2018年高考数学二轮复习规范答题示例6 空间中的平行与垂直关系
空间中的平行与垂直例题和知识点总结
空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
高考数学总复习---空间中的平行与垂直关系知识点总结及真题训练.doc
空间中的平行与垂直关系知识点总结及真题训练【知识图解】【知识梳理】一、平行1、平行公理2、构造三角形:3、构造平行四边形:4、线面平行性质:5、面面平行性质:6、线面平行判定:7、面面平行的性质:8、面面平行的判定1:9、面面平行的判定2:【典型例题】例1、正方体ABCD_A、B\GD\屮,E,F分别是的屮点,求ffi: EF〃面ABCD.变式:如图,两个全等的正方形ABCD和M3EF所在的平面相交于AB, M eAC, Nw FB 且AM = FN,求证:MN〃平面BCE.例2、如图,以垂直于矩形ABCD所在的平面,PA=AD f E、F分别是AB、PD 的中点。
(1)求证:AF〃平面PCE;*(2)求证:平面PCE丄平面PCD。
/ \\(1) 求证:BC 】//平面CAD(2) 求证:平面CAJ)丄平面AAiBiBo例3、浙江理20.(本题满分15分)如图,平面PAC 丄平面ABC, \ABCPB, AC 的中点,AC = 16, PA = PC = 10.(I) 设G 是0C 的中点,证明:FG//平面BOE ;(II) 证明:在AABO 内存在一点M ,使FM 丄平面BOE, 并求点M 到Q4, 03的距离.练习:1、(浙江卷文)(本题满分14分)如图,DC 丄平面ABC , EB//DCAC = BC = EB = 2DC = 2 , ZACB = 120 ,只Q 分别为AE.AB 的中点.(I )证明:PQII 平面ACD ; (II )求AD 与平面ABE Wr 成角的.正弦值.2、如图,在直三棱柱ABC-A1B1C1屮,AC=BC,点D 是AB 的屮点。
是以4C 为斜边的等腰直角三角形,匕£0分别为必,(第20(2) 求二面角B-FC!-C 的余眩值。
. Ei D L-.-.♦ E / ■<C 3、如图,在四面体ABCD 中,截而EFGH 是平行四边形•求证:AB 〃平面EFGH.安徽理(19)如图,圆锥定点为P,底面圆心为O,其母线与底而所成的角为22.5°, AB 和 CD 是底面圆0上的两条平行的弦,轴OP 与平面PCD 所成的角为60°-(1) 证明:平面PAB 与平面PCD 的交线平行于底面;(2) 求 cosZCOD4、点P 是平行四边形ABCD 所在的平面外一点,E,F 分别是PA,BD 上的点,且 PE:EA=BF ・・FD,求证:EF//面PBC.5、(山东卷理)(本小题满分12分)如图,在直四棱柱ABCD ・A]B]C]D]中,底面ABCD 为等腰梯形,AB//CD, AB=4, BC=CD=2, AA )=2, E 、E“ F 分别是棱 AD 、AA 【、AB 的中点。
2018年高考数学命题角度4.1空间平行垂直关系的证明大题狂练理
命题角度4.1:空间平行,垂直关系的证明1. 如图,直三棱柱(侧棱与底面垂直的棱柱)ABC ﹣A 1B 1C 1中,点G 是AC 的中点.(1)求证:B 1C∥平面 A 1BG ;(2)若AB=BC , ,求证:AC 1⊥A 1B .【答案】(1)见解析;(2)见解析.(2)证明:∵直三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面ABC ,BG 平面ABC ,∴AA 1⊥BG, ∵G 为棱AC 的中点,AB=BC ,∴BG⊥AC,∵AA 1∩AC=A,∴BG⊥平面ACC 1A 1,∴BG⊥AC 1,∵G 为棱AC 中点,设AC=2,则AG=1, ∵,∴在Rt△ACC 1和Rt△A 1AG 中,,∴∠AC 1C=∠A 1GA=∠A 1GA+∠C 1AC=90°,∴A 1G⊥AC 1, ∵,∴AC 1⊥平面A 1BG ,∵A 1B ⊂平面A 1BG ,∴AC 1⊥A 1B.2. 一副直角三角板(如图1)拼接,将BCD ∆折起,得到三棱锥A BCD -(如图2).(1)若,E F 分别为,AB BC 的中点,求证: //EF 平面ACD ;(2)若平面ABC ⊥平面BCD ,求证:平面ABD ⊥平面ACD .【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)利用三角形中位线的性质,可得//EF AC ,由线面平行的判定定理可证明//EF 平面ACD ;(2)若平面ABC ⊥平面BCD ,可得CD ⊥平面,ABC CD AB ⊥, ,AB AC AB ⊥∴⊥平面ACD ,由面面垂直的判定定理可证明平面ABD ⊥平面ACD .【方法点晴】本题主要考查线面平行的判定定理、线面垂直的判定定理以及面面垂直的判定定理,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.3. 如图,在四棱柱1111ABCD A B C D -中,已知平面11AA C C ⊥平面ABCD ,且3AB BC CA ===, 1AD CD ==.(1)求证: 1BD AA ⊥;(2)若E 为棱BC 的中点,求证: //AE 平面11DCC D .【答案】(1)证明过程如解析;(2)证明过程如解析 【解析】【试题分析】(1)依据题设条件先运用线面垂直的判定定理证明BD ⊥平面11AAC C ,再运用线面垂直的性质定理证明1BD AA ⊥;(2)先借助题设条件证明//AE DC ,再运用线面平行的判定定理证明//AE 平面11DCC D :证明:(1)在四边形ABCD 中,因为,BA BC DA DC ==,所以BD AC ⊥,又平面11AA C C ⊥平面ABCD ,且平面11AA C C ⋂平面ABCD AC =, BD ⊂平面ABCD ,所以BD ⊥平面11AAC C ,又因为1AA ⊂平面11AAC C ,所以1BD AA ⊥.(2)在三角形ABC 中,因为AB AC =,且E 为BC 中点,所以AE BC ⊥,又因为在四边形ABCD 中, 3AB BC CA ===, 1DA DC ==,所以60ACB ∠=︒, 30ACD ∠=︒,所以DC BC ⊥,所以//AE DC ,因为DC ⊂平面11,DCC D AE ⊄平面11DCC D ,所以//AE 平面11DCC D .4. 如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.(1) 求证:直线DE∥平面A1C1F;(2) 求证:平面B1DE⊥平面A1C1F.【答案】(1)见解析(2)见解析(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,∵A1C1⊂平面A1B1C1,∴A1A⊥A1C1,又∵A1C1⊥A1B1,AA1⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,∴A 1C 1⊥平面ABB 1A 1.∵B 1D ⊂平面ABB 1A 1,∴A 1C 1⊥B 1D .又∵B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1,∴B 1D ⊥平面A 1C 1F .∵B 1D ⊂平面B 1DE ,∴平面B 1DE ⊥平面A 1C 1F .5.如图所示, ABCD 是边长为3的正方形, DE ⊥平面,//,3,ABCD AF DE DE AF BE =与平面ABCD 所成角为60︒.(Ⅰ)求证: AC ⊥平面BDE ;(Ⅱ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(Ⅰ)见解析; (Ⅱ) 13BM BD =. 【解析】试题分析: (1)由线面垂直的判定定理证明; (2)建立空间直角坐标系D xyz -, 写出各点坐标, 由于点M 在线段BD 上,所以设()(),,0032M t t t ≤≤ ,求出平面BEF 的法向量n ,由0AM n ⋅= ,求出点M 的坐标.试题解析: (Ⅰ)证明:∵DE ⊥平面ABCD ,∴DE AC ⊥,∵ABCD 是正方形,∴AC BD ⊥,又DE BD D ⋂=,∴AC ⊥平面BDE .(Ⅱ)解:因为,,DA DC DE 两两垂直,所以建立空间直角坐标系D xyz -如图所示,因为BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒, 所以3ED DB=, 由3AD =,可知36,6DE AF ==, 则()()()()300,3,06,0,036,3,30A F E B ,,,,,, 所以()()03,6,30,26BF EF =-=-,,, 设平面BEF 的法向量(),,n x y z =, 则0{0n BF n EF ⋅=⋅=,即360{3260y z x z -+=-=.令6z =得, ()4,2,6n =, 又点M 是线段BD 上一动点,设()(),,0032M t t t ≤≤,则()3,,0AB t t =-因为//AM 平面BEF ,所以0AM n ⋅=,即()4320t t -+=解得2t =.此时,点M 的坐标为(2,2,0)即当13BM BD =时, //AM 平面BEF . 6.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .(2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上,7.如图1,在Rt ABC 中, 90,3,6,C BC AC ∠=== ,D E 分别是,AC AB 上的点,且DE BC , 2DE =,将△ADE 沿DE 折起到△1A DE 的位置,使1A C CD ⊥,如图2. (I)求证: 1A C BCDE ⊥平面;(II)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.【答案】(1)见解析;(2) 线段BC 上不存在点P ,使平面1A DP 与平面1A BE 垂直..【解析】试题分析:(1)证明A 1C ⊥平面BCDE ,因为A 1C ⊥CD ,只需证明A 1C ⊥DE ,即证明DE ⊥平面A 1CD ;(2)设线段BC 上存在点P ,设P 点坐标为(0,a ,0),则a ∈[0,3],求出平面A 1DP 法向量为()13,6,3n a a =- 假设平面A 1DP 与平面A 1BE 垂直,则1*0n n = ,可求得0≤a≤3,从而可得结论. (II)解:线段BC 上不存在点P ,使平面1A DP 与平面1A BE 垂直.以C 为坐标原点,建立空间直角坐标系C xyz -,则()10,0,23A , ()0,2,0D , ()0,1,3M , ()3,0,0B , ()2,2,0E .假设这样的点P 存在,设其坐标为(),0,0P p ,其中[]0,3p ∈.设平面1A BE 的法向量为(),,n x y z =,则10{ 0n A B n BE ⋅=⋅=, 又()13,0,23A B =-, ()1,2,0BE =-, 所以令1y =,则2,3x z ==.所以()2,1,3n =.平面1A DP 的法向量为()111,,m x y z =,则10{ 0m A D m DP ⋅=⋅=,又()10,2,23A D =-, (),2,0DP p =-,所以11112230{ 20y z px y -=-=令12x =,则113,3p y p z ==.所以32,,3p m p ⎛⎫= ⎪ ⎪⎝⎭ 平面1A DP ⊥平面1A BE ,当且仅当0m n ⋅=,即40p p ++=.解得2p =-,与[]0,3p ∈矛盾.所以线段BC 上不存在点P ,使平面1A DP 与平面1A BE 垂直.点睛:本题考查线面垂直,考查线面角,考查面面垂直,MN :向量语言表述面面的垂直、平行关系;LW :直线与平面垂直的判定;MQ :用空间向量求直线与平面的夹角;既有传统方法,又有向量知识的运用,要加以体会.8.如图, ,PA QC 都与正方形ABCD 所在平面垂直, 22AB PA QC ===, AC BD O ⋂=(Ⅰ)求证: PO ⊥平面QBD ;(Ⅱ)过点C 与平面PBQ 平行的平面交PD 于点E ,求PE ED的值.【答案】(1)见解析(2)12PE ED =【解析】试题分析:(1)由条件得三角形PAD 为等腰三角形,再根据等腰三角形性质得BD OP ⊥.计算由勾股定理得OP OQ ⊥,最后根据线面垂直判定定理得PO ⊥平面QBD ;(2)设点C 与平面PBQ 平行的平面交QD 于点N ,由面面平行性质定理得//NE PQ ,所以12PEQN ED ND ==试题解析:(Ⅰ)连接OQ ,由题知PA QC ,,,,P A Q C ∴共面, ,,BD AC BD PA PA AC A ⊥⊥⋂=,∴BD PACQ ⊥平面,PO PACQ ⊂平面 ∴BD OP ⊥.由题中数据得2,2,6,PA AO OC OP ==== 1,3QC OQ ==∴PAO ∽,OCQ ∴OPA QOC ∠=∠,又∵90POA OPA ∠+∠=∴90POA COQ ∠+∠=∴OP OQ ⊥(或计算3PQ =,由勾股定理得出90,POQ OP OQ ∠=⊥)∵,,OP BD OP OQ BD OQ O ⊥⊥⋂=,∴,OP QBD ⊥平面(Ⅱ)如图,以A 为原点,分别以,,AB AD AP 所在直线为,,x y z 轴建立直角坐标系, ∴各点坐标分别为()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,0,2,2,2,1A B C D P Q ,∴BP =()2,0,2-, BQ =()0,2,1,设平面PBQ 的法向量(),,n x y z = ∴220{20n BP x z n BQ y z ⋅=-+=⋅=+=,得{2x z y z==-,不妨设1y =-,∴()2,1,2n =-设PE ED λ=,∴()(1)0,2,2PD PE ED ED λ=+=+=-,()10,2,21ED λ=-+ 222,,11CE CD DE λλ-⎛⎫=+=- ⎪++⎝⎭,∵CE 平面PBQ ,∴CE 与平面PBQ 的法向量()2,1,2n =-垂直。
高三数学二轮复习空间中的平行与垂直练习含试题答案
空间中的平行与垂直[明考情]高考中对直线和平面的平行、垂直关系交汇综合命题,多以棱柱、棱锥、棱台或简单组合体为载体进行考查,难度中档偏下.[知考向]1.空间中的平行关系.2.空间中的垂直关系.3.平行和垂直的综合应用.考点一空间中的平行关系方法技巧(1)平行关系的基础是线线平行,比较常见的是利用三角形中位线构造平行关系,利用平行四边形构造平行关系.(2)证明过程中要严格遵循定理中的条件,注意推证的严谨性.1.如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.证明如图所示,作ME∥BC交BB1于点E,作NF∥AD交AB于点F,连接EF,则EF⊂平面AA1B1B.∵ME∥BC,NF∥AD,∴MEBC=B1MB1C,NFAD=BNBD.在正方体ABCD-A1B1C1D1中,∵CM=DN,∴B1M=NB.又B1C=BD,∴ME BC =BN BD =NFAD,又BC =AD ,∴ME =NF .又ME ∥BC ∥AD ∥NF ,∴四边形MEFN 为平行四边形, ∴MN ∥EF .又EF ⊂平面AA 1B 1B ,MN ⊄平面AA 1B 1B , ∴MN ∥平面AA 1B 1B .2.(2017·全国Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥PA ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD .(2)解 如图,在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD , 故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得PA =PD =AB =DC =2,AD =BC =22,PB =PC =22,可得四棱锥P -ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.3.(2017·龙岩市新罗区校级模拟)如图,O 是圆锥底面圆的圆心,圆锥的轴截面PAB 为等腰直角三角形,C 为底面圆周上一点.(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积. (1)证明 方法一 设BC ∩OD =E , ∵D 是弧BC 的中点, ∴E 是BC 的中点.又∵O 是AB 的中点,∴AC ∥OE . 又∵AC ⊄平面POD ,OE ⊂平面POD , ∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径, ∴AC ⊥BC .∵弧BC 的中点为D , ∴OD ⊥BC .又AC ,OD 共面,∴AC ∥OD . 又AC ⊄平面POD ,OD ⊂平面POD , ∴AC ∥平面POD .(2)解 设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形, ∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.4.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在?请说明理由.解存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形,∴AD∥CF.又AD⊂平面ADD1A1,CF⊄平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1.又CC1,CF⊂平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.考点二空间中的垂直关系方法技巧判定直线与平面垂直的常用方法(1)利用线面垂直定义.(2)利用线面垂直的判定定理,一条直线与平面内两条相交直线都垂直,则这条直线与平面垂直.(3)利用线面垂直的性质,两平行线中的一条垂直于平面,则另一条也垂直于这个平面.(4)利用面面垂直的性质定理,两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.5.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明(1)如图,取CE的中点G,连接FG,BG.∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GFAB 为平行四边形, ∴AF ∥BG .∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE .6.(2017·全国Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1)证明 如图,取AC 的中点O ,连接DO ,BO .因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO .又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt△AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.7.(2017·南京一模)如图,在六面体ABCDE 中,平面DBC ⊥平面ABC ,AE ⊥平面ABC .(1)求证:AE ∥平面DBC ;(2)若AB ⊥BC ,BD ⊥CD ,求证:AD ⊥DC . 证明 (1)过点D 作DO ⊥BC ,O 为垂足.∵平面DBC ⊥平面ABC ,平面DBC ∩平面ABC =BC ,DO ⊂平面DBC , ∴DO ⊥平面ABC .又AE ⊥平面ABC ,则AE ∥DO .又AE ⊄平面DBC ,DO ⊂平面DBC ,故AE ∥平面DBC .(2)由(1)知,DO ⊥平面ABC ,AB ⊂平面ABC , ∴DO ⊥AB .又AB ⊥BC ,且DO ∩BC =O ,DO ,BC ⊂平面DBC , ∴AB ⊥平面DBC . ∵DC ⊂平面DBC ,∴AB⊥DC.又BD⊥CD,AB∩DB=B,AB,DB⊂平面ABD,则DC⊥平面ABD.又AD⊂平面ABD,故可得AD⊥DC.8.已知四棱锥S-ABCD的底面ABCD为正方形,顶点S在底面ABCD上的射影为其中心O,高为3,设E,F分别为AB,SC的中点,且SE=2,M为CD边上的点.(1)求证:EF∥平面SAD;(2)试确定点M的位置,使得平面EFM⊥底面ABCD.(1)证明取SB的中点P,连接PF,PE.∵F为SC的中点,∴PF∥BC,又底面ABCD为正方形,∴BC∥AD,即PF∥AD,又PE∥SA,∴平面PFE∥平面SAD.∵EF⊂平面PFE,∴EF∥平面SAD.(2)解连接AC,AC的中点即为点O,连接SO,由题意知SO⊥平面ABCD,取OC的中点H,连接FH,则FH∥SO,∴FH⊥平面ABCD,∴平面EFH⊥平面ABCD,连接EH并延长,则EH与DC的交点即为M点.连接OE,由题意知SO=3,SE=2.∴OE =1,AB =2,AE =1,∴MC AE =HC HA =13, ∴MC =13AE =16CD ,即点M 在CD 边上靠近C 点距离为16的位置.考点三 平行和垂直的综合应用方法技巧 空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.9.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .证明 (1)在△PAD 中,∵E ,F 分别为AP ,AD 的中点, ∴EF ∥PD .又∵EF ⊄平面PCD ,PD ⊂平面PCD , ∴直线EF ∥平面PCD . (2)如图,连接BD .∵AB =AD ,∠BAD =60°, ∴△ADB 为正三角形. ∵F 是AD 的中点, ∴BF ⊥AD .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BF ⊂平面ABCD , ∴BF ⊥平面PAD . 又∵BF ⊂平面BEF , ∴平面BEF ⊥平面PAD .10.(2017·山东)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.11.(2017·汉中二模)如图,在棱长均为4的三棱柱ABC-A1B1C1中,D,D1分别是BC和B1C1的中点.(1)求证:A1D1∥平面AB1D;(2)若平面ABC⊥平面BCC1B1,∠B1BC=60°,求三棱锥B1-ABC的体积.(1)证明 连接DD 1,在三棱柱ABC -A 1B 1C 1中,∵D ,D 1分别是BC 和B 1C 1的中点, ∴B 1D 1∥BD ,且B 1D 1=BD , ∴四边形B 1BDD 1为平行四边形, ∴BB 1∥DD 1,且BB 1=DD 1. 又∵AA 1∥BB 1,AA 1=BB 1, ∴AA 1∥DD 1,AA 1=DD 1, ∴四边形AA 1D 1D 为平行四边形, ∴A 1D 1∥AD .又∵A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D , ∴A 1D 1∥平面AB 1D .(2)解 在△ABC 中,边长均为4,则AB =AC ,D 为BC 的中点, ∴AD ⊥BC .∵平面ABC ⊥平面B 1C 1CB ,交线为BC ,AD ⊂平面ABC , ∴AD ⊥平面B 1C 1CB ,即AD 是三棱锥A -B 1BC 的高. 在△ABC 中,由AB =AC =BC =4,得AD =23, 在△B 1BC 中,B 1B =BC =4,∠B 1BC =60°, ∴△B 1BC 的面积为4 3.∴三棱锥B 1-ABC 的体积即为三棱锥 A -B 1BC 的体积V =13×43×23=8.12.如图,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点.(1)求证:CD ⊥平面SAD ; (2)求证:PQ ∥平面SCD ;(3)若SA =SD ,M 为BC 的中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?并证明你的结论.(1)证明 ∵四边形ABCD 为正方形, ∴CD ⊥AD .又∵平面SAD ⊥平面ABCD ,且平面SAD ∩平面ABCD =AD ,CD ⊂平面ABCD , ∴CD ⊥平面SAD .(2)证明 取SC 的中点R ,连接QR ,DR .由题意知,PD ∥BC 且PD =12BC .在△SBC 中,Q 为SB 的中点,R 为SC 的中点, ∴QR ∥BC 且QR =12BC .∴QR ∥PD 且QR =PD , 则四边形PDRQ 为平行四边形, ∴PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD , ∴PQ ∥平面SCD .(3)解 存在点N 为SC 的中点,使得平面DMN ⊥平面ABCD .连接PC ,DM 交于点O ,连接PM ,SP ,NM ,ND ,NO , ∵PD ∥CM ,且PD =CM , ∴四边形PMCD 为平行四边形, ∴PO =CO .又∵N 为SC 的中点, ∴NO ∥SP . 易知SP ⊥AD .∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,且SP ⊥AD , ∴SP ⊥平面ABCD , ∴NO ⊥平面ABCD . 又∵NO ⊂平面DMN , ∴平面DMN ⊥平面ABCD .例 (12分)如图,四棱锥P -ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,点E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF . 审题路线图(1)E ,F 是中点―――→取PD 的中点M 构造▱AEFM ―→线线平行EF ∥AM ―→线面平行EF ∥平面PAD (2)面面垂直PAD ⊥ABCD ―――→PA ⊥AD 线面垂直PA ⊥底面ABCD ―→线线垂直PA ⊥DE―――――――――→Rt△ABH ≌Rt△DAE 线线垂直DE ⊥AH ―→线面垂直DE ⊥平面PAH ―→ 面面垂直平面PAH ⊥平面DEF 规范解答·评分标准证明 (1)取PD 的中点M ,连接FM ,AM .∵在△PCD 中,F ,M 分别为PC ,PD 的中点, ∴FM ∥CD 且FM =12CD .∵在正方形ABCD 中,AE ∥CD 且AE =12CD ,∴AE ∥FM 且AE =FM , 则四边形AEFM 为平行四边形,∴AM ∥EF .…………………………………………………………………………………4分 又∵EF ⊄平面PAD ,AM ⊂平面PAD ,∴EF ∥平面PAD .…………………………………………………………………………6分 (2)∵侧面PAD ⊥底面ABCD ,PA ⊥AD , 侧面PAD ∩底面ABCD =AD ,∴PA ⊥底面ABCD .∵DE ⊂底面ABCD ,∴DE ⊥PA . ∵E ,H 分别为正方形ABCD 边AB ,BC 的中点, ∴Rt△ABH ≌Rt△DAE ,则∠BAH =∠ADE ,∴∠BAH +∠AED =90°,则DE ⊥AH .…………………………………………………………………………………8分 ∵PA ⊂平面PAH ,AH ⊂平面PAH ,PA ∩AH =A ,∴DE ⊥平面PAH .…………………………………………………………………………10分 ∵DE ⊂平面DEF ,∴平面PAH ⊥平面DEF .…………………………………………………………………12分 构建答题模板[第一步] 找线线:通过三角形或四边形的中位线,平行四边形、等腰三角形的中线或线面、面面关系的性质寻找线线平行或线线垂直.[第二步] 找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系的性质找线面垂直或平行.[第三步] 找面面:通过面面关系的判定定理,寻找面面垂直或平行. [第四步] 写步骤:严格按照定理中的条件规范书写解题步骤.1.如图,在空间四面体ABCD 中,若E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点.(1)求证:四边形EFGH 是平行四边形; (2)求证:BC ∥平面EFGH .证明 (1)∵在空间四面体ABCD 中,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点, ∴EF 綊12AD ,GH 綊12AD ,∴EF 綊GH ,∴四边形EFGH 是平行四边形. (2)∵E ,H 分别是AB ,AC 的中点,∴EH ∥BC .∵EH ⊂平面EFGH ,BC ⊄平面EFGH , ∴BC ∥平面EFGH .2.(2017·北京)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 因为PA ⊥AB ,PA ⊥BC , 所以PA ⊥平面ABC .又因为BD ⊂平面ABC ,所以PA ⊥BD . (2)证明 因为AB =BC ,D 是AC 的中点, 所以BD ⊥AC . 由(1)知,PA ⊥BD , 所以BD ⊥平面PAC . 所以平面BDE ⊥平面PAC .(3)解 因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE . 因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.3.(2017·北京海淀区模拟)如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =2,E 是侧棱PA 上的动点.(1)求四棱锥P -ABCD 的体积;(2)如果E 是PA 的中点,求证:PC ∥平面BDE ;(3)是否不论点E 在侧棱PA 的任何位置,都有BD ⊥CE ?证明你的结论. (1)解 ∵PA ⊥底面ABCD , ∴PA 为此四棱锥底面上的高.∴V 四棱锥P -ABCD =13S 正方形ABCD ×PA =13×12×2=23.(2)证明 连接AC 交BD 于点O ,连接OE .∵四边形ABCD 是正方形, ∴AO =OC . 又∵AE =EP , ∴OE ∥PC .又∵PC ⊄平面BDE ,OE ⊂平面BDE , ∴PC ∥平面BDE .(3)解 不论点E 在侧棱PA 的任何位置,都有BD ⊥CE . 证明:∵四边形ABCD 是正方形, ∴BD ⊥AC .∵PA ⊥底面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD . 又∵PA ∩AC =A , ∴BD ⊥平面PAC . ∵CE ⊂平面PAC , ∴BD ⊥CE .4.如图,已知正方形ABCD 的边长为2,AC 与BD 交于点O ,将正方形ABCD 沿对角线BD 折起,得到三棱锥A -BCD .(1)求证:平面AOC ⊥平面BCD ; (2)若三棱锥A -BCD 的体积为63,且∠AOC 是钝角,求AC 的长.(1)证明 ∵四边形ABCD 是正方形, ∴BD ⊥AO ,BD ⊥CO .折起后仍有BD ⊥AO ,BD ⊥CO ,AO ∩CO =O , ∴BD ⊥平面AOC . ∵BD ⊂平面BCD , ∴平面AOC ⊥平面BCD . (2)解 由(1)知BD ⊥平面AOC , ∴V A -BCD =13S △AOC ·BD ,∴13×12OA ·OC ·sin∠AOC ·BD =63, 即13×12×2×2×sin∠AOC ×22=63, ∴sin∠AOC =32. 又∵∠AOC 是钝角, ∴∠AOC =120°.在△AOC 中,由余弦定理,得AC 2=OA 2+OC 2-2·OA ·OC ·cos∠AOC=(2)2+(2)2-2×2×2×cos 120°=6, ∴AC = 6.5.(2016·四川)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)求证:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD .所以PA ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD , 所以平面PAB ⊥平面PBD .。
2018高考新课标数学文二轮专题复习课件:专题四第2讲空间中的平行与垂直 精品
因此直线 m 与 n 所成的角即直线 B1D1 与 CD1 所成的
角.在正方体 ABCD-A1B1C1D1 中,△CB1D1 是正三角形,
故直线
B1D1
与
CD1
所成角为
60°,其正弦值为
3 2.
答案:A
2.(2016·江苏卷)如图,在直三棱柱 ABC-A1B1C1 中, D,E 分别为 AB,BC 的中点,点 F 在侧棱 B1B 上,且 B1D⊥A1F,A1C1⊥A1B1.
又 PA⊥平面 ABCD, ∴FO⊥平面 ABCD. 又 FO⊂平面 BEF, ∴平面 BEF⊥平面 ABCD.
[迁移探究 2] 在本例条件下,若 AB=BC,求证: BE⊥平面 PAC.
证明:连接 AC,AC∩BE=O. AB∥CD,CD=2AB,且 E 为 CD 的中点.
∴AB 綊 CE.
又∵AB=BC, ∴四边形 ABCE 为菱形, ∴BE⊥AC. 又∵PA⊥平面 ABCE, ∴BE⊥PA. 又 PA∩AC=A, ∴BE⊥平面 PAC.
(导学号 53130030)
(1)证明:AC⊥HD′; (2)若 AB=5,AC=6,AE=54,OD′=2 2,求五 棱锥 D′-ABCFE 的体积.
(1)证明:由已知得 AC⊥BD,AD=CD. 又由 AE=CF 得AADE=CCDF, 故 AC∥EF.
由此得 EF⊥HD, 故 EF⊥HD′,∴AC⊥HD′. (2)解:由 EF∥AC 得ODHO=AADE=14. 由 AB=5,AC=6 得 DO=BO= AB2-AO2=4. ∴OH=1,D′H=DH=3. 于是 OD′2+OH2=(2 2)2+12=9=D′H2,
DO,
在 Rt△AC′B,Rt△ADB 中,AB=2,则 C′O=DO=1, 又∵C′D= 2, ∴C′O2+DO2=C′D2, 即 C′O⊥OD, 又∵C′O⊥AB,AB∩OD=O,AB,OD⊂平面 ABD, ∴C′O⊥平面 ABD,
高考数学大二轮复习专题五立体几何第2讲空间中的平行与垂直课件理
【解析】
(1)因为在矩形ABCD中,AB=8,BC=4,
E 为 DC 的中点,所以在折起过程中, D 点在平面 BCE 上的投影如图.
因为 DE 与 AC 所成角不能为直角,所以 DE 不会垂直 于平面ACD,故①错误; 只 有 D 点 投 影 位 于 O2 位 置 时 , 即 平 面 AED 与 平 面 AEB 重 合 时,才有 BE⊥CD , 此时 CD 不垂直于平面
判断空间线面位置关系应注意的问题 解决空间点、线、面位置关系的判断题,主要是根 据平面的基本性质、空间位置关系的各种情况,以及
空间线面垂直、平行关系的判定定理和性质定理进行
判断,必要时可以利用正方体、长方体、棱锥等几何 模型辅助判断,同时要注意平面几何中的结论不能引 用到立体几何中.
◎通关题组
1 . (2017· 全国卷 Ⅲ) 在正方体 ABCD - A1B1C1D1 中, E为棱CD的中点,则 A.A1E⊥DC1 B.A1E⊥BD
数是
A.0 B.1 C.2 D.3
解析
①若α∥β,则m∥n或m,n异面,故①不正确;
②若α∥β,根据平面与平面平行的性质,可得m∥β, 故②正确;③直线m,n同时垂直于公共棱,不能推出 两个平面垂直,故③不正确;④若α∩β=l,且m⊥l, m ⊥ n , l 与 n 相交则 α ⊥ β ,若 l∥n ,则 α , β 不一定垂
到三棱锥、四棱锥等几何体,从而把问题转化到我们
熟悉的几何体中解决.
2.探索性问题求解的途径和方法
(1)对命题条件探索的二种途径: ①先猜后证,即先观察,再证明; ②将几何问题转化为代数问题,探索出命题成立的 条件. (2)对命题结论的探索方法: 从条件出发,探索出要求的结论是什么,对于探索
2018版高考数学二轮复习 第1部分 重点强化专题 限时集训10 空间中的平行与垂直关系 文
专题限时集训(十) 空间中的平行与垂直关系[建议A、B组各用时:45分钟][A组高考达标]一、选择题1.设α为平面,a,b为两条不同的直线,则下列叙述正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥αB[A中,两直线可能平行、相交或异面,故A错;B中,由直线与平面垂直的判定定理可知B正确;C中,b可能平行α,也可能在α内,故C错;D中,b可能平行α,也可能在α内,还可能与α相交,故D错.综上所述,故选B.] 2.(2017·南昌模拟)如图105,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在( )【导学号:04024096】图105A.直线AB上B.直线BC上C.直线AC上D.△ABC内部A[因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平面ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.]3.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是( )A.①B.②C.③D.①③D [对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B ,C.对于③,存在两条垂直的直线a ,b ,则直线a ,b 所成的角为90°,因为a ⊥β,b ⊥α,所以α,β所成的角为90°, 即α⊥β,反之也成立,即“存在两条垂直的直线a ,b ,a ⊥β,b ⊥α”是“α⊥β”的充要条件,所以③对,可排除A ,选D.]4.(2017·莆田模拟)已知正方体ABCD A 1B 1C 1D 1,平面α过直线BD ,α⊥平面AB 1C ,α∩平面AB 1C =m ,平面β过直线A 1C 1,β∥平面AB 1C ,β∩平面ADD 1A 1=n ,则m ,n 所成的角的余弦值为( ) A.12 B.13 C.22D.32D [如图,由题中条件知,直线m 为B 1O ,直线n 为A 1D ,∵B 1C ∥A 1D ,∴B 1O 与A 1D 所成的角为∠CB 1O (或其补角),设正方体的棱长为a ,在△CB 1O 中,B 1C =2a ,CO =22a ,B 1O =62a ,∴cos ∠CB 1O =⎝ ⎛⎭⎪⎫62a 2+2a2-⎝⎛⎭⎪⎫22a 22×62a ×2a =32.故选D.] 5.(2017·武汉模拟)如图106,在矩形ABCD 中,AB =3,BC =1,将△ACD 沿AC 折起,使得D 折起后的位置为D 1,且D 1在平面ABC 上的射影恰好落在AB 上,在四面体D 1ABC 的四个面中,有n 对平面相互垂直,则n 等于( )【导学号:04024097】图106A .2B .3C .4D .5B [设D 1在平面ABC 上的射影为E ,连接D 1E ,则D 1E ⊥平面ABC , ∵D 1E ⊂平面ABD 1, ∴平面ABD 1⊥平面ABC .∵D 1E ⊥平面ABC ,BC ⊂平面ABC , ∴D 1E ⊥BC ,又AB ⊥BC ,D 1E ∩AB =E , ∴BC ⊥平面ABD 1, 又BC ⊂平面BCD 1, ∴平面BCD 1⊥平面ABD 1,∵BC ⊥平面ABD 1,AD 1⊂平面ABD 1, ∴BC ⊥AD 1,又CD 1⊥AD 1,BC ∩CD 1=C , ∴AD 1⊥平面BCD 1, 又AD 1⊂平面ACD 1, ∴平面ACD 1⊥平面BCD 1.∴共有3对平面互相垂直.故选B.]二、填空题6.(2017·黄山模拟)已知正六棱锥S ABCDEF 的底面边长和高均为1,则异面直线SC 与DE 所成角的大小为________.π4[设正六边形ABCDEF 的中心为O ,连接SO ,CO ,BO ,则由正六边形的性质知OC ∥DE ,SO ⊥平面ABCDEF ,所以∠SCO 为异面直线SC 与DE 所成角.又易知△BOC 为等边三角形,所以SO =BC =CO =1,所以∠SCO =π4.]7.在三棱锥C ABD 中(如图107),△ABD 与△CBD 是全等的等腰直角三角形,O 是斜边BD的中点,AB =4,二面角A BD C 的大小为60°,并给出下面结论:①AC ⊥BD ;②AD ⊥CO ;③△AOC 为正三角形;④cos ∠ADC =32;⑤四面体ABCD 的外接球表面积为32π.其中真命题是________(填序号).图107①③⑤ [由题意知BD ⊥CO ,BD ⊥AO ,则BD ⊥平面AOC ,从而BD ⊥AC ,故①正确;根据二面角A BD C 的大小为60°,可得∠AOC =60°,又直线AD 在平面AOC 的射影为AO ,从而AD 与CO 不垂直,故②错误;根据∠AOC =60°,AO =CO 可得△AOC 为正三角形,故③正确;在△ADC 中 ,AD =CD =4,AC =CO =22,由余弦定理得cos ∠ADC =42+42-222×4×4=34,故④错误;由题意知,四面体ABCD 的外接球的球心为O ,半径为22,则外接球的表面积为S =4π×(22)2=32π,故⑤正确.]8.正方体ABCD A 1B 1C 1D 1中,E 为线段B 1D 1上的一个动点,则下列结论中正确的是________.(填序号) ①AC ⊥BE ; ②B 1E ∥平面ABCD ;③三棱锥E ABC 的体积为定值; ④直线B 1E ⊥直线BC 1.①②③ [因为AC ⊥平面BDD 1B 1,故①,②正确;记正方体的体积为V ,则V E ABC =16V为定值,故③正确;B 1E 与BC 1不垂直,故④错误.] 三、解答题9.(2017·全国卷Ⅲ)如图108,四面体ABCD 中,△ABC 是正三角形,AD =CD .图108(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.[解] (1)证明:如图,取AC 的中点O ,连接DO ,BO . 因为AD =CD ,所以AC ⊥DO .1分又由于△ABC 是正三角形, 所以AC ⊥BO . 2分 从而AC ⊥平面DOB , 3分 故AC ⊥BD .4分(2)连接EO .由(1)及题设知∠ADC =90°,所以DO =AO .5分 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.7分由题设知△AEC 为直角三角形,所以EO =12AC .8分 又△ABC 是正三角形,且AB =BD ,所以EO =12BD .9分故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.12分10.(2017·西安模拟)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图②中△A 1BE 的位置,得到四棱锥A 1BCDE .图109(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.【导学号:04024098】[解] (1)证明:在题图①中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图②中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC , 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1BCDE 的高. 由题图①知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3, 由26a 3=362,得a =6. [B 组 名校冲刺]一、选择题1.(2016·乌鲁木齐三模)如图1010,在多面体ABC DEFG 中,平面ABC ∥平面DEFG ,AC ∥GF ,且△ABC 是边长为2的正三角形,四边形DEFG 是边长为4的正方形,M ,N 分别为AD ,BE 的中点,则MN =( )图1010A.7 B .4 C.19D .5A [如图,取BD 的中点P ,连接MP ,NP ,则MP ∥AB ,NP ∥DE ,MP =12AB =1,NP =12DE =2.又∵AC ∥GF ,∴AC ∥NP .∵∠CAB =60°,∴∠MPN =120°, ∴MN =MP 2+NP 2-2×MP ×NP ×cos 120° =1+4-2×1×2×⎝ ⎛⎭⎪⎫-12=7,故选A.] 2.如图1011,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD .则在三棱锥A BCD 中,下列命题正确的是( )图1011A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABCD [∵在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,∴BD ⊥CD .又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,∴CD ⊥平面ABD ,则CD ⊥AB .又AD ⊥AB ,AD ∩CD =D ,∴AB ⊥平面ADC ,又AB ⊂平面ABC ,∴平面ABC ⊥平面ADC ,故选D.]3.(2017·安阳二模)如图1012,在正四棱锥S ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论: ①EP ⊥AC ; ②EP ∥BD ; ③EP ∥平面SBD ; ④EP ⊥平面SAC ,其中恒成立的为( )【导学号:04024099】图1012A .①③B .③④C .①②D .②③④A [如图所示,设AC ,BD 相交于点O ,连接SO ,EM ,EN .对于①,由S ABCD 是正四棱锥,可得SO ⊥底面ABCD ,AC ⊥BD ,∴SO ⊥AC . ∵SO ∩BD =O ,∴AC ⊥平面SBD ,∵E ,M ,N 分别是BC ,CD ,SC 的中点,∴EM ∥BD ,MN ∥SD ,而EM ∩MN =M ,SD ∩BD =D ,SD ,BD ⊂平面SBD ,MN ,EM ⊂平面EMN ,∴平面EMN ∥平面SBD ,∴AC ⊥平面EMN , ∴AC ⊥EP .故①正确.对于②,易知EP 与BD 是异面直线,因此②不正确. 对于③,由①可知平面EMN ∥平面SBD , ∴EP ∥平面SBD ,因此③正确.对于④,由①同理可得EM ⊥平面SAC ,若EP ⊥平面SAC ,则EP ∥EM ,与EP ∩EM =E 相矛盾,因此当P 与M 不重合时,EP 与平面SAC 不垂直.即④不正确.故选A.]4.(2016·长沙模拟)如图1013,正方体ABCD A 1B 1C 1D 1的棱长为1,E ,F 是线段B 1D 1上的两个动点,且EF =22,则下列结论中错误的是( )图1013A.AC⊥BFB.三棱锥ABEF的体积为定值C.EF∥平面ABCDD.异面直线AE,BF所成的角为定值D[对于选项A,连接BD(图略),易知AC⊥平面BDD1B1.∵BF⊂平面BDD1B1,∴AC⊥BF,故A正确;对于选项B,∵AC⊥平面BDD1B1,∴A到平面BEF的距离不变.∵EF=22,B到EF的距离为1,∴△BEF的面积不变,∴三棱锥ABEF的体积为定值,故B正确;对于选项C,∵EF∥BD,BD⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;对于选项D,异面直线AE,BF所成的角不为定值,当F与B1重合时,令上底面中心为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,点F与O重合,则两异面直线所成的角是∠OBC1,这两个角不相等,故异面直线AE,BF所成的角不为定值,故D错误.]二、填空题5.(2017·衡水二模)如图1014,正方形BCDE的边长为a,已知AB=3BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,关于翻折后的几何体有如下描述:图1014①AB与DE所成角的正切值是2;②AB∥CE;③V BACE=16a3;④平面ABC⊥平面ACD.其中正确的有________.(填序号)①③④[作出折叠后的几何体直观图如图所示:∵AB=3BC=3a,BE=a,∴AE=2a.∴AD=AE2-DE2=a,∴AC=CD2+AD2=2a.在△ABC中,cos∠ABC=AB2+BC2-AC2 2AB×BC=3a 2+a 2-2a 223a2=33. ∴sin ∠ABC =1-cos 2∠ABC =63. ∴tan ∠ABC =sin ∠ABCcos ∠ABC= 2.∵BC ∥DE ,∴∠ABC 是异面直线AB ,DE 所成的角,故①正确.连接BD ,CE ,则CE ⊥BD ,又AD ⊥平面BCDE ,CE ⊂平面BCDE ,∴CE ⊥AD .又BD ∩AD =D ,BD ⊂平面ABD ,AD⊂平面ABD ,∴CE ⊥平面ABD .又AB ⊂平面ABD ,∴CE ⊥AB ,故②错误.V B ACE =V A BCE =13S △BCE ·AD =13×12×a 2×a =a36,故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC ⊥AD .又BC ⊥CD ,CD ∩AD =D ,CD ,AD ⊂平面ACD ,∴BC ⊥平面ACD .∵BC ⊂平面ABC ,∴平面ABC ⊥平面ACD ,故④正确.故答案为①③④.]6.(2016·太原二模)已知在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,将直角梯形ABCD 沿AC 折叠成三棱锥D ABC ,当三棱锥D ABC 的体积取最大值时,其外接球的体积为________.【导学号:04024100】43π [当平面DAC ⊥平面ABC 时,三棱锥D ABC 的体积取最大值.此时易知BC ⊥平面DAC ,∴BC ⊥AD .又AD ⊥DC ,∴AD ⊥平面BCD ,∴AD ⊥BD ,取AB 的中点O ,易得OA =OB =OC =OD =1,故O 为所求外接球的球心,故半径r =1,体积V =43πr 3=43π.]三、解答题7.(2017·东北三省四市联考)如图1015,在四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,AD =AP =2,AB =27,E 为棱PD 的中点.图1015(1)求证:PD ⊥平面ABE ;(2)求三棱锥C PBD 外接球的体积.[解] (1)证明:∵PA ⊥平面ABCD ,AB ⊂平面ABCD , ∴PA ⊥AB .∵四边形ABCD 为矩形,∴AB ⊥AD , ∵PA ∩AD =A ,∴AB ⊥平面PAD , ∵PD ⊂平面PAD ,∴AB ⊥PD , ∵PA =AD ,E 为PD 中点,∴PD ⊥AE , ∵AE ∩AB =A ,∴PD ⊥平面ABE . 6分(2)令PC 的中点为O ,连接OB ,OD ,由(1)知AB ⊥平面PAD ,AB ∥CD ,∴CD ⊥平面PAD . ∵PD ⊂平面PAD ,∴CD ⊥PD ,则OD =12PC =OP =OC .∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC , ∵BC ⊥AB ,PA ∩AB =A , ∴BC ⊥平面PAB ,∵PB ⊂平面PAB ,∴BC ⊥PB ,则OB =12PC =OP =OC ,∴点O 为三棱锥C PBD 的外接球球心,PC 为直径. 又PC 2=AB 2+AD 2+AP 2=(27)2+22+22=36,PC =6, ∴三棱锥C PBD 外接球的体积为V 球=43π×33=36π.12分8.(2017·福州模拟)如图①,在等腰梯形PDCB 中,PB ∥DC ,PB =3,DC =1,∠DPB =45°,DA ⊥PB 于点A ,将△PAD 沿AD 折起,构成如图②所示的四棱锥P ABCD ,点M 在棱PB 上,且PM =12MB .图1016(1)求证:PD ∥平面MAC ;(2)若平面PAD ⊥平面ABCD ,求点A 到平面PBC 的距离. [解] (1)证明:在四棱锥P ABCD 中, 连接BD 交AC 于点N ,连接MN ,依题意知AB ∥CD ,∴△ABN ∽△CDN , 2分 ∴BN ND =BA CD=2.3分∵PM =12MB ,∴BN ND =BMMP =2,∴在△BPD 中,MN ∥PD .4分 又PD ⊄平面MAC ,MN ⊂平面MAC , ∴PD ∥平面MAC .6分(2)法一:∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PA ⊥AD ,PA ⊂平面PAD , ∴PA ⊥平面ABCD .8分 ∴V P ABC =13S △ABC ·PA =13×⎝ ⎛⎭⎪⎫12×2×1×1=13. 9分∵AB =2,AC =AD 2+CD 2=2,∴PB =PA 2+AB 2=5,PC =PA 2+AC 2=3,BC =AD 2+AB -CD2= 2.∴PB 2=PC 2+BC 2,故∠PCB =90°. 10分 记点A 到平面PBC 的距离为h ,∴V A PBC =13S △PBC ·h =13×⎝ ⎛⎭⎪⎫12×3×2h =66h . 11分∵V P ABC =V A PBC ,∴13=66h ,解得h =63.12分 法二:∵平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD ,PA ⊥AD ,PA ⊂平面PAD ,∴PA ⊥平面ABCD .8分∵BC ⊂平面ABCD ,∴PA ⊥BC . ∵AB =2,AC =AD 2+CD 2=2,BC =AD 2+AB -CD2=2,∴∠ACB =90°,即BC ⊥AC .∵PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , ∴BC ⊥平面PAC .10分过A 作AE ⊥PC 于点E ,则BC ⊥AE ,∵PC ∩BC =C ,PC ⊂平面PBC ,BC ⊂平面PBC , ∴AE ⊥平面PBC . 11分∵PC =PA 2+AC 2= 3. ∴点A 到平面PBC 的距离为AE =PA ·AC PC =1×23=63.12分。
2018年高考数学(理)二轮复习教师用书:第1部分重点强化专题专题4第9讲空间中的平行与垂直关系(含答案)
第9讲空间中的平行与垂直关系题型1 空间位置关系的判断与证明(对应学生用书第30页)■核心知识储备………………………………………………………………………·1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.■典题试解寻法………………………………………………………………………·【典题1】(考查空间位置关系的判断)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l 满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l[解析]根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,故选D.[答案] D【典题2】(考查空间位置关系的证明)如图91,在三棱锥PABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.图91(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E BCD 的体积. [思路分析] (1)通过证明PA ⊥平面ABC 得PA ⊥BD ; (2)通过证明BD ⊥平面PAC 得面面垂直;(3)由PA ∥平面BDE ,D 为AC 的中点得PA 与DE 的位置及数量关系,从而求出三棱锥的体积.[解] (1)证明:因为PA ⊥AB ,PA ⊥BC ,且AB ∩BC =B ,所以PA ⊥平面ABC .又因为BD ⊂平面ABC ,所以PA ⊥BD .(2)证明:因为AB =BC ,D 为AC 的中点,所以BD ⊥AC . 由(1)知,PA ⊥BD ,且PA ∩AC =A , 所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE . 因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E BCD 的体积V =16BD ·DC ·DE =13.[类题通法] 平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.■对点即时训练………………………………………………………………………·如图92所示,四棱锥P ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD = 2.图92(1)求证:平面PAB ⊥平面PCD ; (2)求三棱锥D PBC 的体积.[解] (1)法一:(几何法)因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 又CD ⊥AD ,所以CD ⊥平面PAD ,所以CD ⊥PA . 因为PA =PD =22AD ,所以△PAD 是等腰直角三角形,且∠APD =π2,即PA ⊥PD . 又CD ∩PD =D ,所以PA ⊥平面PCD . 又PA ⊂平面PAB ,所以平面PAB ⊥平面PCD .法二:(向量法)取AD 的中点O 、BC 的中点Q ,连接OP ,OQ ,易知OQ ⊥AD .因为PA =PD ,所以PO ⊥AD ,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .建立如图所示的空间直角坐标系. 由PA =PD =22AD =2,知OP =1. 则O (0,0,0),A (1,0,0),B (1,2,0),Q (0,2,0),C (-1,2,0),D (-1,0,0),P (0,0,1). 设平面PCD 的法向量为n =(x ,y ,z ), 又DC →=(0,2,0),DP →=(1,0,1),则⎩⎨⎧n ·DC →=0,n ·DP →=0,即⎩⎪⎨⎪⎧2y =0,x +z =0,令x =1,则n =(1,0,-1).同理,可求得平面PAB 的一个法向量为m =(-1,0,-1), 又n·m =-1×1+0×0+(-1)×(-1)=0, 故平面PAB ⊥平面PCD .(2)取AD 的中点O ,连接OP ,如图. 因为PA =PD ,所以PO ⊥AD .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD . 即PO 为三棱锥P BCD 的高, 由PA =PD =22AD =2,知OP =1. 因为底面ABCD 是正方形,所以S △BCD =12×2×2=2.所以V 三棱锥D PBC =V 三棱锥P BCD =13PO ·S △BCD =13×1×2=23.■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 3、T 6、T 7、T 8、T 9、T 10、T 12、T 14)题型2 平面图形的翻折问题 (对应学生用书第31页)■核心知识储备………………………………………………………………………·翻折问题的注意事项(1)画好两图:翻折之前的平面图形与翻折之后形成的几何体的直观图.(2)把握关系:即比较翻折前后的图形,准确把握平面图形翻折前后的线线关系,哪些平行与垂直的关系不变,哪些平行与垂直的关系发生变化,这是准确把握几何体结构特征,进行空间线面关系逻辑推理的基础.(3)准确定量:即根据平面图形翻折的要求,把平面图形中的相关数量转化为空间几何体的数字特征,这是进行准确计算的基础.■典题试解寻法………………………………………………………………………·【典题】 (2016·全国Ⅱ卷)如图93,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.图93(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值.[思路分析] (1)题设条件翻折,D ′H ⊥EF ―――→勾股定理D ′H ⊥OH ―→D ′H ⊥平面ABCD ; (2)建系―→求法向量―→求二面角的余弦值―→求二面角的正弦值. [解] (1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD, 故AC ∥EF .因为EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3), AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则⎩⎨⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则⎩⎨⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.[类题通法] 平面图形翻折问题的求解方法解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.■对点即时训练………………………………………………………………………·如图94(1),在四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =2AB =4,E ,F 分别在BC ,AD 上,EF ∥AB ,现将四边形ABEF 沿EF 折起,使平面ABEF ⊥平面EFDC ,如图94(2).图94(1)图94(2)(1)若BE =1,在折叠后的线段AD 上是否存在一点P ,且AP →=λPD →,使得CP ∥平面ABEF ?若存在,求出λ的值,若不存在,请说明理由;(2)求三棱锥A CDF 体积的最大值,并求此时二面角E AC F 的余弦值. [解] 因为平面ABEF ⊥平面EFDC ,平面ABEF ∩平面EFDC =EF ,FD ⊥EF , 所以FD ⊥平面ABEF .又AF ⊂平面ABEF ,所以FD ⊥AF .易知AF ⊥EF ,又FD ∩EF =F , 所以AF ⊥平面EFDC .(1)以F 为坐标原点,FE ,FD ,FA 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则F (0,0,0),A (0,0,1),D (0,5,0),C (2,3,0). ∵AP →=λFD →,∴FP →=11+λFA →+λ1+λFD →=⎝ ⎛⎭⎪⎫0,5λ1+λ,11+λ.∴CP →=⎝⎛⎭⎪⎫-2,-3+2λ1+λ,11+λ.若CP ∥平面ABEF ,则CP →⊥FD →,即CP →·FD →=0, 即-3+2λ1+λ=0,解得λ=32.∴AD 上存在一点P ,当AP →=32FD →时,满足CP ∥平面ABEF .(2)设BE =x ,则AF =x (0<x ≤4),所以三棱锥A CDF 的体积V =13x ×12×2(6-x )=13x (6-x )≤13×⎝⎛⎭⎪⎫x +6-x 22=3.∴当x =3时,三棱锥A CDF 的体积V 有最大值,最大值为3.此时A (0,0,3),D (0,3,0),C (2,1,0),则FA →=(0,0,3),FC →=(2,1,0). 设平面ACE 的法向量m =(x 1,y 1,z 1),则⎩⎨⎧ m ·AC →=0,m ·AE →=0,即⎩⎪⎨⎪⎧2x 1+y 1-3z 1=02x 1-3z 1=0,令x 1=3,则m =(3,0,2).设平面ACF 的法向量n =(x 2,y 2,z 2),则⎩⎨⎧n ·FA →=0,n ·FC →=0,即⎩⎪⎨⎪⎧3z 2=0,2x 2+y 2=0.令x 2=1,则n =(1,-2,0).∴cos〈m ,n 〉=m ·n |m ||n |=36565,则二面角E AC F 的余弦值为36565.■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 4、T 5、T 11、T 13)三年真题| 验收复习效果 (对应学生用书第32页)1.(2016·全国Ⅰ卷)平面α过正方体ABCD A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B .22C.33D .13A [设平面CB 1D 1∩平面ABCD =m 1.∵平面α∥平面CB 1D 1,∴m 1∥m . 又平面ABCD ∥平面A 1B 1C 1D 1, 且平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1, ∴B 1D 1∥m 1.∴B 1D 1∥m . ∵平面ABB 1A 1∥平面DCC 1D 1, 且平面CB 1D 1∩平面DCC 1D 1=CD 1, 同理可证CD 1∥n .因此直线m 与n 所成的角即直线B 1D 1与CD 1所成的角. 在正方体ABCD A 1B 1C 1D 1中,△CB 1D 1是正三角形, 故直线B 1D 1与CD 1所成角为60°,其正弦值为32.] 2.(2017·全国Ⅱ卷)已知直三棱柱ABC A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B .155 C.105D .33C [法一:(几何法)将直三棱柱ABC A 1B 1C 1补形为直四棱柱ABCD A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.法二:(向量法)以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成的角的余弦值为105. 故选C.]3.(2016·全国Ⅱ卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号)②③④ [对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.]4.(2017·全国Ⅲ卷)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)②③ [依题意建立如图所示的空间直角坐标系.设等腰直角三角形ABC 的直角边长为1.由题意知点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[0,2π),则B (cos θ,sin θ,0),∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成夹角为α,则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎢⎡⎦⎥⎤0,22,∴45°≤α≤90°,∴③正确,④错误. 设直线AB 与b 所成夹角为β,则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, 则|sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22.∴cos β=22|cos θ|=12. ∵0°≤β≤90°,∴β=60°,即直线AB 与b 的夹角为60°. ∴②正确,①错误.]5.(2015·全国Ⅰ卷)如图95,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .图95(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. [解] (1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.。
2018年高考数学二轮复习 规范答题示例6 空间中的平行与垂直关系 理
规范答题示例6 空间中的平行与垂直关系典例6 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点. (1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF .审题路线图 (1)条件中各线段的中点――――→设法利用中位线定理取PD 的中点M ――――――→考虑平行关系长度关系平行四边形AEFM ―(2)平面PAD ⊥平面ABCDPA ⊥AD ――→中中点DE ⊥AH ―――――→线面垂直的判定定理DE ⊥平面PAH 中,AE ∥CD 且AE =12CD ,, 为平行四边形,评分细则(1)第(1)问证出AE綊FM给2分;通过AM∥EF证线面平行时,缺1个条件扣1分;利用面面平行证明EF∥平面PAD同样给分;(2)第(2)问证明PA⊥底面ABCD时缺少条件扣1分;证明DE⊥AH时只要指明E,H分别为正方形边AB,BC的中点得DE⊥AH不扣分;证明DE⊥平面PAH只要写出DE⊥AH,DE⊥PA,缺少条件不扣分.跟踪演练6 如图,在三棱锥V—ABC中,平面VAB⊥平面ABC,△VAB 为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V—ABC的体积.(1)证明因为O,M分别为AB,VA的中点,所以OM∥VB,又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,VAB.=BC=2,S△VAB=33,C—VAB的体积相等,所以三棱锥V—ABC的体积为33.2。
高考数学南京市2018届高三数学二轮专题复习资料专题6:空间的平行与垂直问题
专题6:空间的平行与垂直问题问题归类篇类型一: 线线平行一、前测回顾1.如图所示,在三棱柱ABC -A 1B 1C 1中,若D 、E 是棱CC 1,AB 的中点,求证:DE ∥平面AB 1C 1.提示:法一:用线面平行的判定定理来证: “平行投影法”:取AB 1的中点F ,证四边形C 1DEF 是平行四边形.“中心投影法”延长BD 与B 1C 1交于M ,利用三角线中位线证DE ∥法二:用面面平行的性质取BB 1中点G ,证平面DEG ∥平面AB 1C 1. 二、方法联想(1)证明线线平行 方法1:利用中位线;方法2:利用平行四边形; 方法3:利用平行线段成比例; 方法4:利用平行公理; 方法5:利用线面平行性质定理; 方法6:利用线面垂直性质定理;方法7:利用面面平行.(2)已知线线平行,可得线面平行三、归类巩固*1.如图,在五面体ABCDEF 中,面ABCD 为平行四边形,求证:EF ∥BC . (平行公理证明线线平行,由线线平行得线面平行)类型二: 线面平行一、前测回顾1.在正方体ABCD -A 1B 1C 1D 1中,(1)求证:平面A 1BD ∥平面B 1D 1C (2)若E ,F 分别是A 1A ,C 1C 的中点,求证:平面EB 1D 1∥平面BDF . 提示:(1)用面面平行的判定定理证: 证明BD ∥B 1D 1,A 1B ∥D 1C . (2)证明BD ∥B 1D 1,BF ∥D 1E .二、方法联想A 1D 1ABCDB 1C 1E ·F ·(1)证明线面平行方法1 构造三角形(中心投影法),转化为线线平行.寻找平面内平行直线步骤,如下图:①在直线和平面外寻找一点P ;②连接P A 交平面α于点M ;③连接P A 交平面α于点N ,④连接MN 即为要找的平行线.方法2:构造平行四边形(平行投影法) ,转化为线线平行.寻找平面内平行直线步骤,如下图:①选择直线上两点A 、B 构造两平行直线和平面α相交于M 、N ;②连接MN 即为要找的平行线.方法3:构造面面平行.构造平行平面步骤,如下图:①过A 做AC 平行于平面α内一条直线A’C’;②连结BC ;③平面ABC 即为所要找的平行平面.(2)已知线面平行方法1 可得线线平行,过直线l 做平面β交已知平面α于直线m ,则l ∥m .方法2 可得面面平行三、归类巩固**1.如图所示,在三棱柱ABC -A 1B 1C 1中,D 、E 是棱CC 1,AB 的上的点,且AE =23AB ,若DE ∥平面AB 1C 1,求CDDC1的值.(已知线面,转化为线线平行)*2.E ,P ,G ,H 分别是四面体的棱ABCD 的棱AB 、CD 、CA 、CB 的中点, 求证:PE ∥平面PGH .(通过面面的平行证明线面平行)*3.在正方体ABCD -A 1B 1C 1D 1中,E 是A 1A 的中点.点F 在棱CC 1上,使得平面EB 1D 1∥平面BDF . 求证:点F 为棱CC 1的中点.类型三: 面面平行一、前测回顾1.在正方体ABCD —A 1B 1C 1D 1中,M 为棱CC 1的中点,AC 交BD 于O ,求证:A 1O ⊥平面MBD提示:用线面垂直的判定定理:证BD ⊥平面AA 1C 1C ,从而得出BD ⊥A 1O ; 在矩形AA 1C 1C 中,用平几知识证明A 1O ⊥OM ;M OA 1 D 1 ABCDB 1C 1m lα① ② A B CA ’C ’ ①② ① A M NBABCSGFE二、方法联想(1)证明面面平行方法 在一个平面内寻找两条相交直线证明与另一个平面平行.注意 证面面平行必须先通过证线面平行,不可以直接通过证线线平行来证面面平行. (2)已知面面平行 可得线线平行三、归类巩固*1. 如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB ,过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA . 答案:证明略 (考查平面与平面平行,线线垂直)类型四: 线线垂直一、前测回顾1.在正三棱柱ABC -A 1B 1C 1中,所有棱长均相等,D 为BB 1的中点,求证:A 1B ⊥C D . 分析:要证明A 1B ⊥C D ,只要证明A 1B 与CD 所在的平面垂直,或CD 与A 1B 所在的平面垂直, 但都没有现成的平面,构造经过CD 的平面与直线A 1B 垂直,或经过A 1B 的平面与直线CD 垂直.方法1:取AB 的中点E ,连CE ,证A 1B ⊥平面CDE ; 方法2:取B 1C 1的中点F ,连BF ,证CD ⊥平面A 1BF .二、方法联想(1)证明线线垂直方法1:利用线面垂直;构造垂面证线线垂直 要证l 垂直于AB ,构造垂面证线线垂直步骤:如下图:①过A 找垂直于l 的直线AC ;②连结BC ,③证BC 垂直l ,则l ⊥面ABC . 方法2:利用线线平行转移线线垂直; 方法3:利用勾股定理;方法4:利用等腰三角形三线合一; 方法5:利用菱形对角线互相垂直; 方法6:利用四边形为矩形. (2)已知线线垂直 可得线面垂直三、归类巩固A 1BCC 1B 1DAAB lC①②*1.在正三棱柱ABC -A 1B 1C 1中, D 为BB 1的中点, A 1B ⊥CD ,求证:AA 1=AB .类型五: 线面垂直一、前测回顾1.如图,在四棱锥P -ABCD 中,四边形ABCD 是菱形,PB =PD ,且E ,F 分别是BC , CD 的中点. 求证:平面PEF ⊥平面P AC .提示:设EF 与AC 交于点O ,证EF ⊥AC ,EF ⊥OP , 从而得出EF ⊥平面P AC . 二、方法联想 (1)证明线面垂直方法 证明直线与平面内两条相交直线垂直. (2)已知线面垂直 可得线线垂直和面面垂直三、归类巩固*1.如图,在四棱锥P -ABCD 中,四边形ABCD 是平行四边形,PB =PD ,且E ,F 分别是BC , CD 的中点,若平面PEF ⊥平面P AC ,求证:四边形ABCD 是菱形.*2.在正方体ABCD —A 1B 1C 1D 1中,AC 交BD 于O ,点M 在棱CC 1上,且A 1O ⊥平面MBD , 求证:M 为棱CC 1的中点. (线面垂直得线线垂直)*3.在四面体ABCD 中,AD ⊥BC ,CA =CB =CD =1,BD =2,则△ABC 的面积为_____. (计算证明线线垂直)*4.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,AB 1⊥BC 1,求证:A 1C ⊥BC 1. (利用平行转移线线垂直,从而一条直线与两异面直线的 垂直转化为线面的垂直)类型六: 面面垂直一、前测回顾1.如图,已知VB ⊥平面ABC ,侧面VAB ⊥侧面VAC ,求证:△VAC 是直角三角形. 提示:过B 作BD ⊥VA ,垂足为D ,由侧面VAB ⊥侧面VAC ,得出BD ⊥侧面VAC ,从面BD ⊥AC , 由VB ⊥平面ABC ,得AC ⊥VB ,从而AC ⊥平面VAB . 所以AC ⊥VA .B C DA P EF BCAVA 1 BDAPEF二、方法联想(1)证明面面垂直关键是找到和另一个平面垂直的垂线,转化为线面垂直. 找垂线的一般方法:①分别在两个平面内找两条互相垂直的直线,再判断其中一条直线垂直于平面; ②找(或作)两平面交线的垂线.③若存在第三个平面与其中一个面垂直,则在第三个内作找或作它们的交线的垂线(可以就是第三个与另一个平面的交线),再将这个垂线转移到另一个平面内.(2)已知面面垂直优先在其中一个平面内找或作两个平面交线的垂线,转化为线面垂直.三、归类巩固**1.在四棱锥P -ABCD 中,CD ⊥平面P AD ,△P AD 是正三角形,DC //AB ,DA =DC =2AB .求证:平面PBC ⊥平面PDC.(存在第三个面与其中一个面垂直)提示1:取PD 中点M ,则AM ⊥平面PDC ,下面只需将AM平移到平面PBC 内. 提示2:作出平面P AD 与平面PBC 的交线PN ,只需证明PN ⊥平面PDC .类型七: 有关表面积、体积计算一、前测回顾1.设P ,A ,B ,C 是球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A =PB =1,PC =2,则球O 的表面积是________. 答案 :6π2.如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________. 答案: 3二、方法联想①表面距离问题考虑表面展开,转化成平面问题 ②体积计算,先证明高,后用体积公式求体积三、归类巩固*1.在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°, 侧棱P A ⊥底面ABCD ,P A =2,E 为AB 的中点,则四面体PBCE 的 体积为 .PABCDPABCD*2.如图,在长方体ABCD ―A 1B 1C 1D 1中,AB =AD =3cm ,AA 1=2cm , 则四棱锥A ―BB 1D 1D 的体积为 cm 3. 答案:6 (考查空间几何体的体积计算)*3.三棱锥P - ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D - ABE 的体积为V 1,P - ABC 的体积为V 2,则V 1V 2=________.答案:14(考查空间多面体的体积的关系)综合应用篇一、例题分析例1:在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,E 为PD 的中点,P A =2AB .(1)若F 为PC 的中点,求证:PC ⊥平面AEF ; (2)求证:CE ∥平面P AB .提示:(1)证明:PC ⊥AF ,PC ⊥EF .(2)①中心投影法:延长CD 与AB 交于G ,证明CE ∥PG . ②平行投影法:取P A 中点M ,过C 作CN ∥AD 交AB 于N .证四边形CEMN 是平行四边形,从而得CE ∥MN .③面面平行的性质:取AD 中点H ,证明平面CEH ∥平面P AB . 〖教学建议〗一、主要问题归类与方法:1.证明直线与平面垂直.方法:(1)定义法:a ⊥b ,b 为平面α内任意一条直线⇒ a ⊥平面α.(2)线面垂直的判定定理:a ⊥m ,a ⊥n ,m ⊂平面α,n ⊂平面α,m ∩n =A ⇒ a ⊥平面α.(3)面面垂直的性质定理:平面α⊥平面β,平面α∩平面β=l ,a ⊂平面α,a ⊥l ⇒ a ⊥平面α. 2.证明直线与平面平行.方法:(1)定义法:常常借助反证法完成;(2)判定定理:a ∥b ,a ⊄平面α,b ⊂平面α⇒ a ∥平面α.用判定定理来证线面平行的关键是在平面内找到与已知直线平行的直线,其方法有:中心投影法与平行投影法. 证明线线平行常用方法:①平面几何的方法:三角形中位线,平行四边形,平行线段成比例等. ②面面平行的性质:α∥β,γ∩α=m ,γ∩β=n ⇒m ∥n . ③线面垂直的性质:a ⊥平面α,b ⊥平面α⇒a ∥b . ④公理4:a ∥c ,b ∥c ⇒a ∥b .(3)面面平行的性质:平面α∥平面β, a ⊂平面α⇒ a ∥平面α.ABEPF二、方法选择与优化建议:1.用方法(2),方法(2)是证明线面垂直的常用方法。
高考数学二轮复习 板块三 专题突破核心考点 规范答题示例5 空间中的平行与垂直关系课件
跟踪演练5 (2018·全国Ⅰ)如图,在平 行 四 边 形 ABCM 中 , AB=AC=3, ∠ACM=90°.以AC为折痕将△ACM折 起,使点M到达点D的位置,且AB⊥DA. (1)证明:平面ACD⊥平面ABC; 证明 由已知可得,∠BAC=90°,即BA⊥AC. 又BA⊥AD,AD∩AC=A,AD,AC⊂平面ACD, 所以AB⊥平面ACD. 又AB⊂平面ABC, 所以平面ACD⊥平面ABC.
板块三 专题突破 核心考点
规范答题示例5
空间中的平行与垂直关系
典例5 (12分)如图,四棱锥P—ABCD的底面为 正方形,侧面PAD⊥底面ABCD,PA⊥AD,E, F,H分别为AB,PC,BC的中点. (1)求证:EF∥平面PAD; (2)求证:平面PAH⊥平面DEF.
审题路线图
(1)
条件中各线段的中点
DE⊥AH
―线――面――垂――直→ 的判定定理
定定理
平面PAH⊥平面DEF
规 范 解 答·分 步 得 分
证明 (1)取PD的中点M,连接FM,AM.
∵在△PCD中,F,M分别为PC,PD的中点,
∴FM∥CD ∵在正方形
且 FM=12CD. ABCD 中,AE∥CD
∵E,H分别为正方形ABCD边AB,BC的中点,
∴Rt△ABH≌Rt△DAE,
则∠BAH=∠ADE,∴∠BAH+∠AED=90°,∴DE⊥AH, 8分
∵PA⊂平面PAH,AH⊂平面PAH,PA∩AH=A,
∴DE⊥平面PAH,
∵DE⊂平面EFD,∴平面PAH⊥平面DEF.
12分
构建答题模板 第一步 找线线:通过三角形或四边形的中位线、平行四边形、等腰三角形的 中线或线面、面面关系的性质寻找线线平行或线线垂直. 第二步 找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行; 也可由面面关系的性质找线面垂直或平行. 第三步 找面面:通过面面关系的判定定理,寻找面面垂直或平行. 第四步 写步骤:严格按照定理中的条件规范书写解题步骤.
2018高考数学浙江专版二轮复习与策略课件 专题9 空间中的平行与垂直关系 精品
=2,得BD=BC= 2.
2分
由AC= 2,AB=2,得AB2=AC2+BC2,即AC⊥BC.
又平面ABC⊥平面BCDE,
从而AC⊥平面BCDE.
5分
(2)在直角梯形BCDE中,由BD=BC= 2,DC=2,得BD⊥BC.
6分
又平面ABC⊥平面BCDE,所以BD⊥平面ABC.
如图,作EF∥BD,与CB的延长线交于F,连接AF,则EF⊥平面ABC.所以
所以OP∥AD,且OP=14AD.
从而OP∥FQ,且OP=FQ,
5分
所以四边形OPQF为平行四边形,故PQ∥OF.
又PQ⊄平面BCD,OF⊂平面BCD,
所以PQ∥平面BCD.
6分
(2)如图,作CG⊥BD于点G,作GH⊥BM于点H,连接CH. 因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG. 8分 又CG⊥BD,AD∩BD=D,故CG⊥平面ABD. 又BM⊂平面ABD,所以CG⊥BM. 又GH⊥BM,CG∩GH=G,故BM⊥平面CGH, 所以GH⊥BM,CH⊥BM. 所以∠CHG为二面角C-BM-D的平面角,即∠CHG=60°.10分 设∠BDC=θ,在Rt△BCD中, CD=BDcos θ=2 2cos θ,CG=CDsin θ =2 2cos θsin θ,
3.(2013·浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面 ()
A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥β C.若m∥n,m⊥α,则n⊥α D.若m∥α,α⊥β,则m⊥β
C [A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故 错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当 m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可 能在β内,也可能与β相交,故错误.故选C.]
全国通用2018届高考数学二轮复习第25练空间中的平行与垂直练习文
第25练 空间中的平行与垂直[明考情]高考中对直线和平面的平行、垂直关系交汇综合命题,多以棱柱、棱锥、棱台或简单组合体为载体进行考查,难度中档偏下. [知考向]1.空间中的平行关系.2.空间中的垂直关系.3.平行和垂直的综合应用.考点一 空间中的平行关系方法技巧 (1)平行关系的基础是线线平行,比较常见的是利用三角形中位线构造平行关系,利用平行四边形构造平行关系.(2)证明过程中要严格遵循定理中的条件,注意推证的严谨性.1.如图,在正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN ,求证:MN ∥平面AA 1B 1B .证明 如图所示,作ME ∥BC 交BB 1于点E ,作NF ∥AD 交AB 于点F ,连接EF ,则EF ⊂平面AA 1B 1B .∵ME ∥BC ,NF ∥AD , ∴ME BC =B 1M B 1C ,NF AD =BNBD.在正方体ABCD -A 1B 1C 1D 1中, ∵CM =DN , ∴B 1M =NB .又B 1C =BD , ∴ME BC =BN BD =NFAD,又BC =AD ,∴ME =NF .又ME ∥BC ∥AD ∥NF ,∴四边形MEFN 为平行四边形, ∴MN ∥EF .又EF ⊂平面AA 1B 1B ,MN ⊄平面AA 1B 1B , ∴MN ∥平面AA 1B 1B .2.(2017·全国Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥PA ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD .(2)解 如图,在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD , 故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得PA =PD =AB =DC =2,AD =BC =22,PB =PC =22,可得四棱锥P -ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.3.(2017·龙岩市新罗区校级模拟)如图,O 是圆锥底面圆的圆心,圆锥的轴截面PAB 为等腰直角三角形,C 为底面圆周上一点.(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积. (1)证明 方法一 设BC ∩OD =E , ∵D 是弧BC 的中点, ∴E 是BC 的中点.又∵O 是AB 的中点,∴AC ∥OE . 又∵AC ⊄平面POD ,OE ⊂平面POD , ∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径, ∴AC ⊥BC .∵弧BC 的中点为D , ∴OD ⊥BC .又AC ,OD 共面,∴AC ∥OD . 又AC ⊄平面POD ,OD ⊂平面POD , ∴AC ∥平面POD .(2)解 设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形, ∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.4.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在?请说明理由.解存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形,∴AD∥CF.又AD⊂平面ADD1A1,CF⊄平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1.又CC1,CF⊂平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.考点二空间中的垂直关系方法技巧判定直线与平面垂直的常用方法(1)利用线面垂直定义.(2)利用线面垂直的判定定理,一条直线与平面内两条相交直线都垂直,则这条直线与平面垂直.(3)利用线面垂直的性质,两平行线中的一条垂直于平面,则另一条也垂直于这个平面.(4)利用面面垂直的性质定理,两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.5.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明 (1)如图,取CE 的中点G ,连接FG ,BG .∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GFAB 为平行四边形, ∴AF ∥BG .∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE .6.(2017·全国Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1)证明 如图,取AC 的中点O ,连接DO ,BO .因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形,所以AC ⊥BO . 又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt△AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.7.(2017·南京一模)如图,在六面体ABCDE 中,平面DBC ⊥平面ABC ,AE ⊥平面ABC .(1)求证:AE ∥平面DBC ;(2)若AB ⊥BC ,BD ⊥CD ,求证:AD ⊥DC . 证明 (1)过点D 作DO ⊥BC ,O 为垂足.∵平面DBC ⊥平面ABC ,平面DBC ∩平面ABC =BC ,DO ⊂平面DBC , ∴DO ⊥平面ABC .又AE ⊥平面ABC ,则AE ∥DO .又AE ⊄平面DBC ,DO ⊂平面DBC ,故AE ∥平面DBC .(2)由(1)知,DO ⊥平面ABC ,AB ⊂平面ABC , ∴DO ⊥AB .又AB ⊥BC ,且DO ∩BC =O ,DO ,BC ⊂平面DBC , ∴AB ⊥平面DBC .∵DC⊂平面DBC,∴AB⊥DC.又BD⊥CD,AB∩DB=B,AB,DB⊂平面ABD,则DC⊥平面ABD.又AD⊂平面ABD,故可得AD⊥DC.8.已知四棱锥S-ABCD的底面ABCD为正方形,顶点S在底面ABCD上的射影为其中心O,高为3,设E,F分别为AB,SC的中点,且SE=2,M为CD边上的点.(1)求证:EF∥平面SAD;(2)试确定点M的位置,使得平面EFM⊥底面ABCD.(1)证明取SB的中点P,连接PF,PE.∵F为SC的中点,∴PF∥BC,又底面ABCD为正方形,∴BC∥AD,即PF∥AD,又PE∥SA,∴平面PFE∥平面SAD.∵EF⊂平面PFE,∴EF∥平面SAD.(2)解连接AC,AC的中点即为点O,连接SO,由题意知SO⊥平面ABCD,取OC的中点H,连接FH,则FH∥SO,∴FH⊥平面ABCD,∴平面EFH⊥平面ABCD,连接EH并延长,则EH与DC的交点即为M点.连接OE ,由题意知SO =3,SE =2. ∴OE =1,AB =2,AE =1,∴MC AE =HC HA =13, ∴MC =13AE =16CD ,即点M 在CD 边上靠近C 点距离为16的位置.考点三 平行和垂直的综合应用方法技巧 空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.9.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .证明 (1)在△PAD 中,∵E ,F 分别为AP ,AD 的中点, ∴EF ∥PD .又∵EF ⊄平面PCD ,PD ⊂平面PCD , ∴直线EF ∥平面PCD . (2)如图,连接BD .∵AB =AD ,∠BAD =60°, ∴△ADB 为正三角形. ∵F 是AD 的中点, ∴BF ⊥AD .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BF ⊂平面ABCD , ∴BF ⊥平面PAD . 又∵BF ⊂平面BEF ,∴平面BEF⊥平面PAD.10.(2017·山东)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.11.(2017·汉中二模)如图,在棱长均为4的三棱柱ABC-A1B1C1中,D,D1分别是BC和B1C1的中点.(1)求证:A1D1∥平面AB1D;(2)若平面ABC ⊥平面BCC 1B 1,∠B 1BC =60°,求三棱锥B 1-ABC 的体积. (1)证明 连接DD 1,在三棱柱ABC -A 1B 1C 1中,∵D ,D 1分别是BC 和B 1C 1的中点, ∴B 1D 1∥BD ,且B 1D 1=BD , ∴四边形B 1BDD 1为平行四边形, ∴BB 1∥DD 1,且BB 1=DD 1. 又∵AA 1∥BB 1,AA 1=BB 1, ∴AA 1∥DD 1,AA 1=DD 1, ∴四边形AA 1D 1D 为平行四边形, ∴A 1D 1∥AD .又∵A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D , ∴A 1D 1∥平面AB 1D .(2)解 在△ABC 中,边长均为4,则AB =AC ,D 为BC 的中点, ∴AD ⊥BC .∵平面ABC ⊥平面B 1C 1CB ,交线为BC ,AD ⊂平面ABC , ∴AD ⊥平面B 1C 1CB ,即AD 是三棱锥A -B 1BC 的高. 在△ABC 中,由AB =AC =BC =4,得AD =23, 在△B 1BC 中,B 1B =BC =4,∠B 1BC =60°, ∴△B 1BC 的面积为4 3.∴三棱锥B 1-ABC 的体积即为三棱锥 A -B 1BC 的体积V =13×43×23=8.12.如图,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点.(1)求证:CD ⊥平面SAD ; (2)求证:PQ ∥平面SCD ;(3)若SA =SD ,M 为BC 的中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?并证明你的结论.(1)证明 ∵四边形ABCD 为正方形, ∴CD ⊥AD .又∵平面SAD ⊥平面ABCD ,且平面SAD ∩平面ABCD =AD ,CD ⊂平面ABCD , ∴CD ⊥平面SAD .(2)证明 取SC 的中点R ,连接QR ,DR .由题意知,PD ∥BC 且PD =12BC .在△SBC 中,Q 为SB 的中点,R 为SC 的中点, ∴QR ∥BC 且QR =12BC .∴QR ∥PD 且QR =PD , 则四边形PDRQ 为平行四边形, ∴PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD , ∴PQ ∥平面SCD .(3)解 存在点N 为SC 的中点,使得平面DMN ⊥平面ABCD .连接PC ,DM 交于点O ,连接PM ,SP ,NM ,ND ,NO , ∵PD ∥CM ,且PD =CM , ∴四边形PMCD 为平行四边形, ∴PO =CO .又∵N 为SC 的中点, ∴NO ∥SP . 易知SP ⊥AD .∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,且SP ⊥AD , ∴SP ⊥平面ABCD , ∴NO ⊥平面ABCD . 又∵NO ⊂平面DMN ,∴平面DMN ⊥平面ABCD .例 (12分)如图,四棱锥P -ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,点E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF . 审题路线图(1)E ,F 是中点―――→取PD 的中点M 构造▱AEFM ―→线线平行EF ∥AM ―→线面平行EF ∥平面PAD (2)面面垂直PAD ⊥ABCD ―――→PA ⊥AD 线面垂直PA ⊥底面ABCD ―→线线垂直PA ⊥DE―――――――――→Rt△ABH ≌Rt△DAE 线线垂直DE ⊥AH ―→线面垂直DE ⊥平面PAH ―→ 面面垂直平面PAH ⊥平面DEF 规范解答·评分标准证明 (1)取PD 的中点M ,连接FM ,AM .∵在△PCD 中,F ,M 分别为PC ,PD 的中点, ∴FM ∥CD 且FM =12CD .∵在正方形ABCD 中,AE ∥CD 且AE =12CD ,∴AE ∥FM 且AE =FM , 则四边形AEFM 为平行四边形,∴AM ∥EF .…………………………………………………………………………………4分又∵EF ⊄平面PAD ,AM ⊂平面PAD ,∴EF ∥平面PAD .…………………………………………………………………………6分 (2)∵侧面PAD ⊥底面ABCD ,PA ⊥AD , 侧面PAD ∩底面ABCD =AD ,∴PA ⊥底面ABCD .∵DE ⊂底面ABCD ,∴DE ⊥PA . ∵E ,H 分别为正方形ABCD 边AB ,BC 的中点, ∴Rt△ABH ≌Rt△DAE ,则∠BAH =∠ADE ,∴∠BAH +∠AED =90°,则DE ⊥AH .…………………………………………………………………………………8分 ∵PA ⊂平面PAH ,AH ⊂平面PAH ,PA ∩AH =A ,∴DE ⊥平面PAH .…………………………………………………………………………10分 ∵DE ⊂平面DEF ,∴平面PAH ⊥平面DEF .…………………………………………………………………12分 构建答题模板[第一步] 找线线:通过三角形或四边形的中位线,平行四边形、等腰三角形的中线或线面、面面关系的性质寻找线线平行或线线垂直.[第二步] 找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系的性质找线面垂直或平行.[第三步] 找面面:通过面面关系的判定定理,寻找面面垂直或平行. [第四步] 写步骤:严格按照定理中的条件规范书写解题步骤.1.如图,在空间四面体ABCD 中,若E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点.(1)求证:四边形EFGH 是平行四边形; (2)求证:BC ∥平面EFGH .证明 (1)∵在空间四面体ABCD 中,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点, ∴EF 綊12AD ,GH 綊12AD ,∴EF 綊GH ,∴四边形EFGH 是平行四边形.(2)∵E ,H 分别是AB ,AC 的中点, ∴EH ∥BC .∵EH ⊂平面EFGH ,BC ⊄平面EFGH , ∴BC ∥平面EFGH .2.(2017·北京)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 因为PA ⊥AB ,PA ⊥BC , 所以PA ⊥平面ABC .又因为BD ⊂平面ABC ,所以PA ⊥BD . (2)证明 因为AB =BC ,D 是AC 的中点, 所以BD ⊥AC . 由(1)知,PA ⊥BD , 所以BD ⊥平面PAC . 所以平面BDE ⊥平面PAC .(3)解 因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE . 因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.3.(2017·北京海淀区模拟)如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =2,E 是侧棱PA 上的动点.(1)求四棱锥P -ABCD 的体积;(2)如果E 是PA 的中点,求证:PC ∥平面BDE ;(3)是否不论点E 在侧棱PA 的任何位置,都有BD ⊥CE ?证明你的结论. (1)解 ∵PA ⊥底面ABCD , ∴PA 为此四棱锥底面上的高.∴V 四棱锥P -ABCD =13S 正方形ABCD ×PA =13×12×2=23.(2)证明 连接AC 交BD 于点O ,连接OE .∵四边形ABCD 是正方形, ∴AO =OC . 又∵AE =EP , ∴OE ∥PC .又∵PC ⊄平面BDE ,OE ⊂平面BDE , ∴PC ∥平面BDE .(3)解 不论点E 在侧棱PA 的任何位置,都有BD ⊥CE . 证明:∵四边形ABCD 是正方形, ∴BD ⊥AC .∵PA ⊥底面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD . 又∵PA ∩AC =A , ∴BD ⊥平面PAC . ∵CE ⊂平面PAC , ∴BD ⊥CE .4.如图,已知正方形ABCD 的边长为2,AC 与BD 交于点O ,将正方形ABCD 沿对角线BD 折起,得到三棱锥A -BCD .(1)求证:平面AOC ⊥平面BCD ;(2)若三棱锥A -BCD 的体积为63,且∠AOC 是钝角,求AC 的长. (1)证明 ∵四边形ABCD 是正方形, ∴BD ⊥AO ,BD ⊥CO .折起后仍有BD ⊥AO ,BD ⊥CO ,AO ∩CO =O , ∴BD ⊥平面AOC . ∵BD ⊂平面BCD , ∴平面AOC ⊥平面BCD . (2)解 由(1)知BD ⊥平面AOC , ∴V A -BCD =13S △AOC ·BD ,∴13×12OA ·OC ·sin∠AOC ·BD =63, 即13×12×2×2×sin∠AOC ×22=63, ∴sin∠AOC =32. 又∵∠AOC 是钝角, ∴∠AOC =120°.在△AOC 中,由余弦定理,得AC 2=OA 2+OC 2-2·OA ·OC ·cos∠AOC=(2)2+(2)2-2×2×2×cos 120°=6, ∴AC = 6.5.(2016·四川)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)求证:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD .所以PA ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD , 所以平面PAB ⊥平面PBD .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规范答题示例6 空间中的平行与垂直关系
典例6 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,E ,
F ,H 分别为AB ,PC ,BC 的中点.
(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF
.
审题路线图
(1)条件中各线段的中点――――→设法利用中位线定理取PD 的中点M ――――――→考虑平行关系
长度关系
平行四边形AEFM ―→AM ∥EF ――――→线面平行
的判定定理EF ∥平面PAD
(2)平面PAD ⊥平面ABCDPA ⊥AD ――――→面面垂直的性质PA ⊥平面ABCD ―→PA ⊥DE ――――――――→正方形ABCD 中E ,H 为AB ,BC 中点
DE ⊥AH ―――――→线面垂直的判定定理DE ⊥平面PAH ――――→面面垂直的
判定定理平面PAH ⊥平面DEF
评分细则(1)第(1)问证出AE綊FM给2分;通过AM∥EF证线面平行时,缺1个条件扣1分;利用面面平行证明EF∥平面PAD同样给分;
(2)第(2)问证明PA⊥底面ABCD时缺少条件扣1分;证明DE⊥AH时只要指明E,H分别为正方形边AB,BC的中点得DE⊥AH不扣分;证明DE⊥平面PAH只要写出DE⊥AH,DE⊥PA,缺少条件不扣分.
跟踪演练6 如图,在三棱锥V—ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB;
(3)求三棱锥V—ABC的体积.
(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,
又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .
(2)证明 因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .
又因为平面VAB ⊥平面ABC ,平面VAB ∩平面ABC =AB ,且OC ⊂平面ABC , 所以OC ⊥平面VAB .
又OC ⊂平面MOC ,所以平面MOC ⊥平面VAB . (3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,
所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .
所以三棱锥C —VAB 的体积等于13·OC ·S △VAB =3
3,
又因为三棱锥V —ABC 的体积与三棱锥C —VAB 的体积相等, 所以三棱锥V —ABC 的体积为
33
.。