(高中数学思想方法之)数列
数列问题中的数学思想方法
数列问题中的数学思想方法(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列问题中的数学思想方法,手机号码;电话006;湖南祁东育贤中学 周友良 421600数列是高中数学的重要内容,它与数、式、函数、方程、不等式有着密切的联系,是每年高考的必考内容。
同时数列综合问题中蕴含着许多数学思想与方法(如函数思想、方程思想、分类讨论、化归与转化思想、归纳猜想等)。
在处理数列综合问题时,若能灵活运用这些数学思想与方法,则会取得事半功倍的效果。
一、函数思想数列是一种特殊的函数,数列的通项公式和前n 项和公式都可以看成n 的函数,也可以看成是方程或方程组,特别是等差数列的通项公式可以看成是n 的一次函数,而其求和公式可以看成是常数项为零的二次函数,因此许多数列问题可以用函数方程的思想进行分析,加以解决。
例1.已知数列的通项公式10102+-=n n a n ,这个数列从第几项起,各项的数值逐渐增大从第几项起各项的数值均为正数列中是否存在数值与首项相同的项分析:根据条件,数列{}n a 的点都在函数10102+-=x x y 的图象上,如右图利用图象根据二次函数的性质可得,这个数列从第5项开始,各项的数值逐渐增大,从第9项起,各项的数值均为正数,第9项是与首项相同的项。
例2.已知数列{}n a 是等差数列,若10=n S ,502=n S ,求n S 3。
解:)1(2)1(2111-+=-+=n d a n d n n na n S n ,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,其通项为一次函数,设b ax x f +=)(,则点),(n S n n ,)2,2(2nSn n ,在其图象上,n b an 10=+∴,n b n a 2502=+⋅∴,nb n an 5,15-==∴, 故nn n S n n a n f n 5315353)3(3-⋅==-⋅=,解之得:1203=n S 。
高中数学-数列
数列的概念及简单表示法一、数列的概念1.数列定义:按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项2.数列与函数的关系:从函数观点看,数列可以看成以正整数集N+(或它的有限子集)为定义域的函数a n=f(n).当自变量按照从小到大的顺序依次取值时所对应的一列函数值3.数列有三种表示法:是列表法、图象法和通项公式法二、数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N+递减数列a n+1<a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列三、数列的两种常用的表示方法1.通项公式:如果数列{a n}的第n 项a n 与n 之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式2.递推公式:如果已知数列{a n}的第1 项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式四、通项公式的求法:1.观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.如数列2 , -1,10 , -17 , 26 , -37 ,,先将数列变为 2 , -5 , 10 , -17 , 26 , -37 ,,显然3 7 9 11 13 3 5 7 9 11 13S ⎪ ⎪ ⎨ - S 分母为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故n +1n 2 +1 a n = (-1)2n +1 .又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7⨯999, 999,而 9,99,999,依次又可写成10 -1,102-1,103-1, ,因此,这个数列的通项公式为a = 7 (10n -1)2. 公式法:(1) 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 n9(n = 1) (n ≥ 2) (2) 对于等差数列和等比数列,把已知条件代入其通项公式、前 n 项和公式列出方程(组)求解3.累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法 ⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和4. 累乘法:形如a = f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时,用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)=⎩5. 构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法 (1)对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加q 得, a+ q = p (a +q ) ,这样就构造出一个等比数列⎧a +q ⎫ ,其公比 p -1 n +1 p -1 n p -1 ⎨ n p -1⎬⎩ ⎭为 p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -1(2)对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列,设 a + xa =y (a + xa ) (*),显然⎧ y - x = p.把方程组的解代入(*)便可构成一个等 n +1 n n n -1 ⎨xy = q比数列,继而可以求出通项公式(3)以 a = ma n 给出的数列(p , q , m 均为非零整数),当m = q 时,可以构造一个 n +1pa n + q等差数列;当m ≠ q 时,可以构造一个一阶递推公式6. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n1n n 等 差 数 列 及 其 前 n 项 和一、等差数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2. 数学语言表达式: a n +1 - a n = d ( n ∈N +,d 为常数),或a n - a n -1 = d ( n ≥2,d 为常数)3. 等差中项:如果三个数x ,A ,y 组成等差数列,那么 A 叫做 x 和 y 的等差中项,且有 A =x + y 2二、等差数列的通项公式与前n 项和公式1. 若等差数列{a n }的首项是a ,公差是d ,则其通项公式为a = a + (n -1)d = dn + a - d (n ∈ N *)n11通项公式的推广: a = a + (n - m )d ( m , n ∈N) ⇒ d =a n - a mnm+n - m2. 等差数列的前n 项和公式S= na + n (n -1) d = n (a 1 + a n ) = d n 2 + (a - 1 d )n n 12 22 1 2 (其中n ∈N +, a 1 为首项,d 为公差, a n 为第n 项)数列{a }是等差数列⇔ S = An 2+ Bn(A , B 为常数)三、等差数列的性质1. 非零常数列既是等差数列又是等比数列2. 数列{ a n }为等差数列⇔ a n = pn + q (p,q 是常数)3. 数列{λa n + b }( λ, b 为常数)仍为等差数列4. 若m + n = p + q (m , n , p , q ∈ N + ),则a m + a n = a p + a q5. 等差数列{a n }中,若项数成等差数列,则对应的项也成等差数列6. 等差数列{a n }中,隔相同的项抽出一项所得到的数列仍为等差数列p +nq 2k 2k n n 7. 若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d8. 若{a n }、{b n }是等差数列,则{ka n } 、{ka n + pb n }{a }( p , q ∈ N *)…也成等差数列 9.单调性:{a n }的公差为d ,则: (1) d > 0 ⇔ {a n }为递增数列 (2) d < 0 ⇔ {a n }为递减数列 (3) d = 0 ⇔ {a n }为常数列( k 、 p 是非零常数)、10. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k - S … 是等差数列 11. 等差数列{a n }的单调性:当d >0 时, {a n }是递增数列;当d <0 时, {a n }是递减数列;当d =0 时, {a n }是常数列12. 若{a n }是等差数列,公差为d ,则a k 、a k + m 、a k +2m …(k ,m ∈N +)是公差为md的等差数列13. 若数列{a}是等差数列,前n 项和为S ,则⎧S n ⎫也是等差数列,其首项和{a}的首 nn⎨ n ⎬ n项相同,公差是{a n⎩ ⎭}公差的 1214. 若三个数成等差数列,则通常可设这三个数分别为 x - d , x , x + d ;若四个数成等差数列,则通常可设这四个数分别为 x - 3d , x - d , x + d , x + 3d 四、等差数列前n 项的性质1. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k- S … 是等差数列2. 若数列{a } {b } 都是等差数列,其前 n 项和分别为S T ,则a n= 2n -1n,nn ,nbTn 2n -13. 若数列{a }的前n 项和S = An 2+ Bn +C (A , B 为常数,C ≠ 0) ,则数列{a n }从第二项起是等差数列sn⎨ 2n偶奇 中 偶 奇 偶偶4. 若数列{a n }是等差数列的充要条件是前n 项和公式S n = f (n ) ,是n 的二次函数或一次函数且不含常数项,即 S = An 2 + Bn (A , B 为常数,A 2 +B 2 ≠ 0)5. 等差数列{a n }中,若a < 0,d > 0 ( a ≤ 0 的n 的最大值为k )则S 有最小值S ,前n 项绝对值的和T n 1 = ⎧⎪-s n nn ≤ k;若a > 0,d< 0,( n a n ≥ k0 的n 的最大 ⎪⎩s n - 2s k n ≥ k + 1值为k )则S 有最大值S ,前n 项绝对值的和T = ⎧⎪s nn ≤ kn k n⎨ ⎪⎩2s k - s n n ≥ k + 16. 等差数列{a n }中,若项数为奇数2n - 1,则中间项为a , S =(2n-1)a ,S - S = n - 1 d s n + a , 奇 = 奇 偶 2 1S n - 1 若n 为偶数,则S = nd2若n 为奇数,则S - S =a (中间项)7. 等差数列{a n }中,若项数n 为奇数,设奇数项的和和偶数项的和分别为S 、S ,则sn + 1 s a n奇=;若项数n 为偶数, 奇= 2S n - 1S a n + 12五、等差数列的前 n 项和的最值等差数列{a n }中1. 若a 1>0,d <0,则S n 存在最大值2. 若a 1<0,d >0,则S n 存在最小值六、等差数列的四种判断方法1. 定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列2. 等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列3. 通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列4. 前 n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列1- S 偶 偶 奇mb n 等 比 数 列 及 其 前 n 项 和一、等比数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用q ( q ≠0)表示 2.数学语言表达式: a n= q ( n≥2, q 为非零常数),或 an +1 = q ( n ∈N , q 为非零常数)+a n -1 a n3. 等比中项:如果三个数x ,G ,y 组成等比数列,那么G 叫做 x 与 y 的等比中项,其中G = ±二、等比数列的通项公式及前n 项和公式1. 若等比数列{a }的首项为a ,公比是q ,则其通项公式为a = a q n -1n通项公式的推广: a n 1= a q n - mn 1a (1- q n )a - a q 2. 等比数列的前n 项和公式:当q =1 时, S n = na 1 ;当q ≠1 时, S n =11- q= 1 n1- q三、等比数列的性质 1. q = 1 ⇒{a n }为常数列2. q < 0 ⇒{a n } 为摆动数列3. 若正项数列{a n }为等比数列,则数列{log a a n }为等差数列4. 若{a }是等比数列,则{λa }(λ 为不等于零的常数),{a 2}⎧ 1 ⎫ {a r }(r ∈ Z ) 是等n n n⎨ a ⎬ n ⎩ n ⎭比数列,公比依次是q ,q 2 1 q r ,若数列{a } ,{b }都是等比数列且项数相同,则⎧ a n ⎫是等比数列, , n nq ⎨ ⎬ ⎩n ⎭ 5. 若数列{a }为等差数列,则数列{ba n}为等比数列6. 若 m + n = p + q (m , n , p , q ∈ N + ) ,则 a⋅ a = a ⋅ a ,当 p = q 时, a ⋅ a = a 2 即a p 是a m 和a n 的等比中项mnpqm n p7. 相隔等距离的项组成的数列仍是等比数列,即a k 、a k + m 、a k +2m …仍是等比数列,公比为xy1 1 1 1 2n ⎩ n ⎩ q m (即若项数成等差数列,则对应的项也等比数列)8. 任意两数a , b 都存在等差中项为a + b,但不一定都存在等比中项,当且仅当a , b 同号时 2才存在等比中项为9. 任意常数列都是等差数列,但不一定都是等比数列,当且仅当非零的常数列即是等差数列又是等比数列10. 等比数列{a n }的单调性:(1) 当q >1, a >0 或 0< q <1, a <0 时,数列{a n }是递增数列 (2) 当q >1, a <0 或 0< q <1, a >0 时,数列{a n }是递减数列 (3) 当q =1 时,数列{a n }是常数列11. 当q ≠-1,或q =-1 且 n 为奇数时,S n 、S 2n - S n 、S 3n - S 仍成等比数列,其公比为q n12. 等比差数列{a n }: a n +1 = qa n + d , a 1 = b (q ≠ 0) 的通项公式为⎧b + (n -1)d q = 1⎪ a n = ⎨bq n+ (d - b )q n -1 - d ;⎪q -1 q ≠ 1 ⎧nb + n (n -1)d(q = 1)其前 n 项和公式为 s n ⎪ ⎨(b - d ) 1- q + d n(q ≠ 1)⎪1- q q -1 1- q(四)判断给定的数列{a n }是等比数列的方法(1)定义法: an +1 = q (不为 0 的常数)⇔数列{a a n}为等比数列(2)中项法: a ⋅ a= a2⇔数列{a }为等比数列mn +2n +1n(3)前n 项和法:数列{a n }的前n 项和S n = A - Aq n (A 是常数, A ≠ 0, q ≠ 0, q ≠ 1 )⇔数列{a n }为等比数列= nS 1 1 ⎨ - S 数 列 求 和一、公式法1. 等差数列的前n 项和公式: S n2. 等比数列的前n 项和公式 (1) 当q =1 时, S n = na 1= na 1+n (n -1) d = n (a 1 + a n)2 2a (1- q n )a - a q(2) 当q ≠1 时, S n = 11- q = 1 n1- q3. 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 (n = 1) (n ≥ 2) 4. 差比数列求和:通项为a n b n 型,其中{a n }是等差数列,{b n }是等比数列,称为差比数列.求和方法为(设 d , q 分别是{a n },{b n }的公差、公比):令S n = a 1b 1 + a 2b 2 + + a n b n …①,两边同乘以q 得qS n = a 1b 1q + a 2b 2q + + a n b n q , ∴qS n = a 1b 2 + a 2b 3 + + a n b n +1 …②,①-②得 (1- q )S n = a 1b 1 + (a 2 - a 1)b 2 + + (a n - a n -1)b n - a n b n +1 = a 1b 1 + d b 2 + d b 3 + + d b n -1 + d b n - a n b n +1 = a 1b 1 + d (b 2 + b 3 + + b n -1 + b n ) - a n b n +1= a 1b 1 + d ⨯b (1- qn) 1- q-a nb n +1,∴当q ≠ 1时, Sn = a 1b 1 - a n b n +1 + d ⨯ 1- q b (1- q n) (1- q )2二、观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.1.数列 2 , -1,10 , - 17 , 26 , - 37 , ,先将数列变为 2 , - 5 , 10 , - 17 , 26 , - 37, ,分母379 111335 79 11 13n +1n 2 +1 为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故a = (-1)2n +1 .2.又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7 ⨯999,9 9 9,而 9,99,999,依次又可写成10 -1,102-1,103 -1, ,因此,这个数列的通项公式为a = 7 (10n -1)n9n⎪ ⎪ 3. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n三、累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和四、累乘法:形如a= f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)五、构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法1. 对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加qp -1得, a +q = p (a +q) ,这样就构造出一个等比数列⎧a + q ⎫ ,其公比为 n +1p -1 np -1 ⎨ n p -1⎬⎩ ⎭p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -12. 对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列, =⎩设 a + xa =y (a + xa ) (*),显然⎧y - x = p.把方程组的解代入(*)便可构成一个等n +1n n n -1⎨xy = q比数列,继而可以求出通项公式3. 以 a= ma n 给出的数列( p , q , m 均为非零整数),当m = q 时,可以构造一个等n +1pa n + q差数列;当m ≠ q 时,可以构造一个一阶递推公式 4. 形如a n +1 = pa n + q (其中 p , q 均为常数且 p ≠ 0 )型的递推式:(1) 若 p = 1时,数列{ a n }为等差数列 (2) 若q = 0 时,数列{ a n }为等比数列(3) 若 p ≠ 1 且q ≠ 0 时,数列{ a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设a n +1 + λ = p (a n + λ) ,展开移项整理得a n +1 = pa n + ( p -1)λ ,与题设a = pa + q 比较系数(待定系数法)得λ =q, ( p ≠ 0) ⇒ a + q = p (a + q)n +1np -1 n +1p -1n p -1⇒ a + q= p (a + q ) ,即⎧a + q ⎫构成以a + q为首项,以 p 为公比的等比 np -1 n -1 p -1 ⎨ n p -1⎬ 1 p -1⎩ ⎭数列.再利用等比数列的通项公式求出⎧a + q ⎫的通项整理可得a . ⎨ n p -1⎬ n法二:由a= pa ⎩ ⎭ + q 得a = pa + q (n ≥ 2) 两式相减并整理得a n +1 - a n= p , 即 n +1 n n n -1 a - an n -1{a n +1 - a n }构成以a 2 - a 1 为首项,以 p 为公比的等比数列.求出{a n +1 - a n }的通项再转化为累加法便可求出a n .5. 形如a n +1 = pa n + f (n ) ( p ≠ 1) 型的递推式: (1) 当 f (n ) 为一次函数类型(即等差数列)时:法一:设a n + An + B = p [a n -1 + A (n -1) + B ] ,通过待定系数法确定 A 、B 的值,转化成以a 1 + A + B 为首项,以 p 为公比的等比数列{a n + An + B } ,再利用等比数列的通项公式求出{a n + An + B } 的通项整理可得a n .法二:当 f (n ) 的公差为d 时,由递推式得: a n +1 = pa n + f (n ) , a n = pa n -1 + f (n -1)两式相减得: a n +1 - a n = p (a n - a n -1 ) + d ,令b n = a n +1 - a n 得: b n = pb n -1 + d 转化为“4”求出 b n ,再用累加法便可求出a n .(2) 当 f (n ) 为指数函数类型(即等比数列)时:法一:设a n + λ f (n ) = p [a n -1 + λ f (n -1)],通过待定系数法确定λ 的值,转化成以 a 1 + λ f (1) 为首项,以 p 为公比的等比数列{a n + λ f (n )} ,再利用等比数列的通项公式求出{a n + λ f (n )} 的通项整理可得a n .法二:当 f (n ) 的公比为q 时,由递推式得: a n +1 = pa n + f (n ) ——①,a n = pa n -1 + f (n -1) ,两边同时乘以q 得a n q = pqa n -1 + qf (n -1) ——②,由①②两式相减得a - a q = p (a - qa ) ,即 a n +1 - qa n= p ,在转化为类型Ⅴ㈠便可求出a . n +1 n n n -1 a - qa nn n -1法三:递推公式为an +1 = pa n + q n (其中p ,q 均为常数)或a = pa n + rq n (其中p ,q, r 均为常数)时,要先在原递推公式两边同时除以q n +1 ,得:a n +1 = p • a n + 1 ,引入辅助数列{b }(其中b = a n ),得: b = p b + 1 再应用类型 q n +1 q q n qn n q nn +1 q n q“4”的方法解决。
高考数学中的数列问题解析
高考数学中的数列问题解析数列作为高中数学中的一个重要知识点,也是高考数学考试必考内容之一,其考察形式多样。
解题要求考生掌握数列的概念和性质,熟悉数列的常见变形和常用公式,能够灵活运用数列的基本思想和方法,多角度、多方式考虑问题,进行问题转化和求解,从而获得高分。
一、数列的概念和性质数列是由一定的规律按照一定的次序排列起来的一列数,其中每一个数都叫做这个数列的项。
对于数列 $\{a_n\}$, $a_n$表示第 $n$ 项,$n$称为项号。
项号从1开始,依次递增,可以是自然数或正整数等。
数列也可以用通项公式或递推公式来表示。
数列中有些重要的性质,比如数列的通项公式和前n项和的公式,需要考生掌握。
比较常见的有等差数列和等比数列。
1.等差数列如果一个数列从第二项开始,每一项与它前面的项之差等于同一个常数 $d$,那么这个数列就叫做等差数列。
等差数列的通项公式和前n项和分别为:$$a_n=a_1+(n-1)d$$$$S_n=\dfrac{n}{2}(a_1+a_n)=\dfrac{n}{2}[2a_1+(n-1)d]$$其中,$a_1$表示首项,$d$表示公差,$S_n$表示前$n$ 项和。
2.等比数列如果一个数列从第二项开始,每一项与它前面的项之比等于同一个常数 $q$,那么这个数列就叫做等比数列。
等比数列的通项公式和前n项和分别为:$$a_n=a_1q^{n-1}$$$$S_n=\dfrac{a_1(1-q^n)}{1-q}$$其中,$a_1$表示首项,$q$表示公比,$S_n$表示前$n$ 项和。
二、数列的常见变形和常用公式在高考中,常常会出现各种数列的常见变形,考生需要熟悉各种数列变形的求法和特点,这样才能在考试中不失分机会。
1.递推数列递推数列是指每一项都是由它前面的项或几项经过一定的运算算出来的,因此我们称之为递推数列。
比如斐波那契数列、鬼谷数列等就是递推数列的典型例子。
在高考数学考试中,考生通常需要利用递推数列的递推式来求得数列的某一项。
高中数学-数列详解
高中数学-数列详解本文以高中数学的“数列”为例,进行详细介绍和解释。
一、基本概念数列是由一系列数字按照一定规律排列而成的序列,通常用a1, a2, a3, … , an表示。
其中,a1表示数列的第一项,an 表示数列的第n项。
数列中的规律可以通过一些公式或者关系式来描述,这些公式或者关系式被称为数列的通项公式。
二、基本概念之等差数列等差数列是指数列中相邻两项之差等于一个常数d,这个常数d被称为等差数列的公差。
即,对于等差数列a1, a2, a3, … , an,有如下关系式:a2 - a1 = a3 - a2 = … = an - a(n-1) = d等差数列的通项公式可以表示为:an = a1 + (n-1)d其中,an表示数列的第n项,a1表示数列的第一项,d 表示数列的公差。
三、基本概念之等比数列等比数列是指数列中相邻两项之比等于一个常数q,这个常数q被称为等比数列的公比。
即,对于等比数列a1, a2, a3, … , an,有如下关系式:a2 / a1 = a3 / a2 = … = an / a(n-1) = q等比数列的通项公式可以表示为:an = a1q^(n-1)其中,an表示数列的第n项,a1表示数列的第一项,q 表示数列的公比。
四、例题解析1. 若数列9, 12, 15, …, an是一个等差数列,且其中第13项为30。
求an。
解:根据等差数列的通项公式,可以得到:an = a1 + (n-1)d由于第13项为30,所以可以得到:a1 + 12d = 30又因为数列9, 12, 15, …是等差数列,所以可以得到:a2 - a1 = a3 - a2 = … = a13 - a12 = d因此,可以得到:a2 = a1 + da3 = a2 + d = a1 + 2d…a13 = a12 + d = a1 + 11d将上式代入a1 + 12d = 30,解得a1= -15,d=3。
高中数学解题方法系列:数列中求和问题的7种方法
高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。
高中数学数列知识点归纳
高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。
例如,1,2,3,4,5……就是一个自然数列。
数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。
数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。
我们用{aₙ} 来表示一个数列。
二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。
例如,数列 1,2,3,4,5 就是一个有穷数列。
(2)无穷数列:项数无限的数列。
比如自然数列 1,2,3,4,……就是一个无穷数列。
2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。
例如,数列 1,2,4,8,16,……就是一个递增数列。
(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。
比如数列 10,8,6,4,2 就是一个递减数列。
(3)常数列:各项都相等的数列。
例如,数列 3,3,3,3,……就是一个常数列。
(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。
比如数列 1,-1,1,-1,1,……就是一个摆动数列。
三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。
例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。
通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。
四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。
例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
掌握四种思想 学好数列知识
的通 项为 = 2 一 ) , 中数列{n 1 (n 1扩~ 其 2~ J 是等 差数列 , 数列{ } 1 是等比数列。
( 当 a l 时 , + + +… + 1) = S=1 3 5
( 1) 。 2一 =
( ) 。 1时 ,. 1 3+ a …+ 2当 ≠ ‘S= + a 5% ‘ ( — )-, 2 1a ① n n
( 等 差 ) 列 的 这 一 内在 关 系列 出 方 程 或 数 ( )通 过 解 方 程 ( ) 方 法 解决 问题 。 组 , 组 的
二、 函数 思 想
(≠O的前 n项之和。 n ) 分析 :这里需要注意 d 否等 于 1 是 ,
解 : 列 l 3 , , , n 1 ~, 数 ,0 5 … ( — ) 2 …
,
(
(
, 。 +。)上 是 减 函 数 ,在 ( o 一o ,
( _ =P +p 1 P) +p。 ・ + ・ +p + 一
分 析 :本 题 可 以 结 合 等 比数 列 的 求 和 公 式 来列 方 程 组 进 行求 解。
解 :‘6 23 _ ≠l 由 s= ・ SI1 . q 。 6
£
、 g )上也 是 减 函 数 ,从 而 可 知 当 n 9 / =
时 %最 小 ,= 0时 %最 大 。 nl
哔 一 , 印
{^ r一 P1
,
得 g I {
:
f
: ① ,
最 大 项和 最 小 项分 别 为 ao 9 ln。 j 点 评 : 解 决 数 列 问题 时 , 以 把 数 在 可
问 题 , 能够 强 化 学 生 的 解 题 意 识 , 学 才 让
么 亚宁
高中数学教学课例《数列》课程思政核心素养教学设计及总结反思
学方法,结合师生共同讨论、归纳。在课堂结构上,我
根据学生的认知水平,我设计了①创设情境——引入概
念②观察归纳——形成概念③讨论研究——深化概念
④即时训练—巩固新知⑤总结反思——提高认识⑥任
务后延——自主探究六个层次的学法,它们环环相扣,
层层深入,从而顺利完成教学目标。
(一)创设情境——引入概念
我经常在思考:长期以来,我们的学生为什么对数
此,在教学中,不仅要使学生“知其然”而且要使学生
“知其所以然”。为了体现以学生发展为本,遵循学生
的认知规律,体现循序渐进与启发式的教学原则,我进
行了这样的教法设计:在教师的引导下,创设情景,通
过开放性问题的设置来启发学生思考,在思考中体会数
学概念形成过程中所蕴涵的数学方法,使之获得内心感
受。
本节课我采用提问、讲述、观察发现、启发引导相
学不感兴趣,甚至害怕数学,其中的一个重要因素就是
数学离学生的生活实际太远了。事实上,数学学习应该
与学生的生活融合起来,从学生的生活经验和已有的知
识背景出发,让他们在生活中去发现数学、探究数学、
认识并掌握数学。
教学过程
1、由生活中的具体的数列实例引入: a、时间:时钟、挂历 b、植物:植物的茎 2、用古
1、知识与技能:通过枚举归纳: ①认识数列的特点,掌握数列的概念及表示方法。 ②了解数列通项公式的意义及数列分类。③能由数列的 通项公式求出数列的各项,反之,能由数列的前几项写 教学目标 出数列的一个通项公式。 2、过程与方法:通过对数列通项公式的探究和应 用,帮助学生通过问题解决获得数学知识;在交流过程 中,养成表述、抽象、类比、概括、总结的思维习惯。 3、情感态度与价值观:通过各种有趣的,贴近学
高中数学数列答题技巧
高中数学数列答题技巧一、数列问题解题方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证为同一常数。
(2)通项公式法:①若= +(n-1)d= +(n-k)d ,则为等差数列;②若,则为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列中,有关的最值问题——常用邻项变号法求解:(1)当>0,d<0时,满足的项数m使得取最大值.(2)当<0,d>0时,满足的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项1.证明数列是等差或等比数列常用定义,即通过证明或而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意与之间关系的转化。
如:=,=.4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k 为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。
4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m -S3m、……仍为等差数列。
高中数学数列方法及技巧
高中数学数列方法及技巧高中数学数列方法及技巧数列是高中数学中非常重要的一个概念,它是数学中的一个基础性概念,也是建立在数值集合上最简单、最基本的数学对象之一。
数列在数学思想发展史上扮演着重要的角色,同时,数列也是很多其它数学分支的重要基础。
高中数学中讲解数列主要有以下几个方面:数列的概念,数列的通项公式,数列的各种性质和求和公式。
在学习数列的过程中,同学们会遇到许多问题,因此需要掌握一些方法和技巧,以便更好地理解和掌握数列。
1. 数列的概念数列是一些有规律的数按一定的顺序排列而组成的集合,通常用{a1,a2,……,an}表示,其中an表示第n项。
数列的公式可以有多种表示方法,如一般项式、递推式等。
数列可以是有限数列或无限数列,其中有限数列是具有特定的项数,而无限数列是无限多个项数的序列。
数列的通项公式指的是某一项的通项公式,也就是解决数列的问题需要用到的最基本公式。
2. 数列的通项公式数列的通项公式指的是一个递推数列中任意一项的数值都可以根据前面一些项的值来计算出来,用数学公式表示就是:an=f(a1,a2,……,an-1)(n≥k)其中,f为通项公式,a1,a2,……,an-1是前面项的值,n为第n项,k为第一项。
对于一些常见的数列,我们可以通过观察规律,找出它们的通项公式,例如斐波那契数列:1,1,2,3,5,8,13,……每一项都是前两项之和,因此通项公式就是an=an-1+an-2。
3. 数列的性质数列有许多性质,其中比较重要的有以下几个。
(1)数列的极限数列的极限是指随着项数无限增加,数列的值无限逼近某一特定的数,也称为数列的极值。
如果一个数列存在极限,那么它的极限是唯一的。
(2)数列的单调性如果数列中任意一项的后一项都大于(或小于)它自己,那么这个数列是单调递增的(或递减)的。
如果对于数列中不同的两个项a和b,当n趋向于无穷大时,其差数列{an-bn}也趋向于0,则称数列{an}收敛于b。
高中数学数列知识点总结(优秀3篇)
高中数学数列知识点总结(优秀3篇)科学是一种以实证为基础,追求真理和解决问题的方法论,它致力于揭示客观规律和产生创新。
哲学是一种以思辨为基础,追求人类意义和价值的方法论,它致力于探究人类的本质和存在。
为您精心收集了3篇《高中数学数列知识点总结》,亲的肯定与分享是对我们最大的鼓励。
高中数学数列知识点总结篇一数列的相关概念1.数列概念①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。
第四章 数列(单元解读)(人教A版2019选择性必修第二册)
约2课时 约4课时 约4课时 约2课时 约2课时
四、本章知识网络
五、本章重点
数列的概念是研究数列的基础,因此是本章教学的重点. 此外,等差数列、等比数列是两种 “最基本”的数列,对它 们的概念、取值规律与应用的研究,将为学生今后进一步学习 其他类型 的数列打下基础,因此等差数列、等比数列的概念、 性质与应用也是本章的重点内容.
十一、本章知识梳理
4.项的个数的“奇偶”性质: (1)若等差数列的项数为 2n,则 S 偶-S 奇=nd,SS偶奇=aan+n 1. (2)若等差数列的项数为 2n-1,则 S 奇-S 偶=an,SS奇偶=n-n 1(S 奇=nan,S 偶 =(n-1)an). 5.已知等差数列{an}和{bn}的前 n 项和分别为 Sn,Tn,则abnn=TS22nn--11,abmn= 2n-1 S2m-1 2m-1·T2n-1.
十一、本章知识梳理
等差数列前n项和的最值 (1)在等差数列{an}中,
an≥0, 当a1>0,d<0时,Sn有最 大 值,使Sn取得最值的n可由不等式组__a_n_+_1≤__0__ 确定;
an≤0, 当a1<0,d>0时,Sn有最 小 值,使Sn取得最值的n可由不等式组__a_n_+_1≥__0__ 确定.
人教版 高中数学选择性必修二
第四章 《数列》 单元解读
一、总体设计
数列是一类特殊的函数,是数学重要的研究对象,是研究其他函数 的基本工具,在日常生活中也有着广泛的应用。
本章通过对具体例子的分析,抽象出了数列的概念,通过数学运算、 逻辑推理等研究了两类特殊的数列——等差数列和等比数列的取值规律 ,并运用它们解决了一些问题。因为数列是一类特殊的函数,所以本章 注重函数思想和方法的应用。
高中数学数列知识点总结(精华版)
一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序〞排列的,在这里,只强调有“次序〞,而不强调有“规律〞.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果数列{}n a 的第一项〔或前几项〕,且任何一项n a 与它的前一项1-n a 〔或前几项〕间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、*2()156n n a n N n =∈+,那么在数列{}na 的最大项为__〔答:125〕; 2、数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,那么n a 与1+n a 的大小关系为___〔答:n a <1+n a 〕;3、数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围〔答:3λ>-〕;4、一给定函数)(x f y =的图象在以下图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,那么该函数的图象是 〔〕〔答:A 〕二、 等差数列1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
解数列的十种思想
解数列的十种思想数列是高中数学的重要内容之一,又是高考数学的重点,由于数列涉及到的运算多,技巧性强,如果没有一些数学思想与方法引领,,学生容易进入繁难的运算中,甚至半途而废,本文结合一些高考题,或一些模拟题浅谈几种解数列的思想方法,供大家参考。
一、递推思想用递推关系解题的思想方法叫递推思想。
主要有递推求和、递推求积及反向递推法。
用递推关系求数列的通项公式问题是数列的一种重要内容,它能使繁琐的问题简化并一般化。
类型一:1()n n a a f n +-= 方法:叠加法(或累加法) 取1,2,3,4,n =,得n-1个式子,21321(1),(2),,a (1)n n a a f a a f a f n --=-=-=-且(1)(2)(1)f f f n +++-可求得时,两边累加得通项n a例1已知数列{}n a 满足1111,3(2)n n n a a a n --==+≥,求证:1(31)2nn a =- 证明:由已知得2,3,4,n =23121324313,3,3,,3n n n a a a a a a a a --=+=+=+=+将这n-1个式子相加得23113333(2)n n a a n -=+++++≥113(13)13n a --=+- 3311(31)222n n =-+=-而11a =,也满足上式。
故1(31)2n n a =-,(n N *∈)类型二:1()n na f n a += 方法:叠乘法(或累乘法) 取1,2,3,4,n =,得n-1个式子,3212(1),(2),,a a f f a a ==1(1)nn a f n a -=-,(1)(2)(1)f f f n -将这n-1个式子相乘得n a例2已知数列{}n a 满足11a = ,12n n a na n +=+,求数列{}n a 的通项公式 解:取1,2,3,4,n =得n-1个式子,32121121,,,341n n a a a n a a a n --===+将这n-1个式子相乘得3241231123213451n n a a a a n n a a a a n n ---=+,112(1)n a a n n =+,2(1)n a n n =+(2)n ≥而11a =,也满足上式。
高考数学题型全归纳:数列要点讲解含答案
得 n≤ 21 , 4
故当 n≤5 时,a n ≥0,
当 n≥6 时, an
0
当 n≤5 时,T n =S n =-2n 2 +19n 当 n≥6 时,T n =2S5-S n =24】 已知等差数列 a n 的第 2 项是 8,前 10 项和是 185,从数列 an 中依次取出第 2 项,第
3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非
常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如 a2a4 2a3a5 a4a6 25 , 可以利用等比数列的性质进行转化:从而有 a32 2a3a5 a52 25 ,即 (a3 a5 )2 25 .
解:设公差为
d,则
aa11
2d 122d
30 30
或
aa11
2d 122d
30 30
或
aa11
2d 122d
30 30
或
aa11
2d 122d
30 30
解得: da1030 a33 = 30 与已知矛盾
在复习时应给予重视。近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、 基本技能和基本思想方法,而且有效地考查了学生的各种能力。 四、典型例题
【例 1】 已知由正数组成的等比数列 an ,若前 2n 项之和等于它前 2n 项中的偶数项之和的 11 倍,第 3 项与第 4 项之和为第 2 项与第 4 项之积的 11 倍,求数列 an 的通项公式.
解:∵q=1 时 S2n 2na1 , S偶数项 na1
又 a1 0 显然 2na1 11na1 ,q≠1
高中数学之数列--数列知识与方法总结
数列知识与方法总结一、数列的概念与简单表示法1、通项公式与递推公式◆数列的通项公式→根据所给数列的前几项,寻找数列的通项公式。
根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的各自特征;(2)相邻项的联系特征;(3)拆项后的各部分特征;(4)符号特征;(5)若关系不明显时,应将部分项作适当的变形,统一成相同的形式;(6)n)1(-在正负交错出现、相同两个数交错出现中的应用,个n n 99110 =-在表示数中的应用。
◆数列的递推公式→由数列的递推公式,写出数列的项:一是依次从脚码小的一一求出;二是在前面的情形下,寻找其周期,求出对应项。
2、数列的单调性◆数列{}n a 中,)0(11>->++n n n n a a a a 或)0(11<-<++n n n n a a a a ⇔数列{}n a 是递增或递减数列。
◆数列可以看成以正整数集N *(或它的有限子集{1,2,…,n })为定义域的函数)(n f a n =,当自变量按照从小到大的顺序依次取值时所对应的一列函数值.因此,可利用对应函数的单调性进行研究。
二、等差数列、等比数列的判断与证明1、{}n a 成等差数列⇔)2,(1≥∈=-*-n N n d a a n n2、{}n a 成等比数列)2,(1≥∈=⇔*-n N n q a a n n 三、等差数列、等比数列的通项公式与前n 项和公式1、等差数列:d n a a n )1(1-+=或d m n a a m n )(-+= d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列:11-=n n q a a 或m n m n q a a -= )1(11)1(11≠--=--=q qq a a q q a S n n n ◆等差数列通项的一般形式为:B An a n +=,当0≠A 时,等差数列一定是单调数列,可以根据项取值的正负来判定前n 项和的最值情况。
高中数学数列方法总结(适应于数列一轮复习)
一、 数列的概念及表示法(一) 定义1. 概念:按照一定顺序排列的数叫做数列,简称{}n a ,n 为序号。
数列中的每一个数叫做这个数列的项,第一项为首项,最后一项为末项。
2. 数列中项性质:有序性、可重复性、确定性 (二) 分类1. 按个数分为:有穷数列和无穷数列2. 按项的变化趋势分为:递增数列、递减数列、常数列、摆动数列 (三) 数列与函数数列是一种特殊的函数,数列是定义域为正整数集的数列,是一系列孤立的点。
(四) 表示法 1. 列表法2. 图像法:一系列孤立的点3. 通项公式法(并不是所有的数列都有通项公式) 将数列用一个数学式子表现出来的方法叫做通项公式法。
4. 递推公式如果已知数列的第一项,且从第二项开始的任一项与它的前一项间的关系可以用一个公式来表示,这个公式就叫数列的递推公式。
(五) 数列的性质 1. 单调性如果对所有的n *N ∈,都有,n n a a >那么数列为递增数列,否则为递减数列,如果相等为常数列。
2. 周期性如果对所有的,n *N ∈都有n n a a =+k (k 为正整数),那么称数列为以k 为周期的周期数列 3. 有界性如果对所有的,*N n ∈都有M a n ≤,那么就称数列为有界数列,否则为无界数列。
(六) 数列的前n 项和 数列前n 项的和。
(七) 题型1. 数列的概念及分类例1:1,0,-1,0 (2)sinπn …是什么数列? 摆动数列、周期数列、无穷数列 例2已知数列n a 的123,6a a ,且21nnn a a a ,则2008a( )(A )-3 (B )3 (C )-6 (D )6解:∵123,6a a ,且21nn n a a a , ∴3456783,3,6,3,3,6a a a a a a ,…∴数列n a 是以6为周期的周期数列. ∵200833464,∴200843a a .故选A2. 观察法求通项公式(1)9,99,999,9999… (2)-1,0,-1,0…(3)-1,7,-13,19, (4)246810,,,,,315356399…(5)11112,4,6,824816,… 解:(1)110-=n a n (2)⎩⎨⎧-=为偶数)(为奇数n n a n 0)(1(3)1(1)[16(1)]n n a n )(4)122nna n3. 数列的通项公式及数列中的项例:已知数列n a 的通项公式为3231nn a n .(1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间12(,)33内有无数列中的项?若有,有几项?若没有,请说明理由. 解:(1)令10n ,得第10项102831a . (2)令329831101n n ,得3100n .∵此方程无自然数解,∴98101不是该数列中的项.(3)∵3231331313131n n n a n n n ,又*n N ,∴30131n ,∴01n a .(4)令13223313nn a n ,则31969662n n n n,∴7683nn,∴7863n, ∴当且仅当2n时,不等式才成立,故在区间12(,)33内仅有一项为247a . 4. 通项公式求最值解:若数列n a 中,9(1)()10nna n ,则此数列中的最大项为 ( ) (A )第7项 (B )第8项 (C )第9项 (D )第8项,或第9项二、 求通项公式的方法(一) 累加法形如)(1n f a a n n =-+形式的均可利用累加法求通项公式 例1 已知数列满足2,111=-=+n n a a a ,求通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。