧化等。
③冷却(Cooling)目的是使奥氏体转变为不同的组织。
热处理后的组织加热、保温后的奥氏体在随后的冷却过程中,根据冷却速度的不同将转变成不同的组织。
不同的组织具有不同的性能。
二、热处理工艺1.退火操作方法:将钢件加热到Ac3+30-50度或Ac1+30-50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。
2.正火操作方法:将钢件加热到Ac3或Acm 以上30-50度,保温后以稍大于退火的冷却速度冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。
对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。
对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。
3.淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。
目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。
金属材料的热处理技术
金属材料的热处理技术热处理是金属加工中的一项重要工艺,通过控制材料的温度和冷却速率,可以改善材料的机械性能和耐腐蚀性能。
本文将介绍几种常见的金属材料热处理技术及其应用。
1. 固溶处理固溶处理是指将金属材料加热至其固溶温度,使固态溶质原子溶解于晶格中,随后迅速冷却固定溶质原子的位置。
固溶处理可以提高金属的韧性和延展性,并改善材料的热稳定性。
常见的固溶处理方法包括快速淬火和退火。
2. 淬火处理淬火是将金属材料加热至其临界温度以上,并迅速冷却至室温,以获得高硬度和高强度的材料。
常用的淬火介质包括水、油和空气。
淬火处理能够增强金属的硬度和强度,但会降低其韧性。
因此,在实际应用中,需要根据具体要求进行适当的回火处理,以平衡硬度和韧性。
3. 回火处理回火是将淬火材料加热至较低的温度,并保持一段时间后冷却。
回火处理可以消除淬火过程中产生的内应力,并提高材料的塑性和韧性。
回火温度和时间的选择对于材料的性能具有重要影响,需要根据具体材料进行调整。
4. 热轧处理热轧是指将金属材料加热至较高温度,随后通过辊压等方式进行塑性变形。
热轧处理可以改变金属的晶粒结构和形状,提高材料的强度和塑性。
热轧处理通常用于生产板材、线材和型材等。
5. 等温处理等温处理是指将金属材料加热至其临界温度,在该温度下保持一段时间后冷却。
等温处理能够改善金属的晶格结构,提高材料的强度和韧性。
常见的等温处理方法包括时效处理和孪生处理。
6. 淬蓝处理淬蓝处理是指将金属材料经过淬火后,再进行加热,使其表面出现深蓝色的氧化膜。
淬蓝处理可以提高金属材料的表面硬度和耐磨性,常用于制造工具和刀具等。
7. 焊后热处理在金属焊接之后,常常需要对焊接区域进行热处理,以消除焊接过程中产生的应力和组织不均匀性。
常见的焊后热处理方法包括应力消除退火和再结晶退火。
总结起来,金属材料的热处理技术是一项关键的加工工艺,可以显著改善材料的性能,提高其在工程应用中的可靠性和耐久性。
金属常见热处理工艺
1.热处理基本工艺整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。
钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,或者是使前道工序产生的内部应力得以释放,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
正火或称常化是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
淬火是将工件加热保温后,在水、油或其他无机盐溶液、有机水溶液等淬冷介质中快速冷却。
淬火后钢件变硬,但同时变脆。
为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行较长时间的保温,再进行冷却,这种工艺称为回火。
退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
2.概念1)退火退火是一种金属热处理工艺,将金属加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。
目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。
准确的说,退火是一种对材料的热处理工艺,包括金属材料、非金属材料。
而且新材料的退火目的也与传统金属退火存在异同。
目的:(1) 降低硬度,改善切削加工性.(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。
(4)均匀材料组织和成分,改善材料性能或为以后热处理做组织准备。
在生产中,退火工艺应用很广泛。
根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。
2)正火正火,又称常化,是将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
金属热处理基础知识
金属热处理基础知识金属热处理是通过控制金属材料在高温下的加热、保温和冷却过程,以调整其组织和性能的一种工艺。
在金属热处理过程中,我们需要了解一些基础知识,包括常见的热处理工艺、影响金属性能的因素以及常见的热处理设备。
一、常见的热处理工艺1. 固溶处理固溶处理是指将固溶体加热至高温,使其中存在的合金元素完全溶解,然后在适当的温度下保温一段时间,最后通过快速冷却来获得均匀的组织。
固溶处理通常用于合金强化、改善材料的韧性和疲劳性能等方面。
2. 然后冷却处理淬火是一种快速冷却工艺,通过将金属材料迅速从高温加热状态冷却至室温或低温,以使金属材料的组织发生相变,从而获得所需的性能。
淬火可以有效提高金属材料的硬度、抗拉强度和磨损性能。
3. 回火处理回火是指在淬火后,将材料重新加热到较低的温度,保温一段时间后冷却,以减轻淬火带来的材料脆性和应力。
回火可以降低材料的硬度,提高其韧性和可加工性。
二、影响金属性能的因素1. 温度温度是热处理过程中最重要的因素之一。
不同的金属和热处理工艺需要不同的温度范围,过高或过低的温度都会对金属的性能产生负面影响。
2. 时间保温时间是指在加热过程中保持金属材料在一定温度范围内的时间。
适当的保温时间可以使金属内部的相变和晶粒生长完成,从而得到所需的性能。
3. 冷却速度冷却速度会影响金属的组织和性能。
快速冷却可以获得细小且均匀的组织,从而提高金属的强度和硬度。
相反,缓慢冷却则可以使金属的组织更加柔韧。
三、常见的热处理设备1. 炉子炉子是最常见的热处理设备之一,在炉子内加热金属材料可以实现固溶、淬火和回火等工艺。
2. 水槽水槽是用于淬火的设备,在高温加热后,将金属迅速浸入冷却介质(通常是水或油)中,以实现材料的淬火工艺。
3. 回火炉回火炉用于回火处理工艺,将经过淬火处理的材料加热到适当的温度,保温一段时间后进行冷却。
4. 空气冷却器空气冷却器通常用于对材料进行较慢的冷却过程,可以通过控制冷却速度来调整材料的性能。
金属热处理工艺
真空热处理一、可控气氛热处理。
1)在少无氧化热处理技术的发展趋势中,首推可控气氛和真空热处理的发展迅猛。
在目前少品种、大批量生产中,尤其是碳素钢和一般合金结构钢件的光亮淬火、退火、渗碳淬火、碳氮共渗淬火、气体氮碳共渗仍以应用可控气氛为主要手段。
所以可控气氛热处理仍是先进热处理技术的主要组成部分。
2)制备气氛的气源。
我国在掌握和推广可控气氛过程中,在解决气氛问题上走过了漫长的道路。
最早的吸热式气氛发生炉主要用液化气,即纯度较高的丙烷或丁烷。
近几年已证实,我国的天然气资源丰富,为用甲烷制备吸热式气氛创造了良好的条件。
使用不用了生炉的直生式气氛也是一条不容忽视的途径。
3)加热设备。
密封多用炉和多用炉生产线自动化程度高,生产柔性大,适用性强,因而发展前途广,市场需求也大。
4)可控气氛热处理工艺。
渗碳。
高温渗碳是渗碳技术发展趋势之一。
提高渗碳温度可以显著提高生产率和节省能耗。
为此研究开发可用于1000℃以上的电辐射管材料是当务之急,低压渗碳技术的开发和完善为实现高温渗碳(1040℃)创造了条件。
钢件的渗碳层深度要求一般都较保守,有时也很盲目。
看来有必要研究决定渗碳层深度的力学因素,探讨减少渗层规定的可能性。
碳氮共渗。
碳氮共渗温度比渗碳低,工件畸变小。
在渗层深度为0.6mm以下时的渗速接近于930℃渗碳。
钢碳氮共渗时容易出现反常组织,淬火后表面硬度有下降现象,渗层中有较多的残留奥氏体。
如何合理选择工艺,充分发挥碳氮共渗潜力仍是值得探讨的问题。
过去曾有人提倡过高浓度碳氮共渗,也曾有过钢件碳氮共渗时表面含碳量在0.6%,具有最好综合力学性能的报道,为此众说纷纭。
看来有必要掌握这些规律,对生产工艺的优选有所帮助。
过去和现在都有对滚动轴承施行碳氮共渗以提高接触疲劳强度的报道。
例如AISI52100(相当于GCr15)钢制的球和滚柱则由过去的淬火、回火改为碳氮共渗、淬火、回火、轴承的破坏寿命提高了2.42倍。
看来,要充分发挥碳氮共渗工艺的潜力还有许多工作需要做。
金属热处理工艺基本知识
金属热处理工艺基本知识金属热处理工艺是指通过加热、保温和冷却等方式对金属材料进行一系列的热处理操作,从而改变其组织结构和性能的工艺过程。
金属热处理工艺被广泛应用于各个领域中,包括航空航天、汽车制造、电子制造等,以提高金属材料的强度、韧性和耐腐蚀性。
金属热处理工艺的基本目的是通过控制热处理过程中的温度、时间和冷却速率,使金属材料达到所需的物理和化学性能。
常用的金属热处理工艺包括退火、淬火、回火、正火等。
退火是指将金属材料加热到适当的温度,在该温度下保持一段时间后,缓慢冷却。
退火的目的是降低金属材料的硬度和强度,提高其塑性和韧性。
退火又分为全退火和球化退火两种类型,分别适用于不同的材料和应用场合。
淬火是将金属材料加热到适当的温度后,迅速冷却到室温,以快速固化金属的组织结构。
淬火可以使金属材料获得高硬度和高强度,但韧性相对较低。
淬火过程中的冷却速率和冷却介质的选择对最终的组织和性能有着重要影响。
回火是在淬火后再次加热金属材料到一定温度,并持续保温一段时间,然后缓慢冷却。
回火的目的是消除淬火产生的应力和改善金属材料的韧性。
回火的温度和时间取决于金属材料的成分和硬度要求。
正火是将金属材料加热到适当的温度,保持一定时间,然后缓慢冷却。
正火常用于低碳钢等材料,可以提高材料的强度和硬度,同时保持一定的塑性和韧性。
除了上述常见的金属热处理工艺外,还有多种特殊的热处理方法,如表面强化处理、气体渗碳等。
这些工艺方法可以通过在热处理过程中加入特定的物质或改变处理条件,使金属材料表面形成一层具有特殊性能的薄层,以提高金属材料的耐磨性、抗腐蚀性等。
金属热处理工艺的选择要根据具体的金属材料、工艺要求和应用环境来决定。
通过合理的热处理工艺,可以改善金属材料的性能,延长其使用寿命,提高产品质量,满足各种工业应用的需求。
金属热处理工艺在现代工业中发挥着重要的作用。
通过精确控制金属的加热和冷却过程,可以改善金属的物理和化学性能,进而提高产品的质量和性能。
金属的热处理工艺
金属的热处理工艺1. 引言金属是人类生活和工业制造的重要材料之一,其物理和化学性质可以通过热处理工艺进行调控和改善。
金属的热处理工艺是指对金属材料进行加热、保温和冷却等处理过程,以达到改变其组织结构和性能的目的。
本文将详细介绍金属的热处理工艺,包括加热方式、保温时间和冷却速率等关键参数,以及常见的金属热处理工艺方法。
2. 热处理工艺的分类金属的热处理工艺可以分为三类,包括回火处理、退火处理和淬火处理。
2.1 回火处理回火处理是指在淬火后,通过加热和保温使金属材料的硬度降低,从而改善其韧性和强度的过程。
回火可以分为低温回火、中温回火和高温回火三种方式,不同的温度对材料的机械性能有不同的影响。
2.2 退火处理退火处理是指将金属材料加热到一定温度并保温,然后慢慢冷却,以改善其结构和性能的过程。
退火可以分为全退火和局部退火,全退火是对整个金属材料进行处理,而局部退火只对特定部分进行处理。
2.3 淬火处理淬火处理是将金属材料迅速加热到临界温度并快速冷却,以增加其硬度和强度的过程。
淬火可以分为油淬、水淬和盐淬等不同的冷却介质。
3. 热处理工艺的参数金属的热处理工艺需要控制一系列参数,以确保最终得到所需的材料性能。
3.1 加热方式常见的金属加热方式包括电阻加热、火焰加热和感应加热。
不同的加热方式会对金属材料的结构和性能产生不同的影响。
3.2 保温时间保温时间是指材料在一定温度下保持稳定的时间。
保温时间的长短会直接影响到金属的组织结构和性能。
3.3 冷却速率冷却速率是指金属材料在热处理过程中从高温到低温的冷却速度。
不同的冷却速率会导致金属的组织结构和性能发生变化。
4. 常见的金属热处理工艺方法金属的热处理工艺方法非常丰富,根据不同的金属材料和需求,可以选择不同的方法进行处理。
4.1 硬化硬化是指通过淬火处理,使金属材料达到更高的硬度和强度。
硬化可以增加金属的耐磨性和耐腐蚀性,常用于制造刀具和摩擦零件等。
4.2 回火回火是指通过加热处理,使淬火后的金属材料硬度降低,从而提高其韧性和强度。
金属热处理工艺学
1.碳势:纯铁在一定温度下于加热炉气中加热时达到既部增碳也不脱碳并与炉气保持平衡时表面的含碳量.2.脱碳:钢中的碳也会和气氛作用,使钢的表面失去一部分碳,含碳量降低,这种现象成为脱碳。
3.过烧:加热温度过高,出现晶界氧化,甚至晶界局部熔化,造成工件报废。
4.放热式气体:原料气与较充足的空气混合,仅靠其本身的不完全燃烧所放出的热量就能维持其反应时,所制成的气体。
5.光亮热处理:是指在热处理过程中(主要是淬火和退火),采用气体保护或者是真空状态,避免或减少被热处理的工件表面与氧气接触而发生氧化,从而达到工件表面的光亮或相对光亮。
6.淬火烈度:淬火介质的冷却能力。
7.淬透性:钢材淬火时获得马氏体的能力的特性.8.淬硬性:淬硬性是指钢在淬火时的硬化能力,用淬火后马氏体所能达到的最高硬度表示,它主要取决于马氏体中的含碳量。
9.自回火:当淬火后尚未完全冷却,利用在工件内残留的热量进行回火。
10.退火:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺。
11.表面淬火:被处理工件在表面有限深度范围内加热至相变点以上,然后迅速冷却,在工件表面一定深度范围内达到淬火目的的热处理工艺。
12.连续加热法:对工件需淬火部位中的一部分同时加热,通过感应器与工件之间的相对运动,把已加热部位逐渐移到冷却位置冷却,待加热部位移至感应器中加热,如此连续进行,直至需硬化的全部部位淬火完毕。
13.化学热处理:将工件放置于某种渗入元素的活性介质中,通过加热、保温和冷却,使渗入元素被吸附并扩散渗入工件表面层,以改变表面层化学成分和组织,从而使其表面具有与心部不同的特殊性能的一种工艺。
14.淬火:把钢加热到临界点Ac1或Ac3以上,保温并随之以大于临界冷却速度(Vc)冷却,以得到介稳状的M或B下组织的热处理工艺。
15.反应扩散:由溶解度较低的固溶体转变成浓度更高的化合物,这种扩散称为反应扩散。
金属热处理工艺
金属热处理工艺金属热处理,又称金属热处理工艺,是指在热处理设备中将金属材料经过一定的温度,时间和处理环境的变化,以改变材料的性能的工艺方法。
它可以分为固定、装配、冷处理和热处理四大类工艺。
热处理是机械加工中重要的一环,它是改变金属材料结构和性能的有效方法。
通过热处理可以改变金属材料的组织结构、提高它的硬度、强度、抗拉强度和塑性,改善金属材料的使用性能,以适应其他过程的要求,从而满足机械性能的要求。
热处理可以分为四种基本工艺:回火、正火、凝固和淬火。
回火是一种加热金属材料,使材料达到一定温度,然后将其放在稳定的环境中,使其恢复机械性能,有效改善金属材料的硬度、强度、抗拉强度和塑性,以改善材料的使用性能而被称为回火。
正火是一种加热金属材料,使其达到一定温度,然后冷却凝固,以改善金属材料的冷却性能而被称为正火。
凝固是一种加热金属材料,使其达到一定温度,然后慢慢冷却凝固,使金属材料的结构和性能达到最佳。
淬火是一种加热金属材料,使其达到一定的温度和时间,然后冷却凝固,使钢材有一定的淬火硬度,以改善金属材料的耐磨性能而被称为淬火。
金属热处理工艺还可以分为表面处理工艺和表面金属热处理工艺,主要用于改变金属材料的表面性能。
表面处理工艺可以分为氧化处理和热处理。
氧化处理包括涂装、渗氮、氧化处理和渗碳处理等。
热处理工艺包括热处理、熔炼处理、热处理和热处理表面金属处理等。
金属热处理的质量是非常重要的,它直接影响着金属产品的性能和使用寿命。
因此,在金属热处理中,必须采用严格的质量控制技术,对加工过程中的温度变化、温度超标、温度不均匀度以及处理环境进行严格检测,确保金属热处理的质量。
金属热处理工艺是一种重要的工艺,它的作用在机械加工中越来越重要。
如果金属热处理工艺在加工过程中未得到足够重视,将会严重影响机械性能,甚至破坏产品的使用寿命。
因此,在加工中,金属热处理工艺必须得到正确的应用,以便提高金属加工产品的性能,提高产品的质量和使用寿命。
金属热处理工艺
金属热处理是一种常用的金属加工工艺,它是利用加热升温通过改变
金属的组织结构,从而改变材料的性能的一种方法。
热处理的一般过
程有:定形-热处理-修整-检验。
1、定形:把不同形状、不同大小的金属块或金属件制作成一定尺寸、
一定形状而可接受热处理的固定夹具;
2、热处理:根据所需性能,将合金夹具置入热处理炉中,经过不同的
加热和冷却过程工艺;
3、修整:将热处理过的金属件倒磨、抛光处理,以满足质量标准要求;
4、检验:按照质量标准检查,以确保热处理过程中的精准变化和使金
属件达到预期的性能要求。
金属热处理技术的应用比较广泛。
它可以改变材料的硬度、强度、耐
腐蚀性和抗热性能,使材料更适合用于制造更高质量、更强大的产品。
此外,热处理还可以调节材料的组织结构,使性能更稳定。
近年来,随着金属热处理技术在新材料及新工艺中的广泛应用,热处
理工艺也在不断发展和提高,形成了先进的热处理技术体系。
今后,
金属热处理技术将在越来越多的领域中发挥作用,以满足更宽泛的应
用需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属工艺(金属热处理).txt用快乐去奔跑,用心去倾听,用思维去发展,用努力去奋斗,用目标去衡量,用爱去生活。
钱多钱少,常有就好!人老人少,健康就好!家贫家富,和睦就好。
一、单选:
1、精车铸件时,主要希望提高表面质量和减少刀具磨损,应选不用切削液或用煤油。
2、高速精车铝合金刀具选用的刀具材料为K01,W18Cr4V、W6Mo5Cr4V2.
3、精车外圆时最小的切削力是背向力Fp,最大的是切削力Fc
4、切削工件时,不论是粗加工还是精加工应该尽可能选大的数值是:背吃刀量ap
5、钢结构焊接过程中焊接接口破坏区域出现在:融合区或过热区
6、硬币制造方法:冲压
7、常用于大中批量生产及自动化生产条件下锻件加热适用加热方法:感应加热炉
8、终锻模样形状与锻件相适宜但尺寸比锻件大了一个什么东西:冷却收缩量
9、当三个方向上的压应力都增加时锻件的变形抗力如何变化:增大
10、金属材料加工生产产生加工硬化现象是什么:随塑变增大金属强硬度升高塑性韧性下降;消除加工硬化应选用完全退火方法
11、普通灰口铸铁牌号越大它的最低抗拉强度增大、默片越细
12、普通车床床身浇筑时导轨面应如何处理:向下
13、造型材料性能会直接影响铸件质量容易出现沙眼与什么有关:耐火性
14、钢和生铁自液态冷却至室温都会发生什么转变:共析
15大口径煤气管道多采用球磨铸铁用什么方法制造:离心
16、保温杯选不锈钢是基于什么考虑:满足工作要求
17、教室里的暖气片用什么制造:灰铸铁
18、南京长江大桥用什么制造:Q345钢或16Mn钢武汉长江大桥:Q235 九江:Q420
二、多选
1、铁碳合金基本组织:铁素体、奥氏体、渗碳体、珠光体、莱氏体
2、砂轮的特性:形状、粒度、结合剂、硬度、组织
3提高生产效率常用的高效磨削有:高速*、强力*、砂带*
4、对外圆面的技术要求:尺寸精度、形状精度、表面粗糙度、其他要求
5、铁碳合金四个基本相:液相L、奥氏体相A、铁素体相F、渗碳体相Fe3C
6、细化晶粒主要途径:增大过冷度、变质处理、机械振动、热处理或压力加工
7、影响材料冲击值的因素:试样形状、表面粗糙度、内部组织、实验时的环境温度
8拉伸图可测到材料哪些力学性能:强度和塑性
9、国标规定按加工材料常用硬质合金有:P、M、K
10、Fe-C合金组织可分为:固溶体,金属化合物,机械混合物
三、填空
1、金属结晶
2、铸件分型面选择原则:简化工艺求经济:a、尽量平直数量少,减少活块和型芯b、全部大部同一箱,保证精度利加工c、主要部分于下箱,便于操作与检验
3、特种铸造特点:
A、熔模铸造又称失蜡铸造:a、铸件精度高,表面粗糙度低b、可铸出形状复杂的薄壁铸件c、逐渐合金种类不受限制钢、铸铁和有色金属均可d、生产工序复杂,生产周期长e、原材料价格贵,铸件成本高f、铸件不能太大太长否则蜡模易变形
B、压力铸造:高压高速是压力铸造两大特点a、生产效率高,便于实现自动或半自动化b、铸件的精度高,表面粗糙度低c、铸件高压高速下结晶,故晶粒细小表层紧实,铸件强度硬度高d、便于采用嵌铸又称镶铸法e、压铸机费用高压铸磨具制造成本高工艺准备周期长不适
用单件小批量生产f、压铸件不易热处理并尽量避免切削加工
C、金属型铸造又称永久性铸造:a、生产率高金属型可一型多铸,易于实现机械化自动化生产b、铸件精度和表面质量高加工余量减小c、铸件力学性能好因为冷却快故组织致密d、劳动条件好减少了归尘危害和环境污染e、金属型透气性差无退让性铸件冷却快易生缺损
D、离心铸造a、生产空心旋转铸件时可以省去型芯浇注系统和冒口b、补缩条件好使铸件致密力学性能好c、便于浇注双金属轴套和轴瓦d、铸件内表面粗糙尺寸误差大质量差e、不适合比重偏析大的合金及铝镁等金属
4、加工面的选择原则:
5、刀具角度:a、前角r,前刀面与基面间的夹角b、后角a。
主后刀面与切削平面之间夹角
c、主偏角Gamo 住切削平面与假定工作平面间的夹角
d、副偏角副切削平面与假定工作平面间的夹角
e、刃倾角浪不大s 主切削刃与基面间的夹角
6、轮坯属盘类零件,多余由车削完成。
齿面加工按加工原理分为成型法和展成法两种
四、简答:
1、铸造结构特点和工艺特点:
A、结构应使工艺简化:a、简化外形分型少,凸肋设计避活块,平直分型防挖砂b、内腔设计少用芯安芯排气与清理。
事先考虑想仔细c、结构斜度为起模,设计图上画清晰。
拔模斜度模样留工艺设计想周细d、组合铸化繁为简大切小简化工艺再组合
B、结构力求避免缺陷:壁厚a、过厚过薄不合理,添筋设肋降厚壁,细化组织省金属,减少热节防缺陷b、铸件壁厚求均匀,减少应力避缺陷c、正确连接铸件壁,拐弯之处大弧度,厚薄不同缓慢过,过度结构代锐角d,避免较大水平面,适当倾斜易成型e、工艺台阶利加工f、铸钢铝件易裂处,薄壁筋条防裂好g、肋幅设计为强化,合理布置效果显
2、锻压的工艺特点:a、工件组织致密,力学性能高b、除自由锻以外,其余锻压加工生产率较高c、节约金属材料
影响锻造的因素:a、温度b、加热时间c、炉内温度及气氛、加热方式
影响金属可锻性因素:A、金属的本质a、化学成分的影响b、金属组织的影响B、加工条件a、变形温度的影响b、变形速度影响c、应力状态影响
3、焊接的特点:a、与铆接相比,工艺简单省金属,密封性好b、性能可靠质量保,焊接接头力学性能高、较高的强度,承载能力可以达到与工件材质相等的水平c、易于控制效率高,易于机械化自动化d、由小拼大易材焊并能将不同材质连接成整体,制造双金属结构
焊接结构材料的选择原则:a、满足使用要求选易焊材b、高强度结构钢尽量优先选c、重要结构应选用镇静钢d、异种钢材互焊时骗弱跟措施e、多用锻压型材减少焊缝
焊缝的选择原则:a、避开应力最大处b、焊缝远离加工面c、对称布置变形小d、焊缝布置求分散e、便于操作想周到f、尽量平焊效率高
4、浇注位置选择原则:保证质量a、重要的加工面应朝下避免沙眼气孔和夹渣b、平板圆盘大面应朝下减少辐射防开裂夹渣c、薄壁大面朝下或垂直防止产生浇不足冷隔d、厚大部分在上或侧面考虑安放冒口利补缩
5、自由锻件工艺要求:a、首先根据零件的形状尺寸技术要求及生产条件绘制锻件图b、计算坯料的质量和尺寸c、确定变形工序及工具选择设备d、确定加热和冷却规范确定热处理规范提出锻件的技术条件和检验要求确定劳动组织和工时。
最后填写工艺卡片
自由锻工艺性:a、避免锥度与斜面考虑操作改平面b、空间曲线难成形防止复杂相贯线c、避免凸台与筋肋简化工艺利锻造d、截面形状复杂时化繁为简再组合e、螺纹连接和焊接简化工艺生效益
6、模锻件工艺要求:a、合理分模是关键b、锻件斜度要考虑c、相交面处用圆角d、平直对称又简单e、高筋薄壁是麻烦f、多孔孔深要回避g、锻焊组合巧用劲
7、冲压件:A、冲压件的设计原则:a、落料与冲孔要求:简单对称不悬细;板厚影响尺寸多;圆弧过渡防应力b、弯曲件要求:尽量对称弧宜大;曲边直部要留足;孔的位置有要求c、对拉伸件的要求:简单对称不易深;弯曲半径有限制 B、设计时注意事项:a、简单分冲再焊合
b、冲孔工艺要用活
c、满足使用简为上
8、磨削工艺特点:精度高粗糙度小;砂轮有自锐作用可强力连续磨削;背向力较大
9、车削的工艺特点:位置精度易于保证;连续切削平稳高效;有色金属精;刀具简单成本较低;适应广泛批量不限
10、钻削的工艺特点:容易引偏;排屑困难;切削热不易散。